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Abstract

Predator-prey relations, as well as the trophic ecology of highly migratory marine species, is

important to understand their impact on the ecosystem. Conventional methods were used to

study the diet composition and feeding strategy of the Northeast Atlantic mackerel (Scom-

brus scomber), during their summer feeding migration to Icelandic waters in 2009–2014. In

addition, generalised additive modelling (GAM) was used to determine which biological and

environmental factors contribute to the variation of their stomach weight in the years 2011–

2014. From the dietary analysis, we found that calanoid copepods (especially Calanus fin-

marchicus) were the most important contributor to the overall diet of mackerel in the years

studied. Although in some years and areas, they also preyed heavily on larger prey items

such as euphausiids, amphipods and megalopa larvae of crab and shrimp. The GAM

showed that temperature and the time the day of sampling were significant explanatory vari-

ables for the stomach weight, while zooplankton biomass did not seem to have much influ-

ence. The Northeast Atlantic mackerel are ferocious feeders upon copepods, as well as

exhibiting an overall opportunistic feeding strategy. During their feeding migration in Icelan-

dic waters, they were found to feed on the most dominant species available to them.

Introduction

Marine ecosystems are under an increasing threat from climate changes on top of environ-

mental variability. Highly migratory pelagic fish species occupying large and different marine

ecosystems might respond to such changes by altering migration patterns, distribution and

feeding habits. These responses will impact the ecosystems inhabited through predator-prey

interactions, which can be difficult to predict and observe [1,2]. Hence, understanding these

impacts requires studying fish diets and feeding habits (i.e. prey selection and specialisation).

Such studies provide the basis for understanding trophic interactions in marine food webs and

the effect the predator has on the ecosystem as a whole [3,4] and are crucial for more ecosys-

tem-based fishery management.
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Recent warming of sea surface temperatures around Iceland has opened up new habitats

for more migratory temperate species, such as the Northeast Atlantic mackerel (Scombrus
scomber) [5–7]. The reason for the expansion of the Northeast Atlantic mackerel (hereafter

called “mackerel”) feeding migration in the last decade to the north and northwest is not evi-

dent. However, this migration is postulated to be the result of many co-contributing factors

such as; increased stock size (170% from 2002–2013 [8]), gradual increase in temperature [5],

decline in zooplankton biomass in the Norwegian Sea [9] and possible competition with other

major pelagic fish stocks such as herring (Clupea harengus) [5,8]. This expansion has meant

that mackerel are now found in large numbers within Icelandic waters during the summer

[10–12]. At this time of year, the surface water is above 7˚C in Icelandic waters, which seems

to restrict the mackerel distribution during its summer feeding migration, as they prefer water

temperatures within the range 9–13˚C [10,12–15].

Studying the diet composition of mackerel in the marine ecosystem around Iceland is cru-

cial for understanding its position and trophic interactions in the marine food web and how it

might differ from other ecosystems. Information on mackerel feeding ecology, provides

much-needed information on mackerel growth conditions, feeding competition and distribu-

tional shifts [8,16,17]. Mackerel has proven to be a very ferocious predator and exhibits both

particle and filter feeding [18,19], and while feeding in Icelandic waters during the summer, it

has been reported to gain about 43% in body weight on average [20]. This example, signifying

its massive feeding activity, together with the fact that the mackerel stock is one of the largest

pelagic fish stocks in Northeast Atlantic [21] means that mackerel is a major component in the

epi-pelagic ecosystems, including Icelandic waters [10]. Further knowledge on its feeding hab-

its and diet composition is therefore highly relevant for a better understanding of the ecosys-

tems’ functioning.

Previous stomach content analysis of mackerel in the Northwest Atlantic has shown that

their diet consists, for the most part, of mesozooplankton (i.e. calanoid copepods, euphausiids

and amphipods). Additionally, some studies have also shown mackerel to feed heavily on

larger prey items such as juvenile fish (e.g. herring, sandeel Ammodytes spp. and capelinMallo-
tus villosus), fish eggs as well as larger crustaceans and squid [13,16,20,22–27]. A potential

increase in predation of crustaceans, fish eggs and larvae by mackerel in Icelandic waters can

have a detrimental effect on the survival of native populations of seabirds, marine mammals

and fish, even to the point of affecting the recruitment rates of these species, who rely on these

prey items as their primary food source [28–31]. It is therefore imperative to conduct more

studies on the feeding habits and potential impact of mackerel in Icelandic waters and

elsewhere.

The objective of this study is to examine the diet composition and feeding strategy (e.g.

prey selectivity) of mackerel during their summer feeding in Icelandic waters in 2009–2014

through stomach content analysis. It includes examining the effects of predator size as well as

temporal and spatial variation in stomach contents. This will be done by using generalised

additive modelling (GAM) to estimate which environmental factors contribute to this varia-

tion. All this will provide more comprehensive knowledge on the biology and trophic ecology

of this species and expand our understanding of the possible impact mackerel can have on sim-

ilar native species in this ecosystem and elsewhere.

Materials and methods

Study area

Iceland is situated where two submarine ridges meet, the Mid-Atlantic Ridge and the Green-

land-Scotland Ridge, just below the Arctic Circle [32,33]. These ridges affect the flow of surface

Diet and feeding strategy of Northeast Atlantic mackerel

PLOS ONE | https://doi.org/10.1371/journal.pone.0225552 December 30, 2019 2 / 22

https://doi.org/10.1371/journal.pone.0225552


waters around Iceland, with more saline and warm Atlantic water flowing along the south,

southwest and southeast coast following the North Atlantic—and Irminger Current and more

fresh and cold Arctic water masses flowing towards the north and east coast originating from

the East Iceland—and East Greenland Current [6,7,32]. Consequently, the area south and west

of Iceland contains warm Atlantic water while colder mixed Atlantic and Arctic waters are

north and east of Iceland. During the summers, warming of the surface waters creates a ther-

mocline at around 30m depth, so the surface waters of the north- and east coast of Iceland can

be above 7˚C and are thereby at a suitable temperature range for mackerel [12,34–36]. The

stomach sampling covered these different water masses around Iceland (Fig 1).

