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Abstract 
 

The Fibonacci Sequence is recognizable to many – the pattern 1,1,2,3,5,8… is well known for its 

elegant simplicity. Although these numbers were studied before the time of Fibonacci, the 

sequence was first given attention in the book Liber Abaci, written by Fibonacci in 1202 [13]. 

While Fibonacci originally expressed this sequence as the number of rabbits present after n 

generations, today we discuss the sequence using the recursive relationship 𝐹𝑛 = 𝐹𝑛−2 + 𝐹𝑛−1 

where 𝐹1 = 𝐹2 = 1. While this sequence appears simple on the surface, it is extremely versatile 

and widely applicable to the majority of mathematical disciplines. The goal of this paper is to 

demonstrate just how far-reaching this sequence is – specifically by looking into how it plays a 

role in areas as diverse as primality testing, Hilbert’s problems, probability, convergence testing, 

and other unexpected areas of mathematics. In doing so, this thesis will illuminate connections 

between concepts that may at first seem unrelated and allow the reader to appreciate the value of 

this fundamental sequence.    

  



 3 

Section One: What is the Fibonacci Sequence? 
 

The Fibonacci Sequence is well-known amongst mathematicians and appears frequently in 

mathematics literature. The sequence was first given attention in the book Liber Abaci [13], where 

Fibonacci thought of the sequence in this way: “A certain man had one pair of rabbits together in 

a certain enclosed place, and one wishes to know how many are created from the pair in one year 

when it is the nature of them in a single month to bear another pair, and in the second month those 

born to bear also. … There will be two pairs in one month. One of these, namely the first, bears in 

the second month and thus there are in the second month 3 pairs…” [11, page 404]. Today, we 

define the Fibonacci numbers not through a hypothetical rabbit scenario, but rather through a 

sequence definition, shown below.  

𝐹𝑛 = 𝐹𝑛−2 + 𝐹𝑛−1 for 𝑛 > 2 

𝐹1 = 𝐹2 = 1 

The goal of this thesis is not to show every way in which the Fibonacci numbers can be connected 

to every other mathematical discipline. Rather, the purpose of this thesis is to show a connection 

between the Fibonacci numbers and as many unexpected areas of math as possible. I believe it will 

be eye-opening to readers to see just how far-reaching the Fibonacci numbers are in their 

connection to these many different areas of mathematics. Because of this, some well-known results 

may be omitted in favor of showing more obscure results in an unexpected place. For example, I 

will put emphasis on connecting Fibonacci numbers to topics such as Hilbert’s problems or 

trigonometry, rather than to other Lucas sequences or to the golden ratio, for example.  

 

Section Two: Combinatorics Connections 
 

2.1 The Binet Formula 

I begin by displaying a fundamental theorem known as the Binet Formula. A classic result from 

any introductory combinatorics course, this formula allows one to calculate the 𝑛th Fibonacci 

number from 𝑛 rather than from 𝐹𝑛−1 and 𝐹𝑛−2 as given in the sequence definition. For this reason, 

later sections will rely heavily on this formula.  

Theorem 2.1.1: 𝐹𝑛 =
1

√5
(

1+√5

2
)

𝑛

−
1

√5
(

1−√5

2
)

𝑛

 

Proof 

First, we recall the sequence definition. 𝐹𝑛 = 𝐹𝑛−2 + 𝐹𝑛−1 where 𝐹1 = 𝐹2 = 1 
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Now we will employ the method for solving linear recurrence relations described in [27, pg. 

300].  

𝐹𝑛 = 𝐹𝑛−2 + 𝐹𝑛−1 becomes 𝑓𝑛 = 𝑓𝑛−2 + 𝑓𝑛−1 which is equivalent to 𝑓2 = 𝑓 + 1 

Therefore 𝑓 =
1±√5

2
 and we can conclude 𝐹𝑛 = 𝑎 (

1+√5

2
)

𝑛

+ 𝑏 (
1−√5

2
)

𝑛

 where 𝑎, 𝑏 are 

determined by the initial conditions.  

Solving the simultaneous equations given by the initial conditions, 1 = 𝑎 (
1+√5

2
)

1

+ 𝑏 (
1−√5

2
)

1

 

and 1 = 𝑎 (
1+√5

2
)

2

+ 𝑏 (
1−√5

2
)

2

, yields 𝑎 =
1

√5
 and 𝑏 = −

1

√5
. 

Therefore, 𝐹𝑛 =
1

√5
(

1+√5

2
)

𝑛

−
1

√5
(

1−√5

2
)

𝑛

  

∎ 

 

2.2 Fibonacci and Probability 

The calculation of probability typically involves reducing a scenario into “cases”. Thus the 

Fibonacci sequence easily lends itself to the calculation of probabilities since the value of 

𝐹𝑛 depends on the value of the previous “cases” 𝐹𝑛−1 and 𝐹𝑛−2. Because of this, the connections 

between the Fibonacci numbers and probability are likely the least surprising of any connection 

detailed elsewhere in this thesis. In fact, most courses in combinatorics cover these connections, 

perhaps with more generic sequences where the initial conditions are not our conventional 𝐹1 =

𝐹2 = 1. The book Applied Combinatorics [27], for example, goes into this topic in some detail. 

Because of this I will provide a single example which illustrates the potential applications of this 

sequence to the computation of various probabilities.  

 

Example 2.2.1: Suppose we have a fair coin where flipping a H gives the value +1 and flipping a 

tail resets your total to 0. In this case, the probability of obtaining a value of 𝑛 = 2 after k flips 

(without a premature success) is 
𝐹𝑘−1

2𝑘  (example from [26]). 

Proof 

Let 𝑝(𝑘) denote the probability of obtaining 𝑛 = 2 after k flips.  

First, note that 𝑝(2) = 𝑝(𝐻𝐻) =
1

4
 and p(3) = 𝑝(𝑇𝐻𝐻) =

1

8
 

Therefore 𝑝(𝑘 + 3) = 𝑝(k trials without double heads) ∗ 𝑝(𝑇𝐻𝐻) 

=
Number of ways to get no double heads in k trials

2𝑘 ∗ 𝑝(𝑇𝐻𝐻)  
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Now we shall introduce some notation. Let 𝑎𝑘 = number of arrangements of length k where 

there are no two consecutive heads and let 𝑎𝑘,𝑖 = number of arrangements of length k where 

there are no two consecutive heads and the last tail is in the 𝑖𝑡ℎ position.  

Using this notation, we note that 𝑎𝑘 = 𝑎𝑘,𝑘 + 𝑎𝑘,𝑘−1 since the last tail must be in either the 𝑘 

or (𝑘 − 1) position.  

Now we note that 𝑎𝑘,𝑘 = 𝑎𝑘−1 since 𝑎𝑘,𝑘 ends in a tail and therefore cannot end in a double 

heads. 

We also note that 𝑎𝑘,𝑘−1 = 𝑎𝑘−2. This follows since 𝑎𝑘,𝑘−1 must end in TH and therefore the 

three final positions contain no double heads.  

From this we have that 𝑎𝑘 = 𝑎𝑘−1 + 𝑎𝑘−2.  

We note that 𝑎1 = 2 since a flip of either H or T is acceptable.  

We note that 𝑎2 = 3 since flips of HT, TH, and TT are acceptable.  

Clearly, 𝑎𝑘 = 𝐹𝑘+2 

Using this information, we can compute our formula.  

𝑝(𝑘 + 3) =
Number of ways to get no double heads in k trials

2𝑘
∗ 𝑝(𝑇𝐻𝐻) =

𝑎𝑘

2𝑘
∗

1

8
=

𝑎𝑘

2𝑘+3
=

𝐹𝑘+2

2𝑘+3
 

Therefore, 𝑝(𝑘) =
𝐹𝑘−1

2𝑘 .  

∎ 

 

It is also worth noting that if we were to increase 𝑛, the desired “end score”, we would require 

Tribonacci numbers (numbers defined by the relation 𝑎𝑘 = 𝑎𝑘−1 + 𝑎𝑘−2 + 𝑎𝑘−3), Tetranacci 

numbers (defined by 𝑎𝑘 = 𝑎𝑘−1 + 𝑎𝑘−2 + 𝑎𝑘−3 + 𝑎𝑘−4), and beyond (𝑎𝑘 = 𝑎𝑘−1 + 𝑎𝑘−2 + ⋯ +

𝑎𝑘−𝑛). For example, with 𝑛 = 3 we use Tribonacci numbers to obtain 𝑝(𝑘) =
𝑇𝑘−1

2𝑘 . In general, 

𝑝𝑛(𝑘) =
𝑋𝑘−1

2𝑘  where 𝑋 is the Fibonacci sequence of order n.  

 

Section Three: Number Theory Connections 
 

This section is by far the most abundant. The set of Fibonacci numbers is a subset of the natural 

numbers, and by extension the integers, and therefore we can display connections between 

various number theoretic functions, well-known arrangements of integers, primes, and more. 

This section will culminate by detailing how the Fibonacci numbers were key in unlocking the 
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solution to Hilbert’s Tenth Problem, a classic number theory question regarding the solvability of 

Diophantine equations.  

 

3.1 The Legendre Symbol  

A large portion of any number theory class is dedicated to the idea of congruence. In particular, 

two numbers 𝑎 and 𝑏 are said to be congruent (written 𝑎 ≡ 𝑏(mod 𝑛)) iff 𝑛|(𝑎 − 𝑏). As an 

example, 13 ≡ 5(mod 4) because 13 − 5 = 8 and 4|8. One can extend the idea of congruence by 

considering when certain congruency statements are solvable. For example, say we have 

𝑥2 ≡ 𝑎(mod 𝑏), where 𝑎 and 𝑏 are known. One way to solve this would involve testing 

𝑥 = 0,1,2,3,4,5,6,7 … 𝑏 − 1  to see if any of these values provides a solution. If a solution was 

found, we would say a is a quadratic residue of b. If no solution was found, we would instead say 

a is a quadratic nonresidue of b. However, this is clearly not efficient, especially with a larger 

modulus. Instead, this is best solved through employing the use of the Legendre Symbol. Used to 

determine whether a number is a quadratic residue or not, it is defined in the following way [7], 

 

(
𝑎

𝑝
) = {

1, a is a quadratic residue of p

−1, a is a quadratic nonresidue of p
   

 

where p is an odd prime and gcd(𝑎, 𝑝) = 1. Interestingly, one is able to connect this symbol to the 

Fibonacci Sequence.  

 

Theorem 3.1.1: If p is prime and the Legendre symbol is defined as above, then 𝐹𝑝 ≡ (
𝑝

5
) (mod 𝑝) 

and 𝐹
𝑝−(

𝑝

5
)

≡ 0(mod 𝑝) where 𝑝 ≠ 5 is an odd prime.  

Proof (from [1]) 

First we will show 𝐹𝑝 ≡ (
𝑝

5
) (mod 𝑝) 

By Lemma 6.3.2 we know 2𝐹𝑝+𝑟 ≡ (
𝑝

5
) 𝐿𝑟 + 𝐹𝑟  (mod 𝑝) 

Choose 𝑟 = 0 and obtain 2𝐹𝑝 ≡ 2 (
𝑝

5
) (mod 𝑝) 

Since p is odd we conclude 𝐹𝑝 ≡ (
𝑝

5
) (mod 𝑝) 

Now we will show 𝐹
𝑝−(

𝑝

5
)

≡ 0 (mod 𝑝) 

We will again use Lemma 6.3.2 with 𝑟 = 1 and 𝑟 = −1 

Therefore 2𝐹𝑝+1 ≡ (
𝑝

5 
) + 1  (mod 𝑝) and 2𝐹𝑝−1 ≡ − (

𝑝

5 
) + 1  (mod 𝑝) 



 7 

If (
𝑝

5 
) = −1 then 𝐹𝑝+1 ≡ 0  (mod 𝑝) and if (

𝑝

5 
) = 1 then 𝐹𝑝−1 ≡ 0  (mod 𝑝) 

From this, we may conclude that 𝐹
𝑝−(

𝑝

5
)

≡ 0(mod 𝑝) 

∎ 

3.2 Fibonacci Numbers and the Mobius Function  

The Mobius Function is a well-known number-theoretic function (a function whose domain is the 

set of positive integers) defined in the following way [7, pgs. 103, 112] 

𝜇(𝑛) = {
1
0

(−1)𝑟

 𝑛 = 1
 𝑝2|𝑛 for some prime p > 1
 𝑛 = 𝑝1𝑝2 … 𝑝𝑟 for distinct 𝑝𝑖 > 1

 

See the table in the appendix for selected values.  

Using this definition, we are able to derive a formula for the Fibonacci numbers using the Mobius 

Function and the corresponding Mobius Inversion Formula.  

 

Theorem 3.2.1 For any natural number 𝑛 it follows that 𝐹𝑛 = ∏ 𝐹∗(𝑑)𝑑|𝑛 where 𝐹∗(𝑑) =

∏ 𝐹𝑘
𝜇(

𝑑

𝑘
)

𝑘|𝑑  

Proof (from [10]) 

This follows directly from the Mobius Inversion Formula (Lemma 6.3.3).  

We know from our proof of the Binet Formula that the Fibonacci sequence can be written as a 

number theoretic function. Let us suppose that there is a second number theoretic function 𝐹∗ 

such that  

𝐹𝑛 = ∏ 𝐹∗(𝑚)

𝑚|𝑛

 

By Lemma 6.3.3, it follows that  

𝐹∗(𝑚) = ∏ 𝐹𝑘
𝜇(

𝑚
𝑘 )

𝑘|𝑚

 

Therefore, we have found a multiplicative function such that 𝐹𝑛 can be decomposed into factors 

𝐹∗ where these factors are known as the primitive parts of 𝐹𝑛. We shall examine them further 

when examining the primality of 𝐹𝑛. Additionally, we have successfully found a way to connect 

the Fibonacci sequence to the Mobius function 𝜇. 

∎ 

The first several values of 𝐹∗(𝑚) are given in the table on the following page.  
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Table 3.2.1 𝐹∗(𝑚) Evaluated at Various Values of 𝑚 

𝑚 𝐹∗(𝑚) is product of = 𝐹∗(𝑚) 

1 𝐹1
𝜇(1) 11 1 

2 𝐹1
𝜇(2) ∙ 𝐹2

𝜇(1) 1−1(11) 1 

3 𝐹1
𝜇(3) ∙ 𝐹3

𝜇(1) 1−1(21) 2 

4 𝐹1
𝜇(4) ∙ 𝐹2

𝜇(2) ∙ 𝐹4
𝜇(1) 10(1−1)(31) 3 

5 𝐹1
𝜇(5) ∙ 𝐹5

𝜇(1) 1−1(51) 5 

6 𝐹1
𝜇(6) ∙ 𝐹2

𝜇(3) ∙ 𝐹3
𝜇(2) ∙ 𝐹6

𝜇(1) 11(1−1)(2−1)(81) 4 

7 𝐹1
𝜇(7) ∙ 𝐹7

𝜇(1) 1−1(131) 13 

8 𝐹1
𝜇(8) ∙ 𝐹2

𝜇(4) ∙ 𝐹4
𝜇(2) ∙ 𝐹8

𝜇(1) 11(10)(3−1)(211) 7 

9 𝐹1
𝜇(9) ∙ 𝐹3

𝜇(3) ∙ 𝐹9
𝜇(1) 10(2−1)(341) 17 

10 𝐹1
𝜇(10) ∙ 𝐹2

𝜇(5) ∙ 𝐹5
𝜇(2) ∙ 𝐹10

𝜇(1) 11(1−1)(5−1)(551) 11 

11 𝐹1
𝜇(11) ∙ 𝐹11

𝜇(1) 1−1(891) 89 

 

3.3 Fibonacci and Pascal’s Triangle  

 

There are two ways that we can compute the Fibonacci sequence using Pascal’s triangle. One way 

of computing 𝐹𝑛 involves looking solely at the nth row of the triangle and picking out the 

coefficients. Another way involves looking at the “rising diagonals” of the triangle and computing 

𝐹𝑛 through a sum of non-Fibonacci numbers.  

