Доклади на Българската академия на науките Comptes rendus de l'Académie bulgare des Sciences

Tome 73, No 4, 2020

MATHEMATICS

Topology

ON DECOMPOSITION OF BIOPERATION-CONTINUITY

Carlos Carpintero*,**, Namegalesh Rajesh***, Ennis Rosas****,**

(Submitted by Academician P. Popivanov on July 18, 2019)

Abstract

In this paper, we introduce some new types of sets via bioperation and obtain a new decomposition of bioperation-continuity using this sets.

Key words: topological spaces, $\gamma \lor \gamma'$ -open set

2010 Mathematics Subject Classification: Primary 54A05, 54A10, 54C05, 54D10

1. Introduction. Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the various modified forms of continuity, separation axioms, etc. by utilizing generalized open sets. KASAHARA [¹] defined the concept of an operation on topological spaces. OGATA and MAKI [²] introduced the notion of $\tau_{\gamma \lor \gamma'}$ which is the collection of all $\gamma \lor \gamma'$ -open sets in a topological space (X, τ) and UMEHARA in [³] introduced the notion of $\tau_{(\gamma,\gamma')}$ which is the collection of all (γ, γ') -open sets in a topological space (X, τ) . In this paper, we introduce some types of sets via bioperation and obtain a new decomposition of bioperation-continuity using these new described sets.

2. Preiliminaries. The closure and the interior of a subset A of (X, τ) are denoted by Cl(A) and Int(A), respectively.

Definition 2.1 ([¹]). Let (X, τ) be a topological space. An operation γ on the topology τ is a function from τ to the power set $\mathcal{P}(X)$ of X such that $V \subset V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of τ at V. It is denoted by $\gamma: \tau \to \mathcal{P}(X)$.

DOI:10.7546/CRABS.2020.04.01

Definition 2.2 ([²]). A topological space (X, τ) equipped with two operations, say, γ and γ' defined on τ is called a bioperation-topological space, it is denoted by $(X, \tau, \gamma, \gamma')$.

Definition 2.3 ([²]). A subset A of a topological space (X, τ) is said to be $\gamma \lor \gamma'$ -open set if for each $x \in A$ there exists an open neighbourhood U of x such that $U^{\gamma} \cup U^{\gamma'} \subset A$. The complement of $\gamma \lor \gamma'$ -open set is called $\gamma \lor \gamma'$ -closed. $\tau_{\gamma \lor \gamma'}$ denotes the set of all $\gamma \lor \gamma'$ -open sets in (X, τ) .

Definition 2.4 ([³]). A subset A of a topological space (X, τ) is said to be (γ, γ') -open set if for each $x \in A$ there exist open neighbourhoods U and V of x such that $U^{\gamma} \cup W^{\gamma'} \subset A$. The complement of (γ, γ') -open set is called (γ, γ') -closed. $\tau_{(\gamma, \gamma')}$ denotes the set of all (γ, γ') -open sets in (X, τ) .

Remark 2.5. Observe that every $\gamma \lor \gamma'$ -open set is (γ, γ') -open set, but the converse is not necessarily true.

Definition 2.6 ([³]). For a subset A of (X, τ) , $\tau_{(\gamma,\gamma')}$ -Cl(A) denotes the intersection of all (γ, γ') -closed sets containing A, that is, $\tau_{(\gamma,\gamma')}$ -Cl $(A) = \cap \{F : A \subset F, X \setminus F \in \tau_{(\gamma,\gamma')}\}$.

