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Abstract

In this paper, we introduce some new types of sets via bioperation and
obtain a new decomposition of bioperation-continuity using this sets.
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1. Introduction. Generalized open sets play a very important role in Gen-
eral Topology and they are now the research topics of many topologists worldwide.
Indeed a significant theme in General Topology and Real analysis concerns the
various modified forms of continuity, separation axioms, etc. by utilizing general-
ized open sets. Kasahara [1] defined the concept of an operation on topological
spaces. Ogata and Maki [2] introduced the notion of τγ∨γ′ which is the collection
of all γ∨γ′-open sets in a topological space (X, τ) and Umehara in [3] introduced
the notion of τ(γ,γ′) which is the collection of all (γ, γ′)-open sets in a topological
space (X, τ) that generalized the γ ∨ γ′-open sets in a topological space (X, τ).
In this paper, we introduce some types of sets via bioperation and obtain a new
decomposition of bioperation-continuity using these new described sets.

2. Preiliminaries. The closure and the interior of a subset A of (X, τ) are
denoted by Cl(A) and Int(A), respectively.

Definition 2.1 ([1]). Let (X, τ) be a topological space. An operation γ
on the topology τ is a function from τ to the power set P(X) of X such that
V ⊂ V γ for each V ∈ τ , where V γ denotes the value of τ at V . It is denoted by
γ : τ → P(X).
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Definition 2.2 ([2]). A topological space (X, τ) equipped with two opera-
tions, say, γ and γ′ defined on τ is called a bioperation-topological space, it is
denoted by (X, τ, γ, γ′).

Definition 2.3 ([2]). A subset A of a topological space (X, τ) is said to be
γ ∨ γ′-open set if for each x ∈ A there exists an open neighbourhood U of x such
that Uγ ∪ Uγ′ ⊂ A. The complement of γ ∨ γ′-open set is called γ ∨ γ′-closed.
τγ∨γ′ denotes the set of all γ ∨ γ′-open sets in (X, τ).

Definition 2.4 ([3]). A subset A of a topological space (X, τ) is said to be
(γ, γ′)-open set if for each x ∈ A there exist open neighbourhoods U and V of
x such that Uγ ∪W γ′ ⊂ A. The complement of (γ, γ′)-open set is called (γ, γ′)-
closed. τ(γ,γ′) denotes the set of all (γ, γ′)-open sets in (X, τ).

Remark 2.5. Observe that every γ ∨ γ′-open set is (γ, γ′)-open set, but the
converse is not necessarily true.

Definition 2.6 ([3]). For a subset A of (X, τ), τ(γ,γ′)-Cl(A) denotes the in-
tersection of all (γ, γ′)-closed sets containing A, that is, τ(γ,γ′)-Cl(A) = ∩{F : A ⊂
F,X \ F ∈ τ(γ,γ′)}.

Definition 2.7. Let A be any subset of X. The τ(γ,γ′)-Int(A) is defined as
τ(γ,γ′)-Int(A) = ∪{U : U is a (γ, γ′)-open set and U ⊂ A}.

Definition 2.8. Let (X, τ) be a topological space and A be a subset of X
and γ and γ′ be operations on τ . Then A is said to be

1. (γ, γ′)-α-open if A ⊂ Int(γ,γ′)(Cl(γ,γ′)(Int(γ,γ′)(A))),

2. (γ, γ′)-preopen if A ⊂ Int(γ,γ′)(Cl(γ,γ′)(A)),

3. (γ, γ′)-semiopen [4] if A ⊂ Cl(γ,γ′)(Int(γ,γ′)(A)),

4. (γ, γ′)-semipreopen (or (γ, γ′)-β-open) if A ⊂ Cl(γ,γ′)(Int(γ,γ′)(Cl(γ,γ′)(A))),

5. (γ, γ′)-regular open [5] if A = Int(γ,γ′)(Cl(γ,γ′)(A)).

Remark 2.9. The union of all (γ, γ′)-semipreopen sets contained in A is
called the (γ, γ′)-semipreinterior of A and is denoted by sp Int(γ,γ′)(A). The com-
plement of a (γ, γ′)-semipreopen set is called a (γ, γ′)-semipreclosed set. It is clear
that sp Int(γ,γ′)(A) = A ∩ Cl(γ,γ′)(Int(γ,γ′)(Cl(γ,γ′)(A))).

