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ABSTRACT 

Resource limitation drives fitness-related decisions and constrains the ability of 

organisms to invest in energetically demanding life history stages. Environmental factors 

(e.g., temperature) play an important role in affecting resource availability and quality 

which can downstream effect the ability of individuals to invest in energetically 

demanding life history stages, including reproduction. Human-induced climate change is 

generating increasingly variable environmental conditions, impacting the abundance and 

distribution of prey items and therefore the ability of individuals to successfully 

reproduce, and these effects are especially pronounced in the Arctic. However, it is 

currently unknown whether Arctic organisms possess the ability to adjust foraging 

decisions and prey selection to overcome newly emerging environmental constraints. 

Quantifying stable isotopes in the tissues of consumers provides a minimally invasive 

method of inferring foraging niche; however, has yet to be validated as a method of 

predicting population-level resiliency to climate change. Seabirds are a useful system to 

test these linkages in because they are wide-ranging, predominantly oceanic-based 

group, reliant on marine-based resources and they are often widely distributed across 

polar regions. Using common eiders (Somateria mollissima), an Arctic diving seabird, as a 

model organism, this thesis examines the linkages between environmental variation, 

isotopic variation in foraging niche, and breeding parameters, as a means of predicting 

the resiliency of Arctic seabirds to the effects of climate change. Using a long term data 

set from a focal breeding colony, I found significant inter-annual and inter-breeding stage 

variation in isotopes and isotopic niche. Although environmental cues only weakly 

predicted variation in isotopic niche, variation in isotopic niche was a key predictor of 

breeding probability. Given that variation in isotopic niche has fitness-related impacts, I 

then took a species-wide approach to assess inter-colony variation in isotopic niche by 

sampling 8 breeding colonies across the distribution of eiders. While common eiders are 

a generalist species overall, individual colonies had significantly different foraging 

strategies and levels of generalization. Taken together, these results suggest that 

common eiders are likely to be resilient in the face of climate change, but some colonies 

may be more at risk from the ongoing effects of climate change. This thesis provides the 

first steps towards developing a minimally invasive method for foraging flexibility as a 

means of assessing the resiliency of Arctic seabirds to climate change. 
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Chapter 1 : 

General Introduction 

Roles of foraging flexibility in overcoming resource limitation  

Resources are essential for life history investment in all species, and the availability of resources 

is often highly influenced by environmental conditions (Stephens and Krebs, 1986; Newton, 

1998). To adapt to the constraints associated with environmentally-induced resource limitation, 

species have evolved differing anatomical, behavioural or physiological phenotypes to obtain 

and process resources more readily or efficiently (Stearns, 1992; West-Eberhard, 1989). This 

phenotypic variation in turn shapes species assemblages and therefore trophic dynamics, as 

some species are able to take advantage of a wide array of resources (i.e., generalists), while 

others have a smaller breadth of dietary decisions (i.e., specialists; Kassen, 2002; Ryall & Fahrig, 

2006). For example, Darwin’s finches are a group of birds found on a few islands in the South 

Pacific where the combination of exposure to harsh conditions, resource limitation, and 

competition, have selected for a diversity of anatomical morphologies and therefore speciation 

(Grant & Estes, 2009; Grant & Grant 2002). One foraging behavioural phenotype that has been 

shown to have impacts on fitness (Ronconi & Burger, 2008) and can inform conservation 

measures (Granadeiro et al., 1998; Miller et al., 2009; Nakano et al., 1999) is foraging flexibility; 

when individuals or populations can flexibly adjust to novel environmental conditions and 

unpredictable resource abundance. For instance, common murre (Uria aalge) forage 

predominantly on capelin (Mallotus villosus) but have been shown to flexibly adjust their 

foraging behaviour by increasing their daily foraging distance to search out capelin or by locating 

larger prey when capelin are low in abundance (Burke and Montevecchi, 2009). In addition to 

foraging flexibility impacting fitness (Hamer et al., 2007) it also varies across species, 

populations, and individuals (Boggs, 1992). As such, phenotypes associated with foraging 

flexibility are under selection, and individuals must adaptively switch between phenotypes to 

match expected variation in environmental conditions (Piersma & Drent, 2003). This flexibility 

provides organisms important fitness-related adaptive functions to then invest in life history 

stages (Miner et al., 2005).  