Definition 2.7. Let A be any subset of X. The $\tau_{(\gamma,\gamma')}$ -Int(A) is defined as $\tau_{(\gamma,\gamma')}$ -Int(A) = $\cup \{U : U \text{ is a } (\gamma,\gamma')\text{-open set and } U \subset A\}.$

Definition 2.8. Let (X, τ) be a topological space and A be a subset of X and γ and γ' be operations on τ . Then A is said to be

- 1. (γ, γ') - α -open if $A \subset Int_{(\gamma, \gamma')}(Cl_{(\gamma, \gamma')}(Int_{(\gamma, \gamma')}(A))),$
- 2. (γ, γ') -preopen if $A \subset Int_{(\gamma, \gamma')}(Cl_{(\gamma, \gamma')}(A))$,
- 3. (γ, γ') -semiopen [⁴] if $A \subset \operatorname{Cl}_{(\gamma, \gamma')}(\operatorname{Int}_{(\gamma, \gamma')}(A)),$
- 4. (γ, γ') -semipreopen (or (γ, γ') - β -open) if $A \subset \operatorname{Cl}_{(\gamma, \gamma')}(\operatorname{Int}_{(\gamma, \gamma')}(\operatorname{Cl}_{(\gamma, \gamma')}(A)))$,
- 5. (γ, γ') -regular open [⁵] if $A = Int_{(\gamma, \gamma')}(Cl_{(\gamma, \gamma')}(A))$.

Remark 2.9. The union of all (γ, γ') -semipreopen sets contained in A is called the (γ, γ') -semipreinterior of A and is denoted by $sp \operatorname{Int}_{(\gamma,\gamma')}(A)$. The complement of a (γ, γ') -semipreopen set is called a (γ, γ') -semipreclosed set. It is clear that $sp \operatorname{Int}_{(\gamma,\gamma')}(A) = A \cap \operatorname{Cl}_{(\gamma,\gamma')}(\operatorname{Int}_{(\gamma,\gamma')}(\operatorname{Cl}_{(\gamma,\gamma')}(A)))$.

Definition 2.10. Let (X, τ) and (Y, σ) be two topological spaces and let $\gamma, \gamma' \colon \tau \to \mathcal{P}(X)$ be operations on τ . A mapping $f \colon (X, \tau) \to (Y, \sigma)$ is said to be (γ, γ') -continuous (resp. (γ, γ') - α -continuous, (γ, γ') -precontinuous, (γ, γ') -semicontinuous, (γ, γ') -semicontinuous) if for each $x \in X$ and each open set V of Y containing f(x) there exists a (γ, γ') -open set U containing x (resp. (γ, γ') - α -open set, (γ, γ') -preopen set, (γ, γ') -semipreopen set) such that $f(U) \subset V$.

3. Some subsets in topological spaces. Through this section, let (X, τ) and (Y, σ) be two topological spaces, and let $\gamma, \gamma' \colon \tau \to \mathcal{P}(X)$ be operations on τ .

Definition 3.1. A subset A of a topological space (X, τ) with the operations γ, γ' is called:

- 1. $\alpha^{\star}_{(\gamma,\gamma')}$ -set if $\operatorname{Int}_{(\gamma,\gamma')}(\operatorname{Cl}_{(\gamma,\gamma')}(\operatorname{Int}_{(\gamma,\gamma')}(A))) = \operatorname{Int}_{(\gamma,\gamma')}(A)$,
- 2. $t_{(\gamma,\gamma')}$ -set if $\operatorname{Int}_{(\gamma,\gamma')}(\operatorname{Cl}_{(\gamma,\gamma')}(A)) = \operatorname{Int}_{(\gamma,\gamma')}(A)$,
- 3. $s_{(\gamma,\gamma')}$ -set if $\operatorname{Cl}_{(\gamma,\gamma')}(\operatorname{Int}_{(\gamma,\gamma')}(A)) = \operatorname{Int}_{(\gamma,\gamma')}(A)$,
- $4. \ \beta^{\star}_{(\gamma,\gamma')} \text{-set if } \operatorname{Cl}_{(\gamma,\gamma')}(\operatorname{Int}_{(\gamma,\gamma')}(\operatorname{Cl}_{(\gamma,\gamma')}(A))) = \operatorname{Int}_{(\gamma,\gamma')}(A).$

Example 3.2. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}$. We define the operations $\gamma, \gamma' \colon \tau \to \mathcal{P}(X)$ as follows

$$A^{\gamma} = \begin{cases} A & \text{if } A = \{a\}, \\ A \cup \{a, c\} & \text{if } A \neq \{a\} \end{cases}, \qquad A^{\gamma'} = \begin{cases} int(cl(A)) & \text{if } A = \{a\}, \\ X & \text{if } A \neq \{a\} \end{cases}.$$

