
Cornell University Law School Cornell University Law School

Scholarship@Cornell Law: A Digital Repository Scholarship@Cornell Law: A Digital Repository

Cornell Law Faculty Publications Faculty Scholarship

Winter 2020

Spyware vs. Spyware: Software Conflicts and User Autonomy Spyware vs. Spyware: Software Conflicts and User Autonomy

James Grimmelmann
Cornell Law School, james.grimmelmann@cornell.edu

Follow this and additional works at: https://scholarship.law.cornell.edu/facpub

 Part of the Computer Law Commons, and the Internet Law Commons

Recommended Citation Recommended Citation
James Grimmelmann, "Spyware vs. Spyware: Software Conflicts and User Autonomy," 16 Ohio State
Technology Law Journal 25 (2020)

This Article is brought to you for free and open access by the Faculty Scholarship at Scholarship@Cornell Law: A
Digital Repository. It has been accepted for inclusion in Cornell Law Faculty Publications by an authorized
administrator of Scholarship@Cornell Law: A Digital Repository. For more information, please contact
jmp8@cornell.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship @ Cornell Law

https://core.ac.uk/display/323559651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarship.law.cornell.edu/
https://scholarship.law.cornell.edu/facpub
https://scholarship.law.cornell.edu/facsch
https://scholarship.law.cornell.edu/facpub?utm_source=scholarship.law.cornell.edu%2Ffacpub%2F1725&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=scholarship.law.cornell.edu%2Ffacpub%2F1725&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/892?utm_source=scholarship.law.cornell.edu%2Ffacpub%2F1725&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jmp8@cornell.edu

SPYWARE VS. SPYWARE:

SOFTWARE CONFLICTS AND USER AUTONOMY
JAMES GRIMMELMANN*

CONTENTS

I. INTRODUCTION ... 26	
II. SOFTWARE CONFLICTS .. 34
III. USER AUTONOMY ... 49
IV. CONCLUSION .. 65

* Professor of Law, Cornell Tech and Cornell Law School. This Essay is a revised version of a
Distinguished Lecture given for the Ohio State Technology Law Journal on September 20,
2019. My thanks to the participants there and in the Digital Life Seminar at Cornell Tech, and
to Aislinn Black, Mary Anne Franks, Bryan Choi, Efthimos Parasidis, Guy Rub, Tom
Dougherty, MC Forelle, Fred von Lohmann, Germán Ricardo Macías, Arvind Narayanan,
Helen Nissenbaum, Frank Pasquale, C.E. Petit, and Christopher Thorpe. This essay may be
freely reused under the terms of the Creative Commons Attribution 4.0 International license,
https://creativecommons.org/licenses/by/4.0.

The Ohio State Technology Law Journal

Electronic copy available at: https://ssrn.com/abstract=3570703

26 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

I. Introduction

This is the story of the time that Apple broke Zoom, and everybody
was surprisingly okay with it. The short version is that Zoom provides
one of the most widely used video-conferencing systems in the world.
One reason for Zoom’s popularity is its ease of use; one reason Zoom
was easy to use was that it had a feature that let users join calls with a
single click. On macOS, Zoom implemented this feature by running a
custom web server on users’ computers; the server would receive
Zoom-specific requests and respond by launching Zoom and
connecting to the call.1 Security researchers realized that that web
pages could use this feature to join users to Zoom calls without any
further confirmation on their part, potentially enabling surveillance
through their webcams and microphones.2 The researchers released a
proof-of-concept exploit in the form of a webpage that would
immediately connect anyone who visited it to a Zoom video call with
random strangers.3 They also sketched out ways in which the Zoom
server on users’ computers could potentially be used to hijack those
computers into running arbitrary code.4

After the story came to light, Apple’s response was swift and
unsparing. It pushed out a software update to macOS to delete the

1 Jonathan Leitschuh, Zoom Zero Day: 4+ Million Webcams & Maybe an RCE? Just Get
Them to Visit Your Website!, MEDIUM (July 8, 2019),
https://medium.com/bugbountywriteup/zoom-zero-day-4-million-webcams-maybe-an-rce-
just-get-them-to-visit-your-website-ac75c83f4ef5 [https://perma.cc/7W3Y-LDHY]. Using a
custom local web server bypassed security checks ordinarily performed by browsers. Id. See
generally Dan Goodin, Zoom for Mac Made It Too Easy for Hackers to Access Webcams.
Here’s What to Do [Updated], ARS TECHNICA (July 9, 2019, 6:33 PM),
https://arstechnica.com/information-technology/2019/07/zoom-makes-it-too-easy-for-hackers-
to-access-webcams-heres-what-to-do/.
2 Leitschuh, supra note 1.
3 Id.; see also Matt Haughey (@mathowie), TWITTER (July 8, 2019, 8:39 PM),
https://twitter.com/mathowie/status/1148391109824921600 [https://perma.cc/FP4F-EC27]
(“This Zoom vulnerability is bananas. I tried one of the proof of concept links and got
connected to three other randos also freaking out about it in real time.”).
4 Assetnote Team, Zoom Zero Day Followup: Getting the RCE, ASSETNOTE (July 17, 2019),
https://blog.assetnote.io/bug-bounty/2019/07/17/rce-on-zoom/ [https://perma.cc/M528-7PX9];
Leitschuh, supra note 1.

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 27

Zoom server and prevent it from being reinstalled.5 The update was
remarkable, and not just because it removed functionality rather than
adding it. Typical Apple updates to macOS show a pop-up notification
that lets users choose whether and when to install an update. But
Apple pushed out this update silently and automatically; users woke up
to discover that the update had already been installed—if they
discovered it at all. In other words, Apple deliberately broke an
application feature on millions of users’ computers without notice or
specific consent. And then, six days later, Apple did it again.6

There is a lot that could be said about this episode; it illuminates
everything from responsible disclosure practices7 to corporate public
relations to secure interface design for omnipresent cameras and
microphones.8 But I want to dwell on just how strange it is that one
major technology company (AAPL, market capitalization $1.4
trillion9) deliberately broke a feature in another major technology
company’s (ZM, market capitalization $24 billion10) product for
millions of users, and almost no one even blinked. We are living in a

5 Dan Goodin, Silent Mac Update Nukes Dangerous Webserver Installed by Zoom, ARS
TECHNICA (July 10, 2019, 7:50 PM), https://arstechnica.com/information-
technology/2019/07/silent-mac-update-nukes-dangerous-webserver-installed-by-zoom/
[https://perma.cc/G2SV-P5DC]; Zack Whittaker, Apple Has Pushed a Silent Mac Update to
Remove Hidden Zoom Web Server, TECHCRUNCH (July 10, 2019, 6:06 PM),
https://techcrunch.com/2019/07/10/apple-silent-update-zoom-app/ [https://perma.cc/UD5J-
8GEB].
6 Dieter Bohn, Apple Is Silently Updating Macs Again to Remove Insecure Software From
Zoom’s Partners, VERGE (July 16, 2019, 1:20 PM),
https://www.theverge.com/2019/7/16/20696529/apple-mac-silent-update-zoom-ringcentral-
zhumu-vulnerabilty-patched [https://perma.cc/RS87-S6C8].
7 See ALANA MAURUSHAT, DISCLOSURE OF SECURITY VULNERABILITIES: LEGAL AND ETHICAL
ISSUES (2013); Kristin M. Bergman, A Target to the Heart of the First Amendment:
Government Endorsement of Responsible Disclosure as Unconstitutional, 13 NW. J. TECH. &
INTELL. PROP. 117 (2015).
8 See, e.g., Matthew Brocker & Stephen Checkoway, iSeeYou: Disabling the MacBook
Webcam Indicator LED (Dec. 12, 2013) (unpublished manuscript),
https://jscholarship.library.jhu.edu/handle/1774.2/36569 (demonstrating an attack to foil a
security feature in which an indicator light was lit whenever a Mac’s webcam was turned on).
9 As of February 11, 2020. Apple Market Cap, YCHARTS,
https://ycharts.com/companies/AAPL/market_cap (last visited Feb. 20, 2020).
10 As of February 11, 2020. Zoom Video Communications Market Cap, YCHARTS,
https://ycharts.com/companies/ZM/market_cap (last visited Feb. 20, 2020).

Electronic copy available at: https://ssrn.com/abstract=3570703

28 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

William Gibson future of megacorporations waging digital warfare on
each other’s software and everyone just accepts that this is how life is
now.

Lest you think I am dwelling on an isolated and unrepresentative
incident, here are some further examples of programs doing drive-bys
on each other like warring street gangs:

● Malware: Antivirus software attempts to prevent malware
from being installed on users’ computers, and to remove
that software if found. Malware tries to install itself and
evade detection and removal, so of course its first order of
business is often to turn off any antivirus protection.11

● video game bots: Some online game players use bots to
play the game for them, leveling up their characters and
obtaining resources.12 Blizzard, which operates the popular
game World of Warcraft (WoW), added a program called
Warden to WoW, which detects bots and reports them to
Blizzard so it can ban their users from connecting to
Blizzard’s servers.13 One bot maker, MDY, modified its
code to evade detection by Warden.14 Others developed
techniques to modify Warden itself and disable its
surveillance without alerting Blizzard.15

11 See, e.g., DoubleAgent: Taking Full Control Over Your Antivirus, CYBELLUM (Mar. 22,
2017), https://cybellum.com/doubleagent-taking-full-control-antivirus/
[https://perma.cc/2BMR-VEY5]; Malware Uses Certificates to Disable the Installation of
Anti-Malware Solutions on Your Computer, BITDEFENDER,
https://www.bitdefender.com/consumer/support/answer/1921/ [https://perma.cc/6N27-E8QK].
12 See, e.g., GREG HOGLUND & GARY MCGRAW, EXPLOITING ONLINE GAMES: CHEATING
MASSIVELY DISTRIBUTED SYSTEMS 19 (2007).
13 See, e.g., Andy Chalk, World of Warcraft Bot Factory Gives Up After Massive Blizzard
Banhammering, PC GAMER (May 15, 2015), https://www.pcgamer.com/world-of-warcraft-
bot-factory-gives-up-after-massive-blizzard-banhammering/ [https://perma.cc/V5RV-H7J4].
14 MDY Indus. v. Blizzard Entm’t, 629 F.3d 928, 936 (9th Cir. 2010).
15 Deceiving Blizzard Warden, HACKMAG, https://hackmag.com/uncategorized/deceiving-
blizzard-warden/ [https://perma.cc/MTA7-K3TS].