 

 

 

 

Figure 3.3.1: Pascal’s Triangle Viewed as Arrangement of 

Binomial Coefficients 

 

 

 

 

Method One Pascal’s triangle is an arrangement of binomial coefficients (see figure above). As 

we read across the row 𝑛 of the triangle, we get the coefficients (n
0
), (n

1
), (n

2
) … (n

n
). To compute 𝐹𝑛 

we plug these values into the expression 
(n

1)+(n
3)5+(n

5)52+⋯+(n
k)5(𝑘−1)/2+⋯

(n
0)+(n

2)+(n
4)+⋯

 

Proof (from [17]) 

We begin with the Binet Formula 𝐹𝑛 =
1

2𝑛√5
((1 + √5)

𝑛
− (1 − √5)

𝑛
) 

We can then apply the binomial theorem [7, pgs. 8-10] 

(
0

0
) 

(
1

0
)    (

1

1
) 

(
2

0
)    (

2

1
)    (

2

2
) 

(
3

0
)    (

3

1
)    (

3

2
)    (

3

3
) 

⋮ 
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𝐹𝑛 =
1

2𝑛√5
(∑ (

𝑛

𝑘
) (√5)

𝑘
𝑛

𝑘=0

− ∑ (
𝑛

𝑘
) (−√5)

𝑘
𝑛

𝑘=0

) 

=
1

2𝑛√5
([1 + (

𝑛

1
) (√5)

1
+ ⋯ + (√5)

𝑛
] − [1 + (

𝑛

1
) (−√5)

1
+ ⋯ + (−√5)

𝑛
]) 

=
1

2𝑛√5
(2 (

𝑛

1
) √5 + 2 (

𝑛

3
) (√5)

3
+ 2 (

𝑛

5
) (√5)

5
+ ⋯ ) 

=
1

2𝑛−1√5
((

𝑛

1
) √5 + (

𝑛

3
) (√5)

3
+ (

𝑛

5
) (√5)

5
+ ⋯ ) 

=
1

2𝑛−1
((

𝑛

1
) + (

𝑛

3
) (√5)

2
+ (

𝑛

5
) (√5)

4
+ ⋯ ) 

=
1

2𝑛−1
((

𝑛

1
) + (

𝑛

3
) 5 + (

𝑛

5
) 52 + ⋯ ) 

By Lemma 6.3.5 we have that 2𝑛−1 = (𝑛
0

) + (𝑛
2

) + (𝑛
4

) + ⋯ 

And therefore 𝐹𝑛 =
(𝑛

1)+(𝑛
3)5+(𝑛

5)52+⋯

(𝑛
0)+(𝑛

2)+(𝑛
4)+⋯

 

∎ 

 

 

 

 

 

Figure 3.3.2: Rising Diagonals of Pascal’s 

Triangle (from [24]) 

 

 

 

 

 

Method Two: The image above shows the rising diagonals of Pascal’s triangle. As in method one, 

we know Pascal’s triangle is based on binomial coefficients and therefore we can express the terms 

along these “rising” diagonals using (𝑛
𝑘

) where n is the row number and k is the column number 

(how far into the row you “go”). To sum along a rising diagonal, we begin with (𝑛−1
0

) and then 

add (𝑛−2
1

) and (𝑛−3
2

) until you reach (
𝑛−1−⌊

𝑛−1

2
⌋

⌊
𝑛−1

2
⌋

). It seems that the result of this sum is 𝐹𝑛. 
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Therefore, we can hypothesize that 𝐹𝑛 = ∑ (𝑛−1−𝑘
𝑘

)
𝑘=⌊

𝑛−1

2
⌋

𝑘=0
 where the sum represents the “rising 

diagonals” of Pascal’s Triangle.  

Proof (by strong induction, from [21]) 

Clearly, the statement holds for 𝑛 = 1.   

Now we assume the statement holds for 1, 2, … , 𝑛 − 1 for some natural number 𝑛 ≥ 1.  

Examine ∑ (𝑛−𝑘
𝑘

)
𝑘=⌊

𝑛

2
⌋

𝑘=0  

Assume n is odd.  

∑ (
𝑛 − 𝑘

𝑘
)

𝑘=⌊
𝑛
2⌋

𝑘=0

= ∑ (
𝑛 − 𝑘 − 1

𝑘 − 1
)

⌊
𝑛
2⌋

𝑘=0

+ ∑ (
𝑛 − 𝑘 − 1

𝑘
)

⌊
𝑛
2⌋

𝑘=0

 by Lemma 6.3.4 

= ∑ (
𝑛 − 𝑘 − 1

𝑘 − 1
)

𝑛−1
2

𝑘=0

+ ∑ (
𝑛 − 𝑘 − 1

𝑘
)

⌊
𝑛−1

2 ⌋

𝑘=0

 

= ∑ (
𝑛 − 𝑘 − 1

𝑘 − 1
)

𝑛−1
2

𝑘=1

+ (
𝑛 − 1

−1
) + ∑ (

𝑛 − 𝑘 − 1

𝑘
)

⌊
𝑛−1

2 ⌋

𝑘=0

 

= ∑ (
𝑛 − 𝑘 − 1

𝑘 − 1
)

𝑛−1
2

𝑘=1

+ 0 + ∑ (
𝑛 − 𝑘 − 1

𝑘
)

⌊
𝑛−1

2 ⌋

𝑘=0

 

= ∑ (
𝑛 − 𝑗 − 2

𝑗
)

𝑛−1
2 −1

𝑗=0

+ ∑ (
𝑛 − 𝑘 − 1

𝑘
)

⌊
𝑛−1

2 ⌋

𝑘=0

 

= ∑ (
𝑛 − 𝑗 − 2

𝑗
)

𝑛−3
2  

𝑗=0

+ ∑ (
𝑛 − 𝑘 − 1

𝑘
)

⌊
𝑛−1

2 ⌋

𝑘=0

 

 = ∑ (
𝑛 − 𝑗 − 2

𝑗
)

⌈
𝑛−2

2
⌉ 

𝑗=0

+ ∑ (
𝑛 − 𝑘 − 1

𝑘
)

⌊
𝑛−1

2
⌋

𝑘=0

 

= 𝐹𝑛−1 + 𝐹𝑛 

= 𝐹𝑛+1 

When n is even the proof is similar.  

∎ 
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3.4 Fibonacci and the Euclidean Algorithm  

The Euclidean Algorithm is a process that can be used to obtain the greatest common divisor of 

two integers 𝑎, 𝑏 (Lemma 6.3.6). When considering the Euclidean Algorithm in the context of 

Fibonacci numbers, we come across the following theorem: 

 

Theorem 3.4.1 (Lame’s Theorem): The number of divisions needed to compute gcd(a,b) by the 

Euclidean Algorithm is no more than five times the number of decimal digits in b where 𝑎 ≥ 𝑏 ≥ 2 

Proof (from [21]) 

Let 𝑎 and 𝑏 be given.  

Apply the Euclidean Algorithm where we assume the algorithm terminates in 𝑛 divisions.  

𝑎 = 𝑏𝑞1 + 𝑟1 where 0 ≤ 𝑟1 < 𝑏 

𝑏 = 𝑟1𝑞2 + 𝑟2 where 0 ≤ 𝑟2 < 𝑟1 

𝑟1 = 𝑟2𝑞3 + 𝑟3 where 0 ≤ 𝑟3 < 𝑟2 

⋮ 

𝑟𝑛−3 = 𝑟𝑛−2𝑞𝑛−2 + 𝑟𝑛−1 where 0 ≤ 𝑟𝑛−1 < 𝑟𝑛−2 

𝑟𝑛−2 = 𝑟𝑛−1𝑞𝑛−1 

Note that 𝑞𝑛−1 > 1 (aka 𝑞𝑛−1 ≥ 2) or we would have 𝑟𝑛−2 = 𝑟𝑛−1 

We will now work backwards.  

We know 𝑟𝑛−1 ≥ 1 = 𝐹1 

Therefore 𝑟𝑛−2 ≥ 2𝑟𝑛−1 ≥ 2 = 𝐹2 

Continuing, we see 𝑟𝑛−3 = 𝑟𝑛−2𝑞𝑛−2 + 𝑟𝑛−1 > 𝑟𝑛−2 + 𝑟𝑛−1 > 𝐹2 + 𝐹1 = 𝐹3 

Continuing yields 𝑟𝑛−𝑘−1 > 𝐹𝑘+1 

And therefore, when 𝑘 = 𝑛 − 1 and 𝑘 = 𝑛 (beginning of the algorithm), we have 𝑏 > 𝐹𝑛 and 

𝑎 > 𝐹𝑛+1 

We know b (the lesser number) is such that 𝑏 > 𝐹𝑛 and therefore, from the note at the end of 

Lemma 6.3.8, 𝑏 >
𝑛

5
.  

Therefore 5𝑏 > 𝑛   

Since we stated that this Euclidean Algorithm terminates in n steps, we can end the proof. 

∎ 
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Theorem 3.4.2 (An Alternate Lame’s Theorem): Let 𝑎, 𝑏 be integers such that 𝑎 > 𝑏 > 0 where 

the Euclidean Algorithm to calculate gcd(𝑎, 𝑏) requires n divisions. The smallest such pair 𝑎, 𝑏 

that satisfies these conditions is 𝑎 = 𝐹𝑛+2 and 𝑏 = 𝐹𝑛+1. Note that we define the “smallest pair” 

by choosing the pair with the least positive 𝑎 value. If multiple pairs meet this criterion, we choose 

the pair among these with the least positive 𝑏 value.  

Proof (by strong induction on n, from [2]) 

First, we will show that 𝑎 ≥ 𝐹𝑛+2 and 𝑏 ≥ 𝐹𝑛+1 

Assume 𝑛 = 1.  

For the Euclidean Algorithm to conclude after one division we must have 𝑎 = 𝑏𝑞1. To 

minimize 𝑎 where 𝑎 > 𝑏 > 0 it follows that 𝑎 =  2 and 𝑏 = 1 and we have 𝑎 ≥ 𝐹1+2 = 2 and 

𝑏 ≥ 𝐹1+1 = 1 and the theorem holds.  

Now we assume the statement holds for 1, 2, … , 𝑛 − 1 for some natural number 𝑛 ≥ 1.  

Using a generic 𝑎 and 𝑏, we perform the first two divisions.  

𝑎 = 𝑏𝑞1 + 𝑟1 where 0 ≤ 𝑟1 < 𝑏 

𝑏 = 𝑟1𝑞2 + 𝑟2 where 0 ≤ 𝑟2 < 𝑟1 

This second line computes gcd(𝑏, 𝑟1) and will terminate in 𝑛 − 1 steps. Therefore, we know 

by the inductive hypothesis that 𝑏 ≥ 𝐹𝑛+1 and 𝑟1 ≥ 𝐹𝑛. 

Since 𝑎 ≥ 𝑏𝑞1 + 𝑟1 ≥ 𝑏 + 𝑟1 ≥ 𝐹𝑛+1 + 𝐹𝑛 = 𝐹𝑛+2, we have shown that it does hold that      

𝑎 ≥ 𝐹𝑛+2 and 𝑏 ≥ 𝐹𝑛+1.  

Finally, we will show that if 𝑎 = 𝐹𝑛+2 and 𝑏 = 𝐹𝑛+1 the process does terminate in 𝑛 divisions. 

Note that 𝐹𝑘 = 𝐹𝑘−1 + 𝐹𝑘−2 < 𝐹𝑘−1 + 𝐹𝑘−1 = 2𝐹𝑘−1 

Therefore, if 𝐹𝑘 = 𝑞1(𝐹𝑘−1) + 𝑟1 then 𝑞1 = 1 and 𝑟1 = 𝐹𝑘−2. 

Thus, gcd(𝐹𝑛+2, 𝐹𝑛+1) = gcd(𝐹𝑛+1, 𝐹𝑛) = gcd(𝐹𝑛, 𝐹𝑛−1) = ⋯ = gcd(2,1) = 1, a total of 𝑛 

divisions.  

∎ 

Note that this proof also demonstrates that all adjacent Fibonacci numbers are relatively prime.  

 

3.5 Fibonacci and Primes 

Unfortunately, according to [7], “not only is there no known device for predicting which 𝐹𝑛 are 

prime, but it is not certain whether the number of prime Fibonacci numbers is infinite”. However, 

there are a great number of theorems about the Fibonacci sequence and prime numbers that exist 
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and are valuable in our understanding of prime numbers. I will begin this section with a few 

intriguing results about primes and Fibonacci numbers in general and then proceed to examining 

the idea of primality testing using Fibonacci numbers.  

 

The first topic we will discuss involves looking at the Fibonacci sequence modulo some number. 

This is intriguing for both prime and composite moduli; however, prime moduli are far easier to 

handle and therefore we will examine them in more depth. In either case, taking the modulus of 

every number in the Fibonacci sequence yields a periodic sequence of numbers. For example, 

mod(3) the Fibonacci sequence begins 1,1,2,0,2,2,1,0 and then repeats. Therefore, the period of 

𝐹𝑛(mod 3) has length 8. We denote this by 𝑘(3) = 8. By Lemma 6.3.9, we can see that this 

sequence is indeed always periodic. We will now examine its value for both prime and composite 

moduli.  

 

Theorem 3.5.1: Let p be prime. If 𝑝 = 2 then 𝑘 = 3 and if 𝑝 = 5 then 𝑘 = 20. For all other primes, 

if 𝑝 ≡ ±1 (mod 10) then 𝑘(𝑝)|𝑝 − 1 and if 𝑝 ≡ ±3 (mod 10) then 𝑘(𝑝)|2𝑝 + 2.  

Proof (from [28]) 

The cases where 𝑝 = 2 and 𝑝 = 5 can be seen by inspection.  

Now, let us examine the case where 𝑝 ≡ ±3 (mod 10) 

By [7, pgs. 88, 171, 191] we know that 5 is a quadratic nonresidue (mod p) and therefore 

5
𝑝−1

2 ≡ −1(mod 𝑝) 

By the section on Pascal’s Triangle, 𝐹𝑛 = 21−𝑛[(n
1
) + 5(n

3
) + 52(n

5
) + ⋯ ] 

Therefore 2𝑛−1𝐹𝑛 = (n
1
) + 5(n

3
) + 52(n

5
) + ⋯ 

Let 𝑛 = 𝑝 and obtain 2𝑝−1𝐹𝑝 = [(p
1
) + 5(p

3
) + ⋯ + 5

𝑝−1

2 (p
p
) + ⋯ ] where the remaining terms 

are 0 

∴ 2𝑝−1𝐹𝑝 ≡ [(p
1
) + 5(p

3
) + ⋯ + 5

𝑝−1

2 (p
p
)] (mod 𝑝)  

By [7, pg. 180] we have that 2
𝑝−1

2 ≡ ±1(mod 𝑝) and it follows that 2𝑝−1 ≡ 1(mod 𝑝) 

Therefore 𝐹𝑝 ≡ [(p
1
) + 5(p

3
) + ⋯ + 5

𝑝−1

2 (p
p
)] (mod 𝑝) 

Since 𝑝|(p
k
) where 𝑘 < 𝑝 we know that 𝐹𝑝 ≡ 5

𝑝−1

2 (p
p
) (mod 𝑝) and thus 𝐹𝑝≡ −1(mod 𝑝) 

Now let 𝑛 = 𝑝 + 1 in 𝐹𝑛 = 21−𝑛[(n
1
) + 5(n

3
) + 52(n

5
) + ⋯ ] 



 14 

It follows that 𝐹𝑝+1 =  2−𝑝[(p+1
1

) + 5(p+1
3

) + ⋯ + 5
𝑝−1

2 (p+1
p

) + ⋯ ] where the remaining 

terms are 0 

Therefore, 𝐹𝑝+1 ≡  2−𝑝[(p+1
1

) + 5(p+1
3

) + ⋯ + 5
𝑝−1

2 (p+1
p

) + ⋯ ](mod 𝑝) 

Let us examine the middle terms 5(p+1
3

) … 5
𝑝−3

2 (p+1
p−2

) 

Specifically, we want to examine (p+1
k

) where 1 < 𝑘 < 𝑝 (or 1 < 𝑝 + 1 − 𝑘) 

Here, (p+1
k

) =
(𝑝+1)!

(𝑝+1−𝑘)!𝑘!
 

Since 𝑝 + 1 − 𝑘 > 1 we may write this as 
(𝑝+1)(𝑝)…(𝑝+2−𝑘)(𝑝+1−𝑘)!

(𝑝+1−𝑘)!𝑘!
 