Observe that:

- 1. $\alpha_{\gamma \vee \gamma'}^{\star}$ -set = { $\varnothing, X, \{b\}, \{c\}, \{b, c\}\}$. 2. $t_{\gamma \vee \gamma'}$ -set = { $\varnothing, X, \{b\}, \{c\}, \{b, c\}\}$. 3. $s_{\gamma \vee \gamma'}$ -set = { $\varnothing, X, \{b\}, \{c\}, \{b, c\}\}$.
- 4. $\beta^{\star}_{\alpha \vee \alpha'}$ -set = { $\emptyset, X, \{b\}, \{c\}, \{b, c\}$ }.

Proposition 3.3. The following statements are equivalent for a subset A of a space (X, τ) with the operations γ, γ' :

- 1. A is an $\alpha^{\star}_{\gamma \vee \gamma'}$ -set.
- 2. A is a $\gamma \lor \gamma'$ -semipreclosed set.
- 3. Int_{$\gamma \lor \gamma'$}(A) is a $\gamma \lor \gamma'$ -regular open set.

Proof. Straightforward. \Box **Proposition 3.4.** Let A be a subset of a space (X, τ) with the operations γ ,

- γ' .
- 1. A $\gamma \vee \gamma'$ -semiopen set A is a $t_{\gamma \vee \gamma'}$ -set if and only if it is an $\alpha^{\star}_{\gamma \vee \gamma'}$ -set.
- 2. A is $\gamma \vee \gamma'$ - α -open and an $\alpha^{\star}_{\gamma \vee \gamma'}$ -set if and only if it is $\gamma \vee \gamma'$ -regular open.

C. R. Acad. Bulg. Sci., 73, No 4, 2020

Proof. 1. Let A be a $\gamma \vee \gamma'$ -semiopen and A an $\alpha^*_{\gamma \vee \gamma'}$ -set. Since A is $\gamma \vee \gamma'$ -semiopen, $\operatorname{Cl}_{\gamma \vee \gamma'}(\operatorname{Int}_{\gamma \vee \gamma'}(A)) = \operatorname{Cl}_{\gamma \vee \gamma'}(A)$ and $\operatorname{Int}_{\gamma \vee \gamma'}(\operatorname{Cl}_{\gamma \vee \gamma'}(A)) =$ $\operatorname{Int}_{\gamma \lor \gamma'}(\operatorname{Cl}_{\gamma \lor \gamma'}(\operatorname{Int}_{\gamma \lor \gamma'}(A))) = \operatorname{Int}_{\gamma \lor \gamma'}(A).$ Therefore, A is a $t_{\gamma \lor \gamma'}$ -set.

2. Let A be a $\gamma \lor \gamma'$ - α -open set and an $\alpha^{\star}_{\gamma \lor \gamma'}$ -set. Then $\operatorname{Int}_{\gamma \lor \gamma'}(\operatorname{Cl}_{\gamma \lor \gamma'}(A)) = A$ and hence $\operatorname{Int}_{\gamma \lor \gamma'}(\operatorname{Cl}_{\gamma \lor \gamma'}(A)) = \operatorname{Int}_{\gamma \lor \gamma'}(\operatorname{Cl}_{\gamma \lor \gamma'}(\operatorname{Int}_{\gamma \lor \gamma'}(A))) = A.$

The converse is obvious.