Definition 2.10. Let (X, τ) and (Y, σ) be two topological spaces and let
γ, γ′ : τ → P(X) be operations on τ . A mapping f : (X, τ) → (Y, σ) is said
to be (γ, γ′)-continuous (resp. (γ, γ′)-α-continuous, (γ, γ′)-precontinuous, (γ, γ′)-
semicontinuous, (γ, γ′)-semiprecontinuous) if for each x ∈ X and each open set V
of Y containing f(x) there exists a (γ, γ′)-open set U containing x (resp. (γ, γ′)-
α-open set, (γ, γ′)-preopen set, (γ, γ′)-semiopen set, (γ, γ′)-semipreopen set) such
that f(U) ⊂ V .
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3. Some subsets in topological spaces. Through this section, let (X, τ)
and (Y, σ) be two topological spaces, and let γ, γ′ : τ → P(X) be operations on τ .

Definition 3.1. A subset A of a topological space (X, τ) with the operations
γ, γ′ is called:

1. α?(γ,γ′)-set if Int(γ,γ′)(Cl(γ,γ′)(Int(γ,γ′)(A))) = Int(γ,γ′)(A),

2. t(γ,γ′)-set if Int(γ,γ′)(Cl(γ,γ′)(A)) = Int(γ,γ′)(A),

3. s(γ,γ′)-set if Cl(γ,γ′)(Int(γ,γ′)(A)) = Int(γ,γ′)(A),

4. β?(γ,γ′)-set if Cl(γ,γ′)(Int(γ,γ′)(Cl(γ,γ′)(A))) = Int(γ,γ′)(A).

Example 3.2. Let X = {a, b, c} and τ = {∅, X, {a}, {c}, {a, c}, {a, b}}. We
define the operations γ, γ′ : τ → P(X) as follows

Aγ =

{
A if A = {a},
A ∪ {a, c} if A 6= {a}

, Aγ
′
=

{
int(cl(A)) if A = {a},
X if A 6= {a}

.

Observe that:

1. α?γ∨γ′-set = {∅, X, {b}, {c}, {b, c}}.

2. tγ∨γ′-set = {∅, X, {b}, {c}, {b, c}}.

3. sγ∨γ′-set = {∅, X, {b}, {c}, {b, c}}.

4. β?γ∨γ′-set = {∅, X, {b}, {c}, {b, c}}.

Proposition 3.3. The following statements are equivalent for a subset A of
a space (X, τ) with the operations γ, γ′:

1. A is an α?γ∨γ′-set.

2. A is a γ ∨ γ′-semipreclosed set.

3. Intγ∨γ′(A) is a γ ∨ γ′-regular open set.

Proof. Straightforward.
Proposition 3.4. Let A be a subset of a space (X, τ) with the operations γ,

γ′.

1. A γ ∨ γ′-semiopen set A is a tγ∨γ′-set if and only if it is an α?γ∨γ′-set.

2. A is γ ∨ γ′-α-open and an α?γ∨γ′-set if and only if it is γ ∨ γ′-regular open.
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Proof. 1. Let A be a γ ∨ γ′-semiopen and A an α?γ∨γ′-set. Since A
is γ ∨ γ′-semiopen, Clγ∨γ′(Intγ∨γ′(A)) = Clγ∨γ′(A) and Intγ∨γ′(Clγ∨γ′(A)) =
Intγ∨γ′(Clγ∨γ′(Intγ∨γ′(A))) = Intγ∨γ′(A). Therefore, A is a tγ∨γ′-set.

2. Let A be a γ∨γ′-α-open set and an α?γ∨γ′-set. Then Intγ∨γ′(Clγ∨γ′(A)) = A
and hence Intγ∨γ′(Clγ∨γ′(A)) = Intγ∨γ′(Clγ∨γ′(Intγ∨γ′(A))) = A.

The converse is obvious.
Definition 3.5. A subset A of a topological space (X, τ) with the operations

γ, γ′ is called:

1. Cγ∨γ′-set if A = U ∩ V , where U ∈ τγ∨γ′ and V is an α?γ∨γ′-set;

2. Bγ∨γ′-set if A = U ∩ V , where U ∈ τγ∨γ′ and V is a tγ∨γ′-set;

3. Sγ∨γ′-set if A = U ∩ V , where U ∈ τγ∨γ′ and V is a sγ∨γ′-set;

4. βγ∨γ′-set if A = U ∩ V , where U ∈ τγ∨γ′ and V is a β?γ∨γ′-set;

5. β??-open set if sp Intγ∨γ′(A) = Intγ∨γ′(A).