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 29

● Ad blocking: Some websites show ads.16 In response, some
users install adblockers in their browsers to block the ads
on websites they visit. In reply, some websites detect when
ads are being blocked and refuse to display content unless
the adblockers are disabled. In surreply, some adblockers
disguise from websites the fact that their ads are being
blocked. Or, in reply, some websites modify their ads so
that adblockers cannot detect them, and in surreply
adblockers use more sophisticated techniques to recognize
the mutated ads. In the words of Parker Higgins, it is
“[i]ncreasingly obvious that any debate about adblockers is
a thin veneer over questions of basic control of
computers.”17

● Ad injection: Or, maybe it is a browser plugin that shows
the ads and the website that objects. Today the preferred
term is “ad injectors”—defined as software “that modifies a
page's content to insert or replace advertisements,
irrespective of user consent”18—although readers of a
certain age may remember the litigation over “popup
ads.”19 Browser vendors have adopted increasingly
stringent rules to restrict ad injectors.20

● Browser tracking: Websites use browser APIs, including

placing cookies on users’ computers, to gather information

16 See generally Russell A. Miller, Liberation, Not Extortion: The Fate of Ad-Blocking in
German and American Law (Aug. 15, 2017) (unpublished manuscript),
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3019254; Grant Storey et al., The Future
of Ad Blocking: An Analytical Framework and New Techniques (May 24, 2017) (unpublished
manuscript), https://arxiv.org/pdf/1705.08568.pdf.
17 Parker Higgins (@xor), TWITTER (Sept. 7, 2015, 5:06 PM),
https://twitter.com/xor/status/640994476480069632 [https://perma.cc/9FG2-AEBY].
18 Kurt Thomas et al., Ad Injection at Scale: Assessing Deceptive Advertisement
Modifications, in PROC. 2015 IEEE SYMPOSIUM ON SECURITY AND PRIVACY 151, 152 (2015).
19 E.g., 1-800-Contacts, Inc. v. WhenU.com, Inc, 414 F.3d 400 (2d Cir. 2005). For a more
modern example, see Halperin v. Int’l Web. Serv., LLC, 70 F. Supp. 3d 893 (N.D. Ill. 2014).
20 Nav Jagpal, Out with Unwanted Ad Injectors, GOOGLE SECURITY BLOG (Mar. 31, 2015),
https://security.googleblog.com/2015/03/out-with-unwanted-ad-injectors.html
[https://perma.cc/BDR9-PWS5].

Electronic copy available at: https://ssrn.com/abstract=3570703

30 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

about users and track them from page to page and site to
site. In response, browsers allow users to block or delete
cookies to prevent websites from recognizing them. In
reply, websites have deployed ever more sophisticated
techniques to fingerprint users’ browsers based on other
features, such as which fonts they have installed21 and the
characteristics of their computer’s battery.22 Also in reply,
websites have deployed software techniques to circumvent
browser-based cookie blocking, for example by simulating
user input so that browsers think that users had consciously
interacted with websites.23 In surreply, browser makers
have removed or restricted the APIs enabling these forms
of tracking, and take increasingly strong measures against
websites they identify as circumventing users’ cookie
settings.24

● Email tracking: Emails can include HTML that refers to

resources on the web, which has been used for years by
email senders to see who has opened an email—by
including an image with a URL unique to a particular

21 E.g., Gunes Acar et al., FPDetective: Dusting the Web for Fingerprinters, in CCS ‘13:
PROC. 2013 ACM SIGSAC CONF. ON COMP. & COMM. SECURITY 1129, 1130 (2013),
https://dl.acm.org/doi/10.1145/2508859.2516674; Peter Eckersley, How Unique Is Your Web
Browser?, in PRIVACY ENHANCING TECHNOLOGIES 1, 4 (Mikhail Atallah & Nicholas Hopper
eds., 2011).
22 Łukasz Olejnik et. al., The Leaking Battery: A Privacy Analysis of the HTML5 Battery
Status API, in DATA PRIVACY MANAGEMENT, AND SECURITY ASSURANCE 254, 254 (Joaquin
Garcia-Alfaro et al. eds., 2016).
23 See In re Google Inc. Cookie Placement Consumer Privacy Litigation, 806 F.3d 125, 131-32
(3rd Cir. 2015); Jonathan Mayer, Safari Trackers (Feb. 17, 2012),
http://webpolicy.org/2012/02/17/safari-trackers/.
24 E.g., Bill Buddington, Apple's New WebKit Policy Takes a Hard Line for User Privacy,
ELECTRONIC FRONTIER FOUND.: DEEP LINKS (Aug. 20, 2019),
https://www.eff.org/deeplinks/2019/08/apples-new-webkit-policy-takes-hard-line-user-privacy
[https://perma.cc/MPJ5-5VG6]; Marissa Wood, Today’s Firefox Blocks Third-Party Tracking
Cookies and Cryptomining by Default, MOZILLA: BLOG (Sept. 3, 2019),
https://blog.mozilla.org/blog/2019/09/03/todays-firefox-blocks-third-party-tracking-cookies-
and-cryptomining-by-default/ [https://perma.cc/TPT9-ABY3].

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 31

user.25 If that URL is loaded, the user has opened the email.
So, of course, some email readers include options not to
load remote resources unless the user specifically asks to.26

● Jailbreaking: Some operating systems make it difficult or

impossible to install software not approved by the
operating-system vendor.27 Unsurprisingly, at the more
restrictive end there is a market for programs that will
allow the installation of other programs the operating-
system vendor has attempted to prevent.28 Some of these
programs are used by device owners who want to
“jailbreak” their devices to add new programs;29 some are
used by hackers to surveil users;30 some are used by law
enforcement to decrypt devices during investigations.31
What happens when operating-system vendors discover
that one of these programs is in use? They push out an
update to the operating system to disable it.32

25 E.g., Mike Davidson, Superhuman Is Spying on You, MIKE INDUSTRIES (June 30, 2019),
https://mikeindustries.com/blog/archive/2019/06/superhuman-is-spying-on-you
[https://perma.cc/6QBH-LRVQ].
26 John Gruber, Superhuman and Email Privacy, DARING FIREBALL (July 23, 2019),
https://daringfireball.net/2019/07/superhuman_and_email_privacy [https://perma.cc/UQY7-
LCQH].
27 See, e.g., Safely Open Apps on Your Mac, APPLE (Oct. 7, 2019),
https://support.apple.com/en-us/HT202491 [https://perma.cc/B3DZ-EPQG].
28 E.g., Lily Hay Newman, Unfixable iOS Device Exploit Is the Latest Apple Security
Upheaval, WIRED (Sept. 27, 2019, 3:18 PM), https://www.wired.com/story/ios-exploit-
jailbreak-iphone-ipad/ [https://perma.cc/6TNH-UDED].
29 See, e.g., PANGU, http://en.pangu.io.
30 See, e.g., Ian Beer, A Very Deep Dive into iOS Exploit Chains Found in the Wild, PROJECT
ZERO (Aug. 29, 2019), https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-
ios-exploit.html [https://perma.cc/9WY3-GL2G].
31 E.g., Andy Greenberg, Cellebrite Says It Can Unlock Any iPhone for Cops, WIRED (June
14, 2019, 6:05 PM), https://www.wired.com/story/cellebrite-ufed-ios-12-iphone-hack-android/
[https://perma.cc/D2QH-YQWJ].
32 E.g., Shaun Nichols, Breaking News: Apple Un-Breaks Break on Jailbreak Break, REGISTER
(Aug. 26, 2019, 11:38 PM),
https://www.theregister.co.uk/2019/08/26/apple_fixes_ios124_jailbreak/
[https://perma.cc/TPP9-V9BN].

Electronic copy available at: https://ssrn.com/abstract=3570703

32 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

● Browser certificates: These contain public keys used by
browsers to verify the identities of websites—thereby
ensuring that users’ communications with those websites
are securely encrypted. ISPs in Kazakhstan required users
to download and install a government-issued certificate,
potentially allowing the government to eavesdrop on their
communications with major websites like Facebook and
Twitter.33 In response, Mozilla, Apple, and Google disabled
that certificate in their browsers, no matter how it was
installed.34

● DRM: In the antediluvian pre-streaming days of digital

music, many users would use “ripping” software to make
MP3 copies of their CDs on their computers. Sony/BMG
shipped a number of CDs which installed their own digital
rights management (DRM) software on PCs in which they
were inserted.35 This software—XCP and MediaMax CD-
3—prevented common ripping software from reading or
making copies of Sony/BMG CDs.36 It also modified users’
computers in ways designed to make it harder to remove;
XCP in particular took steps to conceal its presence on
users’ computers and created additional security
vulnerabilities that other attackers could use to install their
own software on users’ computers. Security researchers
compared this DRM software to “rootkits”: forms of
malware that actively resist attempts to uninstall them by

33 See RAM SUNDARA RAMAN ET AL., KAZAKHSTAN’S HTTP INTERCEPTION (2019),
https://censoredplanet.org/kazakhstan [https://perma.cc/72XV-7VAR].
34 Catalin Cimpanu, Apple, Google, and Mozilla Block Kazakhstan's HTTPS Intercepting
Certificate, ZDNET (Aug. 21, 2019, 10:00 PM), https://www.zdnet.com/article/apple-google-
and-mozilla-block-kazakhstans-https-intercepting-certificate/; Sydney Li, Browsers Take a
Stand Against Kazakhstan’s Invasive Internet Surveillance, ELECTRONIC FRONTIER FOUND.:
DEEP LINKS (Aug. 22, 2019), https://www.eff.org/deeplinks/2019/08/browsers-take-stand-
against-kazakhstans-invasive-internet-surveillance [https://perma.cc/5PKT-9R89].
35 See generally Deirdre K. Mulligan & Aaron K. Perzanowski, The Magnificence of the
Disaster: Reconstructing the Sony/BMG Rootkit Incident, 22 BERK. TECH. L.J. 1157, 1158
(2007).
36 Mark Russinovich, Sony, Rootkits and Digital Rights Management Gone Too Far, MARK’S
BLOG (Oct. 31, 2005), https://blogs.technet.microsoft.com/markrussinovich/2005/10/31/sony-
rootkits-and-digital-rights-management-gone-too-far/ [https://perma.cc/9HLZ-8UX9].

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 33

hiding, disabling removal programs, and reinstalling
themselves if partially removed.