Definition 3.5. A subset A of a topological space (X, τ) with the operations γ, γ' is called:

- 1. $C_{\gamma \vee \gamma'}$ -set if $A = U \cap V$, where $U \in \tau_{\gamma \vee \gamma'}$ and V is an $\alpha^{\star}_{\gamma \vee \gamma'}$ -set;
- 2. $B_{\gamma \vee \gamma'}$ -set if $A = U \cap V$, where $U \in \tau_{\gamma \vee \gamma'}$ and V is a $t_{\gamma \vee \gamma'}$ -set;
- 3. $S_{\gamma \vee \gamma'}$ -set if $A = U \cap V$, where $U \in \tau_{\gamma \vee \gamma'}$ and V is a $s_{\gamma \vee \gamma'}$ -set;
- 4. $\beta_{\gamma \vee \gamma'}$ -set if $A = U \cap V$, where $U \in \tau_{\gamma \vee \gamma'}$ and V is a $\beta^{\star}_{\gamma \vee \gamma'}$ -set;
- 5. $\beta^{\star\star}$ -open set if $sp \operatorname{Int}_{\gamma \lor \gamma'}(A) = \operatorname{Int}_{\gamma \lor \gamma'}(A)$.

Example 3.6. Observe that in Example 3.2

- 1. $C_{\gamma \vee \gamma'}$ -set = { $\emptyset, X, \{b\}, \{c\}, \{b, c\}$ }.
- 2. $B_{\gamma \vee \gamma'}$ -set = { $\emptyset, X, \{b\}, \{c\}, \{b, c\}$ }.
- 3. $S_{\gamma \vee \gamma'}$ -set = { $\emptyset, X, \{b\}, \{c\}, \{b, c\}$ }.
- 4. $\beta_{\gamma \vee \gamma'}$ -set = { $\emptyset, X, \{b\}, \{c\}, \{b, c\}$ }.
- 5. $\beta^{\star\star}$ -open set = { $\emptyset, X, \{a\}, \{b, c\}$ }.

Proposition 3.7. Let (X, τ) be a topological space with the operations γ, γ' and A a subset of X. Then the following statements hold:

- 1. If A is a $t_{\gamma \vee \gamma'}$ -set, then A is an $\alpha^{\star}_{\gamma \vee \gamma'}$ -set.
- 2. If A is a $s_{\gamma \vee \gamma'}$ -set, then A is an $\alpha^{\star}_{\gamma \vee \gamma'}$ -set.
- 3. If A is a $\beta^{\star}_{\gamma \vee \gamma'}$ -set, then A is both $t_{\gamma \vee \gamma'}$ -set and $s_{\gamma \vee \gamma'}$ -set.
- 4. $t_{\gamma \vee \gamma'}$ -set and $s_{\gamma \vee \gamma'}$ -set are independent.

Proof. 1. Let A be a $t_{\gamma \vee \gamma'}$ -set. Then $\tau_{\gamma \vee \gamma'}$ -Int $(\tau_{\gamma \vee \gamma'}$ -Cl $(A)) = \tau_{\gamma \vee \gamma'}$ - $\operatorname{Int}(A) \supset \tau_{\gamma \vee \gamma'} - \operatorname{Int}(\tau_{\gamma \vee \gamma'} - \operatorname{Cl}(\tau_{\gamma} - \operatorname{Int}(A))) \supset \tau_{\gamma \vee \gamma'} - \operatorname{Int}(A) \text{ and hence } \tau_{\gamma \vee \gamma'} - \operatorname{Int}(\tau_{\gamma \vee \gamma'} - \operatorname{Int}(\tau_{\gamma \vee \gamma'} - \operatorname{Int}(A))))$ $\operatorname{Cl}(\tau_{\gamma\vee\gamma'}\operatorname{-Int}(A))) = \tau_{\gamma\vee\gamma'}\operatorname{-Int}(A).$ Therefore, A is an $\alpha^{\star}_{\gamma\vee\gamma'}\operatorname{-set}$.

Remark 3.8. The converses of the statements in Proposition 3.7 are not true as one can see from the following examples.

Example 3.9. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}$. We define the operations $\gamma, \gamma' \colon \tau \to \mathcal{P}(X)$ as follows

$$A^{\gamma} = A^{\gamma'} = \begin{cases} A & \text{if } A = \{a\}, \\ A \cup \{a, c\} & \text{if } A \neq \{a\}. \end{cases}$$

Then $\tau_{\gamma \vee \gamma'} = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$. If we take $A = \{a\}$, then A is an $\alpha^*_{\gamma \vee \gamma'}$ -set and a $t_{\gamma \vee \gamma'}$ -set, but it is not an $s_{\gamma \vee \gamma'}$ -set and not a $\beta^*_{\gamma \vee \gamma'}$ -set.