 An important constraint to consider when investigating the degree of foraging flexibility 

found within a species and individual is the level of foraging niche overlap (inter- and intra-

specific competition) among competing individuals and species (Kronfeld-Schor & Dayan, 2003; 
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Schoener, 1974). An organism’s foraging niche is the range of prey items a consumer can 

acquire within the range of environments it can forage (Davis & Smith, 2001; Sabo & Holmes, 

1983), which can often impact and shape the population dynamics of consumers and prey 

(Bolnick et al., 2012; Holt, 2009; Schoener, 1989). As such, there is an evolutionary benefit to 

being flexible in foraging decisions, which allows consumers to avoid niche overlap and 

competition to take advantage of particular prey items which are inaccessible to other 

consumers (Robinson & Wilson, 1998), or prey items that lack variability over time or space 

(Garthe et al., 2007). As such, species that forage on a limited number of prey items, which 

often fill a specific ecological niche, are known as foraging specialists, whereas individuals that 

forage more generally on multiple prey items are considered foraging generalists (Strickler, 

1979). Indeed, investigating variation in foraging strategies among individuals and populations 

can provide critical information on the level of generalist vs specialist foraging behaviours 

(Garthe et al., 2007) which can then be used to estimate how resilient a population or species 

may be to fluctuations in resource abundance (Paredes et al., 2012; Perez et al., 2016; Smith & 

Reeves, 2012), and therefore their adaptive capacity to respond to rapid environmental change 

(Sydeman et al., 2012) .  

Using stable isotopes and isotopic niches to assess resiliency to change 

Trophic dynamics are the interactions between consumers and their prey (Lindeman, 1942; 

Ware & Thomson, 2005) (where typically higher order consumers forage on lower-order prey) 

and can reflect the response of individuals and populations, and therefore species and even 

entire ecosystems, to environmentally-driven variation in resources (van der Putten et al., 

2004). Importantly, these trophic estimations can provide key quantitative information on a 

species or population’s adaptive capacity to respond to environmental change (Moon & Stiling, 

2002; Moore et al., 2004). The ability to quantify this resilience to rapid environmental change 

has been particularity important in recent decades, as climate change is directly and indirectly 

impacting how trophic dynamics impact key ecological processes (Post et al., 2009). Many 

foundational dietary studies relied on highly invasive sampling techniques (i.e., destructive 

sampling of individuals), which is problematic for obtaining large enough sample sizes to make 

reliable assessments of adaptive responses to change, as well as for studying species-at-risk.  

The quantification of stable isotopes in organismal tissues has emerged over the past 

three decades as a means of overcoming these limitations to investigate trophic dynamics and 
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foraging decisions (Boecklen et al., 2011; Hobson & Clark, 1992a,b; Newsome et al., 2007; 

Petersen & Fry, 1987). Typically, elements (e.g., Nitrogen and Carbon) will have a light and heavy 

form, which is dependent on their atomic mass (i.e., number of neutrons) and these are referred 

to as isotopes. Both light and heavy isotopes are incorporated into the body of organisms 

through ingestion and inhalation, with heavier isotopes fractionating from lighter forms and 

remaining in the body of consumers (Rundel et al., 1989). Isotopic fractionation is measured as a 

ratio of heavy to light forms and expressed in delta (δ) notation as parts per thousand (Petersen 

& Fry, 1987). This rate of fractionation, or incorporation, depends on the metabolic rate of 

specific tissues, where metabolically inert tissues (e.g., bone, hair, and nails) stop incorporating 

isotopes once fully grown, while metabolic activity keeps tissues turning over stable isotopes 

(Hobson & Clark, 1992b). As such, isotopes can be used as chemical markers which contain 

information regarding trophic dynamics, and when an organism has ingested certain resources 

based on an understanding of the isotopic discrimination factors of tissues (also called “isotopic 

fractionation”, “isotopic enrichment”, “diet-to-tissue discrimination”, or “trophic discrimination 

factors”, hereby referred to as DF) (Gannes et al., 1997; Wolf et al., 2009). Many studies have 

investigated the inter-tissue turnover rates of multiple tissues and have found that these values 

vary greatly across species, life history stages, and even isotopes (Hobson and Clark, 1992a). For 

example, nitrogen is found in two forms in the environment, with 15N:14N fractionating from diet 

to consumer in a stepwise rate of typically 2-5‰ across species (Fry, 1998; Wada et al., 1987). 

Therefore, nitrogen provides information on the trophic level in which a consumer is foraging 

(Mingawa & Wada, 1984), with nitrogen values increasing in higher trophic levels (Hobson & 

Welch, 1992; Vander Zanden et al., 1997). However, research has shown that the DF of δ15N can 

be influenced by multiple extrinsic and intrinsic factors (Hobson et al., 2002). For example, some 

species of seabirds use a fasting strategy during incubation, where lipid stores are often 

completely depleted, and the fasting individual begins to utilize their protein stores which can 

skew their δ15N signatures (Hobson et al., 1993). Currently, there is little information on the rate 

of enrichment of δ15N during increased energetic demand (i.e., incubation), making comparisons 

of δ15N values across life history stages challenging and better-suited to comparisons within a 

life history stage. In contrast, carbon is typically found as 13C and 12C, and vary significantly by 

the primary producers forming the foundation of a food web (Boecklen et al., 2011). As a result, 

carbon (13C: 12C) fractionates a negligible amount, 0-2‰, therefore making them a strong proxy 

for the location in which a consumer is foraging (i.e., inshore versus offshore, pelagic versus 
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benthic) (Hobson & Clark, 1992a). In this way, combining nitrogen and carbon stable isotope 

analyses provides a window into predator-prey dynamics within food-webs, and can provide 

dietary incorporation across time, instead of a single point (Hobson et al., 1994; Hussey et al., 