Stomach sampling

Mackerel stomachs were collected in the International Ecosystem Summer Survey in Nordic

Seas (IESSNS), which is coordinated by ICES (International Council for the Exploration of the

Seas) and took place from July to August in 2009–2014 (Fig 1). During this survey, a total of

18601 mackerel were collected for further analysis in Icelandic waters, ranging from 18–46 cm

in length (S1 Table and S1 Fig). Of those, 3777 stomachs were sampled for dietary analysis. In

2009 and 2010 the samples were taken in an epipelagic trawl, whereas from 2011 and onwards

a specially designed pelagic Multpelt 832 trawl was used. The trawl hauls were taken in the sur-

face waters at predefined locations around Iceland [11]. The vertical opening of the trawls var-

ied from 16.5m (2009 and 2010) to 30–35 m (from 2011 onwards) [10]. Trawl catches were

sorted and weighed, and the fish were identified to species level and other taxa to higher taxo-

nomic levels. Total length (L; 1.0 cm), whole body weight (W; 0.1 g), weight of gonads (0.1 g),

sex, maturity stage and age were recorded for all mackerel. Where possible, ten mackerel

Fig 1. Study area. Sampling stations for Northeast Atlantic mackerel, plankton and CDT in Icelandic waters in 2009–2014, separated into five sub-areas: north (N), east

(E), southeast (SE), southwest (SW) and west (W).

https://doi.org/10.1371/journal.pone.0225552.g001
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stomachs were collected from each station, and the stomach weight (including the stomach

content) was recorded (0.1 g) and frozen immediately to −20˚C for later analyses ashore. In

the laboratory, the stomach content from individual fish was analysed by use of a microscope

and the prey items were grouped into the lowest taxonomic group, excluding parasitic animals

and unidentified objects (these were weighed but not counted). Small prey individuals within

a taxonomic group were counted and weighed together (wet weight to nearest 0.01 g) and for

larger prey items (i.e. fish) the total length was also measured (mm). For stomachs containing

large amounts of zooplankton, a sub-sample was taken, by mixing the sample and removing 1-

2mL of the mixture to a counting chamber with a pipette. Prey items that were much digested

(e.g. fish otoliths or euphausiid eyes) were all identified to the lowest taxonomic level.

The total length of mackerel examined ranged from 19-48cm. To evaluate variation in food

habits as a function of predator size, mackerel were divided into three length groups (�33cm

(S); 34-38cm (M);�39 cm (L)), with a minimum of 50 fish in each group. A separation into

five sub-areas (south, southeast, southwest, west and north) within Icelandic waters (Fig 1) was

done to examine if there was a difference in diet composition between these areas. So, within

each area, individual mackerel stomachs from all stations were pooled. This separation was

based on oceanographic boundaries (SE vs. E and W vs. N; see description of study area

above) and more arbitrary boundaries related to geographical features (W vs. SW), migration

distance for mackerel coming from southeast (N vs. E and W vs. SW), size of the continental

shelf and size of the areas (SE vs. SW) [20,37,38].

Our study did not involve any endangered or protected species and no experimentation

with live animals was performed. No other ethical issues applied to the present research proj-

ect. Special permissions or rules for sacrificing fish from an animal ethics committee, are at

present non-existing in Iceland for the scientific sampling of fish. Usually, trawling and han-

dling of the fish onboard the vessels, including sorting and sampling leads to high mortality.

Therefore the fish collected as part of this research were killed as rapidly as possible. Hence, all

the fish were dead before any surgical procedure occurred.

Environmental and ecological measurements

Zooplankton were sampled during the IESSNS survey in 2009–2014 using a WP2-net with a

mesh size of 200μm at the same locations as the trawl hauls were taken. The nets were hauled

vertically from a depth of 200m, or from the near bottom at shallower stations, to the surface

at a speed of 0.5 m/s. All samples were split in two, where one half was preserved in formalin

for species identification the other half was dried and weighed for biomass estimation. Tem-

perature, salinity and depth were also measured during the surveys at the same locations by a

SEABIRD CTD sensor from the surface down to 500m or to the sea bottom (at shallower

depths). However, the analyses below are limited to the uppermost 50 meters and applied as

average temperature and salinity over 0–50 m for each station. In the Nordic Seas, the ther-

mocline is generally at 20–40 m depth during summer [39]. The mackerel is typically found

in this layer [10], and the trawling takes place there, thereby the stomach sampling. Instead

of limiting the environmental variables to this layer (~40m) it was decided to use 0-50m. The

reasons are: (1) mackerel can be expected to feed near and below the thermocline to some

degree, especially within the Atlantic waters where the temperature below the thermocline is

>7˚C (SE, SW and W; Fig 1); (2) The mackerel can be expected to feed and occupy the

whole well-mixed water column above the thermocline so using average temperature and

salinity sounds logical; (3) The salinity is relatively unconnected to the thermocline so the

average value over 50m represents mainly the type of water masses (Atlantic, Arctic, mixture

or coastal).
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Dietary analysis

In this study, different indices previously used in dietary studies were applied to the stomach

content data to address the different objectives by following Hyslop [40]. Numerical (%N) and

gravimetric (%W) composition were calculated together with the frequency of occurrence

(FOi), for all stomachs. To estimate the feeding activity of mackerel the Vacuity Index (Vi) was

calculated;

Vi ¼
Es
Ts
� 100

where Es, is the number of empty stomachs and Ts the total number of stomachs. The Prey-

Specific Index of Relative Importance (PSIRI) was used to quantify the importance of each

prey category in the diet [41]. PSIRI is ideal for comparisons between predators and prey

because its values are not dependent upon the taxonomic level and act as a balanced treatment

of the relative measures of prey quantity. PSIRI was calculated as:

PSIRI ¼ ðFOi � ðPWi þ PNiÞÞ=2

were the prey-specific abundance PWi (weight) and PNi (number) w needed for this calcula-

tion: PWi = ∑Wi/∑SWi; PNi = ∑Ni/∑SNi wereWi is the weight of prey i and Ni is the number of

prey i. SWi and SNi are the total stomach content in weight and number, respectively, of indi-

vidual predators with prey i in their stomachs. Feeding strategy was assessed graphically with a

two-dimensional representation of prey-specific abundance (Pi) and FOi of the various preys

[42]. The prey-specific abundance of prey i (Pi) was defined as the percentage a prey taxon

comprises of all prey items in only those predators in which the actual prey occurs. For this

study, we used weight to describe Pi, or in mathematical terms:

Pi ¼ ð
P
SWi=

P
PWiÞ � 100

Statistical analysis

For statistical testing of diet contribution, fourth-root gravimetric data were assessed, using

permutational multivariate analysis of variance (PERMANOVA; [43]) using a Bray-Curtis

similarity index or a Kruskal Wallis followed by Dunn´s post hoc if significant. All statistical

analyses were performed in PAST v3.20 [44] using a significance level of p< 0.05. Spatial dif-

ferences in diet were also examined using the Bray-Curtis similarity index on fourth-root

gravimetric data between areas for all years, and hierarchical agglomerative clustering was

applied to the similarity matrix [45–47], were clustering was based on the group average clus-

ter mode and visualised in a dendrogram using PAST v3.20 software.

The variation of stomach weight of mackerel was analysed using a generalised additive

model (GAM) [48]. A GAM is simply a generalised linear model (GLM) with a linear predictor

that is composed of a sum of smooth functions of the covariates, and thus particularly effective

at modelling complex ecological relationships [49]. A GAM structure can be written as:

gðEðYÞÞ ¼ b0 þ s1ðx1Þ þ s2ðx2Þ þ � � � þ spðxpÞ

Where Y is the dependent variable, E(Y) denotes the expected value and g(Y) signifies the

link function that links the expected value to the explanatory variables x1,. . .,xp (Table 1). The

terms s1(x1), . . .,sp(xp) refer to smooth nonparametric functions.

To examine which of the variables were significant in explaining the stomach weight of

mackerel, we used data collected from each trawl station containing mackerel. Here the stom-

ach weight is considered to represent feeding success. In our data, most of the stomachs
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contained prey, which suggests that mackerel that can feed continuously are in better condi-

tion and thus have better feeding success [50,51]. The explanatory variables included in the

modelling were; time of sampling (four time periods (00:00–05:00, 06:00–11:00, 12:00–17:00,

18:00–23:00), week number and year), location (station and distance to shore (0–200m, 201–

500m, 501–1000m, >1001m), environmental variables (bottom depth, average temperature

from 0–50m and average salinity from 0–50m) and biological variables (zooplankton dry

weight biomass, Fulton’s K (K = W / L3 x 100) of individual mackerel, total catch of mackerel)

(Table 1A). Only years from 2011–2014 (S1 Table) were used in the GAMs since no zooplank-

ton biomass data was available in 2009 and 2010. Also, only stations with> 9 individual stom-

achs were selected for all years for more robust comparisons. Furthermore, small fish (< 25

cm) were not included in the analysis because they were not well represented for all years in

the dataset (S1 Fig). Before modelling, data were checked for collinearity.

The GAMs were fitted to a Gaussian distribution with an identity link function in the R

package “mgcv” v. 1.8–26 [49], using Restricted Maximum Likelihood (REML) as smoothing

selection [52]. The best-fitting GAM was selected by computing models with every possible

combination of the variables using the “MuMIn” package v. 1.42.1 [53], as well as using visual

Table 1. Variables and model selection.

A)

Variables Description

Depth Measured from sea surface to the ocean floor (meters)

Sea surface salinity

(SSS)

Average salinity from each station from 0–50 meters (parts "per mille"—ppt)

Sea surface

temperature (SST)

Average temperature from each station from 0–50 meters (˚C)

Zooplankton

biomass

Dry weight from WP2 hauls at each station (mg/m3)

Fulton’s K Fulton’s condition factor (K = 100(W/L3)

Latitude and

longitude

Geographical marker of stations

Total catch Log transformed total mackerel catch (ton) per station

Week week number during the survey

Time of day Day divided into four time periods with 6 hours in each (00:00–05:00, 06:00–11:00,

12:00–17:00, 18:00–23:00)

Year Data collected from 2011–2014

Distance to shore From isobath lines (�100m, �200m,�500, >501m)

B)

Model # Response variable Explanatory variable Factorial variables AIC ΔAIC wi Deviance

explained

R2

adjusted

DF

1 log(stomach weight) zooplankton + (longitude,latitude)

+ Fulton´s K+ depth + SSS + SST + log(total catch)

time period+distance to

shore+week+year

-1854 8.92 0.007 48.50% 0.44 153

2 log(stomach weight) zooplankton + (longitude,latitude)

+ depth + SSS + SST + log(total catch)

time period+distance to

shore

-1863 0 0.58 48.60% 0.44 150

3 log(stomach weight) zooplankton + (longitude,latitude)

+ SSS + SST + log(total catch)

time period -1862 1 0.35 48.50% 0.44 148

4 log(stomach weight) zooplankton + (longitude,latitude)

+ depth+ SSS + SST

time period -1860 4.4 0.06 48.30% 0.42 147

A) List of explanatory variables considered in analyses of Northeast Atlantic mackerel stomach weight in Icelandic waters in 2011–2014 using generalised additive

models (GAMs). B) GAMs selection table, the model marked in bold was found to be the best-fitted model based on Akaike Information Criterion (AIC) from the R

package “MuMIn” (see Table 6).

https://doi.org/10.1371/journal.pone.0225552.t001
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assessment of the residual—and smooth plots and Akaike Information Criterion (AIC), delta

(Δ) AIC and Akaike weight (wi) [54]. Variables were excluded if their inclusion did not belong

within the 95% confidence set of the model (Table 1B).