Example 3.10. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. We define the operators $\gamma, \gamma' \colon \tau \to \mathcal{P}(X)$ by $\gamma(A) = \operatorname{Cl}(A)$ and $\gamma'(A) = \operatorname{Int}(\operatorname{Cl}(A))$ for all $A \in \tau$. Then $\tau_{\gamma \lor \gamma'} = \{\emptyset, X\}$. If $A = \{b\}$, then it is an $\alpha^*_{\gamma \lor \gamma'}$ -set and an $s_{\gamma \lor \gamma'}$ -set, but it is not a $t_{\gamma \lor \gamma'}$ -set and not a $\beta^*_{\gamma \lor \gamma'}$ -set.

Proposition 3.11. Let (X, τ) be a topological space with the operations γ , γ' and A a subset of X. Then the following statements hold:

- 1. If A is an $\alpha^{\star}_{\gamma \vee \gamma'}$ -set, then it is a $C_{\gamma \vee \gamma'}$ -set.
- 2. If A is a $t_{\gamma \vee \gamma'}$ -set, then it is a $B_{\gamma \vee \gamma'}$ -set.
- 3. If A is an $s_{\gamma \vee \gamma'}$ -set, then it is an $S_{\gamma \vee \gamma'}$ -set.
- 4. If A is a $\beta^{\star}_{\gamma\vee\gamma'}$ -set, then it is a $\beta_{\gamma\vee\gamma'}$ -set.

Proof. 1. Let A be an $\alpha^*_{\gamma \lor \gamma'}$ -set. If we take $U = X \in \tau_{\gamma \lor \gamma'}$, then $A = U \cap A$ and, hence, A is a $C_{\gamma \lor \gamma'}$ -set. The proofs of 2, 3, and 4 are similar.

Remark 3.12. The converses of the statements in Proposition 3.11 are not true. In Example 3.9, $\{a, c\}$ is a $C_{\gamma \vee \gamma'}$ -set (resp. $B_{\gamma \vee \gamma'}$ -set, $S_{\gamma \vee \gamma'}$ -set, $\beta_{\gamma \vee \gamma'}$ -set), but it is not an $\alpha^{\star}_{\gamma \vee \gamma'}$ -set (resp. $t_{\gamma \vee \gamma'}$ -set, $s_{\gamma \vee \gamma'}$ -set).

Proposition 3.13. Let (X, τ) be a topological space with the operations γ , γ' .

- 1. Every $B_{\gamma \vee \gamma'}$ -set is a $C_{\gamma \vee \gamma'}$ -set.
- 2. Every $S_{\gamma \vee \gamma'}$ -set is a $C_{\gamma \vee \gamma'}$ -set.
- 3. Every $\beta_{\gamma \vee \gamma'}$ -set is both a $B_{\gamma \vee \gamma'}$ -set and an $S_{\gamma \vee \gamma'}$ -set.

Remark 3.14. The converses of the statements in Proposition 3.13 are not true and $B_{\gamma\vee\gamma'}$ -set and $S_{\gamma\vee\gamma'}$ -set are independent notions. In Example 3.9, $\{a, b\}$ is a $B_{\gamma\vee\gamma'}$ -set but it is not an $S_{\gamma\vee\gamma'}$ -set and not a $\beta_{\gamma\vee\gamma'}$ -set. In Example 3.10, $\{b\}$ is a $C_{\gamma\vee\gamma'}$ -set and an $S_{\gamma\vee\gamma'}$ -set but it is not a $B_{\gamma\vee\gamma'}$ -set and not a $\beta_{\gamma\vee\gamma'}$ -set.

Proposition 3.15. Let (X, τ) be a topological space with the operations γ , γ' and A a subset of X. Then $\beta^{\star\star}$ -open set and $\beta_{\gamma\vee\gamma'}$ -set are equivalent.