2014). It is important to note that DF values can play an important role in the interpretation of 

isotopic signatures, and inter-specific variation in DFs can be extremely variable (Robbins et al., 

2005). One of the largest gaps in our current understanding of isotopic ecology is generating 

species-specific DFs, largely due to the need for rigorous lab-based captive studies (Federer et 

al., 2010). As such, many studies tend to use an average value of 3.4, or will use a DF from a 

closely related species. This can be problematic, and results should be interpreted with care 

since research has shown that even Bayesian models are sensitive to these values (Bond & 

Diamond, 2011). 

The development of isotopic niche theory has prompted a resurgence of interest in the 

field of isotope ecology (Newsome et al., 2007), as isotopes are able to reflect dietary niche 

characteristics and comparisons within and across individuals (Vander Zanden et al., 1997). 

Importantly, isotopic niche has been shown to reflect foraging niche (Bearhop et al., 2004; 

Newsome et al., 2007), and act as a predictor of individual- and population-level responses to 

climate change and disrupted trophic webs (Hobson, 1994; Martinez del Rio et al., 2009). In 

addition, multiple analytical tools have been produced to calculate isotopic niche metrics 

(Jackson et al. 2011; Layman et al. 2007). These tools can produce metrics which represent the 

size and placement of a niche or group of individuals within isotopic-space, or the distribution of 

individuals within a niche (i.e., degree of spacing). Although the use of stable isotopes has 

proven a powerful means by which to assess trophic positioning, there remains a level of 

quantitative uncertainty in the values produced and as such stable isotopes in general should be 

interpreted with care (Martinez del Rio et al., 2009). Specifically, although many of these 

isotopic niche metrics can be used to make comparisons at multiple scales, they do not account 

for environmental impacts on primary producers’ isotopic values (i.e., temperature effects on 

phytoplankton, Ventura et al., 2008; Bond & Jones 2009). This variation in primary producers is 

referred to as baseline isotopic variation and should not be left unaccounted for when 

comparing isotopic signatures across multiple scales (Boecklen et al., 2011). 
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Effects of climate change on resources and reproduction  

Over the past 60 years, climate has been significantly altered due to human-induced increases in 

greenhouse gas emissions, resulting in an overall warming effect (IPCC, 2018). Associated 

increases in temperatures are causing a cascade of biotic and abiotic effects, especially with 

respect to oceanic patterns and conditions, and an overall reduction in organismal biomass 

(Edwards & Richardson, 2004). Novel abiotic trends caused by climate change are especially 

prevalent in the northern hemisphere, particularly in the Arctic (Hinzman et al., 2005; Post et al., 

2009), although the scale of change varies substantially across the Arctic (Cohen et al., 2014). 

This variation is largely driven by a reduction in the albedo effect (Winton, 2006) in which snow 

and ice cover usually acts as a large reflective surface, sending large amounts of ultraviolet 

radiation back into the atmosphere. However, as temperatures continue to increase and snow 

and ice cover decreases, the rate of change in the Arctic is further increased as the albedo effect 

diminishes (Johannessern et al., 2004).  

Due to the rapid pace of environmental change in the Arctic, it is important to 

determine how individuals and their associated populations are affected, which will provide a 

means of assessing the ability of species to adapt to this rapid change (Moore et al., 2008). To 

assess the broad impacts of climate change both within and across species, environmental 

indices are often used, and have been shown to be strongly correlated with localized 

environmental conditions (Stenseth et al., 2003). For example, the North Atlantic Oscillation 

(NAO) describes the oscillation of atmospheric mass between the Arctic and subtropical Atlantic 

Ocean (Hurrell & Deser, 2010) and has been validated in several studies as a key predictor of 

environmental impact on organisms (Descamps et al., 2010; Ottersen et al., 2001). The NAO 

index shifts between positive and negative phases, which describes the dynamics of pressure 

gradients in this region, and the corresponding environmental and oceanographic conditions 

that result from these changes. During a positive NAO phase, the pressure gradient over the 

North Atlantic is large, causing increased wind speeds and moisture transport along the Eastern 

Atlantic and Arctic, and fewer storms in the Western Atlantic Ocean. As such, a positive NAO is 

associated with colder temperatures increased storm activity especially during the winter 

(December to March) in the Eastern Atlantic and Arctic (Osborn, 2006). The shifts between 

positive and negative NAO phases have historically been predictable; however, in recent 

decades, NAO trends are inconsistent with simulated models and therefore less predictable, 
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which is reflective of the impacts of climate change on oceanographic cycles (Gillett et al., 2003). 