I could go on, but you get the picture.
One way to make sense of these program-versus-program conflicts
would be to proceed methodically through the bodies of law that could
be (and have been) brought to bear on them. But their sheer number is
stunning. There are statutory computer-misuse claims under the
Computer Fraud and Abuse Act and its state analogs against programs
that access users’ computers without authorization.37 There are
property-tort claims for trespass to chattels against programs that harm
users’ computers.38 There are contractual claims by users against
programs that break their promises, and tortious interference claims
against programs that keep other programs from working as
promised.39 There are copyright claims for modifying programs and
content in unapproved ways;40 there are trademark claims for passing
off modifications as the original, and for misrepresenting the
relationship between a program and its victim.41 Section 1201 of the
Digital Millennium Copyright Act42 prohibits circumventing
technological protections on copyrighted works (including music on
CDs and games like World of Warcraft),43 and section 1202,44 which
has been interpreted to prohibit stripping certain kinds of metadata
from copyrighted works,45 might also sometimes be in play. When a
program justifies disabling another on the ground that it is harmful—as
antivirus software does with malware—this justification may itself
sometimes be actionable as trade libel, or as defamation of its

37 18 U.S.C. § 1030 (2008).
38 The leading case on online trespass to chattels, Intel Corp. v. Hamidi, 71 P.3d 296 (Cal.
2003), held that the tort did not lie without “some actual injury,” but that requirement will
typically be satisfied when a defendant “impairs [the] functioning” of a program on the
plaintiff’s computer. Id. at 300.
39 E.g., Zango, Inc. v. Kaspersky Lab, Inc., 568 F. 3d 1169, 1171-72 (9th Cir. 2019).
40 E.g., MDY Indus. v. Blizzard Entm’t, 629 F.3d 928, 937 (9th Cir. 2010).
41 E.g., U-Haul Intern. v. whenU.com, Inc., 279 F. Supp. 2d 723, 727-29 (E.D. Va. 2003).
42 17 U.S.C. § 1201 (1998).
43 MDY Indus., 629 F.3d at 943-52.
44 17 U.S.C. § 1202 (1999).
45 See e.g., Murphy v. Millennium Radio Grp., 650 F.3d 295, 305 (2011).

Electronic copy available at: https://ssrn.com/abstract=3570703

34 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

developers.46 If the makers of the two programs compete, actions by
one against the other might violate the antitrust laws.47 Any of the
above in violation of a privacy policy, or terms of service, or other
representation to users might be a deceptive trade practice in the view
of the Federal Trade Commission and state attorneys general.48 Cutting
across almost all of the above there are some commonly arising
defenses, such as Section 230(c)(2) of the Communications Decency
Act, which protects “any action voluntarily taken in good faith to
restrict access to or availability” of “objectionable” material.49 And at
the Constitutional level, restrictions on software functionality can raise
First, Fifth, and Fourteenth Amendment issues.

The length of this list should give pause. If there is a principled way to
resolve these software-versus-software conflicts, it needs a firmer
foundation than a mess of doctrinal detail. If these bodies of law reach
consistent results, we should seek the common thread that explains
them all. If they reach inconsistent results, we should seek a coherent
basis to harmonize them. Either way, we need a theory. So I would
like to come at the problem the other way around: what kinds of
principles might help sort out these cases?

Part II of this essay describes three seemingly appealing heuristics for
resolving software conflicts—banning bad software, promoting user
freedom, and enforcing contracts—each of which fails badly when
confronted with common fact patterns. Part III argues that the missing
element is user autonomy: only by connecting software’s effects for
users with their choices of what software to run and what contracts to
agree to is it possible to make sense of software conflicts.

II. Software Conflicts

46 See, e.g., NEW.NET v. Lavasoft, 356 F. Supp. 2d 1071, 1113 (C.D. Cal. 2003).
47 See e.g., In re Apple iPod iTunes Antitrust Litigation, 796 F. Supp. 2d 1137, 1143 (N.D.
Cal. 2011).
48 15 U.S.C. § 45 (2006).
49 47 U.S.C. § 230(c)(2) (1996).

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 35

Three theories of software conflicts are so straightforward, so
widespread, and so intuitively appealing that they are often simply
assumed. The first is that certain program behavior is intrinsically
harmful and should be prohibited. Programs should not spy on users
and delete their files. Call this theory “Bad Software Is Bad.” The
second is that users should be allowed to run whatever software they
want. Call this theory “Software Freedom.” And the third is that both
users and software vendors should be held to the terms of whatever
contracts they enter into. Call this “Click to Agree.” Each theory
captures an important insight about software but is incomplete on its
own. Each theory gives good explanations in some easy cases but
quickly runs into trouble in harder cases. Sometimes the theories
agree, and sometimes they do not. We can understand much about
software conflicts by studying the cases where one theory fails and
another succeeds. We can understand even more by studying the cases
where all three fall short.

a. Bad Software Is Bad

The first, and in some ways most intuitive, theory focuses on the
technical characteristics of the software itself. Most programs are
Good and do useful things for users. But some programs are Bad.
Programs can be Bad because they harm users by invading their
privacy and deleting their data, because they harm other people by
pirating copyrighted works and making pornographic deepfakes, or
because they harm other programs in all of the ways listed above. The
legal system should intervene when Bad programs do Bad things,
including when they disable Good programs. And, a little more subtly,
the legal system should allow Good programs to disable Bad
programs.

The underlying intuition here is sound. Some programs really are
objectively Bad. Spousal spyware can put users in physical danger by

Electronic copy available at: https://ssrn.com/abstract=3570703

36 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

enabling abusive partners to stalk them.50 Ransomware that encrypts
users’ files until they send Bitcoin in exchange for a decryption key is
also 100% downside: it does nothing good for its victims, ever.51
Norton AntiVirus is Good;52 NotPetya is Bad.53 It makes perfect sense
that the former should be allowed to block the latter, just as Bad
Software Is Bad recommends. A theory that did the opposite and took
the side of “the most devastating cyberattack in history” over antivirus
software trying to stop it would be a non-starter.54

These are easy cases because the costs and benefits are so lopsided:
one of the two programs is all cost and no benefit. To be sure, in the
blasted Fury Road hellscape that is Internet security, there is no
shortage of obvious villains, and thus no shortage of easy cases. But
not all cases are so easy.

Compare a stereotypically Good program like Chrome Remote
Desktop55 with a stereotypically Bad program like FlawedAmmyy.56
The former is thought of as a useful utility that lets system
administrators upgrade employees’ computers and provide tech

50 E.g., Rahul Chatterjee et al., The Spyware Used in Intimate Partner Violence, in PROC. 2018
IEEE SYMPOSIUM ON SECURITY AND PRIVACY 441, 441 (2018),
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8418618.
51 See generally MALWAREBYTES, CYBERCRIME TACTICS AND TECHNIQUES: RANSOMWARE
RETROSPECTIVE (2019), https://resources.malwarebytes.com/files/2019/08/CTNT-2019-
Ransomware_August_FINAL.pdf; GAVIN O’GORMAN & GEOFF MCDONALD, RANSOMWARE: A
GROWING MENACE (2012),
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/rans
omware-a-growing-menace.pdf.
52 But see Iulia Ion et al., “...No One Can Hack My Mind”: Comparing Expert and Non-
Expert Security Practices, in SOUPS 2015: PROC. ELEVENTH SYMPOSIUM ON USABLE PRIVACY
AND SECURITY 327, 330-31 (2015),
https://www.usenix.org/system/files/conference/soups2015/soups15-paper-ion.pdf (reporting
that security experts are less likely to recommend anti-virus software than non-experts are).
53 See Andy Greenberg, The Untold Story of NotPetya, the Most Devastating Cyberattack in
History, WIRED (Aug. 22, 2018, 5:00 AM), https://www.wired.com/story/notpetya-
cyberattack-ukraine-russia-code-crashed-the-world/ [https://perma.cc/AF6Y-EZWE].
54 Id.
55 CHROME REMOTE DESKTOP, https://remotedesktop.google.com (last visited Jan. 20, 2020).
56 See Proofpoint Staff, Leaked Ammyy Admin Source Code Turned into Malware,
PROOFPOINT: BLOG (Mar. 7, 2018), https://www.proofpoint.com/us/threat-insight/post/leaked-
ammyy-admin-source-code-turned-malware [https://perma.cc/PQ66-G3U4].

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 37

support; the latter is thought of as a malicious “remote access Trojan”
used by hackers to steal data and spy on users. But they have
substantially identical functionality: they let someone use a computer
over the Internet as though they were sitting at the keyboard and
looking at its screen. The difference is that people we call heroes use
Google Remote Desktop to do good and people we call villains use
FlawedAmmyy to do evil.

It is not that there is no difference between good and evil online. It is
just that the difference is not a purely technical one. Even in cases
where the answer seems intuitively clear—surely Mozilla Firefox is
Good and the Kazakhstani government’s surveillance scheme is Bad—
the clarity comes not from the functional characteristics of the
software itself but from the context in which it is used. Firefox ships
with over 150 certificates,57 and it has a feature to install more.58 The
determination that the Kazakhstani government was up to no good
with its ISP-supplied certificate rested on contextual knowledge about
how it was likely to spy on users with the certificate, rather than
anything inherent to the certificate itself.

Like certificates, many programs are dual use: they have both lawful
and unlawful uses. Remote desktop tools themselves are a good
example: they are used both by actual tech support and by tech-support
scammers.59 A program that deletes a remote desktop tool might be
thwarting a crime, committing one, or both. Spyware often falls into
this dual-use grey area: it is marketed as being for families wanting to

57 See Mozilla Included CA Certificate List, MOZILLA WIKI,
https://wiki.mozilla.org/CA/Included_Certificates (last visited Jan. 20, 2020).
58 See Setting Up Certificate Authorities (CAs) in Firefox, MOZILLA SUPPORT,
https://support.mozilla.org/en-US/kb/setting-certificate-authorities-firefox
[https://perma.cc/86MU-AVB4].
59 See MICROSOFT, GLOBAL TECH SUPPORT SCAM RESEARCH 2, 4-5 (2018),
https://news.microsoft.com/uploads/prod/sites/358/2018/10/Global-Results-Tech-Support-
Scam-Research-2018.pdf.

Electronic copy available at: https://ssrn.com/abstract=3570703

38 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

keep in touch with each other, with a wink-wink nudge-nudge
understanding that some actual uses will be less benign.60

Nor does it help to rely on institutional identity. Obscure lone wolves
can produce Good software—some of the Internet’s most essential
infrastructure is written and maintained by individual volunteers.61 On
the other hand, major corporations can produce Bad software. The
Sony/BMG rootkit is a prime example of software from a Fortune 500
company that intentionally introduced egregious security violations to
users’ computers. One of the world’s leading antivirus makers, the
Russian cybersecurity company Kaspersky, has been accused of using
its antivirus software to exfiltrate classified documents from the U.S.
government.62

In some cases, “Good” and “Bad” are themselves contested. For many
copyright owners, it is obvious that DRM is Good and circumvention
tools are Bad; many open-source advocates and copyright skeptics
would say exactly the opposite. Some people think that it is fine to
play World of Warcraft with bots; others vehemently disagree.
Advertisers and adblockers have conflicting views about the legality
and morality of viewing content without the accompanying ads. (The
CEO of Turner Broadcasting once said that viewers make a “contract”
with TV broadcasters to watch the ads and called skipping

60 See, e.g., Complaint at 2-4, In re Retina-X Studios, LLC, No. 1723118 (F.T.C. filed Oct. 7,
2019), https://www.ftc.gov/system/files/documents/cases/172_3118-retina-
x_studios_complaint_updated.pdf.
61 See NADIA EGHBAL, ROADS AND BRIDGES: THE UNSEEEN LABOR BEHIND OUR DIGITAL
INFRASTRUCTURE (2017), https://www.fordfoundation.org/media/2976/roads-and-bridges-the-
unseen-labor-behind-our-digital-infrastructure.pdf.
62 Shane Harris & Gordon Lubold, Russia Has Turned Kaspersky Software into Tool for
Spying, WALL ST. J. (Oct. 11, 2017, 1:44 PM), https://www.wsj.com/articles/russian-hackers-
scanned-networks-world-wide-for-secret-u-s-data-1507743874; Raphael Satter, Mysterious
Operative Haunted Kaspersky Critics, ASSOCIATED PRESS (Apr. 17, 2019),
https://apnews.com/a3144f4ef5ab4588af7aba789e9892ed. But see Catalin Cimpanu, EU: No
Evidence of Kaspersky Spying Despite ‘Confirmed Malicious’ Classification, ZDNET (Apr.
16, 2019, 6:31 PM), https://www.zdnet.com/article/eu-no-evidence-of-kaspersky-spying-
despite-confirmed-malicious-classification/.