=
(𝑝+1)(𝑝)…(𝑝+2−𝑘)

𝑘!
,  

≡ 0(mod 𝑝) 

Therefore, we have that 𝐹𝑝+1 ≡  2−𝑝[(p+1
1

) + 5
𝑝−1

2 (p+1
p

)](mod 𝑝) 

Since we know that 5
𝑝−1

2 ≡ −1 and it always holds that (p+1
1

) = (p+1
p

) we have 

𝐹𝑝+1 ≡  2−𝑝[(p+1
1

) − (p+1
1

)](mod 𝑝)  

≡  2−𝑝(0)(mod 𝑝) 

≡  0(mod 𝑝) 

Thus 𝐹𝑝 ≡ −1(mod 𝑝) and 𝐹𝑝+1 ≡  0(mod 𝑝) and we have the following: 

𝐹𝑝+2 ≡ −1 ≡ −𝐹1(mod 𝑝) 

𝐹𝑝+3 ≡ 0 + (−1) ≡ −1 ≡ −𝐹2(mod 𝑝) 

𝐹𝑝+4 ≡ −𝐹1 − 𝐹2 ≡ −𝐹3(mod 𝑝) 

 ⋮ 
𝐹𝑝+𝑘 ≡ −𝐹𝑘−1(mod 𝑝) 

Let 𝑘 = 𝑝 + 3 and we see that 𝐹2𝑝+3 ≡ −𝐹𝑝+2(mod 𝑝) ≡ 1 ≡ 𝐹1(mod 𝑝) 

Let 𝑘 = 𝑝 + 4 and we see that 𝐹2𝑝+4 ≡ −𝐹𝑝+3(mod 𝑝) ≡ 1 ≡ 𝐹2(mod 𝑝) 

Therefore, we may conclude 𝑘(𝑝) repeats at most every (2𝑝 + 3) − 1 = 2𝑝 + 2 and therefore 

𝑘(𝑝)|(2𝑝 + 2) 

When 𝑝 ≡ ±1(mod 10) a similar argument shows that 𝑘(𝑝)|𝑝 − 1 

∎ 
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We can now use this theorem to help us determine the period length of the Fibonacci sequence 

with non-prime modulus. See the theorem below.  

 

Theorem 3.5.2: If 𝑚 = ∏ 𝑝𝑖
𝑎𝑖  then 𝑘(𝑚) = 𝑙𝑐𝑚{𝑘𝑖} where 𝑘𝑖 = 𝑘(𝑝𝑖

𝑎𝑖) 

Proof  

See [28, pg. 526] 

 

For example, if we want 𝑘(10) we can see that 𝑘(2) = 3 and 𝑘(5) = 20 and conclude that 

𝑘(10) = 60. The table below gives the first 20 𝑘(𝑛) values. Note that while the table makes it 

seem as though 𝑘(𝑝) = 2𝑝 + 2 or 𝑝 − 1 for 𝑝 > 5, this does not always hold. For example, this 

would imply k(29) = 28 when in reality 𝑘(29) = 14.  

 

Table 3.5.1 First 20 𝑘(𝑛) Values and 2𝑝 + 2, 𝑝 − 1 Values Where Applicable 

n 𝑘(𝑛) 2𝑝 + 2 𝑝 − 1 n 𝑘(𝑛) 2𝑝 + 2 𝑝 − 1 

1 1   11 10  10 

2 3   12 24   

3 8 8  13 28 28  

4 6   14 48   

5 20   15 40   

6 24   16 24   

7 16 16  17 36 36  

8 12   18 24   

9 24   19 18  18 

10 60   20 60   

 

Before continuing, we should note the following:  

 

Theorem 3.5.3: If 𝐹𝑛 is prime then 𝑛 = 4 or 𝑛 is prime.  

Proof (by contrapositive):  

Note that if 𝐹𝑥 = 𝐹𝑦 then 𝑥 = 𝑦 or 𝑥, 𝑦 ∈ {1,2} 

Assume 𝑛 > 4 is composite 

Since 𝑛 is composite, 𝑛 = 𝑎𝑏 for some numbers 𝑎, 𝑏 > 1 

Therefore, 𝑛 ≠ 𝑎 and 𝑛 ≠ 𝑏 

By Lemma 6.3.12, 𝐹𝑎|𝐹𝑛 and 𝐹𝑏|𝐹𝑛  

If 𝑎 = 2 then 𝑏 > 2  
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Otherwise, 𝑎 > 2 so at least one of 𝑎, 𝑏 is greater than 2 

Without loss of generality, we may assume 𝑎 > 2 

Since 𝑎, 𝑛 > 2 we know that 𝐹𝑎 ≠ 𝐹𝑛  

Also note that since 𝑎 > 2 it follows that 𝐹𝑎 ≠ 1 

Since 𝐹𝑎|𝐹𝑛 where 𝐹𝑎 ≠ 𝐹𝑛 and 𝐹𝑎 ≠ 1 we conclude 𝐹𝑛 is not prime. 

∎ 

 

Note that the converse is not true. 19 is prime, however, 𝐹19 = 4181, is not.  

Our next result examines the idea of prime divisors of generic Fibonacci numbers.  

 

Theorem 3.5.4 (Carmichael’s Theorem): ∀𝑛 ≥ 13, ∃ prime 𝑝 such that 𝑝|𝐹𝑛 and 𝑝 ∤ 𝐹𝑘  for 

𝑘 < 𝑚 

Proof 

Omitted, see [3] 

∎ 

This theorem implies that every Fibonacci number above 𝐹13 has a “new” prime factor that no 

Fibonacci number has had before. For example, the only prime factors before 𝐹13 are 

2,3,5,7,11,13,17 and 89. We then begin to see a “new” prime factor as the index of the Fibonacci 

number increases — 𝐹13 is divisible by 233, 𝐹14 is divisible by 29, 𝐹15 is divisible by 61, 𝐹16 is 

divisible by 47, etc. We call these “new” primes characteristic primes.  

 

In a paper by Jarden [18] he defines 𝐹′
𝑛 as the largest factor of 𝐹𝑛 that is relatively prime to every 

earlier Fibonacci number. He goes on to state that 𝐹′
𝑝 = 𝐹𝑝 for prime 𝑝. In other words, he claims 

that the factors of 𝐹𝑝 are all characteristic for prime 𝑝. I will show this fact in the theorem below 

using Lemma 6.3.14, obtained from [23].   

 

Theorem 3.5.5: For odd prime 𝑝, 𝐹𝑝 is the product of prime factors which are all characteristic or 

is prime itself.  

Proof (by contradiction):  

If 𝐹𝑝 is prime then it is clear that the value of 𝐹𝑝 is characteristic because no earlier Fibonacci 

number would have this prime as a factor.  
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Therefore, we can assume that 𝐹𝑝 has factors other than 1 and itself. Let us assume that at least 

one of these prime factors is not characteristic, meaning it has appeared in the factorization of 

an earlier Fibonacci number. Call this earlier Fibonacci number 𝐹𝑘.  

Therefore, gcd(𝐹𝑝, 𝐹𝑘) ≠ 1 

By Lemma 6.3.14 we know gcd(𝐹𝑝, 𝐹𝑘) = 𝐹𝑔𝑐𝑑 (𝑝,𝑘) 

Since p is prime and 𝑘 < 𝑝 we know that gcd(𝑝, 𝑘)  = 1 

Therefore gcd(𝐹𝑝, 𝐹𝑘) = 𝐹𝑔𝑐𝑑 (𝑝,𝑘) = 𝐹1 = 1, a contradiction.   

∎ 

The table below demonstrates the above three theorems. We can see that 𝐹19 demonstrates the 

above theorem since both of its factors are characteristic. We can also see that 𝐹𝑛 is prime only 

where 𝑛 is prime. Finally, we can see that every Fibonacci number with index 𝑛 ≥ 13 has a 

characteristic prime factor.  

 

Table 3.5.2 First 20 Factored Fibonacci Numbers with Highlighted 

Odd Prime Indices and Bolded Characteristic Prime Factors 

𝑛 𝐹𝑛 𝑛 𝐹𝑛 

1 1 11 𝟖𝟗 

2 1 12 32 ∙ 24 

3 𝟐 13 𝟐𝟑𝟑 

4 𝟑 14 13 ∙ 𝟐𝟗 

5 𝟓 15 2 ∙ 5 ∙ 𝟔𝟏 

6 23 16 3 ∙ 7 ∙ 𝟒𝟕 

7 𝟏𝟑 17 𝟏𝟓𝟗𝟕 

8 3 ∙ 𝟕 18 23 ∙ 17 ∙ 𝟏𝟗 

9 2 ∙ 𝟏𝟕 19 𝟑𝟕 ∙ 𝟏𝟏𝟑 

10 5 ∙ 𝟏𝟏 20 3 ∙ 5 ∙ 11 ∙ 𝟒𝟏 

 

The Fibonacci numbers are also useful in primality testing.  By this, I mean that tools exist for 

determining the primality of 𝐹𝑛. The remainder of this section will be devoted to this topic.   

 

A paper from Brillhart [4] describes several theorems for testing the primality of 𝑁 by examining 

𝑁 ± 1. Because of this, there is great benefit in finding more efficient ways to factor 𝑁 ± 1, or in 

this case, 𝐹𝑛 ± 1. Luckily, in the case of Fibonacci numbers, this can be accomplished through 

various identities for 𝐹𝑛 ± 1. Some of these are detailed in [5] and [6]. The following two theorems 
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exhibit this. Theorem 3.5.6 is a primality test from [4] and Theorem 3.5.7 is a method of factorizing 

𝐹𝑛 − 1 so that the primality test may be applied.  

 

Theorem 3.5.6: Let 𝑁 − 1 = 𝑚𝑝 where p is an odd prime such that 2𝑝 + 1 > √𝑁. If there exists 

𝑎 such that 𝑎
𝑁−1

2 ≡ −1(mod 𝑁) but 𝑎
𝑚

2 ≢ −1(mod 𝑁) then 𝑁 is prime.  

Proof  

Omitted, see [4] 

∎ 

Theorem 3.5.7: 𝐹4𝑘+1 − 1 = 𝐹𝑘𝐿𝑘𝐿2𝑘+1 where 𝐿𝑛 denotes the nth Lucas number, defined in the 

Appendix.  

Proof 

Omitted, see [5] and [6] 

∎ 

To see how all of this comes together and how we are able to assess the primality of 𝐹𝑛 using the 

information above, I will provide an example.  

 

Example: Prove 𝐹13 = 233 is prime using Theorems 3.5.6 and 3.5.7. 

Proof 

Using the Theorem 3.5.7 we know 𝐹13 − 1 = 𝐹3𝐿3𝐿7 = 2(4)(29), We then apply Theorem 

3.5.6. Here, 𝑚 = 8 and 𝑝 = 29. Of course, 2(29) + 1 > √233. Now we note that if 𝑎 = 3 

then 3
233−1

2 ≡ 3116 ≡ −1(mod 233) but 3
8

2 ≡ 81 ≢ −1(mod 233) and therefore we have 

found a value of 𝑎 such that 𝑎
𝑁−1

2 ≡ −1(𝑚𝑜𝑑 𝑁) but 𝑎
𝑚

2 ≢ −1(mod 𝑁) and thus we can 

conclude that 𝐹13 is prime.  

∎ 

As of 1999, it had been shown that 𝐹𝑛 is prime for 𝑛 = 3, 4, 5, 7, 11, 13, 17, 23, 29, 43, 47, 83, 

131, 137, 359, 431, 433, 449, 509, 569, 571, 2971, 4723, 5387, 9311 and likely prime for 

𝑛 = 9677, 14431, 25561, 30757, 35999, 37511. No other 𝐹𝑛 is prime for 𝑛 ≤ 50000 [10]. 
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It is also worth noting that we can use similar strategies to assess the primality of 𝐹∗
𝑛, the primitive 

factors of 𝐹𝑛 described in Section 3.2. First, we pull two other useful theorems from [4] and [5]. 

 

Theorem 3.5.8: Let 𝑁 − 1 = ∏ 𝑝𝑖
𝑘𝑖 .  If for each 𝑝𝑖 there exists an 𝑎𝑖 such that 𝑎𝑖

𝑁−1 ≡ 1(mod 𝑁), 

1 < 𝑎𝑖 < 𝑁 − 1, and 𝑎𝑖

𝑁−1

𝑝𝑖 ≢ 1(mod 𝑁) then 𝑁 is prime.  

Proof  

Omitted, see [4] 

∎ 

 

Theorem 3.5.9: 𝐹∗
5𝑘 − 1 = 5𝐹𝑘−1𝐹2

𝑘𝐹𝑘+1 where 𝑘 ≥ 7 and prime.   

Proof  

Omitted, see [5] 

∎ 

 

Example 3.5.10 Say we wanted to prove 𝐹∗
35 = 141961 is prime.  

Proof 

Using Theorem 3.5.9, we know 𝐹∗
35 − 1 = 5𝐹6𝐹2

7𝐹8 = 5(23)(132)(3)(7). Let 𝑝1 =

2, 𝑝2 = 3, 𝑝3 = 5, 𝑝4 = 7,  and 𝑝5 = 13. We then determine that values of 𝑎𝑖 that satisfy 

Theorem 3.5.8 are 𝑎1 = 11 and 𝑎2 = 𝑎3 = 𝑎4 = 𝑎5 = 2 and conclude that 𝐹∗
35 is prime.  

∎ 

 

As of 1999, it had been demonstrated that 𝐹𝑛
∗ is prime for odd numbers 𝑛 = 9, 15, 21, 33, 35, 39, 

45, 51, 63, 65, 75, 93, 105, 111, 119, 121, 123, 135, 145, 185, 195, 201, 207, 209, 225, 231, 235, 

245, 285, 287, 299, 301, 321, 335, 363, 399, 423, 453, 473, 693, 707, 771, 1047, 1113, 1215, 1365, 

1371, 1387, 1533, 1537, 1539, 2185, 2285, 2289, 2361, 2511, 2587, 2733, 2877, 3211, 3339, 3757, 

3857, 3867, 3927, 4025, 4881, 5579, 5691, 6285, 6705, 7035, 7225, 7917, 8275, 9813, 10025, 

10377, 11545, 11915, 12717, 14203 and likely prime for 24 other values of 𝑛 ≤ 20,000. This list 

excludes those 𝑛 for which 𝐹𝑛 is prime and is complete given these stipulations. [10] 

 

3.6 Fibonacci Numbers and Polynomials 

Interestingly, it is possible to find a polynomial whose positive outputs are identically the 

Fibonacci numbers. I display this polynomial (and its corresponding proof) below. We then apply 

many of the lemmas used to find this polynomial to Hilbert’s Tenth Problem in Section 3.7.  
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Theorem 3.6.1: The set of Fibonacci numbers is identical with the set of positive values of 2𝑦4𝑥 +

𝑦3𝑥2 − 2𝑦2𝑥3 − 𝑦5 − 𝑦𝑥4 + 2𝑦 for 𝑥, 𝑦 ∈ ℕ. 

Proof (from [19]) 

If y is Fibonacci, then ∃𝑥 ∈ 𝑍+such that (𝑦2 − 𝑥𝑦 − 𝑥2)2 = 1 by Lemma 6.3.18.  

Therefore, y(2 − (𝑦2 − 𝑥𝑦 − 𝑥2)2) = 𝑦 

Hence, the set of Fibonacci numbers is a subset of the values of this polynomial. 

Now we will show that only Fibonacci numbers are positive outputs of 

𝑦(2 − (𝑦2 − 𝑥𝑦 − 𝑥2)2). 

Assume 𝑤 =  𝑦(2 − (𝑦2 − 𝑥𝑦 − 𝑥2)2) where 𝑤 > 0 

Since 𝑤, 𝑦 > 0 it follows that 0 < (𝑦2 − 𝑥𝑦 − 𝑥2)2 < 2 (by Lemma 6.3.19) 

This implies (𝑦2 − 𝑥𝑦 − 𝑥2)2 = 1 and 𝑦 is Fibonacci by Lemma 6.3.18.  

Using the definition of 𝑤, see that 𝑤 = 𝑦 and therefore 𝑤 is Fibonacci.  

∎ 

 

An illustration of this fact is given in the table below.  