Although this makes interpreting associations between organismal responses and NAO values 

challenging, NAO still provides a strong metric of localized environmental conditions. As such, 

NAO provides a relevant proxy for the environmental conditions that Eastern Arctic species 

experience across life history stages (i.e., from wintering to migration to breeding) in the face of 

climate change (Hüppop et al., 2003; Ottersen et al., 2001; Weyhenmeyer et al., 1999). With 

increased levels of environmental variation, it is important to investigate how Arctic species are 

responding to these novel conditions, which has been a pressing question among ecologists over 

the past decade. Specifically, given that a wide range of taxa are facing substantial population 

declines, researchers are interested to determine whether organisms can adjust their life history 

stage decisions in pace with the ongoing changes in resource availability and unpredictable 

environmental conditions generated from climate change (Visser et al., 1998; Berteaux et al., 

2004; Callaghan et al., 2004; Post & Forchhammer, 2008; Gustine et al., 2017). 

Seabirds as useful models to assess resiliency to environmental change  

Arctic species and ecosystems are at-risk due to environmental changes centered around 

climate change; however, little is currently known about the ability of these species to respond 

mechanistically to this new environmental norm, especially given the degree of heterogeneity in 

environmental change across the circumpolar Arctic (Ford et al., 2006). A useful way to begin 

examining the mechanisms at the heart of these broad-scale effects, and by extension the 

resiliency of Arctic biota to climate change, may be to quantify variation across individuals and 

populations in the limited resources used to fuel important life history stages, determine 

whether these resource patterns are influenced by climatic variation, and then assess whether 

environmentally-driven resource patterns predict key life history decisions. The ability to 

researchers to generate models to make directed, but broadly applicable inferences about how 

we expect ecologically similar Arctic-breeding species respond to environmental variability is 

now critical given the current rate of environmental change in the Arctic (Descamps et al., 2017; 

Legagneux et al. 2012, 2014). Large, top order vertebrates can be some of the best models to 

test these questions, as they are highly constrained by lower order trophic interactions, and 

their life-histories are often evolutionarily tied to the timing of changes in key environmental 

conditions (i.e., prey emergence) (Dell et al., 2013). As such, these organisms are constrained by 

multiple extrinsic factors, and stage-specific responses can be examined to determine their 
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ultimate impact on key life history decisions. Of these, seabirds can be ideal model organisms to 

assess resiliency to climate change for many reasons (Grémillet et al., 2009; Moe et al., 2009). 

Firstly, seabirds have a global distribution, with many being colonial nesting, with a strong nest 

site fidelity, making the collection of multiple samples across time, easy to accomplish (Furness, 

2012). Second, seabirds are often at the top of their food-web, making them dependent on low 

trophic-interactions (Cury et al., 2011; Santora et al., 2011), and their life histories are 

associated with environmental variation (Wolf et al., 2009; Piatt & Sydeman, 2007; Sydeman et 

al., 2012). Further, as seabirds typically have both extensive foraging and migratory spatial 

ranges, which exposes them to a range of different environmental conditions, they can provide 

key broad information on the condition of the environment (Wolf et al., 2010). Finally, seabirds 

are often long-lived and as a result, have been shown to be robust to sampling and 

disturbances. Unfortunately, many seabird species are now at risk, with the potential root-cause 

being rapid environmental change across key foraging locations (Einoder, 2009). Given the rapid 

change occurring in the Arctic, it is highly pertinent to assess seabirds in an Arctic system, 

especially long-lived colonial seaducks, because they meet many of the criteria listed above for 

seabirds in general (Mallory et al., 2010). 

Study species 

Common eider (Somateria mollissima; hereafter eider) are a long-lived, diving seaduck and 

broadly distributed across the northern hemisphere (Goudie et al., 2000). Eiders spend most of 

their annual cycle on oceanic waters, generally only coming to land to breed (Goudie et al., 

2000). Northern populations typically nest in large congregations on rocky coastlines and islands 

(Robertson, 1995), whereas more Southern populations often exhibit less colonial nesting 

behaviours and will often nest solitarily in tall grass or near trees along coastlines and on island 

(Gerell, 1985). Eiders typically forage on benthic macroinvertebrates, such as bivalves and 

crustaceans, diving up to 30 meters to forage (Heath & Gilchrist, 2010; Heath et al., 2006), but 

are also known to forage on amphipods and benthic fish (e.g., sculpin) (Goudie & Ankney, 1986; 

Guillemette et al., 1993). Nonetheless, there is limited information on the diet of eiders within 

and across populations, or whether foraging decisions and differences in prey selection vary 

across their range.  