Example 3.6. Observe that in Example 3.2

1. Cγ∨γ′-set = {∅, X, {b}, {c}, {b, c}}.

2. Bγ∨γ′-set = {∅, X, {b}, {c}, {b, c}}.

3. Sγ∨γ′-set = {∅, X, {b}, {c}, {b, c}}.

4. βγ∨γ′-set = {∅, X, {b}, {c}, {b, c}}.

5. β??-open set = {∅, X, {a}, {b, c}}.

Proposition 3.7. Let (X, τ) be a topological space with the operations γ, γ′

and A a subset of X. Then the following statements hold:

1. If A is a tγ∨γ′-set, then A is an α?γ∨γ′-set.

2. If A is a sγ∨γ′-set, then A is an α?γ∨γ′-set.

3. If A is a β?γ∨γ′-set, then A is both tγ∨γ′-set and sγ∨γ′-set.

4. tγ∨γ′-set and sγ∨γ′-set are independent.

Proof. 1. Let A be a tγ∨γ′-set. Then τγ∨γ′-Int(τγ∨γ′-Cl(A)) = τγ∨γ′-
Int(A) ⊃ τγ∨γ′-Int(τγ∨γ′-Cl(τγ-Int(A))) ⊃ τγ∨γ′-Int(A) and hence τγ∨γ′-Int(τγ∨γ′-
Cl(τγ∨γ′-Int(A))) = τγ∨γ′-Int(A). Therefore, A is an α?γ∨γ′-set.

Remark 3.8. The converses of the statements in Proposition 3.7 are not true
as one can see from the following examples.
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Example 3.9. Let X = {a, b, c} and τ = {∅, X, {a}, {c}, {a, c}, {a, b}}. We
define the operations γ, γ′ : τ → P(X) as follows

Aγ = Aγ
′
=

{
A if A = {a},
A ∪ {a, c} if A 6= {a}.

Then τγ∨γ′ = {∅, X, {a}, {c}, {a, c}}. If we take A = {a}, then A is an
α?γ∨γ′-set and a tγ∨γ′-set, but it is not an sγ∨γ′-set and not a β?γ∨γ′-set.

Example 3.10. Let X = {a, b, c} and τ = {∅, X, {a}, {b}, {a, b}}. We define
the operators γ, γ′ : τ → P(X) by γ(A) = Cl(A) and γ′(A) = Int(Cl(A)) for all
A ∈ τ . Then τγ∨γ′ = {∅, X}. If A = {b}, then it is an α?γ∨γ′-set and an sγ∨γ′-set,
but it is not a tγ∨γ′-set and not a β?γ∨γ′-set.

Proposition 3.11. Let (X, τ) be a topological space with the operations γ,
γ′ and A a subset of X. Then the following statements hold:

1. If A is an α?γ∨γ′-set, then it is a Cγ∨γ′-set.

2. If A is a tγ∨γ′-set, then it is a Bγ∨γ′-set.

3. If A is an sγ∨γ′-set, then it is an Sγ∨γ′-set.

4. If A is a β?γ∨γ′-set, then it is a βγ∨γ′-set.

Proof. 1. Let A be an α?γ∨γ′-set. If we take U = X ∈ τγ∨γ′ , then A = U ∩A
and, hence, A is a Cγ∨γ′-set. The proofs of 2, 3, and 4 are similar.

Remark 3.12. The converses of the statements in Proposition 3.11 are not
true. In Example 3.9, {a, c} is a Cγ∨γ′-set (resp. Bγ∨γ′-set, Sγ∨γ′-set, βγ∨γ′-set),
but it is not an α?γ∨γ′-set (resp. tγ∨γ′-set, sγ∨γ′-set, β

?
γ∨γ′-set).

Proposition 3.13. Let (X, τ) be a topological space with the operations γ,
γ′.

1. Every Bγ∨γ′-set is a Cγ∨γ′-set.

2. Every Sγ∨γ′-set is a Cγ∨γ′-set.

3. Every βγ∨γ′-set is both a Bγ∨γ′-set and an Sγ∨γ′-set.

Remark 3.14. The converses of the statements in Proposition 3.13 are not
true and Bγ∨γ′-set and Sγ∨γ′-set are independent notions. In Example 3.9, {a, b}
is a Bγ∨γ′-set but it is not an Sγ∨γ′-set and not a βγ∨γ′-set. In Example 3.10, {b}
is a Cγ∨γ′-set and an Sγ∨γ′-set but it is not a Bγ∨γ′-set and not a βγ∨γ′-set.