C. R. Acad. Bulg. Sci., 73, No 4, 2020

Proof. Let A be a $\beta_{\gamma \vee \gamma'}^{\star}$ -set. Then $\operatorname{Cl}_{\gamma \vee \gamma'}(\operatorname{Int}_{\gamma \vee \gamma'}(A)) = \operatorname{Int}_{\gamma \vee \gamma'}(A)$. Hence A is $\beta_{\gamma \vee \gamma'}$ -set. Hence $\beta \operatorname{Int}_{\gamma \vee \gamma'}(A) = A \cap \operatorname{Cl}_{\gamma \vee \gamma'}(\operatorname{Int}_{\gamma \vee \gamma'}(\operatorname{Cl}_{\gamma \vee \gamma'}(A))) = A \cap \operatorname{Int}_{\gamma \vee \gamma'}(A) = \operatorname{Int}_{\gamma \vee \gamma'}(A)$. Thus A is a $\beta^{\star\star}$ -open set. Conversely, let A be a $\beta^{\star\star}$ -open set. Then $\beta \operatorname{Int}_{\gamma \vee \gamma'}(A) = \operatorname{Int}_{\gamma \vee \gamma'}(A)$. Hence $\beta \operatorname{Int}_{\gamma \vee \gamma'}(A)$ is a $\gamma \vee \gamma'$ -open set. Since $A = A \cap X$, A is a $\beta_{\gamma \vee \gamma'}$ -set. \Box

Remark 3.16. We have the following implication diagram.

Theorem 3.17. For a subset A of a space (X, τ) with the operations γ, γ' , the following properties are equivalent:

- (1) A is $\gamma \lor \gamma'$ -open.
- (2) A is a $\gamma \lor \gamma'$ - α -open set and a $C_{\gamma \lor \gamma'}$ -set.
- (3) A is a $\gamma \vee \gamma'$ -preopen set and a $B_{\gamma \vee \gamma'}$ -set.
- (4) A is a $\gamma \lor \gamma'$ -semiopen set and an $S_{\gamma \lor \gamma'}$ -set.
- (5) A is a $\gamma \lor \gamma'$ -semipreopen set and a $\beta_{\gamma \lor \gamma'}$ -set.

Proof. The proof of $(1) \to (2)$, $(1) \to (3)$, $(1) \to (4)$, $(1) \to (5)$ are obvious. (5) $\to (1)$: Let A be a $\gamma \lor \gamma'$ -semipreopen set and a $\beta_{\gamma \lor \gamma'}$ -set. Since A is $\beta_{\gamma \lor \gamma'}$ -

set, $A = U \cap V$, where U is a $\gamma \vee \gamma'$ -open set and V is a $\beta^{\star}_{\gamma \vee \gamma'}$ -set. By the hypothesis, A is also $\gamma \vee \gamma'$ -semipreopen and we have $A \subset \operatorname{Cl}_{\gamma \vee \gamma'}(\operatorname{Int}_{\gamma \vee \gamma'}(\operatorname{Cl}_{\gamma \vee \gamma'}(A))) = \operatorname{Cl}_{\gamma \vee \gamma'}(\operatorname{Int}_{\gamma \vee \gamma'}(\operatorname{Cl}_{\gamma \vee \gamma'}(U \cap V))) \subset \operatorname{Cl}_{\gamma \vee \gamma'}(\operatorname{Int}_{\gamma \vee \gamma'}(C \cap C \cap C \cap V)) = \operatorname{Cl}_{\gamma \vee \gamma'}(\operatorname{Int}_{\gamma \vee \gamma'}(C \cap C \cap V)) \cap \operatorname{Int}_{\gamma \vee \gamma'}(C \cap C \cap C \cap C \cap V)) = \operatorname{Cl}_{\gamma \vee \gamma'}(\operatorname{Int}_{\gamma \vee \gamma'}(C \cap V)) \cap \operatorname{Int}_{\gamma \vee \gamma'}(C \cap V)) \subset \operatorname{Cl}_{\gamma \vee \gamma'}(\operatorname{Int}_{\gamma \vee \gamma'}(C \cap V)) \cap \operatorname{Int}_{\gamma \vee \gamma'}(C \cap V)) \cap \operatorname{Int}_{\gamma \vee \gamma'}(C \cap V)) \cap \operatorname{Int}_{\gamma \vee \gamma'}(C \cap V) \cap V) \cap \operatorname{Int}_{\gamma \vee \gamma'}(V)$. Notice that $A = U \cap V \supset U \cap \operatorname{Int}_{\gamma \vee \gamma'}(V)$. Int_{$\gamma \vee \gamma'$}(V). Hence $A = U \cap \operatorname{Int}_{\gamma \vee \gamma'}(V)$.