In preparation for breeding, access to resources are critical for female eiders. Following 

arrival on the breeding grounds females must gain sufficient body condition to initiate 
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reproduction (i.e., yolk follicle recruitment) (Hennin et al. 2015, 2018). The faster females can 

meet this condition threshold, the earlier they can initiate follicle recruitment and laying which 

has fitness-related benefits; previous research has shown that earlier laying dates result in both 

larger clutch sizes (Descamps et al., 2011a; Hennin et al., 2018) and higher duckling recruitment 

back into the population (Love et al., 2010; Descamps et al., 2011b). Finally, because females are 

the sole incubators of their clutch and incubate continually for approximately 24 days while 

fasting (Parker & Holm, 1990), they must also acquire enough stored lipid reserves prior to 

incubation to ensure that they can successfully complete incubation to hatch their ducklings. 

Therefore, the careful accumulation and management of resources is critical in pre-breeding 

female eiders. 

Despite the significant resource accumulation required to successfully invest in 

reproduction, we know little about how prey selection and foraging decisions may vary leading 

up to laying, or how environmental variation may play a role in driving foraging decisions at the 

individual or population levels. The few dietary studies that have been conducted suggest that 

eiders (as a species) have an overall generalist diet, which is largely limited to nearshore, 

shallow regions, consisting mostly of sedentary macro invertebrates (Guillemette, 2001; Player, 

1971; Sénéchal et al., 2011). However, given the substantial variation that exists in 

environmental and oceanographic conditions across the range of eiders, it is likely that their diet 

is more variable than currently assumed. In addition, the ability to forage following arrival from 

migration is likely highly constrained in many populations by the timing of ice breakup on the 

breeding grounds impacting resource availability, thereby affecting downstream variation in 

breeding investment decisions both within and across individuals (Love et al., 2010; Jean-

Gagnon et al., 2018). With climate change having such varied effects across the northern 

hemisphere (IPCC, 2018), including potential bottom-up trophic disruptions (Beukama & Dekker, 

2005), there may be direct impacts of climate change on the distribution and abundance of 

eider prey items, with indirect downstream effects on eider populations (Sydeman et al., 2012). 

It is therefore useful to assess both intra- and inter-colony variation in dietary characteristics of 

eiders as a means of predicting whether different populations might differentially cope with 

changing environments across their range. Further, estimating the degree of niche diversity 

within and across populations (i.e., specialist versus generalist foraging strategies) has the 

potential to inform researchers of the relative resiliency of different eider populations to the 

effects of environmental change. These relationships have yet to be broadly investigated in any 
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Arctic vertebrate at this level and results have the potential to uncover key responses that 

influence fitness in the context of a rapidly changing Arctic. 

Thesis goals and chapter objectives 

The overall goal of my thesis is to use isotopic niche dynamics within and across common eider 

breeding colonies to predict their potential resiliency to further environmental change. To 

address this overall goal, my first data chapter (Chapter 2) uses a long-term dataset from a focal 

breeding colony to relate inter-annual and inter-breeding stage variation in isotopic niche 

parameters to environmental conditions and downstream breeding parameters. My second 

data chapter (Chapter 3) extends these concepts and takes a broader-scale geographic approach 

to quantify inter-colony isotopic variation, and then examine whether this variation can be 

linked to environmental conditions. Finally, in my discussion chapter (Chapter 4) I synthesize my 

findings to address key gaps in: 1) how flexible foraging strategies may allow species to invest in 

reproduction; 2) the relationships between foraging decisions and environmental conditions 

across multiple scales; and 3) the overall ability of stable isotopes to predict resiliency. Overall, 

the thesis is designed to assess whether environmentally-driven variation in resources 

influences the breeding decisions that affect population resiliency in Arctic consumers. 
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Chapter 2 : 

Estimating resiliency to environmental change in an Arctic seabird using inter-annual and 

breeding stage related variation in isotopic niche dynamics  

Introduction 

Resource limitation is one of the greatest constraints influencing the ability of individuals to 

maximize fitness (Newton, 1998; Stephens & Krebs, 1986). A combination of variability in abiotic 

environmental variables that effect affect the quantity and quality of resources, as well as the 

ability of organisms to access those resources, therefore plays an important role in resource-

based limitations on fitness and population demography (Boggs, 1992). As such, natural 

selection has shaped species-, population- and even individually-specific phenotypes (i.e., 

morphology, physiology, behaviour) to optimize foraging performance to exploit unoccupied 

dietary niches (Stephens & Krebs, 1986). Overall then, the degree to which organisms can 

navigate environmental variability to locate, exploit, and assimilate limited resources plays a 

major role in shaping variation of the life history strategies that ultimately maximize fitness 

(Stearns, 1989).  