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 39

commercials “stealing.”63) This is not to say that one cannot
coherently invoke Bad Software Is Bad to condemn cheatbots or
adblockers. It is just that in order to do so one must first take a position
on fiercely debated normative and policy issues.

And even if the underlying principles are clear, in some cases their
application will be muddled because both programs will be able to
make out a claim to the same principle. Two pieces of ‘antivirus’
software may try to disable the other, each claiming that it is the real
deal and the other is an impostor wearing a badly fitting antivirus
mask.64 Which is which? The principle that antivirus software is Good
and viruses are Bad is not sufficient on its own. Some people think
RegHunter is a harmful virus; others consider it useful antivirus
software.65 Up and down depend on where you’re standing.

There is a running theme here. Bad Software Is Bad conflates the
question of whether software is good or bad in general with whether it
is good or bad for a specific user. Some users need remote tech
support, others don’t. Some users want to block ads, others don’t.
Surely, then, we have an issue of fact which users themselves are
peculiarly fitted to determine. Our next theory does just that.

b. Software Freedom

Software Freedom, for our purposes, is “the freedom to run [any]
program as you wish, for any purpose.”66 This is a straightforward

63 See Ernest Miller, Top Ten New Copyright Crimes, LAWMEME (May 2, 2002, 1:05 PM),
https://web.archive.org/web/20020604021107/http://research.yale.edu/lawmeme/modules.php
?name=News&file=article&sid=198.
64 See Enigma Software Grp. USA v. Malwarebytes Inc., 938 F.3d 1026, 1030 (9th Cir. 2019);
Zango, Inc. v. Kaspersky Lab, Inc., 568 F. 3d 1169, 1171-72 (9th Cir. 2019). See generally
Brett Stone-Gross et al., The Underground Economy of Fake Antivirus Software, in
ECONOMICS OF INFORMATION SECURITY AND PRIVACY III 55 (Bruce Schneier ed., 2012).
65 See Enigma Software Grp., 938 F.3d at 1033, 1037.
66 Free Software Foundation, What Is Free Software?, GNU OPERATING SYS.,
https://www.gnu.org/philosophy/free-sw.en.html [https://perma.cc/SV3M-U6NY]. I am
borrowing the term “software freedom” and this definition from the Free Software
Foundation’s free software movement. Id. Although the idea of “free software” is most often
deployed in the context of intellectual property restrictions on the use, modification, and

Electronic copy available at: https://ssrn.com/abstract=3570703

40 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

negative liberty: users should be free to use any software they want,
even if it interferes with other software. Programs have no rights that
users are bound to respect, and neither do software vendors or third
parties. The principle can be rooted in freedom of speech and thought,
in economic liberty, or in users’ property rights over their own
devices. But the upshot is the same: users can run any software they
want, and the legal system will not attempt to stop them.

A general principle that the law does not meddle in the affairs of users
is easy to articulate and easy to administer. Users who want a program
can run it. Users who don’t want a program can refrain from running
it. Neither case presents a legal question. Similarly, if Program A
disables Program B, it is no concern of the legal system. The fact that
it did so presumptively reflects a choice by the user to run Program A
knowing of its effects on Program B. Whatever Program B did, they
valued it less than what Program A now offers. In fact, often they will
have run Program A for the specific purpose of stopping Program B
from doing something they didn’t want. Every time a user runs
CleanMyMac to remove an old and unwanted program that is just
taking up hard drive space, Software Freedom correctly says, “Move
along, nothing to see here.” Virus, meet antivirus. Ad, meet adblocker.

The clearest doctrinal expression of this deregulatory impulse is in
Section 230(c)(2), which prohibits imposing liability for “any action
voluntarily taken in good faith to restrict access to or availability of
material ... that the provider or user considers to be ... objectionable.”67
The courts have held that this protection applies, for example, to

distribution of software, that is principally because these restrictions have been the most
salient. See generally COPYLEFT AND THE GNU GENERAL PUBLIC LICENSE: A COMPREHENSIVE
TUTORIAL AND GUIDE (2018), https://www.copyleft.org/guide/comprehensive-gpl-guide.pdf
(discussing the use of copyright licensing law to ensure software freedom). But
philosophically, the ideas are broader and encompass any kind of restrictions on user freedom.
See generally SAMIR CHOPRA & SCOTT DEXTER, DECODING LIBERATION: THE PROMISE OF FREE
AND OPEN SOURCE SOFTWARE (2007). I refer to “software freedom” rather than “free software”
to emphasize that it is freedom to use the software, not the freedom of the software itself, that
matters. See Benjamin Mako Hill, Freedom for Users, Not for Software, in THE WEALTH OF
THE COMMONS (David Bollier & Silke Helfrich eds., 2014),
http://wealthofthecommons.org/essay/freedom-users-not-software.
67 47 U.S.C. § 230(c)(2)(A) (1996).

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 41

antivirus programs that flag other software for removal.68 But
numerous other doctrines have a similar effect, simply by making it
hard to bring claims. For example, the creator of a disabled program
typically lacks standing to raise a CFAA or trespass to chattels claim
against the creator of the program that disabled it. It is the user’s
computer, not theirs, and it is the user who gets to decide what
software runs on it. Software Freedom also argues against the use of
copyright to restrict software modifications, against legally mandated
software updates, and against anti-circumvention law.

It is illuminating to compare Software Freedom’s prescriptions with
Bad Software Is Bad’s:

● Bad Software Is Bad brims with unjustified confidence that it

can distinguish software suitable for all users from software
suitable for none, and so it pays no attention to individual
users’ choices about software. Software Freedom, by contrast,
eschews such distinctions and instead defers to users. The fact
that a user chooses to run a program is sufficient evidence that
the program is useful. Indeed, a user’s choice to run a program
is constitutive of the fact that the program is actually Good for
them.

● Bad Software Is Bad is not capable of staying its hand in cases
where users disagree on the right outcome, but Software
Freedom is. It is not trademark infringement for a website to
set cookies in a browser, but neither is it trademark
infringement for the browser to clear them. Both “allow
cookies” and “block cookies” are reasonable outcomes that
reasonable users could choose. Software Freedom’s
deregulatory approach creates a technical space within which
genuine user choice is possible.

68 Zango, Inc. v. Kaspersky Lab, Inc., 568 F. 3d 1169, 1177-78 (9th Cir. 2019). But see
Enigma Software Grp., 938 F.3d at 1035-37 (distinguishing Zango and holding that Section
230(c)(2) does not apply when the removal is for “anticompetitive reasons”).

Electronic copy available at: https://ssrn.com/abstract=3570703

42 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

● In some controversial cases, Software Freedom supports a
program that does what its users want, whereas Bad Software
Is Bad condemns it because it causes third-party harms. This is
a straightforward clash of values; users’ interest in running
DRM-cracking software runs directly up against copyright
owners’ interest in using DRM software to limit access to
copyrighted works. That is, Software Freedom’s user focus has
a specifically libertarian bent toward maximal freedom of
action, whereas Bad Software Is Bad has a more
communitarian bent. The proper balance between these two
incomparable principles is a question of policy.

● Bad Software Is Bad can also be deployed paternalistically to

prevent users from running software on the grounds that doing
so will be bad for them. You may think you want to cheat at
World of Warcraft, but think again: winners never cheat, and
cheaters never win. Or, perhaps more persuasively, you may
think you want to allow this person from “Windows Tech
Support” full access to your computer, but think again.
Software Freedom is an appealing principle if you think that
users make good decisions. But if not, then Bad Software Is
Bad can help protect them in a way that Software Freedom
cannot.

● In many easy cases, both theories reach the same clearly right

result, because users’ goals and regulators’ goals align.
Antivirus software generally does what users want and is good
for them. Software libertarianism and software paternalism
converge.

So far, I have situated Software Freedom in contrast to Bad Software
Is Bad: deregulation versus regulation, with the predictable tensions
and tradeoffs involved. But just as the contestability of the definition
of “Bad” software undermines the foundations of Bad Software Is
Bad, there is also an instability in the foundations of Software
Freedom.

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 43

One way to get at the issue is the observation that Software Freedom
risks turning users’ computers into free-fire zones: anything a program
can get away with is permitted. One baleful consequence is that it
encourages software vendors to engage in a technical arms race of
escalating self-help. If Program A sends one of Program B’s modules
to the hospital, Program B may respond by sending one of Program
A’s to the morgue. This escalation is wasteful, as all unchecked arms
races are. For example, Software Freedom makes no effort to end the
cookie-blocking wars: blocking cookies looks like an exercise of user
freedom, and so do the workarounds websites use to get around cookie
blocking. The user who visits one of these websites has chosen to run a
program—the website’s workaround—that interferes with another
program—the cookie blocker. So be it. No matter how irrational it
may appear to run mutually incompossible programs in endlessly
alternating succession, Software Freedom offers no basis to second-
guess a user’s decisions.

Software-versus-software arms races also cause collateral damage as
uninvolved software gets caught in the crossfire. Cookie blockers
interfere with websites that are just trying to add useful features, not
track users.69 The Sony/BMG rootkit was so tenacious about installing
itself in a way CD-ripping software couldn’t defeat that it created
exploitable security vulnerabilities on users’ computers.70

Nor, at the end of the day, will the “right” program always win the
arms race. Users need good programs with guns to guard against bad
programs with guns, but sometimes the bad programs have bigger
guns. Software Freedom lets antivirus software delete malware—but it
also lets malware delete antivirus software. By declining to step in,
Software Freedom avoids thwarting user choices to run software—but
by refusing to step in at all, it allows other software to thwart those
choices. That outcome can be just as disempowering.

69 See, e.g., Blocking Third-Party Cookies Breaks the Save Button, PLANAPPLE,
https://planapple.uservoice.com/knowledgebase/articles/509652-blocking-third-party-cookies-
breaks-the-save-butto [https://perma.cc/PTU2-GFLK].
70 See Mulligan & Perzanowski, supra note 35, at 1158-60.

