
Acta Acad. Paed. Agriensis, Sectio Mathematicae 26 (1999) 49–55

RECURSIVE FORMULAE FOR SPECIAL CONTINUED
FRACTION CONVERGENTS

Ferenc Mátyás (EKTF, Hungary)

Abstract: Let α and β be the zeros of the polynomial x2 − Ax − B, where A ∈
Z \ {0}, B ∈ {1,−1}, D = A2 + 4B > 0, |α| > |β| and D is not a square number. In
this paper some recursive formulae are given for the continued fraction convergents to α.

1. Introduction

Let the sequence R = {Rn}∞n=0 be defined for n ≥ 0 by the recursion

(1) Rn+2 = ARn+1 + BRn,

where A,B ∈ Z\{0}, R0 = 0, R1 = 1, D = A2 + 4B > 0 and D is not a perfect
square. If R0 = R1 = 1 then the terms of sequence R are denoted by R⋆

n, while
if A = B = R1 = 1 and R0 = 0 then the terms of sequence R are the Fibonacci
numbers, which are denoted by Fn.

The polynomial f(x) = x2−Ax−B is called to be the characteristic polynomial
of the sequence R, and the zeros of f(x) are denoted by α and β. By our condition,
the zeros α and β are irrationals and we suppose that |α| > |β|. It is known that
for n ≥ 0

(2) Rn =
αn − βn

α− β
and R⋆

n =
(1 − β)αn − (1 − α)βn

α− β
,

from which

lim
n→∞

Rn+1

Rn
= lim

n→∞
R⋆

n+1

R⋆
n

= α

immediately follows.
P. Kiss [2] proved that

∣∣∣∣α− Rn+1

Rn

∣∣∣∣ <
1√
DR2

n
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holds for infinitely many positive integer n if and only if |B| = 1, and in this case
all of the rational solutions p/q of the inequality

∣∣∣∣α− p

q

∣∣∣∣ <
1√
Dq2

have the form p/q = Rn+1/Rn. Because of this fact, in this paper we deal with
only the case |B| = 1.

The connection between diophantine approximation and continued fraction
convergents is well-known (see [1]). The simple periodic continued fraction ex-
pansion of α is denoted by [a0, a1, . . . , ak, . . . , am], where [ak, . . . , am] denotes the
minimal periodic part, while the nth convergent to α by rn(α).

G. J. Rieger [4] has created a special function having the zero
√
5−1
2 and he has

proved that the Newton approximants xn to this zero satisfy the recursive formula

xn+1 =
xn + 1

xn + 2
(x0 = 0, n ≥ 0),

and xn = r2n

(√
5−1
2

)
. Since r2n

(√
5−1
2

)
= F2n

F2n+1
, thus G. J. Rieger obtained a

recursive formula for the (even) continued fraction convergents to
√
5−1
2 , which is

in close relation with the Fibonacci numbers. On the other hand,
√
5−1
2 is a zero of

the characteristic polynomial x2 −Ax−B of sequence R defined in (1) if A = −1
and B = 1.

The aim of this paper is to generalize the result of G. J. Rieger for A ∈ Z\{0}
and |B| = 1. We give some recursive formulae for the continued fraction convergents
rn(α) to α.

2. Results

It is known that r0(α) < r2(α) < r4(α) < . . . < α < . . . < r5(α) < r3(α) <
r1(α) (see [1]), therefore we are looking for recursive formulae for the odd and for
the even convergents to α.

Theorem 1. Let B = 1 in (1) and let the approximant xn+1 be defined by the
recursive formula

xn+1 =
(A2 + 1)xn +A

Axn + 1
(n ≥ 0),

let α and β denote the zeros of the polynomial x2 −Ax − 1, where |α| > |β|.
(1.) Let A ≥ 1.

(a) If x0 = A2+1
A , then xn = r2n+1(α) (n ≥ 0).
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(b) If x0 = A, then xn = r2n(α) (n ≥ 0).

(2.) Let A < −1.
(a) If x0 = A, then xn = r2n+1(α) (n ≥ 0).

(b) If x0 = A2+1
A , then xn = r2n+2(α) (n ≥ 0).