One of the most important and energetically demanding life history stages that also 

influences variation in fitness is reproduction (Drent and Daan, 1980). Individuals that can 

overcome extrinsic constraints, such as environmentally-driven, intra- or inter-annual variation 

in resource limitation, are predicted to meet the energetic demands associated with breeding 

and successfully reproduce (Daunt et al., 2006). However, in recent decades, there has been 

growing evidence suggesting that breeding decisions (i.e., breeding phenology) are being 

disrupted (Both et al., 2006; Visser & Both, 2005) and that there are long-term negative effects 

on breeding success(Root et al., 2003). A unifying, mechanistic hypothesis for this effect is that 

increased levels of environmental variation are resulting in a global reduction in prey biomass 

(Watson et al., 1998), while simultaneously altering prey distribution and diversity (Bakun et al., 

2015). Together, these effects on prey bases are expected to affect the foraging success of 

individuals and their resulting ability to reproduce and rear offspring successfully, generating 

downstream impacts on population demography (Murawski 1993; Post and Forchhammer 2008; 

Selden et al., 2018; Simmonds & Isaac 2007; Tulloch et al., 2019; Watson et al., 1998).  



 

18 
 

Climate change is a global phenomenon, generating increases in annual temperatures, 

altering oceanographic cycles, and prompting a new global extinction (IPCC, 2018). Importantly, 

the timing of key resource abundance has shifted with warming air temperatures and a 

shortened non-breeding season for many species (Aubry et al., 2013; Hjort, 1914). Migratory 

species may be particularly sensitive to these changes since they have been selected to time 

their movements to their breeding grounds to match historically predictable timing in peak prey 

abundances. However, the timing of migration is now often mismatched to the timing of peak 

prey abundance causing downstream negative effects on breeding outcomes (Durant et al., 

2007; Post & Forchhammer, 2008; Visser et al., 1998). In addition to changes in prey phenology, 

the global environmental conditions that often drive this match in timing are also often less 

consistent, further affecting the abilities of consumers to obtain the resources needed to 

optimally time life history events to maximize fitness (Tøttrup et al., 2008). The Arctic is 

currently showing amplified rates of climate change and subsequent alterations in prey 

abundance and diversity (Gaston et al., 2009; Screen & Simmonds, 2010). Indeed, Arctic regions 

are warming at a rate 2-4% faster than anywhere else on earth (Wassmann et al., 2011), with 

significant declines in the extent of sea ice (Ciancio et al., 2016; Comiso et al., 2008; Hoegh-

Guldberg & Bruno, 2010; Johannessen et al., 2004), generating many bottom-up trophic 

disruptions (Boeitus et al., 2013; Jones et al., 2014; Meier et al., 2014; Wassmann et al., 2011). 

However, whether Arctic species have the ability to proximately keep pace with the current rate 

of environmental change, and therefore whether they ultimately possess the adaptive capacity 

to be flexible in the associated foraging strategies that optimize breeding decisions, has become 

an important topic of investigation (Descamps et al., 2017; Kovacs et al., 2010; Moore & 

Huntington, 2011). Changes in the abundance and phenology of primary producers, such as 

phytoplankton, have already been linked to declines in key prey species in Arctic food webs 

(e.g., Arctic cod) (Gradinger & Bluhm, 2004). As such, quality prey items that individuals or 

populations have historically relied on, are in decline or their distributions have shifted, now 

making them an unreliable food source (Both et al., 2006). These rapid and unpredictable shifts 

in prey demography has made it more challenging for consumers to acquire the necessary 

resources that enable them to optimize reproductive investment and maximize breeding 

success (Seyboth et al., 2016; Ward et al., 2009).  

A potentially useful tool to assess and measure prey choice by predators and by proxy, 

potentially shifting prey availability in response to environmental change, are stable isotopes 
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(Herman et al., 2017; Hobson, 1992a,b, 1999; Newsome et al., 2007) as they have been 

validated for the use in representing the foraging niche of an individual or population (Bearhop 

et al. 2004). A foraging niche represents both resource and habitat usage of a consumer, and 

this metric can therefore provide insight into key fitness-related decisions that individual, 

populations and even entire species make (Alatalo, 1982; Bolnick et al., 2003; Hutchinson, 1957; 

Vandermeer, 1972). Stable isotopes of carbon (δ13C - used to infer habitat usage) and nitrogen 

(δ15N - used to infer resource usage) can together provide a non-lethal method of quantifying 

the foraging niche of multiple individuals or populations, and provides a framework to 

investigate links between resource usage and extrinsic constraints, such as environmental 

variability. For example, larger foraging niches are expected to represent a greater diversity of 

foraging decisions that should then translate into an increased likelihood of breeding success 

during times of environmental change (Seamon & Adler 1996). Overall then, quantifying isotopic 

niche dynamics has been proposed as a useful means of increasing our ability to predict the 

downstream consequences of environmentally-driven changes in resource bases on 

reproductive parameters and fitness, and as a consequence, the resiliency of populations to 

further change (Polito et al., 2015).  