Proposition 3.15. Let (X, τ) be a topological space with the operations γ,
γ′ and A a subset of X. Then β??-open set and βγ∨γ′-set are equivalent.
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Proof. Let A be a β?γ∨γ′-set. Then Clγ∨γ′(Intγ∨γ′(Clγ∨γ′(A))) = Intγ∨γ′(A).
Hence A is βγ∨γ′-set. Hence β Intγ∨γ′(A) = A ∩ Clγ∨γ′(Intγ∨γ′(Clγ∨γ′(A))) =
A ∩ Intγ∨γ′(A) = Intγ∨γ′(A). Thus A is a β??-open set. Conversely, let A be a
β??-open set. Then β Intγ∨γ′(A) = Intγ∨γ′(A). Hence β Intγ∨γ′(A) is a γ∨γ′-open
set. Since A = A ∩X, A is a βγ∨γ′-set.

Remark 3.16. We have the following implication diagram.

βγ∨γ′-set → β?γ∨γ′-set → βγ∨γ′-set

↓ ↙ ↘ ↓
Sγ∨γ′-set → sγ∨γ′-set ↓ tγ∨γ′-set → Bγ∨γ′-set

↘ ↘ ↙ ↙

α?γ∨γ′-set
↘ ↓ ↙

Cγ∨γ′-set

Theorem 3.17. For a subset A of a space (X, τ) with the operations γ, γ′,
the following properties are equivalent:

(1) A is γ ∨ γ′-open.

(2) A is a γ ∨ γ′-α-open set and a Cγ∨γ′-set.

(3) A is a γ ∨ γ′-preopen set and a Bγ∨γ′-set.

(4) A is a γ ∨ γ′-semiopen set and an Sγ∨γ′-set.

(5) A is a γ ∨ γ′-semipreopen set and a βγ∨γ′-set.

Proof. The proof of (1)→ (2), (1)→ (3), (1)→ (4), (1)→ (5) are obvious.
(5)→ (1): Let A be a γ∨γ′-semipreopen set and a βγ∨γ′-set. Since A is βγ∨γ′-

set, A = U ∩V , where U is a γ ∨γ′-open set and V is a β?γ∨γ′-set. By the hypoth-
esis, A is also γ ∨ γ′-semipreopen and we have A ⊂ Clγ∨γ′(Intγ∨γ′(Clγ∨γ′(A))) =
Clγ∨γ′(Intγ∨γ′(Clγ∨γ′(U ∩ V ))) ⊂ Clγ∨γ′(Intγ∨γ′(Clγ∨γ′(U) ∩ Clγ∨γ′(V ))) =
Clγ∨γ′(Intγ∨γ′(Clγ∨γ′(U)) ∩ Intγ∨γ′(Clγ∨γ′(V ))) ⊂ Clγ∨γ′(Intγ∨γ′(Clγ∨γ′(U))) ∩
Clγ∨γ′(Intγ∨γ′(Clγ∨γ′(V ))) ⊂ Clγ∨γ′(Intγ∨γ′(Clγ∨γ′(U)))∩Intγ∨γ′(V ). Hence A =
U ∩ V = (U ∩ V ) ∩ U ⊂ (Clγ∨γ′(Intγ∨γ′(Clγ∨γ′(U))) ∩ Intγ∨γ′(V )) ∩ U =
(Clγ∨γ′(Intγ∨γ′(Clγ∨γ′(U))) ∩ U) ∩ Intγ∨γ′(V ). Notice that A = U ∩ V ⊃ U ∩
Intγ∨γ′(V ). Hence A = U ∩ Intγ∨γ′(V ).