Results

Diet composition and feeding strategy

The vacuity index (VI) was between 2–22% (average VI = 8.3%), with no statistical difference

between years (Kruskal- Wallis; H = 5, p = 0.42) and overall, 92% of the mackerel stomachs

contained food, meaning that almost all stomachs contained prey items to a varying degree. A

total of 42 prey species were identified and are listed in Table 2. For further analysis, the prey

species found in the stomachs were grouped into the ten following taxon groups; molluscs,

copepods, amphipods, euphausiids, large crustaceans, small crustaceans, fish, appendicular-

ians, chaetognaths and ova. All unidentified prey matter and parasites found in the stomachs

were excluded from further analysis.

The overall prey specific index of relative importance (PSIRI) showed that the most com-

mon prey group that occurred in all mackerel stomachs for all the years was the copepod

group (Fig 2), constituting a PSIRI between 48.7% to 86.6% in the years studied. Other impor-

tant prey groups varied more among years in PSIRI with euphausiids ranging from 1.4–5.8%,

large crustaceans 0.01–14.7%, amphipods 1.1–6.2% and fish 0.5–2.0%. The remaining prey

groups, which had lower PSIRI values, were thus considered of lesser importance.

To assess the feeding strategy of mackerel, the prey-specific abundance (Pi) was plotted

against the frequency of occurrence (FOi) (Fig 3A), which was done for the whole surveyed

area in Icelandic waters pooling all years. Almost all prey groups were located to the lower left

of the diagram, i.e. a region of low prey importance (Fig 3B). Copepods was the dominated

prey group and its location at the upper right corner of the diagram (Fig 3A) signifies its

importance and specialisation by the mackerel.

Results from the two-way PERMANOVA indicated a statistical difference in gravimetric

weight of prey among areas and years (Pseudo F4,5 = 5.3, p<0.001; Pseudo F4,5 = 13.8,

p<0.001). It also revealed that most prey groups varied among years and areas (Tables 3 and

4). Exceptions to this pattern include euphausiids among years and molluscs, large crusta-

ceans, and chaetognaths among areas.

The difference between the three length groups of mackerel in the relative measure of total

stomach content, indicated by the gravimetric index, was only significant in 2011 (H = 52.1,

p<0.001) and in 2012 (H = 10.9, p<0.005). Dunn´s post hoc test showed a difference between

all length groups in 2011 (S-M, p<0.001; S-L, p<0.001; M-L, p<0.005) while in 2012 there was

a difference between the largest mackerel and the two other length groups (L-S, p<0.005; L-M,

p<0.01). When analysing differences in prey composition among length groups combined

over all the years, there was only difference with the fish prey group (H = 13,1, p<0.005),

where a Dunn´s post hoc revealed that larger mackerel preyed more on fish than smaller

mackerel did (S-M, p<0.05; S-L, p<0.001).

Diet variation between areas

Results from the one-way PERMANOVA analysis of prey composition in the stomachs

showed that there was some diet variation between areas within the years (Table 5 and Supple-

mentary S2 and S3 Tables). Hierarchical clustering of the five areas based on the diet variation

resulted in three groups that were clearly separated but still showed a high percentage of simi-

larity (Fig 4A). One of the groups consisted of west, southwest and southeast areas with 85–

92% similarity, the second group (north) revealed slightly lower similarity (78%) and the
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Table 2. Prey species observed in the stomach content of Northeast Atlantic mackerel in Icelandic waters in 2009–2014.

Group PWi% PNi% FOi% PSIRI%

Molluscs 3.80% 1.20% 17.90% 0.40%

Planktomya spp.

Limacina helicina
Limacina retroversa
Prosobranchia spp.

Todarodes sagittatus
Copepods 72.90% 97.30% 81.30% 69.20%

Calanus finmarchicus
Calanus hyperborus
Acartia clausi
Temora longicornis
Centropages hamatus
Metridia longa
Oithona similis
Microcalanus spp.

Pseudocalanus spp.

Euchaeta spp.

Caligidae spp.

Amphipods 15.60% 2.20% 35.40% 3.10%

Themisto abyssorum
Hyperia medusarum
Gammaridae spp.

Euphausiids 18.60% 1.30% 40.10% 4.00%

Thysanoessa inermis
Thysanoessa longicaudata
Meganyctiphanes norvegica

Large crustaceans 42.10% 9.80% 21.20% 5.50%

Leucon (Leucon) nasica
Carcinus maenas
Hymenodora glacialis
Eusergestes arcticus

Small crustaceans 16.10% 4.40% 7.60% 0.80%

Balanidae spp.

Ostracoda spp.

Podon spp.

Evadne spp.

Fish 26.70% 0.30% 7.80% 1.10%

Ammodytes spp.

Clupea harengus
Gadus morhua
Melanogrammus aeglefinus
Micromesistius poutassou
Merlangius merlangus
Maulisia mauli
Mallotus villosus
Anarhichas minor

Appendicularia 16.30% 32.00% 1.40% 0.30%

(Continued)
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lowest being east (70%). These similarities were also recognised by a graphical representation

of the diet composition in each area (Fig 4B).

Variation in stomach weight

The results from the GAMs, show that the stomach weight of mackerel was primarily affected

by zooplankton biomass, temperature, salinity, depth as well as spatial and temporal variables,

in this order, which together explains over 48% of the deviance. All predictor variables, except

total catch per station, contributed to the overall model by having a smoothing term signifi-

cantly different from zero (Table 6). Increase in zooplankton biomass had a positive effect on

Table 2. (Continued)

Group PWi% PNi% FOi% PSIRI%

Oikopleura spp.

Chaetognaths 16.20% 0.80% 1.00% 0.10%

Sagitta spp.

Ova 0.20% 1.20% 13.60% 0.10%

Actinopteri spp.