 $(2) \rightarrow (1), (3) \rightarrow (1), (4) \rightarrow (1)$ are shown similarly.

4. Decompositions of $\gamma \lor \gamma'$ -continuity.

Definition 4.1. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be a $C_{\gamma \lor \gamma'}$ -continuous (resp. $B_{\gamma \lor \gamma'}$ -continuous, $S_{\gamma \lor \gamma'}$ -continuous). If for each $V \in \sigma$, $f^{-1}(V)$ is a $C_{\gamma \lor \gamma'}$ -set (resp. $B_{\gamma \lor \gamma'}$ -set, $S_{\gamma \lor \gamma'}$ -set, $\beta_{\gamma \lor \gamma'}$ -set).

Proposition 4.2. Let $f: (X, \tau) \to (Y, \sigma)$ be a function and $\gamma: \tau \to \mathcal{P}(X)$ and $\gamma': \tau \to \mathcal{P}(X)$ be two operations on τ . Then

- 1. Every $B_{\gamma \vee \gamma'}$ -continuous function is $C_{\gamma \vee \gamma'}$ -continuous.
- 2. Every $S_{\gamma \vee \gamma'}$ -continuous function is $C_{\gamma \vee \gamma'}$ -continuous.
- 3. Every $\beta_{\gamma\vee\gamma'}$ -continuous is both $B_{\gamma\vee\gamma'}$ -continuous and $S_{\gamma\vee\gamma'}$ -continuous.

Proof. The proof follows from Proposition 3.13. \Box

Theorem 4.3. Let (X, τ) and (Y, σ) be two topological spaces and let $\gamma \lor \gamma' \colon \tau \to \mathcal{P}(X)$ be two operations on τ . For a function $f \colon (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- 1. f is $\gamma \lor \gamma'$ -continuous.
- 2. f is $\gamma \vee \gamma'$ - α -continuous and $C_{\gamma \vee \gamma'}$ -continuous.
- 3. f is $\gamma \vee \gamma'$ -precontinuous and $B_{\gamma \vee \gamma'}$ -continuous.
- 4. f is $\gamma \lor \gamma'$ -semicontinuous and $S_{\gamma \lor \gamma'}$ -continuous.
- 5. f is $\gamma \vee \gamma'$ -semiprecontinuous and $\beta_{\gamma \vee \gamma'}$ -continuous.

Proof. The proof follows from Theorem 3.17.

Remark 4.4. The notions of $\gamma \lor \gamma'$ - α -continuity and $C_{\gamma \lor \gamma'}$ -continuity, $\gamma \lor \gamma'$ continuity and $B_{\gamma \lor \gamma'}$ -continuity, $\gamma \lor \gamma'$ semiprecontinuity and $\gamma \lor \gamma'$ continuity are independent of each other as seen in
the following examples.

Example 4.5. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$. We define the operators $\gamma, \gamma' \colon \tau \to \mathcal{P}(X)$ by

$$A^{\gamma} = A^{\gamma'} = \begin{cases} A & \text{if } A = \{a\}, \\ A \cup \{a, c\} & \text{if } A \neq \{a\}. \end{cases}$$

Then $\tau_{\gamma \vee \gamma'} = \{ \emptyset, X, \{a\}, \{c\}, \{a, c\} \}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ as f(a) = f(b) = a, f(c) = c. Then f is $C_{\gamma \vee \gamma'}$ -continuous (resp. $B_{\gamma \vee \gamma'}$ -continuous, $\gamma \vee \gamma'$ -semicontinuous and $\gamma \vee \gamma'$ -semiprecontinuous), but it is not $\gamma \vee \gamma'$ - α -continuous (resp. $\gamma \vee \gamma'$ -precontinuous, $S_{\gamma \vee \gamma'}$ -continuous and $\beta_{\gamma \vee \gamma'}$ -continuous).