Remark. If A = −1 and B = 1 then α = −
√
5−1
2 and β =

√
5−1
2 . The cited paper

of G. J. Rieger [4] investigated exactly the even convergents to this β.

Theorem 2. Let B = −1 in (1) and let the approximant xn+1 be defined by the
recursive formula

xn+1 =
Axn − 1

xn
(n ≥ 0),

let α and β denote the zeros of the polynomial x2 −Ax + 1, where |α| > |β|.
(1.) Let A ≥ 3.

(a) If x0 = A, then xn = r2n+1(α) (n ≥ 0).

(b) If x0 = A− 1, then xn = r2n(α) (n ≥ 0).

(2.) Let A ≤ −3.
(a) If x0 = A− 1, then xn = r2n+1(α) (n ≥ 0).

(b) If x0 = A, then xn = r2n(α) (n ≥ 0).

Further on, using the known Newton approximation to approximate the root
α of the equation x2 −Ax−B = 0 (B = ±1), we will investigate the connection
between the convergents to α and the Newton approximants.

Theorem 3. Let f(x) = x2 − Ax − B (B = ±1, A2 + 4B > 0) and let α and β
denote the root of f(x) = 0 with the condition |α| > |β|. Then the Newton iteration
gives the formula

xn+1 =
x2
n +B

2xn −A
.

(1.) Let B = 1 and x0 = A2+1
A .

(a) If A ≥ 1, then xn = r2n+1−1(α) (n ≥ 0).

(b) If A < −1, then xn = r2n+1(α) (n ≥ 0).

(2.) Let B = −1 and x0 = A.
(a) If A ≥ 3, then xn = r2n+1−1(α) (n ≥ 0).

(b) If A ≤ −3, then xn = r2n+1−2(α) (n ≥ 0).
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3. Proofs

Before the proofs of our theorems, we need the following lemma.

Lemma. Let the sequence R be defined by (1), where B = ±1. Then for all k > 0

(
Rk+1

Rk

)2

+B

2
Rk+1

Rk
−A

=
R2k+1

R2k
.

Proof. We are going to show the proof only in the case B = 1, because the proof
would be very similar if B = −1. Using (1), (2) and αβ = −1, one can verify the
following: (

Rk+1

Rk

)2

+ 1

2Rk+1

Rk
−A

=
R2

k+1 +R2
k

2Rk+1Rk −AR2
k

=

R2
k+1 +R2

k

Rk (Rk+1 −ARk) +RkRk+1
=

R2
k+1 +R2

k

Rk (Rk−1 +Rk+1)
=

α2k+2 + β2k+2 − 2αk+1βk+1 + α2k + β2k − 2αkβk

α2k−1 + (−1)k(α+ β) + α2k+1 + (−1)k+1(α+ β) + β2k−1 + β2k+1
=

α2k+1(α+ 1
α ) + β2k+1(β + 1

β )

α2k( 1
α + α) + β2k( 1β + β)

=
(α− β)(α2k+1 − β2k+1)

(α− β)(α2k − β2k)
=

R2k+1

R2k
.

This completes the proof.
In the proofs of our theorems we omit the numerical calculation of the

continued fraction expansions and the convergents. For the calculations we used
the general algorithms that can be found in [1].

Proof of Theorem 1. First we deal with the case (1.) Now α = A+
√
A2+4
2 = [A]

and so the nth convergent to α is

(3) rn(α) =
Rn+2

Rn+1
(n = 0, 1, 2, . . .),

that is, the odd and the even convergents are

(4) r2n+1(α) =
R2n+3

R2n+2
and r2n(α) =

R2n+2

R2n+1
.

(These can be easily verified or see [2].)
The cases (a) and (b) will be proved by induction on n. By (3) and (1), in (a)



Recursive formulae for special continued fraction convergents 53

r1(α) =
R3

R2
= A2+1

A = x0, while in (b) r0(α) =
R2

R1
= A

1 = x0. Let us suppose that
(a) and (b) hold for some n ≥ 0. Then in (a), by (4),

xn+1 =
(A2 + 1)r2n+1(α) + A

Ar2n+1(α) + 1
=

(A2 + 1)R2n+3

R2n+2
+A

AR2n+3

R2n+2
+ 1

=

A(AR2n+3 +R2n+2) +R2n+3

AR2n+3 +R2n+2
=

R2n+5

R2n+4
= r2(n+1)+1(α),

and in (b)

xn+1 =
(A2 + 1)r2n(α) +A

Ar2n(α) + 1
= . . . =

R2n+4

R2n+3
= r2(n+1)(α).