Observed prey and categorisation across species, showing prey-specific weight (PWi%) and number (PNi%), Frequency of Occurrence (FOi%) and Prey-Specific Index

of Relative Importance (PSIRI%) of all years combined.

https://doi.org/10.1371/journal.pone.0225552.t002

Fig 2. Frequency of Occurrence (FOi%) and Prey-Specific Index of Relative Importance (PSIRI%) for different prey groups of Northeast Atlantic mackerel in

Icelandic waters in the years 2009–2014.

https://doi.org/10.1371/journal.pone.0225552.g002
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stomach weight, while a negative trend, with a wide confidence interval, was detected in the

higher end of the zooplankton biomass based on few samples (Fig 5). Depth had an overall

positive effect on the stomach weight of mackerel, whereas the positive relationship between

salinity and stomach weight was largely driven by a single station with low values for both vari-

ables. Temperature had a more mixed effect but became positive when it exceeded 9˚C. The

total catch had both a negative and positive effect on stomach weight. Regarding the factorial

variables, some significant effects were revealed, both regarding the distance to the shore

(depth profiles) and time of day (time period).

Discussion

The variation in prey composition

The results showed that mackerel’s main food source while feeding in Icelandic waters, were

calanoid copepods, which constituted (on average) >60% of the total content weight of the

stomachs. Over 70% of the copepods by weight consisted of C. finmarchicus. This finding is in

accordance with studies done on the zooplankton community in Icelandic waters, which have

identified C. finmarchicus to be the most abundant calanoid species (50–80%) [55,56]. Other

diet studies of mackerel from other areas in the Northeast Atlantic showed similar results,

where C. finmarchicus was found to be the most dominant copepod species in mackerel stom-

achs [16,20,26,57,58]. Smaller copepods, such as T. longicornis and Oithona spp., were also

found in large amounts in mackerel stomachs during their summer feeding, especially from

those fish caught close to and on the shelf area to the south and southeast. This coincides with

similar diet studies of mackerel from the Norwegian Sea [57] and in the Gulf of St. Lawrence

[59,60] and characterises their more coastal distribution [7,61–63]. Mackerel are mainly plank-

tivores, using both filter and particulate methods of feeding when faced with different prey

assemblages in order to maximise their net intake [18]. Studies have shown that mackerel may

feed on zooplankton by primarily filter feeding and then shift to particulate feeding when prey

Fig 3. Graphical representation of feeding strategy from the stomach composition of Northeast Atlantic mackerel in Icelandic waters in 2019–2014. A) Feeding

strategy shown by plotting frequency of occurrence (FOi%) and prey-specific abundance (Pi%) of prey in diet of fish collected where the prey groups are: M = molluscs;

Co = copepods; Am = amphipods; E = euphausiids; L = large crustaceans; S = small crustaceans; F = fish; Ap = appendicularians; Ch = chaetognaths; O = ova. B)

Explanatory diagram for interpretation of feeding strategy, prey importance and niche width contribution for mackerel (adapted from Amundsen et al. [42]); BPC,

between-phenotype component; WPC, within-phenotype component.

https://doi.org/10.1371/journal.pone.0225552.g003
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size and the size distribution of available prey changes [18,19], which probably allows them to

make more extensive use of the available prey. Therefore, the feeding behaviour of mackerel

can be size-selective and is probably based upon the efficiency of retention of different-sized

particles by the gill rakers.

Table 3. Summary of two-way PERMANOVA for the analysis of differences between areas and years.

Source df SS MS Pseudo-F P
Molluscs

Area 4 1.26 0.32 1.15 >0.1

Year 5 6.68 1.34 5.00 <0.001

Residual 363 99.00 0.27

Copepods
Area 4 1.12 0.28 3.40 <0.001

Year 5 1.53 0.31 3.70 <0.001

Residual 363 30.00 0.08

Amphipods
Area 4 4.82 1.20 4.37 <0.001

Year 5 3.76 0.75 2.74 <0.01

Residual 363 99.91 0.28

Euphausiids
Area 4 2.96 0.74 3.00 <0.01

Year 5 1.39 0.28 1.10 >0.1

Residual 363 92.68 0.26

Large crustaceans
Area 4 0.74 0.18 0.95 >0.1

Year 5 38.86 7.77 40.17 <0.001

Residual 363 70.23 0.19

Small crustaceans
Area 4 2.08 0.52 2.60 0.01

Year 5 4.64 0.93 4.63 <0.001

Residual 363 72.70 0.20

Fish
Area 4 2.55 0.64 9.08 <0.001

Year 5 0.54 0.11 1.54 >0.1

Residual 363 25.48 0.07

Appendicularians
Area 4 0.84 0.21 4.51 0.001

Year 5 0.60 0.12 2.56 <0.01

Residual 363 17.00 0.05

Chaetognaths
Area 4 0.23 0.06 1.13 >0.1

Year 5 0.93 0.19 3.61 0.001

Residual 363 18.64 0.05

Ova
Area 4 1.71 0.43 1.51 0.1

Year 5 13.72 2.74 9.69 <0.001

Residual 363 102.80 0.28

Based on Bray–Curtis dissimilarities of the fourth-root gravimetric weight of prey groups of mackerel in 2009–2014 in Icelandic waters. Significant results are shown in

bold.

https://doi.org/10.1371/journal.pone.0225552.t003
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Table 4. Pairwise comparisons from the results of the two-way PERMANOVA (Table 3).

A) Large Crustaceans Small Crustaceans Appen-dicularians Chaet-ognaths
Molluscs Copepods Amphipods Euphausiids Fish Ova