(2)→ (1), (3)→ (1), (4)→ (1) are shown similarly.
4. Decompositions of γ ∨ γ′-continuity.
Definition 4.1. A function f : (X, τ)→ (Y, σ) is said to be a Cγ∨γ′-continu-

ous (resp. Bγ∨γ′-continuous, Sγ∨γ′-continuous, βγ∨γ′-continuous). If for each V ∈
σ, f−1(V ) is a Cγ∨γ′-set (resp. Bγ∨γ′-set, Sγ∨γ′-set, βγ∨γ′-set).
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Proposition 4.2. Let f : (X, τ) → (Y, σ) be a function and γ : τ → P(X)
and γ′ : τ → P(X) be two operations on τ . Then

1. Every Bγ∨γ′-continuous function is Cγ∨γ′-continuous.

2. Every Sγ∨γ′-continuous function is Cγ∨γ′-continuous.

3. Every βγ∨γ′-continuous is both Bγ∨γ′-continuous and Sγ∨γ′-continuous.

Proof. The proof follows from Proposition 3.13.
Theorem 4.3. Let (X, τ) and (Y, σ) be two topological spaces and let γ ∨

γ′ : τ → P(X) be two operations on τ . For a function f : (X, τ) → (Y, σ), the
following properties are equivalent:

1. f is γ ∨ γ′-continuous.

2. f is γ ∨ γ′-α-continuous and Cγ∨γ′-continuous.

3. f is γ ∨ γ′-precontinuous and Bγ∨γ′-continuous.

4. f is γ ∨ γ′-semicontinuous and Sγ∨γ′-continuous.

5. f is γ ∨ γ′-semiprecontinuous and βγ∨γ′-continuous.

Proof. The proof follows from Theorem 3.17.
Remark 4.4. The notions of γ∨γ′-α-continuity and Cγ∨γ′-continuity, γ∨γ′-

continuity and Bγ∨γ′-continuity, γ∨γ′-semicontinuity and Sγ∨γ′-continuity, γ∨γ′-
semiprecontinuity and γ ∨ γ′-continuity are independent of each other as seen in
the following examples.

Example 4.5. Let X = {a, b, c} and τ = {∅, X, {a}, {c}, {a, c}, {a, b}} and
σ = {∅, X, {a}, {c}, {a, c}}. We define the operators γ, γ′ : τ → P(X) by

Aγ = Aγ
′
=

{
A if A = {a},
A ∪ {a, c} if A 6= {a}.

Then τγ∨γ′ = {∅, X, {a}, {c}, {a, c}}. Define a function f : (X, τ)→ (Y, σ) as
f(a) = f(b) = a, f(c) = c. Then f is Cγ∨γ′-continuous (resp. Bγ∨γ′-continuous,
γ ∨ γ′-semicontinuous and γ ∨ γ′-semiprecontinuous), but it is not γ ∨ γ′-α-
continuous (resp. γ ∨ γ′-precontinuous, Sγ∨γ′-continuous and βγ∨γ′-continuous).

Example 4.6. Let X = {a, b, c} and τ = {∅, X, {a}, {a, b}} and σ =
{∅, X, {a}, {b}, {a, b}}. We define the operators γ ∨ γ′ : τ → P(X) by γ(A) =
Cl(A) and γ′(A) = Int(Cl(A)) for all A ∈ τ . Then τγ∨γ′ = {∅, X}. Define a
function f : (X, τ) → (Y, σ) as f(a) = f(c) = a, f(b) = b. Then f is both Sγ∨γ′-
continuous and γ ∨ γ′-precontinuous, but it is neither γ ∨ γ′-semicontinuous nor
Bγ∨γ′-continuous.
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Example 4.7. Let X = {a, b, c, d} and τ = {∅, X, {a}, {b}, {c}, {a, b},
{a, c}, {b, c}, {a, b, c}, {a, b, d}} and σ = {∅, Y, {a}, {b}, {a, b}}. We define the
operations γ, γ′ : τ → P(X) by

Aγ = Aγ
′
=

{
Int(Cl(A)) if A = {a},
Cl(A) if A 6= {a}.

Then τγ∨γ′ = {∅, {a}, {c}, {a, c}, {a, b, d}, X}. Define a function f : (X, τ) →
(Y, σ) as f(a) = f(c) = a, f(b) = f(d) = b. Then f is βγ∨γ′-continuous, but it is
not γ ∨ γ′-semiprecontinuous.

Example 4.8. Let X = {a, b, c} and τ = {∅, X, {a}, {c}, {a, c}, {b, c}} and
σ = {∅, X, {a}}. We define the operations γ, γ′ : τ → P(X) by

Aγ = Aγ
′
=

{
Int(Cl(A)) if A = {a},
X if A 6= {a}.

Then τγ∨γ′ = {∅, {a}, X}. Define a function f : (X, τ)→ (Y, σ) as f(a) = f(c) =
a, f(b) = b. Then f is γ ∨ γ′-α-continuous but it is not Cγ∨γ′-continuous.
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