 

Table 3.6.1 Values of 2𝑦4𝑥 + 𝑦3𝑥2 − 2𝑦2𝑥3 − 𝑦5 − 𝑦𝑥4 + 2𝑦 With Highlighted Positive Values 

𝑦\𝑥 1 2 3 4 5 6 7 8 9 

1 1 -23 -119 -359 -839 -1679 -3023 -5039 -7919 

2 2 -28 -238 -796 -1918 -3868 -6958 -11548 -18046 

3 -69 3 -237 -1077 -2877 -6069 -11157 -18717 -29397 

4 -476 -56 -92 -1016 -3356 -7736 -14876 -25592 -40796 

5 -1795 -595 5 -595 -3115 -8395 -17395 -31195 -50995 

6 -5034 -2388 -474 -84 -2154 -7764 -18138 -34644 -58794 

7 -11753 -6713 -2513 -161 -833 -5873 -16793 -35273 -63161 

8 -24184 -15472 -7672 -2032 8 -3184 -13432 -32752 -63352 

9 -45351 -31311 -18207 -7551 -1071 -711 -8631 -27207 -59031 

10 -79190 -57740 -37190 -19340 -6230 -140 -3590 -19340 -50390 

11 -130669 -99253 -68629 -40909 -18469 -3949 -253 -10549 -38269 

12 -205908 -161448 -117588 -76776 -41748 -15528 -1428 -3048 -24276 

13 -312299 -251147 -190307 -132587 -81107 -39299 -10907 13 -10907 

14 -458626 -376516 -294322 -215236 -142786 -80836 -33586 -5572 -1666 

 

 

3.7 A Discussion of Hilbert’s Tenth Problem  
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To begin, it is important to obtain rigorous definitions for Diophantine equations, functions and 

sets, the subjects of Hilbert’s Tenth Problem. According to [7, pg. 33], “it is customary to apply 

the term Diophantine equation to any equation in one or more unknowns that is to be solved in the 

integers”. The paper found in [8] defines it more exactly, writing “A Diophantine equation is an 

equation of the form 𝑃(𝑥1, … , 𝑥𝑛) = 0 where 𝑃 is a polynomial with integer coefficients and a 

solution in integers is required”. The paper found in [9] then defines a Diophantine set as a set       

𝑆 = {(𝑥1, … , 𝑥𝑛)| ∃(𝑦1, … , 𝑦𝑚) where 𝑃(𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚) = 0 and 𝑦𝑖 ∈ ℤ+}, essentially a 

collection of n-tuples which are solutions of some Diophantine equation 𝑃.  Furthermore, a 

Diophantine function is a function 𝑓 where the set {(𝑥1, … , 𝑥𝑛 , 𝑦)| 𝑦 = 𝑓(𝑥1, … , 𝑥𝑛)} is a 

Diophantine set [9]. To clarify these terms, I provide a few examples. A sample Diophantine 

equation is 172𝑥 + 20𝑦 − 1000 = 0 [7, pg. 35].  The set of composite numbers is an example of 

a Diophantine set where 𝑆 = {𝑥| ∃(𝑦, 𝑧) such that 𝑥 − (𝑦 + 1)(𝑧 + 1) = 0 and 𝑦, 𝑧 ∈ ℤ+} [9]. An 

example of a Diophantine function is 𝐹2𝑛, as we will show below [22].  

 

In 1900, when David Hilbert presented a list of 23 questions relating to the domain of number 

theory, his tenth problem focused on the solvability of these Diophantine equations [22]. He stated 

his question in the following way: “Given a Diophantine equation with any number of unknown 

quantities and with rational integral numerical coefficients: To devise a process according to which 

it can be determined by a finite number of operations whether the equation is solvable in rational 

integers” [22]. In other words, he wanted to know whether there existed a single algorithm that 

could determine the solvability of a generic Diophantine equation. In 1971, this problem was 

finally answered in the negative: there is no general algorithm that will work for every possible 

Diophantine equation [22]. However, the beginning stages of the solution actually appeared in a 

1961 paper by Davis, Putnam and Robinson which showed that Hilbert’s algorithm could not exist 

if there existed a Diophantine function with exponential growth [8, 19]. The 1971 breakthrough 

occurred when mathematicians were able to show that 𝐹2𝑛 meets these criteria [22]. This is shown 

below in Theorem 3.7.1.  

 

Theorem 3.7.1: 𝐹2𝑢 is a Diophantine function and has exponential growth. Using the results stated 

above, this implies Hilbert’s Tenth Problem is unsolvable.  

Proof (from [22]) 
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Unless stated otherwise, assume all variables 𝑎 … 𝑧 are positive.  

First, we will show that 𝐹2𝑢 has exponential growth (this means that 

∀𝑢 𝐹2𝑢 ≤ 𝑢𝑢 and for any 𝑘 we can find 𝑢 such that 𝑢𝑘<𝐹2𝑢).  

Using Lemmas 6.3.20 and 6.3.21 we see that 2𝑢−1 ≤ 𝐹2𝑢 < 3𝑢 and therefore ∀𝑢 𝐹2𝑢 ≤ 𝑢𝑢 

Now let 𝑘 be arbitrary. 𝑢𝑘<2𝑢−1 holds for some u and therefore u can be found such that   

𝑢𝑘 < 𝐹2𝑢 

Conclude 𝐹2𝑢 has exponential growth. 

Now we will show that 𝐹2𝑢 is a Diophantine function.  

To do this, we will first show that there exist numbers such that iff 

𝑢 < 𝑙 
𝑣 < 𝑙 

𝑙2 − 𝑙𝑧 − 𝑧2 = 1 

𝑔2 − 𝑔ℎ − ℎ2 = 1 

𝑙2|𝑔 

𝑙|𝑚 − 2 

2ℎ + 𝑔|𝑚 − 3 

𝑥2 − 𝑚𝑥𝑦 + 𝑦2 = 1 

𝑙|𝑥 − 𝑢 

and 2ℎ + 𝑔|𝑥 − 𝑣 

then 𝑣 = 𝐹2𝑢 

 

(⇒) 

Since 𝑙2 − 𝑙𝑧 − 𝑧2 = 1 and 𝑔2 − 𝑔ℎ − ℎ2 = 1, by Lemma 6.3.16 we have 𝑙 is Fibonacci (𝑙 =

𝐹𝑠), ℎ = 𝐹2𝑘 and 𝑔 = 𝐹2𝑘+1 

Therefore 2ℎ + 𝑔 = 2𝐹2𝑘 + 𝐹2𝑘+1 = 𝐹2𝑘 + 𝐹2𝑘+2 

Since 𝑙2|𝑔, 𝑙 = 𝐹𝑠 and 𝑔 = 𝐹2𝑘+1 we have 𝐹𝑠
2|𝐹2𝑘+1 and by Lemma 6.3.22 𝐹𝑠 = 𝑙|2𝑘 + 1 

Since 𝑢 < 𝑙 we have that 𝑙 ≥ 2 

𝑙 ≥ 2 and 𝑙|𝑚 − 2 imply 𝑚 ≥ 2 

Let 𝑌𝑖,0 = 0, 𝑌𝑖,1 = 1 and 𝑌𝑖,𝑗+1 = 𝑖𝑌𝑖,𝑗 − 𝑌𝑖,𝑗−1 

𝑚 ≥ 2 and 𝑥2 − 𝑚𝑥𝑦 + 𝑦2 = 1 and Lemma 6.3.23 imply that 𝑥 = 𝑌𝑚,𝑛 

2ℎ + 𝑔|𝑚 − 3, and 2ℎ + 𝑔 = 𝐹2𝑘 + 𝐹2𝑘+2 imply 𝐹2𝑘 + 𝐹2𝑘+2|𝑚 − 3 

𝑚 ≥ 2, 𝐹2𝑘 + 𝐹2𝑘+2|𝑚 − 3, 𝑥 = 𝑌𝑚,𝑛 and Lemma 6.3.24 imply that 𝑥 ≡ 𝐹2𝑛(mod 𝐹2𝑘 +

𝐹2𝑘+2) 

(2ℎ + 𝑔) = 𝐹2𝑘 + 𝐹2𝑘+2|𝑥 − 𝑣 and 𝑥 ≡ 𝐹2𝑛(mod 𝐹2𝑘 + 𝐹2𝑘+2) imply 𝑣 ≡ 𝐹2𝑛(mod 𝐹2𝑘 +

𝐹2𝑘+2) 
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To ease notation, let 𝑛 = (2𝑘 + 1)𝑖 + 𝑗 where 0 ≤ 𝑗 < 2𝑘 + 1 

Using Lemma 6.3.25 and 𝑣 ≡ 𝐹2𝑛(mod 𝐹2𝑘 + 𝐹2𝑘+2) we have 𝑣 ≡ 𝐹2𝑗(mod 𝐹2𝑘 + 𝐹2𝑘+2) 

𝑙2|𝑔 shows 𝑙 ≤ 𝑔 

𝑣 < 𝑙 ≤ 𝑔, ℎ = 𝐹2𝑘 and 𝑔 = 𝐹2𝑘+1 show that 𝑣 < 𝐹2𝑘+1 

Therefore 𝑣 < 𝐹2𝑘+2 + 𝐹2𝑘 

Since 𝑣 ≡ 𝐹2𝑗(mod 𝐹2𝑘 + 𝐹2𝑘+2), Lemma 6.3.26 shows 𝑣 + 𝐹2(2𝑘+1−𝑗) ≡ 0(mod 𝐹2𝑘 +

𝐹2𝑘+2) 

Therefore, 𝑣 + 𝐹2(2𝑘+1−𝑗) ≥  𝐹2𝑘 + 𝐹2𝑘+2 

Using 𝑣 < 𝐹2𝑘+1 we have 𝐹2(2𝑘+1−𝑗) ≥  𝐹2𝑘 + 𝐹2𝑘+2 − 𝑣 > 𝐹2𝑘 + 𝐹2𝑘+2 − 𝐹2𝑘+1 > 𝐹2𝑘 

This implies 2𝑘 + 1 − 𝑗 > 𝑘 and therefore 𝑘 + 1 > 𝑗 

This implies 𝐹2𝑗 < 𝐹2𝑘+2 and therefore 𝐹2𝑗 < 𝐹2𝑘 + 𝐹2𝑘+2 

𝐹2𝑗 < 𝐹2𝑘 + 𝐹2𝑘+2, 𝑣 < 𝐹2𝑘 + 𝐹2𝑘+2 and 𝑣 ≡ 𝐹2𝑗(mod 𝐹2𝑘 + 𝐹2𝑘+2) show that 𝑣 = 𝐹2𝑗 

By Lemma 6.3.30 we have 𝑗 ≤ 𝐹2𝑗 = 𝑣 and since 𝑣 < 𝑙 we have that 𝑗 ≤ 𝑣 < 𝑙 

𝑥 = 𝑌𝑚,𝑛 and 𝑙|𝑚 − 2 and Lemma 6.3.24 show that 𝑥 ≡ 𝑛(mod 𝑙) 

Since 𝑙|𝑥 − 𝑢 and 𝑥 ≡ 𝑛(mod 𝑙) we have that 𝑢 ≡ 𝑛(mod 𝑙) 

Above, we stated that 𝑛 = (2𝑘 + 1)𝑖 + 𝑗. Since 𝑙|2𝑘 + 1 and 𝑢 ≡ 𝑛(mod 𝑙) we have that 𝑢 ≡

𝑗(mod 𝑙) 

𝑢 < 𝑙, 𝑗 < 𝑙 and 𝑢 ≡ 𝑗(mod 𝑙) show that 𝑢 = 𝑗 

Therefore, since 𝑣 = 𝐹2𝑗, we have that 𝑣 = 𝐹2𝑢 

 

(⇐) 

First, let 𝑙 = 𝐹24𝑢+1 and 𝑧 = 𝐹24𝑢 

Using Lemma 6.3.21, note that 𝑌3,12𝑢 = 𝐹24𝑢 

We than apply Lemma 6.3.20 and obtain 212𝑢−1 ≤ 𝐹24𝑢 

Therefore 𝑢 < 212𝑢−1 ≤ 𝐹24𝑢+1 = 𝑙 

Recall that 𝑙 = 𝐹24𝑢+1 and thus 𝑣 = 𝐹2𝑢 < 𝐹24𝑢+1 = 𝑙 

Applying = 𝐹24𝑢+1 and 𝑧 = 𝐹24𝑢 yields 𝑙2 − 𝑙𝑧 − 𝑧2 = 1 by Lemma 6.3.15 

Let 𝑔 = 𝐹𝑙(24𝑢+1) and ℎ = 𝐹𝑙(24𝑢+1)−1 

Using Lemma 6.3.11 with 𝑖 = 8𝑢, 𝑠 = 3 and 𝑗 = 1 we obtain 𝐹24𝑢+1 ≡ 38𝑢(mod 2) 

Therefore, 𝑙 ≡ 1(mod 2) and 𝑙(24𝑢 + 1) − 1 ≡ 0(mod 2) 



 24 

In Lemma 6.3.15, let 𝐹𝑗+1 = 𝑔 and 𝐹𝑗 = ℎ to get 𝑔2 − ℎ𝑔 − ℎ2 = (−1)𝑙(24𝑢+1)−1 = 1 

Using Lemma 6.3.27 with 𝑠 = 24𝑢 + 1 and 𝑡 = 𝑙 gives 𝑙2|𝐹𝑙(24𝑢+1) = 𝑔 

Using Lemma 6.3.11 with 𝑖 = 6𝑢, 𝑠 = 4 and 𝑗 = 1 we obtain 𝐹24𝑢+1 ≡ 56𝑢 ≡ 1(mod 3) 

Therefore, 𝑙 ≡ 1(mod 3) and 𝑙(24𝑢 + 1) − 1 ≡ 0(mod 3) 

Let us write 𝑙(24𝑢 + 1) − 1 = 3𝑡 for some t  

Therefore, using Lemma 6.3.11, ℎ = 𝐹𝑙(24𝑢+1)−1 = 𝐹3𝑡 ≡ 𝐹0𝐹4
𝑡(mod 2) ≡ 0(mod 2) and we 

conclude h is even  

Set 𝑚 = 3 + (2ℎ + 𝑔)
ℎ

2
  

Since 𝑙2|𝑔 we know 𝑚 ≡ 3 + (2ℎ)
ℎ

2
(mod 𝑙) ≡ 3 + ℎ2(mod 𝑙) 

Since 𝑔2 − 𝑔ℎ − ℎ2 = 1 and 𝑙2|𝑔 we have that −ℎ2 ≡ 1(mod 𝑙)  

Therefore, 𝑚 ≡ 3 − 1(mod 𝑙) and we have 𝑙|𝑚 − 2 

Also 2ℎ + 𝑔|𝑚 − 3 from 𝑚 − 3 = (2ℎ + 𝑔)
ℎ

2
  

Set 𝑥 = 𝑌𝑚,𝑢 and 𝑦 = 𝑌𝑚,𝑢+1 

Using Lemma 6.3.28, it is clear that 𝑥2 − 𝑚𝑥𝑦 + 𝑦2 = 1 

Using the fact that 𝑙|𝑚 − 2 and 𝑥 = 𝑌𝑚,𝑢 and 𝑦 = 𝑌𝑚,𝑢+1, as well as Lemma 6.3.24 we get 

𝑥 ≡ 𝑢(mod 𝑙) and therefore 𝑙|𝑥 − 𝑢 

Using 2ℎ + 𝑔|𝑚 − 3, 𝑥 = 𝑌𝑚,𝑢 and 𝑦 = 𝑌𝑚,𝑢+1, and 𝑣 = 𝐹2𝑢, as well as Lemma 6.3.24 again, 

we get 𝑥 ≡ 𝑣(mod 2ℎ + 𝑔) and therefore 2ℎ + 𝑔|𝑥 − 𝑣 

Thus, all of the necessary conditions have been demonstrated.  

 

To finally show that 𝑣 = 𝐹2𝑢 is a Diophantine function we note that the set of conditions 

described above is identical with the set of equations  

𝑢 + 𝑎 = 𝑙 
𝑣 + 𝑏 = 𝑙 

𝑙2 − 𝑙𝑧 − 𝑧2 = 1 

𝑔2 − 𝑔ℎ − ℎ2 = 1 

𝑙2𝑐 = 𝑔 

𝑙𝑑 = 𝑚 − 2 
(2ℎ + 𝑔)𝑒 = 𝑚 − 3 

𝑥2 − 𝑚𝑥𝑦 + 𝑦2 = 1 

𝑙(𝑝 − 𝑞) = 𝑥 − 𝑢 

(2ℎ + 𝑔)(𝑟 − 𝑠) = 𝑥 − 𝑣 
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Now note that if we have multiple expressions 𝑓1 … 𝑓𝑘 = 0, we can express them with the single 

equation 𝑓1
2 + 𝑓2

2 + ⋯ + 𝑓𝑘
2 = 0 and this the above equations are sufficient to conclude 𝐹2𝑢 

is a Diophantine function. 