Electronic copy available at: https://ssrn.com/abstract=3570703

44 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

The distinction that antivirus software protects files while malware
deletes them is not one Software Freedom on its own is capable of
making. Users sometimes type rm -r * to delete files in bulk. Indeed,
it is central to the idea of Software Freedom that it rejects Bad
Software Is Bad’s sharp distinction between “safe” and “dangerous”
programs. Users sometimes work with dangerous programs, like
amateur experimenters giving themselves fecal transplants.71 Indeed,
any sufficiently advanced exercise of Software Freedom is
indistinguishable from a security hole. The ability to modify a system
in deep and powerful ways is the hallmark both of freedom and of
malware, just like the ability to pack a lot of chemical energy into a
small volume is the hallmark both of batteries and of bombs. Android
is both more extensible and more vulnerable than iOS.

Indeed, Software Freedom even has trouble with the distinction that
the user has voluntarily installed antivirus software but not the virus; it
is precisely the refusal to second-guess the user’s actions that makes
the pure form of Software Freedom so simple and administrable. The
spear-phishing victim who clicks on an emailed link to open what they
think is a website and turns out to be a spyware executable has
voluntarily interacted with something, even if it turned out not to be
what they expected. To distinguish the user who accidentally clicks on
a malware link from a security researcher who deliberately runs
malware on a sandboxed PC to study it, something more is needed.

I hinted at this when I said that one might question Software Freedom
if one thinks that users make bad choices. But the issue is deeper and
subtler than that. Many things that happen on a user’s computer are
not the user’s “choices” in any meaningful sense. Whether or not a
program’s actions are the intended result of a deliberate exercise of
user freedom is a question on which Software Freedom depends but
cannot by itself answer, except by collapsing into the trivial claim that
anything that happens on a computer is deliberate. (But when

71 See Denise Grady, Fecal Transplant Is Linked to a Patient’s Death, the F.D.A. Warns, N.Y.
TIMES (June 13, 2019), https://www.nytimes.com/2019/06/13/health/fecal-transplant-fda.html
[https://perma.cc/9YNN-KC3J].

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 45

everything is deliberate, nothing is.) Software Freedom can distinguish
between “allow cookies” and “block cookies,” because they have
different results. But it cannot distinguish between “allow cookies”
and “attempt to block cookies but fail.” The user’s intent is not always
reflected in what actually happens on a computer—otherwise, it would
make no sense to make computer misuse torts and crimes turn on
“authorization.”72 Sometimes users are deceived about what a program
will do. Sometimes they change their minds but lack the technical
skills to drag an icon off the desktop, let alone uninstall the program it
represents. Sometimes they are confused about how programs will
interact. And sometimes software makers lie about what their
programs will do, or they install programs without even a semblance
of user consent.

To be useful, a theory of software conflicts must be willing to say that
some software really is unwanted (as Bad Software Is Bad does) and to
say that some software really is wanted (as Software Freedom does).
But it must also have a workable test for saying which software has a
user’s permission to run and which does not. A line must be drawn,
and some principle besides “let the memory chips lie where they fall”
is needed to draw it. Our next theory does just that.

c. Click to Agree

The standard approach to ascertaining user consent in the United
States circa 2020 is contractual. Users agree to the terms of a contract,
privacy policy, or other instrument when they provide a specific
manifestation of assent to it after having been given notice and a
reasonable opportunity to review its terms.73 Contractual agreement
provides three mechanisms for affecting the outcome in software-
versus-software cases, along with a dog that does not bark in the night:

72 See James Grimmelmann, Consenting to Computer Use, 84 GEO. WASH. L. REV. 1500, 1501
(2016).
73 See, e.g., Meyer v. Uber Tech. Inc., 868 F.3d 66, 74-76 (2nd Cir. 2017).

Electronic copy available at: https://ssrn.com/abstract=3570703

46 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

● A user can assent to software’s actions: they agree that the
software is allowed to do X and that they cannot sue the
software maker when the software goes ahead and does X.
Such terms can therefore be controlling if a user tries to
object when software covered by such an agreement
disables other software: having agreed to let us disable
software, you cannot now object that we disabled it.

● A little more subtly, the terms can help protect software
against being disabled. A user can promise not to decrypt,
modify, disable, or even reverse engineer the software they
are installing, giving the software maker rights against
users who do.

● More subtly still, the terms can help provide a foundation

for a suit directly against the maker of the other software
doing the disabling. For example, the World of Warcraft
license agreement played an indispensable role in
Blizzard’s suit against Glider.74

● In theory, terms could also create contractual obligations on

the software vendor’s part: for example, that it will not
collect certain information from the user or damage her
computer. In practice, consumer terms of service and end-
user license agreements typically disclaim all such
obligations as far as possible.

Call this standard approach Click to Agree: users and software vendors
will be held to the terms of whatever contractual agreements they
voluntarily enter into. There is a lot to be said for the standard
approach. Most obviously, it is capable of drawing the basic required
distinction between software installed with permission and software
without. Typical antivirus software gets user consent to a license
agreement; the typical virus does not. Moreover, the test is
administrable. Although there is lingering judicial uncertainty around

74 MDY Indus. v. Blizzard Entm’t, 629 F.3d 928, 939-41 (9th Cir. 2010).

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 47

“clickwrap,” “browsewrap,” and other poorly defined terms, there is a
clear pathway for a software maker to get legally sufficient user
agreement: display an unambiguous call to action and require a
specific click to agree.

Click to Agree also does a reasonable job at boiling software conflicts
down into a coherent doctrinal framework: identify the relevant
agreements, read them, and apply their terms. One common thread in
the large range of doctrines implicated by software conflicts is that
many of them can be resolved by looking to user consent.
“Authorization” under the CFAA is consent.75 So is permission of the
owner under trespass to chattels. Copyright and trademark
infringement claims are defeated by licenses from the owner. And so
on.

Thus, Click to Agree solves the most obvious deficiencies with Bad
Software Is Bad and with Software Freedom. Unlike the former, it
respects different users’ different choices, so it can distinguish users
who want cookie blockers from users who do not. And unlike the
latter—or at least the latter without a more fully fleshed out theory of
user choice—it defends actual users’ choices when they are under
siege: malware installed without notice obviously fails.

Unfortunately, Click to Agree still falls short as a complete theory of
software conflicts. It generates answers, but often those answers are
wrong. The manifestations of assent on which these “agreements” rest
are fundamentally fictional.76 Terms of service, EULAs, privacy
policies, and other such documents are unintelligible behemoths that
no human would, should, or could read.77 The PDF version of the
macOS Mojave SLA is 15 pages and contains over 9,000 words.78

75 Grimmelmann, supra note 72, at 1501-02, 1521.
76 See generally NANCY KIM, WRAP CONTRACTS (2013); MARGARET JANE RADIN,
BOILERPLATE (2013).
77 See, e.g., Uri Benoliel & Shmuel I. Becher, The Duty to Read the Unreadable, 60 B.C. L.
REV. 2255 (2019).
78 APPLE INC., SOFTWARE LICENSE AGREEMENT FOR MACOS MOJAVE,
https://www.apple.com/legal/sla/docs/macOS1014.pdf. The Central Pacific Railroad
Photographic History Museum’s User Agreement is a mind-boggling 35,833 words. Central

Electronic copy available at: https://ssrn.com/abstract=3570703

48 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

They are notoriously dry, and studies consistently find that extremely
few people accurately understand what is in them.79 Whatever this is,
it is not actual consent.80

In the standard bilateral context—user versus company—these
concerns have been largely brushed aside. Most often, a user attempts
to bring a class action lawsuit against a company for defective
software in the face of an arbitration clause; most often, the court
upholds the clause against a user who could have read it, even though
they did not. Even if these agreements cannot be defended as
contracts, there is nonetheless a defense of them as policy. This
argument, frequently associated with Judge Easterbrook,81 points to
the economic efficiencies of mass-market contracting for software and
other digital products. It frankly accepts that the user “choice” for any
particular term is fictional, and then accepts the fiction as a useful way
of achieving a reasonable policy outcome.82

But the fiction collapses in the software-versus-software context,
where a user is caught in the crossfire between two dueling software
makers. The policy goal of enabling mass-market digital contracting
no longer does outcome-determinative work, and thus unmoored, the
fiction of consent floats downstream like the barge Anna C, wreaking

Pacific Railroad Photographic History Museum: User Agreement, CPRR.ORG,
http://cprr.org/Museum/legal.html [https://perma.cc/PT8V-BCJL].
79 E.g., Ewa Luger et al., Consent for All: Revealing the Hidden Complexity of Terms and
Conditions, in CHI2013: CHANGING PERSPECTIVES CONFERENCE PROCEEDINGS 2687 (2013).
80 E.g., Neil M. Richards & Woodrow Hartzog, The Pathologies of Digital Consent, 96 WASH.
U. L. REV. 1461 (2019).
81 ProCD, Inc. v. Zeidenberg, 86 F. 3d 1447 (7th Cir. 1996) (Easterbrook, J.); Hill v. Gateway
2000, Inc., 105 F.3d 1147 (7th Cir. 1997) (Easterbrook, J.).
82 Interestingly, survey research indicates that laypeople generally have the intuition that the
“fine print” is legally binding even when it is not (for example, when a contract was induced
by fraud), Meirav Furth-Matzkin & Roseanna Sommers, Consumer Psychology and the
Problem of Fine Print Fraud, 72 STAN. L. REV. (forthcoming 2020), and that they regard even
legally defective “consent” as actual consent, Roseanna Sommers, Commonsense Consent,
129 YALE L.J. (forthcoming 2020). Follow-up questions show that they are capable of
distinguishing between these borderline cases and paradigm cases of full and unambiguous
consent. In other words, actual users approach boilerplate terms of service with more nuance
than either courts or their critics.

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 49

havoc as it goes.83 The formal test for binding “agreement” bears so
little relationship to actual user choice that it produces results that are
essentially arbitrary.

For one thing, both dueling programs can meet the Click to Agree
standard. Apple’s macOS installer has a gold-standard explicit
clickthrough. So does Zoom’s installer. Apple reserves the right to
install updates automatically; Zoom limits its liability to the maximum
extent allowed by law. As far as Apple and Zoom are concerned,
neither of them is responsible for any damage resulting from their
struggle. User “choice” here is a choice for deregulation à la Software
Freedom, which is to say no choice at all.

Apple and Zoom are both arguably Good software. But Bad software
can meet the Click to Agree Standard, too. The FriendsGreeting virus,
which emailed itself to everyone in an infected user’s address book,
protected its author by making users agree to a EULA.84 This too was
gold-standard consent: it used the standard Windows installer and the
text of the EULA accurately described what it would do. Granted,
sending an inane “greeting” to all of your contacts is something few
rational email users would voluntarily do (that’s what Facebook is
for). But on the formalistic view online contracting law takes of
consent, that is irrelevant. Clicking is agreement. If the
FriendsGreeting EULA is valid, anything can be: Bitcoin ransomware,
spousal spyware, or a virus that makes your iPod only play Jethro Tull.
These ought to be easy cases, and yet they are not.