Example 4.6. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. We define the operators $\gamma \lor \gamma' \colon \tau \to \mathcal{P}(X)$ by $\gamma(A) = \operatorname{Cl}(A)$ and $\gamma'(A) = \operatorname{Int}(\operatorname{Cl}(A))$ for all $A \in \tau$. Then $\tau_{\gamma \lor \gamma'} = \{\emptyset, X\}$. Define a function $f \colon (X, \tau) \to (Y, \sigma)$ as f(a) = f(c) = a, f(b) = b. Then f is both $S_{\gamma \lor \gamma'}$ -continuous and $\gamma \lor \gamma'$ -precontinuous, but it is neither $\gamma \lor \gamma'$ -semicontinuous nor $B_{\gamma \lor \gamma'}$ -continuous.

C. R. Acad. Bulg. Sci., 73, No 4, 2020

Example 4.7. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}$. We define the operations $\gamma, \gamma' \colon \tau \to \mathcal{P}(X)$ by

$$A^{\gamma} = A^{\gamma'} = \begin{cases} \operatorname{Int}(\operatorname{Cl}(A)) & \text{if } A = \{a\}, \\ \operatorname{Cl}(A) & \text{if } A \neq \{a\}. \end{cases}$$

Then $\tau_{\gamma \vee \gamma'} = \{ \emptyset, \{a\}, \{c\}, \{a, c\}, \{a, b, d\}, X \}$. Define a function $f \colon (X, \tau) \to (Y, \sigma)$ as f(a) = f(c) = a, f(b) = f(d) = b. Then f is $\beta_{\gamma \vee \gamma'}$ -continuous, but it is not $\gamma \vee \gamma'$ -semiprecontinuous.

Example 4.8. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$ and $\sigma = \{\emptyset, X, \{a\}\}$. We define the operations $\gamma, \gamma' \colon \tau \to \mathcal{P}(X)$ by

$$A^{\gamma} = A^{\gamma'} = \begin{cases} \operatorname{Int}(\operatorname{Cl}(A)) & \text{if } A = \{a\}, \\ X & \text{if } A \neq \{a\}. \end{cases}$$

Then $\tau_{\gamma \vee \gamma'} = \{ \emptyset, \{a\}, X \}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ as f(a) = f(c) = a, f(b) = b. Then f is $\gamma \vee \gamma' - \alpha$ -continuous but it is not $C_{\gamma \vee \gamma'}$ -continuous.

REFERENCES

- ^[1] KASAHARA S. (1979) Operation-compact spaces, Math. Japonica, 24, 97–105.
- [²] OGATA H., H. MAKI (1993) Bioperation on topological spaces, Math. Japonica, 38(5), 981–985.
- [³] UMEHARA J., H. MAKI, T. NOIRI (1992) Bioperation on topological spaces and some separation axioms, Mem. Fac. Sci. Kochi Univ. (A), 3, 45–59.
- [4] NIRMALA R., N. RAJESH (2019) Generalization of semiopen sets via bioperation (under preparation).
- [⁵] NIRMALA R., N. RAJESH (2016) Bioperation-regular open sets, Aryabhata J. Math. Infor., 8(1), 53–62.

*Facultad de Ciencias Básicas Corporación Universitaria del Caribe-CECAR 700009 Sincelejo, Colombia e-mail: carpintero.carlos@gmail.com **Departamento de Matemáticas Universidad de Oriente Núcleo de Sucre 6101 Cumaná, Venezuela

Department of Mathematics Rajah Serfoji Govt. College Thanjavur-613005 Tamilnadu, India e-mail: nrajesh_topology@yahoo.co.in *Department of Natural Sciences and Exact Universidad de la Costa 080016 Barranquilla, Colombia e-mail: ennisrafael@gmail.com