∎ 

 

Section Four: Fibonacci and Trigonometry  

Using the Binet Formula, we can easily connect the Fibonacci Sequence to a trigonometric 

function simply by expressing 
1+√5

2
 and 

1−√5

2
 as values of the cosine function. This is detailed in 

Section 4.1. However, we can also express the Fibonacci numbers by evaluating the argument of 

a cosine function at values that depend on 𝑛. This theorem is detailed in Section 4.2.  

 

4.1 A Fibonacci Cosine Expression  

 

Theorem 4.1.1: 𝐹𝑛 =
2𝑛

√5
(cosn 𝜋

5
− cosn 3𝜋

5
) 

Proof (from [13, pg. 67]) 

The Binet Formula establishes that 𝐹𝑛 =
1

√5
((

1+√5

2
)

𝑛

− (
1−√5

2
)

𝑛

) 

We know 
1+√5

2
= 2 cos

𝜋

5
 and 

1−√5

2
= 2 cos

3𝜋

5
 

Therefore 𝐹𝑛 =
1

√5
((2 cos

𝜋

5
)

𝑛
− (2 cos

3𝜋

5
)

𝑛
) 

Therefore 𝐹𝑛 =
2𝑛

√5
(cosn 𝜋

5
− cosn 3𝜋

5
) 

∎ 

 

4.2 A More Elaborate Trigonometric Expression for 𝑭𝒏  

Theorem 4.2.1: 𝐹𝑛 = ∏ 3 + 2 cos
2𝑘𝜋

𝑛

⌊
𝑛−1

2
⌋

𝑘=1  

Proof (from [12, 15, 29]) 

This theorem uses Fibonacci polynomials (see the appendix).  

Note that 𝑈𝑛(1) = 𝐹𝑛 

The Binet Formula equivalent for Fibonacci polynomials is 𝑈𝑛 =
(

𝑥+√𝑥2+4

2
)

𝑛

−(
𝑥−√𝑥2+4

2
)

𝑛

√𝑥2+4
 

Let us find the roots of this equation.  

First, assume 𝑥 = 2𝑖 cos 𝜃 where 0 ≤ 𝜃 < 𝜋 
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Ift 𝑈𝑛 =

(
2𝑖 cos 𝜃+√(2𝑖 cos 𝜃)2+4

2
)

𝑛

−(
2𝑖 cos 𝜃−√(2𝑖 cos 𝜃)2+4

2
)

𝑛

√(2𝑖 cos 𝜃)2+4
 

=
(

2𝑖 cos 𝜃 + 2 sin 𝜃
2 )

𝑛

− (
2𝑖 cos 𝜃 − 2 sin 𝜃

2 )
𝑛

2 sin 𝜃
 

=
(𝑖 cos 𝜃 + sin 𝜃)𝑛 − (𝑖 cos 𝜃 − sin 𝜃)𝑛

2 sin 𝜃
 

=
(𝑖𝑒−𝑖𝜃)

𝑛
− (𝑖𝑒𝑖𝜃)

𝑛

2 sin 𝜃
 

=
𝑖𝑛[𝑒−𝑖𝜃𝑛 − 𝑒𝑖𝜃𝑛]

2 sin 𝜃
 

=
𝑖𝑛(−2𝑖 sin 𝑛𝜃)

2 sin 𝜃
 

=
−𝑖𝑛+1 sin 𝑛𝜃

sin 𝜃
 

This is equivalent to 0 when 𝜃 =
𝜋𝑘

𝑛
 for 𝑘 = 1 … 𝑛 − 1 and therefore 𝑈𝑛 has roots 2𝑖 cos(

𝜋𝑘

𝑛
) 

where 𝑘 = 1 … 𝑛 − 1 

Since we have the roots of 𝑈𝑛 we may write 𝑈𝑛 = 𝑎(𝑥 − 𝑟1) … (𝑥 − 𝑟𝑛−1) where 𝑟𝑘  represents 

a root of 𝑈𝑛 

Since 𝑈𝑛 is always monic, we know 𝑎 = 1 and therefore 𝑈𝑛 = (𝑥 − 𝑟1) … (𝑥 − 𝑟𝑛−1) 

= ∏ (𝑥 − 𝑟𝑘)𝑛−1
𝑘=1 = ∏ (𝑥 − 2𝑖 cos

𝑘𝜋

𝑛
) =𝑛−1

𝑘=1 ∏ (𝑥 + 2𝑖 cos
(𝑛−𝑘)𝜋

𝑛
)𝑛−1

𝑘=1   

Choose 𝑥 = 1 and we get 𝐹𝑛 = ∏ (1 + 2𝑖 cos
(𝑛−𝑘)𝜋

𝑛
)𝑛−1

𝑘=1  

Now assume n is even.  

It follows that 

𝐹𝑛 = (∏ 1 + 2𝑖 cos
(𝑛 − 𝑘)𝜋

𝑛
) (1 + 2𝑖 cos

(𝑛 −
𝑛
2)𝜋

𝑛
) ( ∏ 1 + 2𝑖 cos

(𝑛 − 𝑘)𝜋

𝑛
)

𝑛−1

𝑘=
𝑛+2

2

𝑛−2
2

𝑘=1

 

(see next page) 
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= (∏ 1 + 2𝑖 cos
(𝑛 − 𝑘)𝜋

𝑛
)( ∏ 1 + 2𝑖 cos

(𝑛 − 𝑘)𝜋

𝑛
)

𝑛−1

𝑘=
𝑛+2

2

𝑛−2
2

𝑘=1

 

= ∏(1 + 2𝑖 cos
(𝑛 − 𝑘)𝜋

𝑛
)(1 + 2𝑖 cos

𝑘𝜋

𝑛
)

𝑛−2
2

𝑘=1

 

 

= ∏(1 + 2𝑖 cos
(𝑛 − 𝑘)𝜋

𝑛
+ 2𝑖 cos

𝑘𝜋

𝑛
− 4 cos

(𝑛 − 𝑘)𝜋

𝑛
cos

𝑘𝜋

𝑛
)

𝑛−2
2

𝑘=1

 

 

= ∏ 1 − 2𝑖 cos
𝑘𝜋

𝑛
+ 2𝑖 cos

𝑘𝜋

𝑛
+ 4 cos

𝑘𝜋

𝑛
cos

𝑘𝜋

𝑛

𝑛−2
2

𝑘=1

 

 

= ∏ 1 + 4 cos2
𝑘𝜋

𝑛

𝑛−2
2

𝑘=1

 

 

When n is odd, the process is similar and yields 

∏ 1 + 4 cos2
𝑘𝜋

𝑛

𝑛−1
2

𝑘=1

 

 

And therefore, for any positive integer n, 

𝐹𝑛 = ∏ 1 + 4 cos2
𝑘𝜋

𝑛

⌊
𝑛−1

2 ⌋

𝑘=1

 

Using the identity cos(2x) = 2cos2 𝑥 − 1, we may conclude 

𝐹𝑛 = ∏ 3 + 2 cos
2𝑘𝜋

𝑛

⌊
𝑛−1

2 ⌋

𝑘=1

 

∎ 

 

In addition, I provide an illustrating example of the proof above. Let us compute 𝐹6 where we 

begin with the statement 𝐹𝑛 = ∏ (1 + 2𝑖 cos
(𝑛−𝑘)𝜋

𝑛
)𝑛−1

𝑘=1  
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𝐹6 = ∏ 1 + 2𝑖 cos
(6 − 𝑘)𝜋

6

5

𝑘=1

 

= (1 + 2𝑖 cos
5𝜋

6
)(1 + 2𝑖 cos

4𝜋

6
) (1 + 2𝑖 cos

3𝜋

6
) (1 + 2𝑖 cos

2𝜋

6
) (1 + 2𝑖 cos

𝜋

6
) 

 

= (1 + 2𝑖 cos
5𝜋

6
)(1 + 2𝑖 cos

4𝜋

6
) (1 + 2𝑖 cos

2𝜋

6
) (1 + 2𝑖 cos

𝜋

6
) 

 

= (1 + 2𝑖 cos
5𝜋

6
)(1 + 2𝑖 cos

𝜋

6
) ∙ (1 + 2𝑖 cos

4𝜋

6
) (1 + 2𝑖 cos

2𝜋

6
) 

 

= ∏(1 + 2𝑖 cos
(6 − 𝑘)𝜋

6
)(1 + 2𝑖 cos

𝑘𝜋

6
)

2

𝑘=1

 

= ∏(1 + 2𝑖 cos
(6 − 𝑘)𝜋

6
+ 2𝑖 cos

𝑘𝜋

6
− 4 cos

(6 − 𝑘)𝜋

6
cos

𝑘𝜋

6
)

2

𝑘=1

 

 

= ∏ 1 − 2𝑖 cos
𝑘𝜋

6
+ 2𝑖 cos

𝑘𝜋

6
+ 4 cos

𝑘𝜋

6
cos

𝑘𝜋

6

2

𝑘=1

 

 

= ∏ 1 + 4 cos2
𝑘𝜋

6

2

𝑘=1

 

 

= ∏ 3 + 2 cos
2𝑘𝜋

6

2

𝑘=1

 

= (3 + 2 cos
2𝜋

6
)(3 + 2 cos

4𝜋

6
) 

= 8 

∎ 

Section Five: Fibonacci Convergence Test 
 

5.1 A Fibonacci Convergence Test 

 

Theorem 5.1.1: ∑ 𝑔(𝑛)∞
𝑛=1  converges iff ∑ 𝐹𝑛𝑔(𝐹𝑛)∞

𝑛=1  converges.  

 

Proof (from [20]) 

Without loss of generality, assume 𝑔(𝑛) is a non-increasing positive function.  

 

(⇒)  

Assume ∑ 𝑔(𝑛)∞
𝑛=1  converges 

Let 𝑛 > 3 
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Then 𝐹𝑛 > 2 

∴ 𝐹𝑛+1 > 𝐹𝑛−1 + 2 

∴ 𝐹𝑛+1 − 1 > 𝐹𝑛−1 + 1 

Therefore, the list (𝐹𝑛−1 + 1), … , (𝐹𝑛+1 − 1) is an increasing list of integers 

This list has (𝐹𝑛+1 − 1) −(𝐹𝑛−1 + 1) + 1 = 𝐹𝑛+1 − 1 − 𝐹𝑛−1 = 𝐹𝑛 − 1 terms.  

Since this is an increasing list, we know that each of the numbers in the list is less than 𝐹𝑛+1 

Note that since g is a non-increasing positive function 𝑔(𝑘) ≥ 𝑔(𝑙) where 𝑘 < 𝑙 

Therefore 𝑔(𝐹𝑛−1 + 1), … , 𝑔(𝐹𝑛+1 − 1) ≥ 𝑔(𝐹𝑛+1)  

Since there are 𝐹𝑛 − 1 terms in the list, we have that  

𝑔(𝐹𝑛−1 + 1) + ⋯ + 𝑔(𝐹𝑛+1 − 1) ≥ (𝐹𝑛 − 1)𝑔(𝐹𝑛+1) 

 ∴ 𝑔(𝐹𝑛−1 + 1) + ⋯ + 𝑔(𝐹𝑛+1 − 1) + 𝑔(𝐹𝑛+1) ≥ 𝐹𝑛𝑔(𝐹𝑛+1) 

 ∴ 𝑔(𝐹𝑛−1 + 1) + ⋯ + 𝑔(𝐹𝑛+1) ≥ 𝐹𝑛𝑔(𝐹𝑛+1) 

∴
1

2
[𝑔(𝐹𝑛−1 + 1) + ⋯ + 𝑔(𝐹𝑛+1)] ≥

1

2
[𝐹𝑛𝑔(𝐹𝑛+1)] 

Note that 
1

2
𝑔(1) =

1

2
𝐹1𝑔(𝐹2) 

Note that 
1

2
[𝑔(1) + 𝑔(2)] ≥

1

2
𝐹2𝑔(𝐹3) 

By the identity, 
1

2
[𝑔(2) + 𝑔(3)] ≥

1

2
𝐹3𝑔(𝐹4) 

and 
1

2
[𝑔(3) + 𝑔(4) + 𝑔(5)] ≥

1

2
𝐹4𝑔(𝐹5) 

⋮ 

1

2
[𝑔(𝐹𝑛−1 + 1) + ⋯ + 𝑔(𝐹𝑛+1)] ≥

1

2
[𝐹𝑛𝑔(𝐹𝑛+1)] 

 

The sum of the left of the above statements is 
1

2
∑ 𝑔(𝑛)∞

𝑛=1  

The sum of the right of the above statements is 
1

2
∑ 𝐹𝑛−1𝑔(𝐹𝑛)∞

𝑛=2  

Note that, by Lemma 6.3.29, 
 𝐹𝑛

𝐹𝑛−1
≤ 2 and therefore 

1

2
𝐹𝑛−1 ≥

1

4
𝐹𝑛 

∴
1

2
𝐹𝑛−1𝑔(𝐹𝑛) ≥

1

4
𝐹𝑛𝑔(𝐹𝑛) 

Therefore 
1

2
∑ 𝐹𝑛−1𝑔(𝐹𝑛)∞

𝑛=2 ≥
1

4
∑ 𝐹𝑛𝑔(𝐹𝑛) ∞

𝑛=2 and we have 
1

2
∑ 𝑔(𝑛)∞

𝑛=1 ≥
1

4
∑ 𝐹𝑛𝑔(𝐹𝑛)∞

𝑛=2  

Since by assumption ∑ 𝑔(𝑛)∞
𝑛=1  converges we have that ∑ 𝐹𝑛𝑔(𝐹𝑛)∞

𝑛=1  converges. 
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(⇐, by contrapositive)  

Assume ∑ 𝑔(𝑛) ∞
𝑛=1 diverges 

Let 𝑛 > 0 

Then 𝐹𝑛+2 ≥ 1 

∴ 𝐹𝑛+3 ≥ 𝐹𝑛+1 + 1 

∴ 𝐹𝑛+3 − 1 ≥ 𝐹𝑛+1 

Therefore, the list (𝐹𝑛+1), … , (𝐹𝑛+3 − 1) is an increasing list of integers 

This list has (𝐹𝑛+3 − 1) −(𝐹𝑛+1) + 1 = 𝐹𝑛+3 − 𝐹𝑛+1 = 𝐹𝑛+2 terms.  

Since this is an increasing list, we know that each of the numbers in the list is greater than 𝐹𝑛+1 

Note that since g is a non-increasing positive function 𝑔(𝑘) ≥ 𝑔(𝑙) where 𝑘 < 𝑙 

Therefore 𝑔(𝐹𝑛+1), … , 𝑔(𝐹𝑛+3 − 1) ≤ 𝑔(𝐹𝑛+1)  

Since there are 𝐹𝑛+2 terms in the list, we have that  

𝑔(𝐹𝑛+1) + ⋯ + 𝑔(𝐹𝑛+3 − 1) ≤ 𝐹𝑛+2𝑔(𝐹𝑛+1) 

Note that 𝑔(1) = 𝐹2𝑔(𝐹1) 

By the identity, 𝑔(1) + 𝑔(2) ≤ 𝐹3𝑔(𝐹2) 

By the identity, 𝑔(2) + 𝑔(3) + 𝑔(4) ≤ 𝐹4𝑔(𝐹3) 

By the identity, 𝑔(3) + ⋯ + 𝑔(7) ≤ 𝐹5𝑔(𝐹4) 

⋮ 
𝑔(𝐹𝑛+1) + ⋯ + 𝑔(𝐹𝑛+3 − 1) ≤ 𝐹𝑛+2𝑔(𝐹𝑛+1) 

The sum of the left of these statements is 2 ∑ 𝑔(𝑛)∞
𝑛=1  

The sum of the right of these statements is ∑ 𝐹𝑛+1𝑔(𝐹𝑛)∞
𝑛=1  

Note that, again by Lemma 6.3.29, 
 𝐹𝑛+1

𝐹𝑛
≤ 2 and therefore 2𝐹𝑛 ≥ 𝐹𝑛+1 

∴ 𝐹𝑛+1𝑔(𝐹𝑛) ≤ 2𝐹𝑛𝑔(𝐹𝑛) 

Therefore ∑ 𝐹𝑛+1𝑔(𝐹𝑛)∞
𝑛=1 ≤ ∑ 2𝐹𝑛𝑔(𝐹𝑛

∞
𝑛=1 ) and we have ∑ 𝑔(𝑛)∞

𝑛=1 ≤ ∑ 𝐹𝑛𝑔(𝐹𝑛)∞
𝑛=1  

Since by assumption ∑ 𝑔(𝑛)∞
𝑛=1  diverges we have that ∑ 𝐹𝑛𝑔(𝐹𝑛)∞

𝑛=1  diverges  

∎ 

5.2 Using the Fibonacci Convergence Test  

 

The following example is from [20]. Suppose we wish to determine if the series ∑ 𝑔(𝑛)∞
𝑛=1  where 

𝑔(𝑛) = (𝐹𝑚)𝑎 and 𝑚 is the number such that 𝐹𝑚−1 < 𝑛 ≤ 𝐹𝑚 converges. For example, 𝑔(7) =

(𝐹6)𝑎 since 𝐹5 = 5 < 7 ≤ 8 = 𝐹6.  