Now, let us see the case (2.), where α = A−
√
A2+4
2 = [A− 1, 1,−A− 1,−A] and so

the nth convergents to α is

(5) rn(α) =
Rn+1

Rn
(n = 1, 2, . . .).

By (5) and (1), in (a) r1(α) = R2

R1
= A

1 = x0, while in (b) r2(α) = R3

R2
= A2+1

A = x0.
But for n ≥ 0

xn+1 =
(A2 + 1)r2n+1(α) +A

Ar2n+1(α) + 1
= . . . =

R2n+4

R2n+3
= r2(n+1)+1(α)

and

xn+1 =
(A2 + 1)r2n+2(α) +A

Ar2n+2(α) + 1
= . . . =

R2n+5

R2n+4
= r2(n+1)+2(α)

in the case (a) and (b), respectively, which proves the theorem by induction.

Proof of Theorem 2. Similarly, as we have done it in the previous proof, first
let us deal with the case (1.). Then α = A+

√
A2−4
2 = [A − 1, 1, A− 2] and so the

odd and the even convergents to α are

(6) r2n+1(α) =
Rn+2

Rn+1
and r2n(α) =

R⋆
n+2

R⋆
n+1

(n = 0, 1, 2, . . .).

In the case (a) and (b), by (6) and (1), r1(α) = R2

R1
= A

1 = x0 and r0(α) =
R⋆

2

R⋆
1
=

A−1
1 = x0, respectively. By induction on n, by (6) and (1), we get that in (a)

xn+1 =
Axn − 1

xn
=

Ar2n+1(α)− 1

r2n+1(α)
=

ARn+2

Rn+1
− 1

Rn+2

Rn+1

=
Rn+3

Rn+2
= r2(n+1)+1(α),
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while in (b)

xn+1 =
Ar2n(α) − 1

r2n(α)
= . . . =

R⋆
n+3

R⋆
n+2

= r2(n+1)(α).

In the case (2.) α = A−
√
A2−4
2 = [A,−A − 1, 1,−A− 2] and so the odd and the

even convergents to α are

(7) r2n+1(α) =
R⋆

n+2

R⋆
n+1

and r2n(α) =
Rn+2

Rn+1
(n = 0, 1, 2, . . .).

Using (7), by induction on n, the proof can be terminated in this case, too.

Proof of Theorem 3. It is known that, under some conditions, the Newton
approximants for the zero of the function f(x) can be derived from the equality

(8) xn+1 = xn − f(xn)

f ′(xn)

(see [3]). Now, f(x0) > 0 and f ′′(x) = 2 > 0, that is, the approximants converge
to α (see [3]), and from (8) we get the following iterative formula

(9) xn+1 =
x2
n +B

2xn −A
.

First, let us see the case (1.), when A ≥ 1. Then, by (1) and (4), x0 = r1(α) =
r20+1−1(α). Supposing that (a) holds for some n ≥ 0, by (9) and (4),

xn+1 =
x2
n + 1

2xn −A
=

r2n+1−1(α)
2 + 1

2r2n+1−1(α)−A
=

(
R2n+1+1

R2n+1

)2

+ 1

2
R2n+1+1

R2n+1
−A

.

From this, applying the Lemma and (4), we get

xn+1 =
R2n+2+1

R2n+2

= r2(n+1)+1−1(α).

If A < −1 then, by (1) and (5), x0 = r2(α) = r20+1(α). By (5) and the Lemma,
using induction on n we obtain

xn+1 =
x2
n + 1

2xn −A
=

r2n+1(α)2 + 1

2r2n+1(α)−A
=

(
R2n+1+1

R2n+1

)2

+ 1

2
R2n+1+1

R2n+1
−A

=
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R2n+2+1

R2n+2

= r2(n+1)+1(α).

The part (2.) of the theorem can be proved similarly, therefore we omit it.
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