In fact, they are difficult cases for all three theories. They are difficult
for Bad Software Is Bad, which cannot by itself explain why software
that is harmful to many users is nonetheless appropriate for others who

83 See generally United States v. Carroll Towing Co., 158 F.2d 169 (2d Cir. 1947).
84 Ed Felten, Virus with a EULA, FREEDOM TO TINKER (Nov. 15, 2002), https://freedom-to-
tinker.com/2002/11/15/virus-eula/ [https://perma.cc/TF9E-36BN]; Robert Lemos, Greeting
Card Virus Licensed to Spread, CNET NEWS.COM (Nov. 13, 2002, 4:00 AM),
https://web.archive.org/web/20030207164353/http://news.com.com/2100-1001-965570.htm;
David Mikkelson, FriendsGreeting.com Virus, SNOPES, https://www.snopes.com/fact-
check/friendgreetingscom/ [https://perma.cc/R3N5-4A8W] (last updated Jan. 27, 2008).

Electronic copy available at: https://ssrn.com/abstract=3570703

50 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

want to run it. They are difficult for Software Freedom, which cannot
by itself explain why software some users want to run is nonetheless
inappropriate for others. And they are difficult for Click to Agree,
which cannot by itself explain which users truly want to run software
when they click a button, and which do not. It is time to take a step
back and ask why all three theories get into similar trouble.

III. User Autonomy

A theory of software law is also a theory of users.85 To say that a
program should be allowed is to say that users should be allowed to
run it; to prohibit a program is to prohibit them from running it. So to
understand a theory of software law, we must understand how that
theory thinks about users.

a. Imagined Users

Bad Software Is Bad’s imagined user is a passive consumer. Their
welfare matters: users should be able to enjoy Good software and be
protected from Bad software. But they can be limited to ordering off
an approved menu of welfare-enhancing Good software. It is fine to
treat users identically and make choices for them, because if they are
allowed to choose software for themselves, some of them will make
bad choices. In other words, a user’s freedom can be limited, even
quite sharply, to limit harm to them and to others.

Software Freedom’s imagined user is a romantic hacker.86 They are
fully informed about all the software installed on their computer and
all the software they are considering installing. They understand the
interactions among programs well enough that even if they cannot

85 Cf. Paul Ohm, The Myth of the Superuser: Fear, Risk, and Harm Online, 41 U.C. DAVIS L.
REV. 1327 (2008); Julie E. Cohen, The Place of the User in Copyright Law, 74 FORDHAM L.
REV. 347 (2007).
86 This term, of course, is a reference to the figure of the romantic author in copyright
scholarship. See, e.g., JAMES BOYLE, SHAMANS, SOFTWARE, AND SPLEENS (1997); Peter Jaszi,
Toward a Theory of Copyright: The Metamorphoses of ‘Authorship’, 1991 DUKE L.J. 455;
Martha Woodmansee, The Genius and the Copyright: Economic and Legal Conditions of the
Emergence of the ‘Author’, 17 EIGHTEENTH-CENTURY STUD. 425 (1984).

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 51

predict what the programs will do under all conditions, they can at
least make knowing choices in view of the possible consequences. In
other words, they are a technically skilled user who makes rational
decisions about how best to achieve their goals using software.

There is something to both of these theories. Some users, some of the
time, are passive consumers. They want to watch Netflix and play Call
of Duty; they want one-click video calls; they want computers that
work without effort or frustration. And some users, some of the time,
are active tinkerers. They want to build their own PCs from parts, play
Civilization in an Excel spreadsheet, stream music seamlessly between
“incompatible” devices, and even occasionally to write their own
printer drivers. Many users are a bit of both, depending on what they
want to do at any given moment and what tools are available. Bad
Software Is Bad and Software Freedom are heuristics for these two
latent tendencies in every user; they are dueling canons of
construction. Bad Software Is Bad is maximally majoritarian; Software
Freedom is maximally individualistic. Neither of them is complete
without the other, or without a theory to decide which of them applies,
to explain when a user is trying to customize their computer and when
they just want the factory default to work.87

Click to Agree tries to fill that void. Its underlying theory of the user is
a close cousin of the theory behind Software Freedom. Both of them
defer to individual user choices in the name of promoting user
autonomy. Both of them see users as romantic individuals who make
informed and rational choices. There is a difference, however, and it is
a telling one. The idealized user of Software Freedom exercises
autonomy through actions; they install specific software to achieve
their goals. But the idealized user of Click to Agree exercises
autonomy through agreements; they enter into bargains to achieve
their goals. The user of Software Freedom is technically sophisticated;
they understand software and its consequences. The user of Click to

87 There is another relevant line, discussed above: the choice between individual freedom and
third-party protection. See supra Part II.B. For now, let us regard this line as externally given
or determined. We are interested in how to determine, within the category of software users
are allowed to run, which software they want to run.

Electronic copy available at: https://ssrn.com/abstract=3570703

52 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

Agree is legally sophisticated; they understand contract law and its
consequences. The user of Software Freedom is maximally free in the
moment: they always have the option to rip out their current software
and replace it with something different and better. But the user of
Click to Agree plays a longer game: to gain the things they value most,
they are willing to bind themself to do certain things and refrain from
doing others. The difference between these two theories is the
difference between two libertarian ideals: the freedom to use one’s
property and the freedom to enter into enforceable contracts.

The difference is perhaps most clearly visible in their attitudes towards
DRM. The ideal user of Software Freedom can rationally choose to
install DRM-protected media and then install DRM-breaking software
to decrypt it. But the ideal user of Click to Agree who installs DRM-
protected media and clicks to agree to its accompanying license is no
longer free to install and run the DRM breaker. They have rationally
traded away their freedom to do so in order to obtain the media in the
first place. Having made that choice, they are committed to it.

To sum up, these three theories are theories of the user in three
different senses. Bad Software Is Bad is a theory of public policy: it
describes what software would be best (for society) for users to have.
Software Freedom is a theory of individual rights: it describes what
users should have the freedom to do. And Click to Agree is a theory of
consent: it describes what users have and have not agreed to.

All three theories fail on their own terms: they provide implausible
answers to questions within their domains. Bad Software Is Bad
prohibits users from choosing to run software that it would be good
policy to let them run. Software Freedom allows users the freedom to
run software that makes their computers unusable. And Click to Agree
often claims that users have made choices about software that they did
not in fact make and would not willingly make.

These theories all fail for the same reason: they are all incomplete on
their own. Questions of software policy, user freedom, and user
consent cannot be separated. There is no way to coherently describe
what is good for users without taking account of what they want and

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 53

what they choose, no way to describe what they want without taking
account of what is good for them and what they choose, and no way to
describe what they choose without taking account of what is good for
them and what they want. To make sense of software conflicts, we
need a genuine theory of user autonomy.88

b. A Theory of User Autonomy

What might a theory of user autonomy look like? Perhaps something
like this:

Software helps users achieve important life goals. These include
finding a job, finding a spouse, making deals, making art, learning
about the world, learning about themselves, participating in
democracy, participating in fan culture, being amused, being inspired,
connecting with old friends, and making new ones. Anything that
matters to people, no matter how big or how small, they now do in part
with software. A program is better when it tends to advance these
goals, and worse when it tends to thwart them. Some uses of
software—such as search—can promote a wide range of individually
chosen goals. Other uses of software—such as intensive
surveillance—start off in significant tension with user goals.

Software can be helpful (or harmful) both directly and indirectly.
Some software, like an email program or a drawing app, directly helps
users achieve a goal (building meaningful relationships with others, or
being creatively expressive). A program that plays a loud annoying
noise is directly harmful. But much important software is helpful or
harmful on a meta level. An operating system is helpful because it

88 See ANGELA DALY, PRIVATE POWER, ONLINE INFORMATION FLOWS, AND EU LAW: MIND THE
GAP (2016); Batya Friedman & Helen Nissenbaum, Software Agents and User Autonomy, in
AGENTS ’97: PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON AUTONOMOUS
AGENTS 466 (1997); James Grimmelmann, Speech Engines, 98 MINN. L. REV. 868, 911-12
(2014); see also GERALD DWORKIN, THE THEORY AND PRACTICE OF AUTONOMY (1988); Sarah
Buss & Andrea Westlund, Personal Autonomy, STAN. ENCYC. OF PHIL. (FEB. 15, 2018),
https://plato.stanford.edu/entries/personal-autonomy/.

Electronic copy available at: https://ssrn.com/abstract=3570703

54 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

allows users to run other software like an email program or a drawing
app, and a virus is harmful because it deletes emails and drawings.

Users by definition delegate particular tasks to software. I have
elsewhere described this delegation in fiduciary terms: programs can
act as agents and advisors for their users.89 As such, users require both
access to software and loyalty from their software. Access promotes
software in general; loyalty distinguishes good software from bad. The
tradeoffs are important: access-promoting measures can be bad for
users if they undercut loyalty, and vice-versa. In particular, users
frequently delegate to software the task of keeping them safe from
other software.

Users’ goals are diverse and highly individualistic. Different users
want different things—both big (professional versus personal) and
small (DC versus Marvel). So we must distinguish between programs
that are better for users in general and programs that are better suited
for a specific user. Of course, the two are related. On the one hand, a
program’s overall general benefits are the aggregation of its benefits
for specific users. On the other, if we know nothing more about a
specific user, a program’s overall benefits provide strong evidence of
the best default assumption as to whether the program is good for
them.

Different users’ goals can conflict. Resolving these conflicts is a
central task of politics and policy. Wherever the limits are drawn,
users’ autonomy is appropriately limited by other users’. This conflict
cannot be evaded by saying that one particular person is “the user” of a
program and their autonomy takes priority; any such claim requires a
detailed articulation of why running the program falls within that
person’s sphere of autonomy and no one else’s. For example, a
program that runs only on a user’s own physical computer and does
not communicate with other computers is less likely to have

89 Grimmelmann, supra note 88, at 904-06.

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 55

consequential effects for others. Thus, personal property ownership
can sometimes be a plausible proxy for whose autonomy is at stake.90

Users have different levels of technical skill. Even when pursuing the
same primary goal, one user may prefer to rely on a program that does
more of the work, and another to do more of the work herself. Some
professional photographers do detailed retouching work in Adobe
Photoshop; some amateurs click the “enhance” button in Apple
Photos. Different software is better suited for users with different
skills. This is an important axis for software conflicts in two ways.
First, users can be more or less capable of understanding and
managing the operations of complex programs with potentially serious
and irreversible effects. More skilled users may not be able to achieve
all of their goals as well if they are denied access to complex and
dangerous programs—but less skilled users may be thwarted in their
own goals if they are forced or nudged to use such programs rather
than simpler alternatives. Second, users especially vary in their skill
and interest in the domain of software conflicts itself: computer
security. Some users benefit from manually managing multi-program
interactions; some users benefit from delegating the details to
software.