Solution 

Note that by the theorem above, ∑ 𝑔(𝑛)∞
𝑛=1  converges only when ∑ 𝐹𝑛𝑔(𝐹𝑛

∞
𝑛=1 ) does.  
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Here, ∑ 𝐹𝑛𝑔(𝐹𝑛)∞
𝑛=1 = ∑ 𝐹𝑛

𝑎+1∞
𝑛=1  since clearly 𝑔(𝐹𝑛) = 𝐹𝑛

𝑎 

By [20] we have that 𝐹𝑛 = ⌈
(

1+√5

2
)𝑛+1

√5
⌉ where ⌈   ⌉ is the greatest integer function.  

Therefore ∑ 𝐹𝑛
𝑎+1∞

𝑛=1 = ∑ (⌈
(

1+√5

2
)𝑛+1

√5
⌉)  

𝑎+1∞
𝑛=1  which converges when ∑ ((

1+√5

2
)𝑛+1)  

𝑎+1∞
𝑛=1  

does.  

∑ ((
1+√5

2
)𝑛+1)  

𝑎+1∞
𝑛=1 = ∑ ((

1+√5

2
)𝑎+1)  

𝑛+1∞
𝑛=1  and we may apply the geometric series 

convergence test to see that this converges when 𝑎 < −1.  

∎ 

Section Six: Appendix 

6.1 Definitions 

Fibonacci Sequence: a sequence of numbers defined by the sequence relation 𝐹𝑛 = 𝐹𝑛−2 + 𝐹𝑛−1 

where 𝐹1 = 𝐹2 = 1 

 

Fibonacci polynomial: A function of 𝑥 defined as 𝑈𝑛 = 𝑥𝑈𝑛−1 + 𝑈𝑛−2 where 𝑈1 = 1 and 𝑈2 = 𝑥 

 

Lucas Sequence: a sequence with the same recurrence relation as the Fibonacci Sequence but with 

initial conditions 𝐿1 = 1 𝑎𝑛𝑑 𝐿2 = 3 

 

6.2 Useful Tables and Figures 

 

Table of the First 20 Fibonacci Numbers 

n 𝐹𝑛 n 𝐹𝑛 n 𝐹𝑛 n 𝐹𝑛 

1 1 6 8 11 89 16 987 

2 1 7 13 12 144 17 1597 

3 2 8 21 13 233 18 2584 

4 3 9 34 14 377 19 4181 

5 5 10 55 15 610 20 6765 

 

Table of the First 20 Lucas Numbers (𝑳𝟏 = 𝟏, 𝑳𝟐 = 𝟑) 

n 𝐿𝑛 n 𝐿𝑛 n 𝐿𝑛 n 𝐿𝑛 

1 1 6 18 11 199 16 2207 

2 3 7 29 12 322 17 3571 

3 4 8 47 13 521 18 5778 

4 7 9 76 14 843 19 9349 

5 11 10 123 15 1364 20 15127 
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6.3 Lemmas 

 

Lemma 6.3.1 (Quadratic Reciprocity): If p and q are distinct odd primes, then (
𝑝

𝑞
) (

𝑞

𝑝
) = (−1)

𝑝−1
2

 ∙ 
𝑞−1

2  

Proof 

Omitted, see [7, pgs. 186-87]  

∎ 

Lemma 6.3.2: For p an odd prime, 𝑟 ∈ 𝑍 we have that 2𝐹𝑝+𝑟 ≡ (
𝑝

5 
) 𝐿𝑟 + 𝐹𝑟(mod 𝑝). Note that 

here we define 𝐿𝑟 as the Lucas sequence (see definitions above).  

Proof (from [1]) 

Clearly, 𝐿𝑟 ≡ 𝐹𝑟(mod 2) 

∴ 0 ≡ −𝐿𝑟 + 𝐹𝑟(mod 2) 

∴ 2𝐹2+𝑟 ≡ −𝐿𝑟 + 𝐹𝑟(mod 2) 

∴ 2𝐹2+𝑟 ≡ (
2

5
) 𝐿𝑟 + 𝐹𝑟(mod 2) and the statement holds for 𝑝 = 2 

Thus, we may assume p is odd.  

Similar to the Binet Formula for Fibonacci, the Lucas numbers can be shown to have the 

formula 𝐿𝑛 = (
1+√5

2
)

𝑛

+ (
1−√5

2
)

𝑛

   

By selecting 𝑛 = 𝑝 + 𝑟 in the Binet Formula we have  

𝐹𝑝+𝑟 =
1

2𝑝+𝑟√5
((1 + √5)

𝑝+𝑟
− (1 − √5)

𝑝+𝑟
) 

To ease notation, we allow (1 + √5)
𝑠

= 𝑎𝑠 + 𝑏𝑠√5 

Note that this implies (1 − √5)
𝑠

= 𝑎𝑠 − 𝑏𝑠√5 

It also implies 𝑎𝑠 =
(1+√5)

𝑠
+(1−√5)

𝑠

2
= 𝐿𝑠 ∙ 2𝑠−1 and 𝑏𝑠 = 𝐹𝑠 ∙ 2𝑠−1 

Table of the First 20 Values of the Mobius Function 𝝁(𝒏) 

n 𝜇(𝑛) n 𝜇(𝑛) n 𝜇(𝑛) n 𝜇(𝑛) 

1 1 6 1 11 -1 16 0 

2 -1 7 -1 12 0 17 -1 

3 -1 8 0 13 -1 18 0 

4 0 9 0 14 1 19 -1 

5 -1 10 1 15 1 20 0 
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Therefore, 𝐹𝑝+𝑟 =
1

2𝑝+𝑟√5
((1 + √5)

𝑝
(𝑎𝑟 + 𝑏𝑟√5) − (1 − √5)

𝑝
(𝑎𝑟 − 𝑏𝑟√5)) 

Using the binomial theorem,  

𝐹𝑝+𝑟 =
1

2𝑝+𝑟√5
((𝑎𝑟 + 𝑏𝑟√5)(∑ (

p

k
) (√5)

𝑘
𝑝

𝑘=0

) − (𝑎𝑟 − 𝑏𝑟√5)(∑ (
p

k
) (−√5)

𝑘
𝑝

𝑘=0

)) 

=
1

2𝑝+𝑟√5
(𝑎𝑟 ∑ (

p
k

) (√5)
𝑘

𝑝

𝑘=0

+ 𝑏𝑟√5 ∑ (
p
k

) (√5)
𝑘

𝑝

𝑘=0

− 𝑎𝑟 ∑ (
p
k

) (−√5)
𝑘

𝑝

𝑘=0

− 𝑏𝑟√5 ∑ (
p
k

) (−√5)
𝑘

𝑝

𝑘=0

) 

=
1

2𝑝+𝑟√5
(𝑎𝑟 ∑((

p

k
) (√5)

𝑘
− (

𝑝

𝑘
) (−√5)

𝑘
)

𝑝

𝑘=0

+ 𝑏𝑟√5 ∑((
p

k
) (√5)

𝑘
− (

𝑝

𝑘
) (−√5)

𝑘
)

𝑝

𝑘=0

) 

=
1

2𝑝+𝑟√5
(𝑎𝑟 ∑ (

p

k
) (√5)

𝑘
(1 − (−1)𝑘)

𝑝

𝑘=0

+ 𝑏𝑟√5 ∑ (
p

k
) (√5)

𝑘
(1 + (−1)𝑘)

𝑝

𝑘=0

) 

Now note that 𝑝|(p
k
) 𝑓𝑜𝑟 𝑘 = 1 … 𝑝 − 1 and therefore  

𝐹𝑝+𝑟 ≡
1

2𝑝+𝑟√5
(𝑎𝑟(√5)

𝑝
(1 − (−1)𝑝) + 2𝑏𝑟√5 + 𝑏𝑟√5(√5)

𝑝
(1 + (−1)𝑝)) (mod 𝑝) 

Since p is odd,  

𝐹𝑝+𝑟 ≡
1

2𝑝+𝑟√5
(𝑎𝑟(√5)

𝑝
(1 − (−1)) + 2𝑏𝑟√5) (mod 𝑝) 

 ≡
1

2𝑝+𝑟−1
(𝑎𝑟(√5)

𝑝−1
+ 𝑏𝑟) (mod 𝑝) 

∴ 2𝑝+𝑟−1𝐹𝑝+𝑟 ≡ 𝑎𝑟(√5)
𝑝−1

+ 𝑏𝑟  (mod 𝑝) 

∴ 2𝑝+𝑟−1𝐹𝑝+𝑟 ≡ 𝑎𝑟(5)
𝑝−1

2 + 𝑏𝑟  (mod 𝑝) 

Using the Corollary from [7, pg. 172], this implies 

2𝑝+𝑟−1𝐹𝑝+𝑟 ≡ 𝑎𝑟 (
p

5
) + 𝑏𝑟 (mod 𝑝) 

Using quadratic reciprocity (Lemma 6.3.1), it follows that 

2𝑝+𝑟−1𝐹𝑝+𝑟 ≡ 𝑎𝑟 (
5

p
) + 𝑏𝑟  (mod 𝑝)  

Using the fact that 𝑎𝑠 =
(1+√5)

𝑠
+(1−√5)

𝑠

2
= 𝐿𝑠 ∙ 2𝑠−1 and 𝑏𝑠 = 𝐹𝑠 ∙ 2𝑠−1 we get that 

2𝑝+𝑟−1𝐹𝑝+𝑟 ≡ 𝐿𝑟 ∙ 2𝑟−1 (
5

𝑝
) + 𝐹𝑟 ∙ 2𝑟−1 (mod 𝑝)  

∴ 2𝑝𝐹𝑝+𝑟 ≡ 𝐿𝑟 (
5

𝑝
) + 𝐹𝑟 (mod 𝑝)  
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And applying the corollary from [7, pg. 88], we get 2𝐹𝑝+𝑟 ≡ 𝐿𝑟 (
5

𝑝
) + 𝐹𝑟 (mod 𝑝)               ∎ 

Lemma 6.3.3 (Mobius Inversion Formula): Let F and f be two number theoretic functions related 

by the formula  

𝐹(𝑛) = ∏ 𝑓(𝑑)

 

𝑑|𝑛

 

Then 𝑓(𝑛) = ∏ 𝐹 (
𝑛

𝑑
)

𝜇(𝑑)
 

𝑑|𝑛

 

Proof 

The analogous sum proof is given in [7, pgs. 113-15] and the proof can be adapted to fit this 

situation.  

∎ 

Lemma 6.3.4 (Pascal’s Identity): (𝑛
𝑘

) = (𝑛−1
𝑘−1

) + (𝑛−1
𝑘

) 

Proof (from [21, pg. 152]) 

(
𝑛 − 1

𝑘 − 1
) + (

𝑛 − 1

𝑘
) =

(𝑛 − 1)!

(𝑘 − 1)! (𝑛 − 𝑘)!
+

(𝑛 − 1)!

𝑘! (𝑛 − 1 − 𝑘)!
 

 

=
𝑘(𝑛 − 1)!

𝑘! (𝑛 − 𝑘)!
+

(𝑛 − 𝑘)(𝑛 − 1)!

𝑘! (𝑛 − 𝑘)!
 

 

=
(𝑘 + 𝑛 − 𝑘)(𝑛 − 1)!

𝑘! (𝑛 − 𝑘)!
 

 

=
𝑛(𝑛 − 1)!

𝑘! (𝑛 − 𝑘)!
 

 

=
𝑛!

𝑘! (𝑛 − 𝑘)!
 

 

= (
𝑛

𝑘
) 

∎ 

Lemma 6.3.5: 2𝑛−1 = (𝑛
0

) + (𝑛
2

) + ⋯ 

Proof (by induction) 

When 𝑛 = 1 we have 2𝑛−1 = 1 and (𝑛
0

) + (𝑛
2

) + ⋯ = (1
0
) + (1

2
) + ⋯ = 1 and the statement 

holds. 

Assume the statement is true for some natural number 𝑛.  
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First, assume n is odd.  

Note that (𝑛
0

) + (𝑛
2

) + (𝑛
4

) + ⋯ + ( 𝑛
𝑛−1

) = (𝑛
𝑛

) + ( 𝑛
𝑛−2

) + ⋯ + (𝑛
1

) using the fact that 

(𝑛
𝑘

) = ( 𝑛
𝑛−𝑘

) 

Now let us examine (𝑛+1
0

) + (𝑛+1
2

) + (𝑛+1
4

) + ⋯ + (𝑛+1
𝑛+1

) 

This equals ( 𝑛
−1

) + (𝑛
0

) + (𝑛
1

) + (𝑛
2

) + (𝑛
3

) + (𝑛
4

) + ⋯ + (𝑛+1
𝑛+1

)  by Lemma 6.3.4 

= 2𝑛−1 + ( 𝑛
−1

) + (𝑛
1

) + (𝑛
3

) + ⋯ + (𝑛
𝑛

)  

= 2𝑛−1 + (𝑛
1

) + (𝑛
3

) + ⋯ + (𝑛
𝑛

)  

= 2𝑛−1 + (𝑛
0

) + (𝑛
2

) + ⋯ + ( 𝑛
𝑛−1

) by the note above 

= 2𝑛−1 + 2𝑛−1 

= 2(2𝑛−1) 

= 2𝑛  

The proof is similar when n is even.  

∎ 

 

Lemma 6.3.6 (Euclidean Algorithm): This is a process for determining gcd(𝑎, 𝑏). First, divide 𝑎 

by 𝑏 to obtain the unique 𝑞 and 𝑟 such that 𝑎 = 𝑞𝑏 + 𝑟 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑟 < 𝑏. Then divide 𝑏 by 𝑟 to 

obtain 𝑞1 and 𝑟1 such that 𝑏 = 𝑞1𝑟 +  𝑟1 𝑤ℎ𝑒𝑟𝑒 0 ≤  𝑟1 < 𝑟. Continue dividing and obtaining the 

statements 𝑟𝑘 = 𝑞2+𝑘𝑟1+𝑘 + 𝑟2+𝑘 𝑤ℎ𝑒𝑟𝑒 0 ≤  𝑟2+𝑘 < 𝑟1+𝑘 until 𝑟2+𝑘 = 0. It then follows that 

𝑟1+𝑘 = 𝑔𝑐𝑑(𝑎, 𝑏).  

Proof 

Omitted, see [7, pgs. 26-27] 

∎ 

 

Lemma 6.3.7: 𝐹𝑛+5𝑡 > 10𝑡𝐹𝑛 

Proof (by induction, from [14, 16]) 

First, we will show the lemma is true for 𝑡 = 1 

By the definition of Fibonacci numbers we have 𝐹𝑛 = 2𝐹𝑛−2 + 𝐹𝑛−3 

Thus 𝐹𝑛+5 = 𝐹𝑛+4 + 𝐹𝑛+3 

= 2𝐹𝑛+3 + 𝐹𝑛+2 

= 3𝐹𝑛+2 + 2𝐹𝑛+1 

= 5𝐹𝑛+1 + 3𝐹𝑛 
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= 8𝐹𝑛 + 5𝐹𝑛−1 

= 13𝐹𝑛−1 + 8𝐹𝑛−2 

= 21𝐹𝑛−2 + 13𝐹𝑛−3 

> 20𝐹𝑛−2 + 10𝐹𝑛−3 

> 10(2𝐹𝑛−2 + 𝐹𝑛−3) 

= 10𝐹𝑛 

Therefore the lemma holds at 𝑡 = 1.  

Assume the lemma holds for some natural number 𝑡.  