Here, we investigate whether environmental variability can be used to predict inter-

annual and breeding stage related variation in isotopic niche dynamics in a high trophic, marine 

Arctic vertebrate species, and whether this variation predicts variability in key breeding 

decisions. We test these questions using a 9-consecutive-year (2010-2018) dataset collected 

from over 700 females in a diving seabird, the common eider (Somateria mollissima; hereafter 

eiders) a species which has a wide-spread distribution across the Arctic. A focus on Arctic-

breeding eiders to examine these questions in is strategic for a number of reasons. First, the 

ability of this species to invest in reproduction is contingent on their capacity to meet a 

minimum body condition threshold, which is expected to be significantly influenced by adequate 

access to environmentally-limited resources (Jean-Gagnon et al. 2018; Love et al. 2010). Second, 

eiders use a mixed, capital-income breeding strategy and after arriving on the breeding grounds, 

females must forage to fatten to not only fuel follicle growth, but also to successfully complete 

their 24-day incubation fasting period (Gouette et al., 2010). Third, some of the mechanisms 

underlying variation in the timing of reproductive investment have been characterized (Hennin 

et al. 2015), providing a framework to interpret links between environmental variation, isotopic 

variation and breeding investment. For example, previous research has shown that females 
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which fatten more quickly during pre-breeding are able to lay earlier (Hennin et al. 2017; 2019), 

and that earlier-laying females are able to lay larger clutch sizes (Descamps et al. 2011; Hennin 

et al. 2018) and recruit more ducklings back into the breeding population (Love et al. 2010). 

Considering that prey items differ in nutritional value and composition, which can impact 

fattening rates (Paiva et al., 2013), the isotopic niche within which females forage should 

therefore play an important role driving variation in reproductive investment. Fourth, recent 

research has also demonstrated that variability in ice conditions (linked to broad environmental 

metrics; e.g., North Atlantic Oscillation (NAO) and ambient local temperatures) impacts access 

to foraging areas and the decision to breed, again mediated through impacts on individual body 

condition (Jean-Gagnon et al. 2018; Love et al. 2010). Overall, the need for females to fuel the 

energetics of breeding and the demonstrated impact of environmental variation in impacting 

access to foraging areas make this the ideal study system to link the influence of environmental 

variables to individual variation in isotopic niches and the influence isotopic niche has on key 

fitness-related life history decisions.  

Our first goal was to quantify isotopic niche dynamics (calculated using carbon (δ13C) 

and nitrogen (δ15N) isotopes) across years and key breeding stages from blood samples collected 

from over 700 females breeding at a colony on Mitivik Island, Nunavut, Canada (Bottitta, 1999; 

Love et al., 2010; Mosbech et al., 2006). Next we examined whether variation in broad climatic 

metrics could be used to predict inter-annual variation in isotopic niche. Since the energetic 

demands leading up to laying are highly variable and there are known changes in physiology 

(Hennin et al., 2015, 2018), which may also directly impact isotopic values (Hobson et al., 1993; 

Sénéchal et al., 2011), we then examined whether niche dynamics varied at a finer inter-

breeding-stage scale, by quantifying niche dynamics from pre-breeding, through yolk-follicle 

recruitment and leading up to laying (Hennin et al. 2015). Finally, to test whether variation in 

niche dynamics ultimately influences variation in actual breeding decisions, we related mean 

isotopic niche metrics to key fitness-related parameters known to influence fitness in this 

species (i.e., interval between arrival on the breeding grounds and laying, lay date, and breeding 

propensity; Descamps et al., 2011; Hennin et al., 2015, 2016, 2018; Love et al., 2010). Since ice 

conditions during the pre-breeding period at this colony are highly variable (Jean-Gagnon et al., 

2018; Love et al., 2010), and local environmental conditions are known to influence the foraging 

behaviour of eiders (Hobson, 1999; Paiva et al., 2013), we first predicted significant amounts of 

inter-annual variation in isotopic niche. We also predicted that this variation would be impacted 
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by variation in broad climatic variables. Specifically, in years with warmer winters, warmer 

springs, and higher overall ambient temperatures (i.e., higher Ta, +/- NAO) female eiders should 

be able to exploit a wider variety of prey items due to a greater degree of open water to forage 

in, resulting in the colony that year having a broader isotopic niche. Given that energetic 

management is critical in driving reproductive investment decisions in this species (Descamps et 

al., 2010; Hennin et al., 2015, 2016, 2018, 2019; Love et al., 2010; Sénéchal et al., 2011), we 

expected that isotopic values and niche characteristics would be influenced by the energetic 

demand associated with breeding stages (Hennin et al., 2015), and therefore that both would 

vary across breeding stages and have downstream effects on key breeding decisions (i.e., 

breeding propensity, laying date) (Paiva et al., 2013). Specifically, in years where the eider 

colony exhibits a large isotopic niche and therefore a more generalized foraging strategy, we 

expected birds to be able to fatten more quickly and therefore have a shorter interval between 

arrival and laying, an earlier laying date and higher colony-level breeding propensity. The overall 

aim of our approach was to examine whether we can use information on isotopic niche 

dynamics to improve our ability to assess whether this species possesses the adaptive capacity 

(i.e., resiliency) to respond to current and expected environmental change due to climate 

change.  