2009–2010 0.001 <0.001 <0.01 >0.5 <0.001 >0.1 <0.05 0.5 <0.01 >0.1

2009–2011 <0.001 <0.05 >0.1 >0.5 <0.001 0.001 >0.5 0.01 >0.1 >0.05

2009–2012 <0.001 >0.5 >0.1 >0.05 <0.001 >0.5 >0.1 0.01 >0.1 >0.1

2009–2013 <0.05 <0.05 >0.5 >0.5 0.01 >0.1 0.001 1 0.05 <0.001

2009–2014 0.001 >0.5 >0.1 >0.5 <0.05 >0.1 <0.001 0.01 >0.1 <0.001

2010–2011 >0.1 >0.05 >0.1 >0.5 0.01 <0.001 >0.1 >0.1 1 0.01

2010–2012 0.02 <0.01 <0.001 >0.1 >0.05 >0.1 >0.5 >0.1 <0.001 >0.05

2010–2013 >0.1 <0.001 <0.01 >0.5 <0.001 <0.05 >0.05 >0.5 <0.01 <0.001

2010–2014 >0.1 0.001 >0.05 >0.1 <0.001 0.01 >0.05 >0.1 >0.1 <0.001

2011–2012 >0.1 >0.05 <0.05 >0.1 >0.1 0.001 >0.1 1 <0.001 >0.1

2011–2013 >0.1 0.001 >0.1 >0.5 <0.001 <0.05 <0.01 0.01 <0.01 <0.001

2011–2014 >0.5 <0.05 >0.5 >0.1 <0.001 <0.05 <0.01 >0.5 >0.1 0.01

2012–2013 0.01 0.01 >0.1 >0.05 <0.001 >0.1 <0.05 >0.05 >0.5 <0.001

2012–2014 >0.05 >0.05 <0.5 <0.05 <0.001 >0.1 <0.05 >0.5 <0.05 <0.01

2013–2014 0.5 >0.1 >0.1 >0.5 >0.5 >0.5 >0.5 >0.05 0.01 >0.05

B) Large Crustaceans Small Crustaceans Appen-dicularians Chaet-ognaths
Molluscs Copepods Amphipods Euphausiids Fish Ova

W-SW >0.5 >0.1 <0.001 >0.5 >0.1 >0.1 >0.1 0.01 >0.1 >0.1

W-SE >0.5 >0.1 0.01 >0.1 >0.5 0.01 >0.5 <0.01 >0.5 >0.05

W-E >0.1 0.01 0.001 >0.05 >0.5 >0.1 >0.5 0.01 >0.1 >0.5

W-N >0.05 <0.001 >0.1 <0.01 >0.1 >0.1 0.001 >0.5 >0.5 >0.5

SW-SE >0.5 >0.5 >0.05 >0.1 >0.1 >0.1 >0.05 1 >0.5 >0.5

SW-E >0.1 >0.1 <0.05 >0.05 >0.1 >0.1 >0.1 >0.1 0.05 >0.1

SW-N >0.1 0.01 <0.01 0.01 >0.5 >0.05 <0.001 <0.05 >0.1 >0.1

SE-E >0.5 >0.1 >0.1 0.05 >0.5 <0.05 >0.1 >0.1 >0.1 <0.05

SE-N >0.1 >0.05 >0.1 0.01 >0.1 0.001 <0.05 <0.05 >0.5 <0.05

E-N >0.1 0.01 >0.1 >0.1 >0.1 >0.1 <0.001 >0.1 >0.1 >0.5

Based on Bray–Curtis dissimilarities of fourth-root transformed values of gravimetric weight of prey between years (A) and between areas (B) for all years combined.

Significant results are shown in bold.

https://doi.org/10.1371/journal.pone.0225552.t004

Table 5. One-way PERMANOVA of species composition from stomachs between areas within years.

Prey groups 2009 2010 2011 2012 2013 2014

Molluscs >0.5 >0.1 <0.001 <0.05 >0.1 >0.1

Copepods >0.5 >0.05 <0.01 0.01 >0.1 >0.5

Amphipods 0.05 >0.1 >0.05 0.01 >0.05 >0.5

Euphausiids 0.01 >0.1 >0.1 >0.5 <0.01 >0.1

Large crustaceans >0.1 <0.01 >0.05 >0.5 >0.5 >0.5

Small crustaceans 0.1 >0.05 >0.1 >0.1 >0.5 <0.05

Fish >0.1 <0.05 0.01 >0.1 >0.1 0.5

Appendicularians NA <0.05 >0.1 >0.05 NA >0.05

Chaetognaths >0.5 NA NA >0.1 >0.5 >0.1

Ova >0.1 >0.1 >0.05 >0.1 >0.1 >0.5

Based on Bray–Curtis dissimilarities of fourth-root gravimetric weight of prey. Significant results are shown in bold.

https://doi.org/10.1371/journal.pone.0225552.t005
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This study revealed that euphausiids, amphipods and large crustaceans play an essential

role as food for mackerel. Of the four euphausiid species found in Icelandic waters, Thysa-
noessa inermis occurs all over the Icelandic shelf, T. longicaudata is most abundant in offshore

waters, T. raschi is mainly confined to fjords and bays andMeganyctiphanes norvegica is most

common near the shelf edge off the south and west coasts [64,65]. The euphausiid species iden-

tified in the analysed stomachs was, to a large extent T. inermis and to some extentM. norve-
gica. Themisto abyssorum was the most abundant amphipod species in the stomachs, which

concurs very well with zooplankton studies finding T. abyssorum to be the most common

amphipod species in Icelandic waters [66]. In 2010–2012, megalopa larvae of large crustaceans

Fig 4. Diet variation between areas. A) Dendrogram for hierarchical clustering of the prey composition of mackerel according to sampling locations (Fig 1) using

Bray–Curtis similarities calculated on fourth-root transformed values of the gravimetric weight of prey. B) Composition of mackerel diet by area, based on the

gravimetric weight of prey (W%).

https://doi.org/10.1371/journal.pone.0225552.g004

Table 6. Summary statistics from the general additive model (GAM).