𝐹𝑛+5(𝑡+1) = 𝐹𝑛+5𝑡+5 

= 𝐹𝑛+5𝑡+4 + 𝐹𝑛+5𝑡+3 

= 2𝐹𝑛+5𝑡+3 + 𝐹𝑛+5𝑡+2 

= 3𝐹𝑛+5𝑡+2 + 2𝐹𝑛+5𝑡+1 

= 5𝐹𝑛+5𝑡+1 + 3𝐹𝑛+5𝑡 

= 8𝐹𝑛+5𝑡 + 5𝐹𝑛+5𝑡−1 

= 13𝐹𝑛+5𝑡−1 + 8𝐹𝑛+5𝑡−2 

= 21𝐹𝑛+5𝑡−2 + 13𝐹𝑛+5𝑡−3 

> 20𝐹𝑛+5𝑡−2 + 10𝐹𝑛+5𝑡−3 

> 10(2𝐹𝑛+5𝑡−2 + 𝐹𝑛+5𝑡−3) 

= 10𝐹𝑛+5𝑡 

> 10(10𝑡𝐹𝑛) 

= 10𝑡+1𝐹𝑛   

∎ 

Lemma 6.3.8: 𝐹𝑛 has at least k digits for 5(𝑘 − 1) < 𝑛 ≤ 5𝑘 

Proof (by induction on k, from [14, 16]) 

By inspection, we can see that the statement holds true for 𝑘 = 1.  

Now we assume the statement holds true for some natural number k.  

Let n be such that 5𝑘 < 𝑛 ≤ 5𝑘 + 5 

Therefore 5𝑘 − 5 < 𝑛 − 5 ≤ 5𝑘 and we know 𝐹𝑛−5 has at least k digits  

By Lemma 6.3.7, we know 10𝑡𝐹𝑛 < 𝐹𝑛+5𝑡 and therefore 10𝑡𝐹𝑛−5 < 𝐹𝑛+5(𝑡−1) 

We choose 𝑡 = 1 and it follows that 10𝐹𝑛−5 < 𝐹𝑛 
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Since 𝐹𝑛−5 has at least k digits we conclude that 𝐹𝑛 has at least 𝑘 + 1 digits  

∎ 

 

Note that by this lemma, for 𝑛 ∈ (5𝑘 − 5 , 5𝑘] it follows that 𝐹𝑛 ≥ 𝑘 and since 𝑛 ≤ 5𝑘 we know 

that 𝐹𝑛 ≥ 𝑛/5 

 

Lemma 6.3.9: The Fibonacci sequence (mod m) is periodic.  

Proof (from [28]) 

Modulo m a term will be equivalent to some value from 0 to 𝑚 − 1, or one of m possible 

values 

Therefore, when adding two terms (mod m) we can have 𝑚2 possible outcomes.  

Since this is a finite number of outcomes, we can guarantee that at some point the pairs will 

repeat and the sequence will start over again.  

∎ 

Lemma 6.3.10: (
𝐹𝑗−1 𝐹𝑗

𝐹𝑗 𝐹𝑗+1
) = (

0 1
1 1

)
𝑗

 

Proof (by induction on j, from [22]) 

If 𝑗 = 1 then (
𝐹𝑗−1 𝐹𝑗

𝐹𝑗 𝐹𝑗+1
) = (

0 1
1 1

) and the statement holds.  

Now assume the statement holds for some natural number 𝑗.  

Let us examine (
𝐹𝑗 𝐹𝑗+1

𝐹𝑗+1 𝐹𝑗+2
). 

(
𝐹𝑗 𝐹𝑗+1

𝐹𝑗+1 𝐹𝑗+2
) = (

𝐹𝑗 𝐹𝑗−1 + 𝐹𝑗

𝐹𝑗+1 𝐹𝑗 + 𝐹𝑗+1
) 

 = (
𝐹𝑗−1 𝐹𝑗

𝐹𝑗 𝐹𝑗+1
) (

0 1
1 1

) 

= (
0 1
1 1

)
𝑗

(
0 1
1 1

) by the induction hypothesis 

= (
0 1
1 1

)
𝑗+1

 

∎ 

Lemma 6.3.11: 𝐹𝑖𝑠+𝑗 ≡ 𝐹𝑗𝐹𝑠+1
𝑖(mod 𝐹𝑠) 

Proof (from [22]) 
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From Lemma 6.3.10 we have (
𝐹𝑎+𝑏−1 𝐹𝑎+𝑏

𝐹𝑎+𝑏 𝐹𝑎+𝑏+1
) = (

0 1
1 1

)
𝑎+𝑏

 

 = (
0 1
1 1

)
𝑎

(
0 1
1 1

)
𝑏

 

 = (
𝐹𝑎−1 𝐹𝑎

𝐹𝑎 𝐹𝑎+1
) (

𝐹𝑏−1 𝐹𝑏

𝐹𝑏 𝐹𝑏+1
) 

Therefore 𝐹𝑎+𝑏 = 𝐹𝑎−1𝐹𝑏 + 𝐹𝑎𝐹𝑏+1 

Let 𝑎 = 𝑗 and 𝑏 = 𝑖𝑠 and we have that 𝐹𝑖𝑠+𝑗 = 𝐹𝑗−1𝐹𝑖𝑠 + 𝐹𝑗𝐹𝑖𝑠+1 

Since 𝐹𝑠|𝐹𝑖𝑠 by Lemma 6.3.12, it follows that 𝐹𝑖𝑠+𝑗 ≡ 𝐹𝑗𝐹𝑖𝑠+1(mod 𝐹𝑠) 

From Lemma 6.3.10 we have (
𝐹𝑎𝑏−1 𝐹𝑎𝑏

𝐹𝑎𝑏 𝐹𝑎𝑏+1
) = (

0 1
1 1

)
𝑎𝑏

 

= ((
0 1
1 1

)
𝑎

)
𝑏

 

= (
𝐹𝑎−1 𝐹𝑎

𝐹𝑎 𝐹𝑎+1
)

𝑏

 

Therefore (
𝐹𝑎𝑏−1 𝐹𝑎𝑏

𝐹𝑎𝑏 𝐹𝑎𝑏+1
) ≡ (

𝐹𝑎−1 0
0 𝐹𝑎+1

)
𝑏

(mod 𝐹𝑎) 

≡ (
𝐹𝑎−1

𝑏 0

0 𝐹𝑎+1
𝑏) (mod 𝐹𝑎) 

Let 𝑎 = 𝑠 and 𝑏 = 𝑖 

It follows that 𝐹𝑖𝑠+1 ≡ (𝐹𝑠+1)𝑖 (mod 𝐹𝑠) 

Thus, 𝐹𝑖𝑠+𝑗 ≡ 𝐹𝑗(𝐹𝑠+1)𝑖 (mod 𝐹𝑠) 

∎ 

Lemma 6.3.12: 𝐹𝑛|𝐹𝑙 iff 𝑛|𝑙 (for 𝑛, 𝑙 > 2) 

Proof (from [22, 29]) 

(⇐) 

Let 𝑙 = 𝑛𝑘 

Note that by the Binet Formula, 𝐹𝑛 =
(

1+√5

2
)

𝑛

−(
1−√5

2
)

𝑛

√5
 and 𝐹𝑛𝑘 =

(
1+√5

2
)

𝑛𝑘

−(
1−√5

2
)

𝑛𝑘

√5
 

Since we know (𝑎 − 𝑏)|(𝑎𝑘 − 𝑏𝑘), choose 𝑎 = (
1+√5

2
)

𝑛

 and 𝑏 = (
1−√5

2
)

𝑛

and the result 

follows. 

(⇒) 

Assume 𝐹𝑛|𝐹𝑙 
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Let 𝑙 = 𝑛𝑘 + 𝑚 where 𝑚 < 𝑛 

By Lemma 6.3.11 we have that 𝐹𝑛𝑘+𝑚 ≡ 𝐹𝑚𝐹𝑛+1
𝑘 (mod 𝐹𝑛) 

∴ 𝐹𝑙 ≡ 𝐹𝑚𝐹𝑛+1
𝑘 (mod 𝐹𝑛) 

Since 𝐹𝑛|𝐹𝑙 we have 𝐹𝑛|𝐹𝑚𝐹𝑛+1
𝑘  

By the note at the end of Theorem 3.4.2 we know that (𝐹𝑛, 𝐹𝑛+1) = 1 

Thus 𝐹𝑛|𝐹𝑚 

Since 𝑚 < 𝑛 we have 𝑚 = 0 

Therefore 𝑙 = 𝑛𝑘 and we conclude 𝑛|𝑙 

∎ 

Lemma 6.3.13: 2𝐹𝑛+𝑚 = 𝐹𝑛𝐿𝑚 + 𝐹𝑚𝐿𝑛 

Proof (from [23]) 

Using the Binet formulas for 𝐹𝑛 and 𝐿𝑛 (see Lemma 6.3.2) we obtain  

𝐹𝑛𝐿𝑚 =
1

√5
((

1 + √5

2
)

𝑛

− (
1 − √5

2
)

𝑛

)((
1 + √5

2
)

𝑚

+ (
1 − √5

2
)

𝑚

) 

=
1

√5
((

1 + √5

2
)

𝑛+𝑚

+ (
1 + √5

2
)

𝑛

(
1 − √5

2
)

𝑚

− (
1 − √5

2
)

𝑛

(
1 + √5

2
)

𝑚

− (
1 − √5

2
)

𝑛+𝑚

) 

𝐹𝑚𝐿𝑛 =
1

√5
((

1 + √5

2
)

𝑚

− (
1 − √5

2
)

𝑚

)((
1 + √5

2
)

𝑛

+ (
1 − √5

2
)

𝑛

) 

=
1

√5
((

1 + √5

2
)

𝑛+𝑚

+ (
1 + √5

2
)

𝑚

(
1 − √5

2
)

𝑛

− (
1 − √5

2
)

𝑚

(
1 + √5

2
)

𝑛

− (
1 − √5

2
)

𝑛+𝑚

) 

Therefore,  

𝐹𝑛𝐿𝑚 + 𝐹𝑚𝐿𝑛 =
1

√5
(2 (

1 + √5

2
)

𝑛+𝑚

− 2 (
1 − √5

2
)

𝑛+𝑚

) 

This is clearly equivalent to 2𝐹𝑛+𝑚.  

∎ 

 

Lemma 6.3.14: gcd(𝐹𝑙 , 𝐹𝑘) = 𝐹gcd (𝑙,𝑘) 

Proof (from [23]) 

To ease notation, let ℎ = gcd(𝐹𝑙 , 𝐹𝑘) and 𝑑 = gcd(𝑙, 𝑘) 

Therefore ℎ|𝐹𝑙 and ℎ|𝐹𝑘 and also 𝑑|𝑙 and 𝑑|𝑘 

By [7, pg 21] we know ∃𝑟, 𝑠 ∈ ℤ such that 𝑑 = 𝑟𝑘 + 𝑠𝑙 
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By Lemma 6.3.12, 𝐹𝑘|𝐹𝑛𝑘 for natural numbers 𝑛, 𝑘 

∴ 𝐹𝑙|𝐹𝑠𝑙  and 𝐹𝑘|𝐹𝑟𝑘 

Using the fact that ℎ|𝐹𝑙 and 𝐹𝑙|𝐹𝑠𝑙 we know that ℎ|𝐹𝑠𝑙 

Using the fact that ℎ|𝐹𝑘 and 𝐹𝑘|𝐹𝑟𝑘 we know that ℎ|𝐹𝑟𝑘 

By Lemma 6.3.13 we have 𝐹𝑟𝑘𝐿𝑠𝑙 + 𝐹𝑠𝑙𝐿𝑟𝑘 = 2𝐹𝑟𝑘+𝑠𝑙 = 2𝐹𝑑 

Since ℎ|𝐹𝑟𝑘𝐿𝑠𝑙 and ℎ|𝐹𝑠𝑙𝐿𝑟𝑘 we know ℎ|2𝐹𝑑 

If h is odd then clearly ℎ|𝐹𝑑 

If h is even then since ℎ = gcd(𝐹𝑙 , 𝐹𝑘) it follows that 𝐹𝑙 and 𝐹𝑘 are even and thus 𝐹𝑠𝑙  and 𝐹𝑟𝑘 

are even 

Note that 𝐹𝑛 and 𝐿𝑛 always have the same parity and therefore 𝐿𝑠𝑙 and 𝐿𝑟𝑘 are even 

Therefore, using Lemma 6.3.13, we have 
1

2
𝐹𝑟𝑘𝐿𝑠𝑙 +

1

2
𝐹𝑠𝑙𝐿𝑟𝑘 = 𝐹𝑟𝑘+𝑠𝑙 = 𝐹𝑑 which we may 

write as 𝐹𝑟𝑘 ∙
1

2
𝐿𝑠𝑙 + 𝐹𝑠𝑙 ∙

1

2
𝐿𝑟𝑘 = 𝐹𝑑  

Since ℎ|𝐹𝑟𝑘 and ℎ|𝐹𝑠𝑙 we have that ℎ|(𝐹𝑟𝑘 ∙
1

2
𝐿𝑠𝑙 + 𝐹𝑠𝑙 ∙

1

2
𝐿𝑟𝑘) and ℎ|𝐹𝑑 

Now since 𝑑|𝑙 and 𝑑|𝑘 we know 𝐹𝑑|𝐹𝑙 and 𝐹𝑑|𝐹𝑘  by Lemma 6.3.12 

Therefore 𝐹𝑑|gcd(𝐹𝑙 , 𝐹𝑘) = ℎ 

∎ 

 

Lemma 6.3.15: 𝐹𝑛+1
2 − 𝐹𝑛+1𝐹𝑛 − 𝐹𝑛

2 = (−1)𝑛 

Proof (by induction, from [19]) 

Let 𝑛 = 1. Then 𝐹2
2 − 𝐹2𝐹1 − 𝐹1

2 = 1 − 1 − 1 = −1 and the formula holds.  

Now suppose the formula holds for some n.  

Let us examine 𝐹𝑛+2
2 − 𝐹𝑛+2𝐹𝑛+1 − 𝐹𝑛+1

2. 

This is (𝐹𝑛 + 𝐹𝑛+1)2 − (𝐹𝑛 + 𝐹𝑛+1)𝐹𝑛+1 − 𝐹𝑛+1
2 by the sequence definition 

Reducing gives −(𝐹𝑛+1
2 − 𝐹𝑛+1𝐹𝑛 − 𝐹𝑛

2) 

Using the induction hypothesis, this is −(−1)𝑛 = (−1)𝑛+1 

∎ 

 

Lemma 6.3.16: ∀𝑥, 𝑦 ∈ 𝑍+, if 𝑦2 − 𝑥𝑦 − 𝑥2 = 1 then ∃𝑛 ∈ 𝑍+ such that 𝑥 = 𝐹2𝑛 and 𝑦 = 𝐹2𝑛+1 

Proof (by induction on x, from [19]) 

If 𝑥 = 1 then 𝑦 = 2 and 𝑛 = 1 and the statement holds.  
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Now suppose the statement holds for some natural number 𝑥 > 1 

It follows that 𝑦 ≥ 2.  

Assume the statement holds for all pairs (𝑥’, 𝑦’)  

Set 𝑥’ = 2𝑥 − 𝑦 and 𝑦’ = 𝑦 − 𝑥  

Since 𝑦 ≥ 2 it follows that (𝑥 + 1)2 = 𝑥2 + 2𝑥 + 1 ≤ 𝑥2 + 𝑥𝑦 + 1 = 𝑦2 

Therefore 𝑦 > 𝑥 + 1 > 𝑥 

Since 𝑥 > 1 it follows that  

𝑦2 = 𝑥𝑦 + 𝑥2 + 1 < 𝑥𝑦 + 𝑥2 + 𝑥 = 𝑥𝑦 + (𝑥 + 1)𝑥 ≤ 𝑥𝑦 + 𝑥𝑦 = 2𝑥𝑦 

Therefore 𝑦 < 2𝑥 

Thus 0 < 𝑥′ < 𝑥 and 0 < 𝑦′ 

 ∴ 𝑦′2 − 𝑥′𝑦′ − 𝑥′2 = (𝑦 − 𝑥)2 − (𝑦 − 𝑥)(2𝑥 − 𝑦) − (2𝑥 − 𝑦)2 = 𝑦2 − 𝑥𝑦 − 𝑥2 = 1 

The induction hypothesis implies that ∃ 𝑚 ∈ 𝑍+ such that 𝑥′ = 𝐹2𝑚  𝑎𝑛𝑑 𝑦′ = 𝐹2𝑚+1.  