User choice is an important component of user autonomy, for three
overlapping reasons. First, it is constitutive of autonomy that one’s
actions should be the result of one’s own choices. It might be better for
a user to stop using Facebook, but this is generally not a decision that
their operating system should make for them. Second, an individual
user’s choices are strong evidence, often the best available, about their
goals. The choice to install Minecraft rather than Fortnite, or vice
versa, is not easily gainsaid on the basis that the user “really” prefers
the other. And third, the aggregation of individual users’ choices is
relevant evidence about users’ goals in general. Facebook, Minecraft,
and Fortnite are all popular for a reason.

90 See generally AARON PERZANOWSKI & JASON SCHULTZ, THE END OF OWNERSHIP: PERSONAL
PROPERTY IN THE DIGITAL ECONOMY (2016).

Electronic copy available at: https://ssrn.com/abstract=3570703

56 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

The allowable scope of user choice is appropriately circumscribed by
any limits on user goals. This is an analytically distinct issue from the
next one: accurately determining what a particular user has chosen
within that allowable scope. A rule that users may not remove DRM
from copyrighted works does not require the fiction that users
“choose” not to remove it.

User choice is a question of fact: what actions by a program are
within the scope of the user’s consent?91 Regardless of whether one
thinks that for moral purposes consent is attitudinal or expressive,92 for
legal and policy purposes we should work with an authorization
account.93 I prefer Tom Dougherty’s reliable evidence principle: “An
action A falls within the scope of the consent that X gives to Y if and
only if X is giving consent through behaviour B, and Y’s reliable
evidence sufficiently supports the interpretation that X is intending to
communicate authorization for A in virtue of B.”94 This evidence
includes any evidence about X’s specific situation and communicative
intentions, about consent-givers’ situations and intentions in general,
and any relevant evidence X could acquire through due diligence.95

Evaluated against this standard, clickthrough agreements and other
standard formal indicia of digital consent are typically prima facie
valid. The widespread use of such agreements establishes a general
communicative norm that clicking constitutes agreement to whatever
widely used terms are contained in them, even if the clicker has not

91 This is most usefully phrased as a question of the scope of the user’s consent, rather than the
presence or absence of consent. See generally Tom Dougherty, The Scope of Consent
(unpublished book), https://sites.google.com/site/tomdoughertyphilosophy/.
92 See generally PETER K. WESTEN, THE LOGIC OF CONSENT (2004).
93 Dougherty, supra note 91, at 92–102; see also RUTH R. FADEN & TOM L. BEAUCHAMP, A
HISTORY AND THEORY OF INFORMED CONSENT (1986) (discussing consent as authorization).
94 Dougherty, supra note 91, at 114. As Dougherty notes, Y may still sometimes act
blamelessly even if X is not intending to give consent through B. Id. at 114. n.82. This is an
important qualification, because misleading evidence can sometimes suffice to shield Y from
legal consequences. See Joseph Millum & Danielle Bromwich, Understanding,
Communication, and Consent, 5 ERGO 45 (2018) (discussing scope of communicated consent
as a process of communication).
95 Dougherty, supra note 91, at 108–34 (discussing evidence available to consent-receiver).

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 57

inspected the terms and is unaware of the details.96 The basic argument
that voluntary agreements are generally autonomy-enhancing for users
is sound.

That said, the validity of a formal indication of digital consent is
defeasible. One possible reason is that a program’s behavior falls
outside of the range of typical behavior users are accustomed to from
similar programs using similar agreements. Thus, even though
FriendsGreetings used a standard clickthrough installer and described
its behavior in the agreement, it probably obtained invalid consent. Its
spamming behavior was sufficiently unusual that it did not fall within
the scope of user expectations, and this gap would have been apparent
to a reasonable software vendor. The general communicative norm
typically relied on for clickthrough consent was not applicable.97

Other standard cases of invalid consent include incapacity, fraud, and
duress.98 Where the reliable evidence would tell a reasonable software
vendor that the “consenting” user is a minor, the clickthrough is
presumptively invalid. This is obviously the case for many games
targeted at children; many app stores have revised their in-app
purchase options to create a clickthrough process that more reliably
targets an adult owner of the account rather than the minor user.99

96 But see Robin Bradley Kar & Margaret Jane Radin, Pseudo-Contract and Shared Meaning
Analysis, 132 HARV. L. REV. 1135 (2019). Kar and Radin argue that the communicative norms
of cooperative contract formation show that the parties to boilerplate clickthrough agreements
lack essential “shared meaning” as to many terms in those agreements. But after more than
two decades of widespread usage of clickthrough agreements, it is equally plausible to say that
they have their own communicative norms, precisely because there are such widespread
practices of presenting them and clicking to agree, sight unseen. My best understanding of the
communicative content of clicking to agree is that it expresses assent to any terms in the
proffered instrument that are of a type users generally would expect to be in an instrument of
this sort. One who clicks to agree may accepts arbitration and give the company a
nonexclusive copyright license in any user uploads, for example—but not accept unusual and
oppressive terms, like giving a company custody of one’s firstborn.
97 See also Nathaniel Good et al., Stopping Spyware at the Gate: A User Study of Privacy,
Notice and Spyware, in SOUPS 2005: PROCEEDINGS OF THE SYMP. ON USABLE PRIVACY AND
SECURITY 43 (2005).
98 See WESTEN, supra note 92.
99 See, e.g., Prevent In-App Purchases from the App Store, APPLE (Nov. 23, 2019),
https://support.apple.com/en-au/HT204396.

Electronic copy available at: https://ssrn.com/abstract=3570703

58 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

Similarly, where the vendor has elsewhere misrepresented what its
program does, or its interface deliberately conceals aspects of its
functionality that would be material to a reasonable user, the
clickthrough is presumptively invalid—even if the clickthrough itself
is scrupulously accurate. The FTC gets this right in some of its
enforcement actions against spyware: formal “consent” is ineffective
when a program conceals from users what it will do to them.100 And
where a vendor has reliable evidence that the clickthrough has not
been voluntarily given—which may be the case for many spousal
spyware apps—here too user consent is presumptively invalid.101 Note
that in all such cases, other programs to protect users from these
abusive consent processes are more likely to be acting consistently
with user choice.

General user goals are interpretively relevant to understanding the
scope of a specific user’s consent to specific program behavior.
Intrusive surveillance tools, for example, are significantly harmful to
many users who run them, and helpful to very few. This provides
strong probative evidence that users have not factually given
substantive consent, even though they may have gone through a formal
mechanism purporting to indicate that they have. Formal consent
mechanisms have evidentiary, cautionary, and channeling functions to
make indications of consent more reliable, but they must never be
mistaken for consent itself.102 No legal formality can provide
conclusive evidence on its own; fraud in the factum can never be
completely discounted.

Where one program interferes with another, the user goals that both
programs serve or hinder are interpretively relevant. Bitcoin
ransomware is nearly universally harmful, and thus nearly universally
unwanted. (There are exceptions, like anti-malware researchers, whose
goals are rare and unusual: to understand how the ransomware works

100 See, e.g., Press Release, F.T.C., FTC Brings First Case Against Developers of “Stalking”
Apps, FTC (Oct. 22, 2019), https://www.ftc.gov/news-events/press-releases/2019/10/ftc-
brings-first-case-against-developers-stalking-apps.
101 See, e.g., id.
102 See Lon L. Fuller, Consideration and Form, 41 COLUM. L. REV. 799 (1941).

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 59

so they can develop countermeasures.) This is so because the programs
the ransomware interferes with are significantly useful for a wide
range of important user goals. And in comparison with a normal file
encryption utility, which can protect a user’s greatly valued privacy, it
does not advance any user goals to be able to decrypt one’s files only
on payment of a Bitcoin-denominated ransom.

Different consent processes produce different levels of evidence about
user choices. The clickthrough is widely used for software installed on
users’ computers by businesses, and for online services that require the
creation of user accounts. But it is not the only option, and hardly the
only one in widespread use. There are lighter-weight processes, like
free-software licenses that grant unilateral permission subject to
restrictions and do not require any specific act of user assent,103 and
websites that assume user permission to set cookies and run in-browser
scripts from the simple act of navigating to them. There are also
heavier-weight processes, like additional clickthrough screens and
checkboxes for important terms, interfaces that ask “Are you sure?”
before taking significant actions, cooling-off periods, and even (gasp)
requirements that users who want to agree must confirm their
intentions in person, in the physical world.104

Many expressions of user authorization are implicit: they are
established by the actions a user takes, rather than by an explicit act of
purely legal agreement. This is a normal feature of software—most
uses of which would be utterly impossible without implicit prospective
blanket consent. Good user interfaces are carefully designed so that
users can predict the consequences of their actions; the “save” button
saves and the “delete” button deletes. When we say that a user has
“chosen” one of these consequences, we are really making a complex
contextual judgment that the consequence is within the scope of the
authorization the user gave through a long sequence of program

103 See, e.g., Free Software Foundation, GNU General Public License 3.0, GNU OPERATING
SYS. (June 29, 2007), https://www.gnu.org/licenses/gpl-3.0.en.html.
104 On the interplay between technical design, notice, consent, and legal consequences, see
generally WOODROW HARTZOG, PRIVACY’S BLUEPRINT: THE BATTLE TO CONTROL THE DESIGN
OF NEW TECHNOLOGIES (2018).

Electronic copy available at: https://ssrn.com/abstract=3570703

60 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

actions—click here, scroll there, type this, click again, etc. The EU
“cookie directive”105 (which is responsible for websites showing pop-
ups asking for user consent to use cookies) is silly because in the Year
of Our Lord Two Thousand and Twenty cookies are everywhere and
have been for nearly 25 years. Consent to set cookies is implied from
visiting a website using a browser.

The converse is also true. Denials of authorization can also be
implicit. When a browser or browser plugin blocks cookies, that is an
implicit denial of permission to set cookies, and a website that
circumvents this denial to track the user is acting without user consent,
regardless of what its cookie directive popup says.106 Anti-adblocking
popups, which prompt the user to disable their adblocker before the
website will display its content, get this right: they ask the user to take
a specific action—disabling their adblocker—that meaningfully
betokens consent.

This variation in user-consent mechanisms would be unnecessary
unless there were a variation in the severity of program actions. More
unusual and more potentially dangerous program actions require
more specific user consent; less unusual and less potentially
dangerous program actions require less specific user consent. Match-
three games and online banking apps need different levels of user
consent. The same consent process that suffices to run an antivirus
program is insufficient to run a virus. The question of whether a user
has consented to a specific program action thus depends both on the
action and on the consent mechanism, both on what users in general
want, and on what this specific user has chosen.107

In particular, the appropriate level of required consent typically
increases with increased complexity and power. This facilitates user
sorting based on technical skill and confidence. Command-line tools,

105 Council Directive 09/136, 2009 O.J. (L 337) 11.
106 See Mayer, supra note 23.
107 For examples of programs that are “consensually” installed but may fail this test, see
Nathaniel Good et al., User Choices and Regret: Understanding Users’ Decision Process
about Consensually Acquired Spyware, 2 I/S: J. L. POL’Y FOR INFO. SOC’Y 283 (2006).