A) Parametric coefficients Estimate Std. error t-value p-value

Intercept 1.00986 0.05624 17.955 <0.001

Distance to shore2 (depth 200–500m) -0.07544 0.0306 -2.465 <0.05

Distance to shore3 (depth 501-1000m) -0.14472 0.06793 -2.13 <0.05

Distance to shore4 (depth > 1000m) -0.20338 0.09313 -2.184 <0.05

Time period 2 (06:00–11:00h) -0.02611 0.01839 -1.42 >0.1

Time period 3 (12:00–17:00h) -0.02054 0.01763 -1.165 >0.1

Time period 4 (18:00–23:00h) -0.06468 0.01583 -4.086 <0.001

B) Smooth terms Est. DF F p-value

s(zooplankton biomass) 3.174 4.376 <0.01

s(bottom depth) 3.227 4.818 <0.01

s(salinity) 3.594 3.803 <0.01

s(temperature) 116.947 5.897 <0.001

s(longitude, latitude) 6.48 3.286 <0.01

s(total catch) 3.183 2.85 >0.05

Showing the parametric coefficients of factorial variables (A) together with the approximate significance of smooth terms used in the model (B). Significant values are in

bold.

https://doi.org/10.1371/journal.pone.0225552.t006

Diet and feeding strategy of Northeast Atlantic mackerel

PLOS ONE | https://doi.org/10.1371/journal.pone.0225552 December 30, 2019 13 / 22

https://doi.org/10.1371/journal.pone.0225552.g004
https://doi.org/10.1371/journal.pone.0225552.t006
https://doi.org/10.1371/journal.pone.0225552


(mostly crab and shrimp), were found to a greater extent (second most important prey item

(PSIRI) Fig 2) in the stomach content than other years. It is difficult to say why this prey group

was represented in greater abundance in those three years, than in the other years. The only

shrimp and crab species fished commercially, and thus monitored regularly, in Icelandic

waters are the Northern shrimp (Pandalus borealis) that are found all around Iceland but more

abundance in the north and east [67] and Norway lobster (Nephrops norvegicus) which is, how-

ever, limited to the south and west coast of Iceland [64]. We cannot tell with the data at hand,

if and how much of these observed megalopa larvae belong to these species, and thereby if, for

example, the mackerel predation could be impacting the Norway lobster recruitment success,

which has been failing for many years [68]. However, this is of both ecological and economic

interest and requires further investigation through, for example, genetic analysis of stomach

content, to assess the potential impact.

Fish were the only prey group that varied among length groups, where large mackerel

(�39cm) tended to consume more fish than smaller mackerel. Experiments on mackerel for-

aged on fish larvae revealed that adult mackerel actively shifted preference towards larger prey

Fig 5. Generalised additive model (GAM). Results from the GAM of the effects of different explanatory variables on Northeast Atlantic mackerel stomach weights in

the summers of 2011–2014 in Icelandic waters, where the solid lines are smoother estimates of the covariates according to the model. The shaded grey area represents

the 95% confidence interval of the smoothers, and vertical dashes at the bottom of the plots show the distribution of data points entering the model.

https://doi.org/10.1371/journal.pone.0225552.g005

Diet and feeding strategy of Northeast Atlantic mackerel

PLOS ONE | https://doi.org/10.1371/journal.pone.0225552 December 30, 2019 14 / 22

https://doi.org/10.1371/journal.pone.0225552.g005
https://doi.org/10.1371/journal.pone.0225552


to achieve a higher rate of energy intake, and thus preyed more heavily on large larvae than the

smaller mackerel [19,24]. This strategy could be more profitable for larger fish, who could

endure the extra energy it takes, to actively feed on more mobile prey. Otherwise, there was

not much difference in diet composition between the length groups, which could be because

most mackerel caught in Icelandic waters during the summer are relatively large (>33cm) (S1

Fig). Smaller and younger mackerel occasionally observed in Icelandic waters (<25 cm [69]),

were not part of this study.

The results of prey composition in mackerel stomachs between areas revealed some subtle

differences (Fig 4) and these differences reflect the zooplankton distribution pattern around

Iceland to some degree. Past studies have shown that the mean annual zooplankton biomass in

the surface layers are more than two times higher in the warm Atlantic water south of Iceland

than in the subarctic waters to the north and that species composition varies greatly among

areas as well [7,38]. In the uppermost water mass around Iceland C. finmarchicus is the most

dominant zooplankton species, followed by Oithona spp. [38,63]. Other species like T. longi-
cornis, Centropages hamatus, Acartia spp., Podon spp., cirripede larvae, bivalves and poly-

chaetes dominate the biomass to the southeast, south and southwest [7,38,63,64]. To the north

and northeast of Iceland, there seem to be relatively high zooplankton biomass of C. hyperbor-
eus, C. glacialis,Metridia longa, Pseudocalanus spp., euphausiids and appendicularia (Oiko-
pleura spp.) [7,38,63–65]. Although C. finmarchicus was the dominant copepod species found

in mackerel stomachs for all areas, smaller copepod species such as T. longicornis and Arcatia
clausi were especially abundant in samples from the coastal areas to the southwest and south-

east. As were small crustaceans (i.e. cirripede larvae and Podon spp). In the northern area, the

diet was also dominated by large crustaceans and fish, where euphausiids were more com-

monly found in stomachs from the east and southeast.

Feeding strategy of mackerel

The vacuity index (VI) (or empty stomachs’ ratio), is an inverse indicator of feeding intensity

which varies according to variations in the abundance of fish as well as seasonal changes in

water temperature and food items available [70]. The low value of the vacuity index (VI) for all

years indicate that mackerel feed continuously while in Icelandic waters during the summer.

Mackerel is a visual predator, and experiments have shown that mackerel have a greater feed-

ing activity during the day than at night. At the time they are foraging in Icelandic waters,

there is daylight almost for 24 hours, which allows them a more continuous feeding time

frame [19,59]. Our findings from the GAM modelling supports this where the time of the day

had only small impacts on the variation in the stomach weight. Only time period 4 (from

18:00–23:00 hours) was found significant, with a tendency for less stomach weight indicating,

surprisingly, a less feeding in the afternoon (Table 6). Study of mackerel feeding behaviour

from the Irminger Sea by Jansen et al. (2019) [50] during the summer, found that mackerel

had some diel aspects in their feeding dynamics, where they consumed larger zooplankton

prey during dusk hours, even though copepods were still numerous in the surface layers. Our

data on stomach composition did not allow for analyses of the diurnal differences.