Then 𝑥 = 𝑥′ + 𝑦′ = 𝐹2𝑚 + 𝐹2𝑚+1 = 𝐹2(𝑚+1) and 𝑦 = 𝑦′ + 𝑥 = 𝐹2𝑚+1 + 𝐹2𝑚+2 = 𝐹2(𝑚+1)+1 

and we have found 𝑛 = 𝑚 + 1 such that 𝑥 = 𝐹2𝑛 𝑎𝑛𝑑 𝑦 = 𝐹2𝑛+1  

∎ 

 

Lemma 6.3.17: ∀𝑥, 𝑦 ∈ 𝑍+, if 𝑦2 − 𝑥𝑦 − 𝑥2 = −1 then ∃𝑛 ∈ 𝑍+ such that 𝑥 = 𝐹2𝑛−1 and 𝑦 =

𝐹2𝑛 

Proof (from [19]) 

Let x and y be given.  

Then  

(𝑥 + 𝑦)2 − (𝑥 + 𝑦)(𝑦) − 𝑦2 = 𝑥2 + 2𝑥𝑦 + 𝑦2 − 𝑥𝑦 − 𝑦2 − 𝑦2 

 = −(𝑦2 − 𝑥𝑦 − 𝑥2) 

 = −(−1) 

 = 1 

Based on Lemma 6.3.16, ∃ a positive integer n such that y= 𝐹2𝑛 and 𝑥 + 𝑦 = 𝐹2𝑛+1 

Therefore, 𝑥 = 𝐹2𝑛+1 − 𝐹2𝑛 = 𝐹2𝑛−1 and 𝑦 = 𝐹2𝑛 

∎ 

Lemma 6.3.18: y is Fibonacci iff ∃𝑥 ∈ 𝑍+ such that (𝑦2 − 𝑥𝑦 − 𝑥2)2 = 1 

Proof (from [19]) 
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(⟹) 

If 𝑦 = 𝐹1 = 1 then let 𝑥 = 1 and the statement holds.  

Assume that 𝑦 = 𝐹𝑛 for some 𝑛 ≥ 2  

Let 𝑥 = 𝐹𝑛−1 

By Lemma 6.3.15, it follows that 𝑦2 − 𝑥𝑦 − 𝑥2 = (−1)𝑛−1 

Therefore, (𝑦2 − 𝑥𝑦 − 𝑥2)2 = 1 

 

(⟸) 

Assume ∃𝑥 ∈ 𝑍+ such that (𝑦2 − 𝑥𝑦 − 𝑥2)2 = 1 where 𝑦 ∈ 𝑍+ 

It follows that (𝑦2 − 𝑥𝑦 − 𝑥2) = ±1 

By Lemmas 6.3.16 and 6.3.17, ∃𝑛 ∈ 𝑍+ such that 𝑦 = 𝐹2𝑛 𝑜𝑟 𝐹2𝑛+1 and we may conclude y 

is Fibonacci.  

∎ 

Lemma 6.3.19: If 𝑥, 𝑦 ∈ 𝑍+then 𝑦2 − 𝑥𝑦 − 𝑥2 ≠ 0 

Proof (by contradiction, from [19]) 

Assume 𝑦2 − 𝑥𝑦 − 𝑥2 = 0 

Then 4𝑦2 − 4𝑥𝑦 − 4𝑥2 = 0 

∴ (2𝑦 − 𝑥)2 − 5𝑥2 = 0 

∴ (2𝑦 − 𝑥)2 = 5𝑥2 

∴ (2𝑦 − 𝑥)2 = (√5𝑥)2 

Since 2𝑦 − 𝑥 ∈ ℚ  it follows that √5𝑥 ∈ ℚ, and by extension, √5 ∈ ℚ, a contradiction 

∎ 

Lemma 6.3.20: 𝑌3,𝑗 = 𝐹2𝑗 and 𝑌2,𝑗 = 𝑗 where 𝑌 is defined as in Theorem 3.7.1.  

Proof (by strong induction on j) 

First, we will show that 𝑌3,𝑗 = 𝐹2𝑗 .  

Using the definition from Theorem 3.7.1 we have that  𝑌3,0 = 0, 𝑌3,1 = 1 and 𝑌3,𝑗 = 3𝑌3,𝑗−1 −

𝑌3,𝑗−2 

Momentarily ignoring the extraneous subscript we have 𝑌0 = 0, 𝑌1 = 1 and 𝑌𝑗 = 3𝑌𝑗−1 − 𝑌𝑗−2 

We now note that 𝐹0 = 𝑌0 = 0 (since 𝐹0 = 𝐹2 − 𝐹1 = 0) and 𝐹2 = 𝑌1 = 1    

Assume the statement holds for all natural numbers less than some 𝑗 ≥ 1 

Now examine 𝑌𝑗+1 

𝑌𝑗+1 = 3𝑌𝑗 − 𝑌𝑗−1 by definition  
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= 3𝐹2𝑗 − 𝐹2𝑗−2 by induction hypothesis 

= 2𝐹2𝑗 + (𝐹2𝑗 − 𝐹2𝑗−2) 

= 2𝐹2𝑗 + 𝐹2𝑗−1 

= (𝐹2𝑗 + 𝐹2𝑗−1) + 𝐹2𝑗 

= 𝐹2𝑗+1 + 𝐹2𝑗 

= 𝐹2𝑗+2 

Now we will prove that 𝑌2,𝑗 = 𝑗 

Using the definition from Theorem 3.7.1 we have that  𝑌2,0 = 0, 𝑌2,1 = 1 and 𝑌2,𝑗 = 2𝑌2,𝑗−1 −

𝑌2,𝑗−2 

We will again ignore the extraneous subscript.  

Clearly the statement holds at 𝑗 = 1 since 𝑌1 = 1 = 𝑗 

Assume the statement holds for all natural numbers less than some 𝑗 ≥ 1 

Now we will examine 𝑌𝑗+1 

𝑌𝑗+1 = 2𝑌𝑗 − 𝑌𝑗−1 by definition  

= 2𝑗 − (𝑗 − 1) by induction hypothesis 

= 𝑗 + 1 

∎ 

 

Lemma 6.3.21: Let 𝑌 be defined as in Theorem 3.7.1. For 𝑚 ≥ 2 ift (𝑚 − 1)𝑛−1 ≤ 𝑌𝑚,𝑛 < 𝑚𝑛 

Proof (by induction on n, from [22]) 

By [22] we know for 𝑚 ≥ 2 it holds that 𝑌𝑚,𝑛+1 > 𝑌𝑚,𝑛 ≥ 0 

If 𝑛 = 1 then the statement holds.  

Now assume that the statement holds for some 𝑛.  

It follows that 𝑌𝑚,𝑛+1 = 𝑚𝑌𝑚,𝑛 − 𝑌𝑚,𝑛−1 

= 𝑚𝑌𝑚,𝑛 − 𝑌𝑚,𝑛−1 + 𝑌𝑚,𝑛 − 𝑌𝑚,𝑛 

= (𝑚 − 1)𝑌𝑚,𝑛 + 𝑌𝑚,𝑛 − 𝑌𝑚,𝑛−1 

> (𝑚 − 1)𝑌𝑚,𝑛 

≥ (𝑚 − 1)𝑛 by the induction hypothesis 

Also, 𝑌𝑚,𝑛+1 = 𝑚𝑌𝑚,𝑛 − 𝑌𝑚,𝑛−1 

≤ 𝑚𝑌𝑚,𝑛 
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< 𝑚𝑛+1 by the induction hypothesis 

Thus (𝑚 − 1)𝑛 < 𝑌𝑚,𝑛+1 < 𝑚𝑛+1 and the statement holds for 𝑛 + 1 

∎ 

Lemma 6.3.22: If 𝐹𝑠
2|𝐹𝑞 then 𝐹𝑠|𝑞 

Proof (from [22]) 

Let 𝐹𝑠
2|𝐹𝑞 

By Lemma 6.3.12 we know that 𝑠|𝑞 

Let 𝑞 = 𝑠𝑡 

By [22, pg. 11] we know 𝐹𝑠𝑡 ≡ 𝑡𝐹𝑠𝐹𝑠+1
𝑡−1(mod 𝐹𝑠

2) 

Thus, 𝐹𝑞 ≡ 𝑡𝐹𝑠𝐹𝑠+1
𝑡−1(mod 𝐹𝑠

2)  

This, and the fact that 𝐹𝑠
2|𝐹𝑞 implies that 𝐹𝑠

2| 𝑡𝐹𝑠𝐹𝑠+1
𝑡−1 

∴ 𝐹𝑠| 𝑡𝐹𝑠+1
𝑡−1 

Since we know adjacent Fibonacci numbers are relatively prime by the note at the end of 

Theorem 3.4.2, we have (𝐹𝑠, 𝐹𝑠+1) = 1 and therefore 𝐹𝑠| 𝑡 

∴ 𝐹𝑠|𝑠𝑡 

∴ 𝐹𝑠|𝑞 

∎ 

 

Lemma 6.3.23: Let 𝑌 be defined as in Theorem 3.7.1. If 𝑚 ≥ 2, 𝑗2 − 𝑚𝑗𝑘 + 𝑘2 = 1, and 𝑗 ≤ 𝑘 

then ∃𝑖 such that 𝑗 = 𝑌𝑚,𝑖 and 𝑘 = 𝑌𝑚,𝑖+1 

Proof  

Omitted, see [22, pg. 15] 

∎ 

Lemma 6.3.24: Let 𝑌 be defined as in Theorem 3.7.1. When 𝑚 ≥ 2, if 𝑙|𝑚 − 2 then 𝑌𝑚,𝑗 ≡

𝑗(mod 𝑙) and if 𝑑|𝑚 − 3 then 𝑌𝑚,𝑗 ≡ 𝐹2𝑗(mod 𝑑) 

Proof (from [22]) 

By [22] we note that 𝑌𝑚,𝑗 ≡ 𝑌𝑎,𝑗(mod 𝑚 − 𝑎) 

Choose 𝑎 = 2  

By Lemma 6.3.20 it follows that 𝑌𝑚,𝑗 ≡ 𝑗(mod 𝑚 − 2) 

If 𝑙|𝑚 − 2 then 𝑌𝑚,𝑗 ≡ 𝑗(mod 𝑙) 

Now choose 𝑎 = 3 
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By Lemma 6.3.20 it follows that 𝑌𝑚,𝑗 ≡ 𝐹2𝑗(mod 𝑚 − 3) 

If 𝑑|𝑚 − 3 then 𝑌𝑚,𝑗 ≡ 𝐹2𝑗(mod 𝑑) 

∎ 

Lemma 6.3.25: 𝐹2((2𝑘+1)𝑖+𝑗) ≡ 𝐹2𝑗(mod 𝐹2𝑘 + 𝐹2𝑘+2)  

Proof (from [22]) 

A lemma from [22, pg.12] shows that (
𝐹2(2𝑘+1)−1 𝐹2(2𝑘+1)

𝐹2(2𝑘+1) 𝐹2(2𝑘+1)+1
) ≡ 𝐼(mod𝐹2𝑘 + 𝐹2𝑘+2) where 

𝐼 is the identity matrix.  

Using reasoning similar to that in Lemma 6.3.11 we determine  

(
𝐹2((2𝑘+1)𝑖+𝑗)−1 𝐹2((2𝑘+1)𝑖+𝑗)

𝐹2((2𝑘+1)𝑖+𝑗) 𝐹2((2𝑘+1)𝑖+𝑗)+1
) = (

𝐹2(2𝑘+1)−1 𝐹2(2𝑘+1)

𝐹2(2𝑘+1) 𝐹2(2𝑘+1)+1
)

𝑖

(
𝐹2𝑗−1 𝐹2𝑗

𝐹2𝑗 𝐹2𝑗+1
) 

Therefore (
𝐹2((2𝑘+1)𝑖+𝑗)−1 𝐹2((2𝑘+1)𝑖+𝑗)

𝐹2((2𝑘+1)𝑖+𝑗) 𝐹2((2𝑘+1)𝑖+𝑗)+1
) = (

𝐹2𝑗−1 𝐹2𝑗

𝐹2𝑗 𝐹2𝑗+1
) (mod 𝐹2𝑘 + 𝐹2𝑘+2) and we 

may conclude 𝐹2((2𝑘+1)𝑖+𝑗) ≡ 𝐹2𝑗(mod 𝐹2𝑘 + 𝐹2𝑘+2)  

∎ 

Lemma 6.3.26: If 𝑗 ≤ 2𝑘 + 1 then 𝐹2(2𝑘+1−𝑗) ≡ −𝐹2𝑗(mod 𝐹2𝑘 + 𝐹2𝑘+2) 

Proof 

Omitted, see [22, pg. 13] 

∎ 

Lemma 6.3.27: If 𝐹𝑠|𝑡 then 𝐹𝑠
2|𝐹𝑠𝑡 

Proof (from [22]) 

Using methods similar to those in Lemma 6.3.11, [22] shows that 𝐹𝑠𝑡 ≡ 𝑡𝐹𝑠𝐹𝑠+1
𝑡−1(mod 𝐹𝑠

2) 

Assume 𝐹𝑠|𝑡 

It follows that 𝐹𝑠
2|𝐹𝑠𝑡 and therefore 𝐹𝑠𝑡 ≡ 0(mod 𝐹𝑠

2) 

We conclude 𝐹𝑠
2|𝐹𝑠𝑡 

∎ 

Lemma 6.3.28: Let 𝑌 be defined as in Theorem 3.7.1. Then 𝑌𝑚,𝑗
2 − 𝑚𝑌𝑚,𝑗𝑌𝑚,𝑗+1 + 𝑌𝑚,𝑗+1

2 = 1 

Proof (by induction on j, from [22]) 

If 𝑗 = 0 then 𝑌𝑚,0
2 − 𝑚𝑌𝑚,0𝑌𝑚,1 + 𝑌𝑚,1

2 = 0 − 0 + 12 = 1 and the statement holds 

Now assume the statement holds for some natural number 𝑗 

𝑌𝑚,𝑗+1
2 − 𝑚𝑌𝑚,𝑗+1𝑌𝑚,𝑗+2 + 𝑌𝑚,𝑗+2

2 
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= 𝑌𝑚,𝑗+1
2 − 𝑚𝑌𝑚,𝑗+1(𝑚𝑌𝑚,𝑗+1 − 𝑌𝑚,𝑗) + (𝑚𝑌𝑚,𝑗+1 − 𝑌𝑚,𝑗)

2
 

= 𝑌𝑚,𝑗+1
2 − (𝑚𝑌𝑚,𝑗+1)

2
+ 𝑚𝑌𝑚,𝑗+1𝑌𝑚,𝑗 + (𝑚𝑌𝑚,𝑗+1 − 𝑌𝑚,𝑗)

2
 

= 𝑌𝑚,𝑗+1
2 − (𝑚𝑌𝑚,𝑗+1)

2
+ 𝑚𝑌𝑚,𝑗+1𝑌𝑚,𝑗 + (𝑚𝑌𝑚,𝑗+1)

2
− 2𝑚𝑌𝑚,𝑗+1𝑌𝑚,𝑗 + (𝑌𝑚,𝑗)

2
 

= 𝑌𝑚,𝑗+1
2 − 𝑚𝑌𝑚,𝑗+1𝑌𝑚,𝑗 + (𝑌𝑚,𝑗)

2
 

= 1 by the induction hypothesis 

∎ 

Lemma 6.3.29: 
 𝐹𝑛

𝐹𝑛−1
≤ 2 

Proof 

Clearly 𝐹𝑛−2 ≤ 𝐹𝑛−1 

Therefore 𝐹𝑛−1 +  𝐹𝑛−2 ≤ 2 𝐹𝑛−1 

By definition 𝐹𝑛 =  𝐹𝑛−1 +  𝐹𝑛−2 and therefore 𝐹𝑛 ≤ 2 𝐹𝑛−1 

Conclude 
 𝐹𝑛

𝐹𝑛−1
≤ 2 

∎ 

Lemma 6.3.30: 𝑗 ≤ 𝐹2𝑗 

Proof 

By Lemmas 6.3.20 and 6.3.21 we see that 2𝑗−1 ≤ 𝑌3,𝑗 = 𝐹2𝑗 

Note that for sufficiently large 𝑗 we have 𝑗 < 2𝑗−1 

We conclude that for sufficiently large 𝑗 it holds that 𝑗 ≤ 𝐹2𝑗 

∎ 
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