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 61

programming development environments, and bulk-erase disk utilities
are appropriate for experienced users and dangerous in the hands of
inexperienced ones. Certifying oneself as an experienced user by
installing them is sometimes an implicit consent mechanism: it may
require a degree of skill and knowledge simply to make them work.
But once one has, there will be fewer checks to make sure that one
really intends the result. (This is part of what makes scams that
convince users to install and use such programs and operate them for
the scammer’s benefit so insidious.) Jonathan Zittrain proposed
dividing computers into a “green” portion with strong technical
safeguards and a “red” portion where users could engage in riskier
tinkering.108 The red/green distinction by itself is too simple to capture
all of the nuances of software conflicts, but the core idea is sound: red
programs and green programs need different consent processes.

c. Freedom to Tinker

This is, I admit, a complicated theory of users. But any less
complicated theory will not work. We need all three heuristics,
because each sees something the others do not. Bad Software Is Bad
understands that software in general can be helpful or harmful;
Software Freedom understands that users have individual needs and
goals; Click to Agree understands that they make choices and
commitments. Each heuristic informs the others.

The picture of user autonomy that emerges is an appealing one. There
are nice hints of it in another popular slogan about software users: the
“freedom to tinker,” which Ed Felten defined as “your freedom to
understand, discuss, repair, and modify the technological devices you
own.”109 One way to understand the freedom to tinker is as a negative-

108 JONATHAN ZITTRAIN, THE FUTURE OF THE INTERNET—AND HOW TO STOP IT 155 (2008).
Granular app permissions are a modern expression of this idea: they put speed bumps in the
way of more powerful apps, so that it is easier to run a safer program. See Apple Developer
Documentation, Protected Resources, https://developer.apple.com/documentation/
bundleresources/information_property_list/protected_resources.
109 Edward Felten, The New Freedom to Tinker Movement, FREEDOM TO TINKER (Mar. 21,
2013), https://freedom-to-tinker.com/blog/felten/the-new-freedom-to-tinker-movement/. See
generally Pamela Samuelson, Freedom to Tinker, 17 THEORETICAL INQUIRIES IN L. 563 (2016)

Electronic copy available at: https://ssrn.com/abstract=3570703

62 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

liberty synonym for Software Freedom: it prizes users’ freedom over
third-party restrictions. But it also provides a positive vision of user
autonomy.110 First, it is explicitly justified as a user-autonomy project.
Tinkering is essential for users to achieve important goals in a self-
chosen way. Second, it is attractively compatible with user diversity.
“Tinkering” is at a relatively advanced level of Maslow’s hierarchy of
computer needs. Not all users will tinker, but all of them should be
free to. And third, the reasons commonly cited for promoting tinkering
prominently include learning, research, and improvement of one’s own
skills.111 The freedom to tinker is a way of helping novice users
become more advanced ones. There is a feedback loop here: use
improves competence, but competence is important to safe use. In this
respect, the freedom to tinker embraces the intentional self-
development at the heart of a rich theory of autonomy. So if one is
looking for a slogan to describe the vision of the theory of the user I
have sketched, one could do worse than “Freedom to Tinker.”

d. Apple and Zoom

Return now to where we started, with Apple and Zoom. What do these
various theories have to say about the situation?

Bad Software Is Bad is of at least two minds. Operating systems are
useful; so is videoconferencing software. macOS has helped millions
of users accomplish something they want to do; so has Zoom. Single-
click calling is a useful convenience. So is having a computer that is
secure against hackers and spies. Zoom balanced those equities in
favor of single-click calling; Apple balanced them in favor of security.
Neither is obviously wrong, but the fact that Apple’s upgrade secured
users’ computers against other malware probably cuts in favor of

(giving an eight-part taxonomy of the freedom to tinker, including both autonomy and liberty
interests).
110 In fairness, much of this positive normative vision is implicit in arguments for software
freedom. One advantage of the “freedom to tinker” framing is that it makes this vision more
explicit.
111 See Andrea M. Matwyshyn, Generation C: Childhood, Code, and Creativity, 87 NOTRE
DAME L. REV. 1979 (2012); Samuelson, supra note 109.

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 63

Apple. (Note that this take does not really respond to users who
genuinely preferred one-click calling and were disappointed to lose it.)

Software Freedom, on the other hand, probably favors Zoom. Apple
downgraded users’ computers and locked down macOS to remove
features. Some authors call this kind of remote control “tethering,”112
but this was more like a choke chain: Apple yanked it and cut off a
feature that many users found useful. Users who preferred the
convenience of one-click calling should have been allowed to keep
using it. (Note that this take does not really respond to users who don’t
care about the extra click but do care about not having their computers
hijacked.)

As for Click to Agree, Apple’s Software License Agreement for
macOS 10.14 Mojave states:

Q. Automatic Updates. The Apple Software will periodically
check with Apple for updates to the Apple Software. If an
update is available, the update may automatically download
and install onto your computer and, if applicable, your
peripheral devices. By using the Apple Software, you agree
that Apple may download and install automatic updates onto
your computer and your peripheral devices.113

The conclusion here is straightforward: Apple had clear and
unambiguous permission from macOS users to install its Zoom-server-
disabling update. But by this reasoning, Apple could have uninstalled
Zoom entirely, server and all, or uninstalled it even if it had no
security vulnerabilities at all, just because it competes with Apple’s
own FaceTime—which suggests that Click to Agree is not really
sensitive to the factors that make this a difficult case in the first place.

112 E.g., Chris Jay Hoofnagle, Aniket Kesari, & Aaron Perzanowski, The Tethered Economy,
87 GEO. WASH. L. REV. 783 (2019); ZITTRAIN, supra note 108, at 101–10.
113 APPLE INC., supra note 79. By way of comparison, the Zoom Terms of Service, ZOOM (May
30, 2019), https://zoom.us/terms [https://perma.cc/B98C-EV3K], are drafted to restrict how
users use the Zoom service, and have little to say about what users will do with the Zoom
software.

Electronic copy available at: https://ssrn.com/abstract=3570703

64 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

By contrast, here is a sketch of the facts that are relevant to the Apple-
Zoom incident if we take the Freedom to Tinker view of user
autonomy—including a few details I have sneakily held back until
now. First, one-click calling is a useful convenience. Second, one-click
calling into a call you didn’t plan to join is an unsettling prospect.
Third, macOS applications do not typically install web servers; this is
a very unusual feature. Fourth, users really, really, really don’t like
having their computers hijacked. Fifth, Zoom did not describe the
server or disclose the risks it presented, even in very general terms.
Sixth—and this is new—macOS users can disable silent updates by
unchecking a box in a system preference tab. Seventh—and this is also
new—it is not hard to run a web server on a macOS computer. Apple
sells macOS Server for $19.99,114 or you can install one of your own.
(I am running one as I type this.)

Put all of this together and the portrait that emerges of Apple’s view of
macOS users looks something like this: Most users want to run
applications like Zoom. They can. Users like the convenience of one-
click calling, but the security risks from running a secret web server
are serious, and most users would give up the convenience if they were
aware of the tradeoff. Most users were unaware that Zoom installed a
secret insecure server, and so were unlikely to remove it on their own.
Many users who are prompted to install an update delay it, sometimes
for years. Some users run web servers on their Macs, but extremely
few users (if any) use the Zoom server for anything besides Zoom.
Some users are very concerned about closely inspecting any software
updates. So: a silent background update patches most users’ computers
in the way they would want if they were fully informed and given an
explicit choice, without breaking any features explicitly relied on by
users who run servers, and while giving users who don’t want forced
downgrades a way to opt out of this one.

114 See macOS Server, APPLE, https://www.apple.com/macos/server/ (last visited Feb. 5,
2020).

Electronic copy available at: https://ssrn.com/abstract=3570703

2020] GRIMMELMANN 65

All in all, this is a nuanced and respectful approach toward users.
There is always a tradeoff between beneficence and respect, and
Apple’s Zoom update handles that tradeoff in a thoughtful and
defensible way. The only things missing are that Apple could explain
this reasoning publicly in more detail, that it could give users more
information up front about the option to disable automatic macOS
security updates, and that it could provide users the ability to roll back
unwanted updates after the fact.

This approach shows how Freedom to Tinker both draws on and goes
beyond the other three theories of software conflicts. Bad Software Is
Bad explains why Zoom’s secret server is a danger that most users
should be protected from. Software Freedom gives users who like the
server the choice to keep it. Click to Agree provides a legal shield for
the update. But Freedom to Tinker goes further in its willingness to
look at users as actual people: people with differing goals and abilities,
people who sometimes make choices and sometimes don’t, people
who both rely on software to help them achieve their goals and need to
be protected from software.

This is the real point of the Freedom to Tinker user-autonomy theory
of software conflicts. It is not something new and radical. Rather, it is
a restatement—explicitly and in one place—of many widely shared
assumptions and commitments about users and software. The everyday
practices of the computer security and human-computing interface
communities already reflect something like this understanding of users
and the goals of responsible software. Something like Apple’s
disabling of Zoom’s server—or any of a dozen other examples given
above—is intelligible only against this ethical backdrop.

IV. Conclusion

I have focused on software conflicts for three reasons. First, they are
surprisingly common.115 Looking at them together as a category yields
insights that looking at them individually does not. Second, they call

115 See supra Part I.

Electronic copy available at: https://ssrn.com/abstract=3570703

66 THE OHIO STATE TECHNOLOGY LAW JOURNAL [Vol. 16.1

into question common legal heuristics for dealing with software.116
These heuristics are problematic even in less controversial settings, but
there it is easier to brush aside their shortcomings. Software conflicts
provide a setting where these failings are harder to ignore, because the
heuristics give such obviously wrong answers. And third, software
conflicts direct attention where it belongs: to user autonomy.117

Software-versus-software conflicts cannot be coherently resolved
without a good theory of user autonomy. Any theory of user autonomy
hinges on a good theory of user consent. And any theory of user
consent hinges on a factually and normatively rich understanding of
what users do with computers and what they are trying to do. A legal
realist might say that an informal and generally subconscious lay
theory of user autonomy is actually doing most of the work in
software-conflict cases already, so legal theorists should make that
theory explicit, test its claims, and fill in its details.

Consent is complex because life is complex. Software is complex
because life is complex. Software law cannot escape being complex as
well, because it cannot escape paying attention to the nuances of what
users consent to.

116 See supra Part II.
117 See supra Part III.

Electronic copy available at: https://ssrn.com/abstract=3570703

	Spyware vs. Spyware: Software Conflicts and User Autonomy
	Recommended Citation

	Microsoft Word - Grimmelmann [Final to Pub].doc