Our general findings from the GAM indicated that the weight of mackerel stomachs were

affected by several explanatory variables. The positive impact of the sea temperature was not

surprising since mackerel prefer higher temperatures. In the same way, zooplankton biomass

had a positive effect on the stomach weight up to a certain degree, where it started to have a

negative effect according to the model. The positive effect seems like logical, where higher den-

sity of zooplankton causes higher feeding success and thereby greater stomach weight. This

negative effect was, however, caused by few samples, had wide confidence interval, and is
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therefore considered to have little significance. There are some shortcomings in our approach

that should be mentioned regarding the zooplankton biomass. It was obtained from WP2

plankton nets, and thus not fully representative of the zooplankton community, since larger

zooplankton species, like euphausiids, tend to evade capture [71]. The results from the GAM

are interesting enough for further exploration regarding the feeding of mackerel in Icelandic

waters concerning shifts in time of day as well as the waters they occupy (coastal, shelf or

oceanic).

Analyses of the feeding strategy of mackerel showed that it is a specialised predator during

the summer feeding, that relies heavily upon copepods as its main prey while eating other prey

groups to a varying degree when encountering them. Since mackerel has the option to both fil-

ter and particulate feed, it can switch between methods readily, in order to utilise the searched

area (Macy et al. 1998; Darbyson et al. 2003). Feeding experiments have shown that when

mackerel were introduced to high concentrations of large copepods, they switched from par-

ticulate feeding to filter feeding (Macy et al. 1998). This was also true when offered intermedi-

ate and smaller prey items at relatively high concentrations, and when the concentration of

smaller size zooplankton is low, mackerel shift back to particulate feeding [19]. The shift in

feeding method can be explained by the energy cost of filter feeding [72] as well as a lower

energy density of C. finmarchicus [73]. Thus, mackerel can shift to larger and more energy-

rich food sources when available. This has also been observed in nature, where mackerel

switched to particulate feeding of large zooplankton even though copepods were available [50].

These types of behaviour responses are also thought to be common within mackerel schools,

because differences in the size and abundance of prey at the front and rear end of schools may

vary [18]. Studies have also shown that mackerel tend to slow their swimming speed when

encountering highly concentrated patches of zooplankton [14,18], probably as they do not

need to “chase” their prey. Higher swimming speeds are then associated with larger prey and

reflect a higher energy intake [18,19]. Thus, mackerel increase their swimming speed as zoo-

plankton abundance decreases, and thereby tend to have high clearance rates of a variety of

prey sizes within the plankton community, which then again can affect the density of less

abundant prey such as fish larvae. In summary, the literature implies that mackerel is an

opportunistic predator, meaning that is generally not selective in its feeding but more or less

feeds on the biomass available. Our results indicate that mackerel is a specialised predator on

copepods, although this can also be interpreted as support to the opportunistic feeding strategy

since the most abundant biomass of zooplankton prey in Icelandic waters are calanoid

copepods.

Studies limitations

Evacuation studies have shown that adult mackerel can clear their stomachs within 28 hours at

17˚C but longer evacuation time is needed at lower temperatures [74,75]. Furthermore, mack-

erel evacuate stomach content at a continuous rate, and smaller prey items are evacuated faster

than large ones [75]. Therefore, visual analysis of stomach contents alone can be biased,

because often the contents are so digested that there is only “soup”, or bits and pieces left visi-

ble. This makes it hard to quantify and identify the prey down to species level.

Consequently, a more comprehensive and alternative analysis of a fish´s diet can be infor-

mative and relevant, not only in strengthening and widening the results, but also to discover if

there are prey species that were not detectable by visual analysis alone. These methods could

be in the form of stable isotope analysis of different fish tissues [76,77], fatty acid profiling

[78,79] or genetic analysis of stomach content [80]. In this study, conventional methods were

used to evaluate the feeding strategy of the Northeast Atlantic mackerel from stomach content
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analyses, which showed that mackerel is a specialised feeder upon copepods while in Icelandic

waters. These findings correspond very well with similar studies on mackerel diet in the North-

east Atlantic during the summer. However, applying different methods might give a different

perception and more holistic information on the temporal and spatial variability on the prey

field of Northeast Atlantic mackerel across its distribution area.

Ecological considerations

Mackerel, being a ferocious feeder and capable of sustaining high clearance rates of prey items

in their vicinity, can most likely have significant impacts on the marine ecosystem around Ice-

land and elsewhere [20,73]. Even though there are presently no documented cases of direct

ecological impacts of mackerel in Icelandic waters, it seems logical to suggest that the relative

recent massive influx of mackerel into Icelandic waters during their feeding migration, has

altered the food web structure by top-down forcing, adding pressure on other planktivorous

fish species as well. For example, the Norwegian spring spawning herring undertakes an exten-

sive feeding migration in the early summer, from its spawning grounds along the Norwegian

coast into the Norwegian Sea and to the waters east and north of Iceland, feeding mainly on

overwintering C. finmarchicus [26,81]. As the summer progresses, herring tend to shift their

diet to include more euphausiids and amphipods, although copepods are still an essential part

of their diet [20,56]. Mackerel, on the other hand, arrives into Icelandic waters later and are

mainly feeding on the first generation of C. finmarchicus, which is the main proportion of

their diet throughout the summer [16,20,57]. Therefore, not only are mackerel competing with

other species, (e.g. herring) for food, they have the potential to overgraze on the zooplankton

community [73]. This could lead to a decline in zooplankton abundance, especially of C. fin-
marchicus, which in turn can have detrimental effects on the food-web structure, as well as the

survival of many marine fish, bird and whale species [29,30,82–84]. Studies have shown, that

mackerel on several occasions seem to prefer fish larvae to zooplankton [24,27], and reports

say that mackerel readily feed on juvenile herring, capelin, sand eel among others

[27,57,73,85]. Mackerel could, therefore, impact the survival of small fish and larvae in Icelan-

dic waters as well. On the other hand, the increase of mackerel has also shown some positive

effects on top predators such as seals, whales and northern gannets [29,83,86,87]. The ecologi-

cal consequences of mackerel entering into Icelandic waters during their summer feeding

migration are unknown, but given that they are avid foragers on the zooplankton community,

the potential impact is imminent and should be taken into consideration for future research.
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