Methods 

Study system and breeding parameters  

Our research was conducted at Canada’s largest and longest monitored Arctic-nesting colony of 

common eiders, located at Mitivik Island, Nunavut, Canada (64°02ʹN, 81°47ʹW). Mitivik Island 

(MI) is a small (800 m X 400 m), low lying island (<8m elevation), situated off the coast of 

Southampton Island, within the East Bay Migratory Bird Sanctuary. Females breeding at this 

colony migrate from their wintering grounds off the West coast of Greenland and the Northern 

coast of Newfoundland and Labrador, Canada annually in May (Mosbech et al., 2006; Steenweg 

et al., 2017), arriving at Mitivik Island in early to mid-June, and laying their eggs in mid-June to 

early-July (Jean-Gagnon et al. 2018; Hennin et al. 2015). We captured eiders from 2010-2018, in 

mid-June using flight nets as they flew over the colony, and we timed capture of birds to 

coincide with the timing of the bird’s arrival at the breeding grounds (Descamps et al., 2010). 

Once captured, a blood sample was taken from the tarsal vein of females using a 1-mL 

heparinized syringe and 23G thin-wall, 0.5-inch needle. These samples were collected in tandem 
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with other studies examining baseline stress physiology (e.g., Hennin et al., 2016) and were 

therefore collected within 3 minutes of capture (Romero & Reed, 2005), although we do not 

expect any influence of capture stress on stable isotopes (Hobson et al., 1992). Samples were 

transferred to heparinized collecting tubes and kept cool for 2-6 hours. Samples were then 

centrifuged at 10,000 rpm for 10 minutes, plasma was separated from the red blood cells, and 

both components were frozen separately at -20°C until further processing. After blood 

sampling, females were banded with a government-issued metal band and alpha-numeric Darvic 

bands, then affixed with a unique combination of coloured and shaped nasal tag plastic discs. 

Nasal tags were threaded and tied through the nares (nostrils) using UV degradable 

monofilament to ensure they would allow individual identification within the season (see below) 

but fall off prior to fall migration. Although wing bar metrics have been used in other 

populations to assign age to nesting female birds, they are not a reliable measure of age in this 

breeding population (H. G. Gilchrist, unpublished) and we were therefore unable to assign age 

to our females. 

Reproductive parameters were collected annually from experienced observers tracking 

nasal-tagged females in the colony using standardized protocols and spotting-scopes from 7 

permanent blinds positioned around the periphery of the island (Table 1). Using these 

techniques, we were able to obtain accurate, individual data on breeding propensity, the delay 

between arrival at the colony and laying, and lay date which allowed us to calculate inter-annual 

colony-level means for these traits. Based on previous work categorizing the dynamics of 

breeding in this colony (see Hennin et al. 2015), birds captured 8 days or longer prior to laying 

were classified to be within the “pre-recruiting” (PR) stage (i.e., still fattening and not yet begun 

recruiting yolk follicles to produce eggs). Given the period of rapid follicle growth (RFG) stage 

(where birds have decided to invest in reproduction and are actively recruiting yolk follicles) in 

eiders has recently been estimated to be 7 days (Hennin et al., 2015), females captured between 

7 and 1 day before laying were categorized to be within the “rapid follicle growth” (RFG) stage. 

Any females captured and known to be laying that day (or before that day) were categorized as 

“laying” (LAY). Finally, given that females at this colony have high breeding site fidelity (Jean-

Gagnon et al. 2018), females that were captured and sampled, but not seen breeding at the 

colony within the given year, were considered non-breeders (NB). To facilitate inter-annual 

comparisons, we calculated relative arrival dates (RAD) and relative lay dates (RLD) for all 
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individuals (individual’s arrival and lay date relative to the median arrival and lay dates for the 

colony in a given year) (Lepage et al., 2000). The interval in days between capture and laying 

was calculated as the “delay before laying” (Hennin et al., 2018) and was also used to assign 

birds to a given breeding stage at the time of capture and sample collection (see Hennin et al., 

2015 for details). All work was conducted under University of Windsor Animal Utilization 

Protocol Permits (AUPP) 11-06 and 19-11 and Environment and Climate Change Canada Animal 

Care permit EC-PN-15-026. 

Environmental indices 

We assembled climatic variables previously shown to be predictive of storm activity and ice 

cover conditions that eiders face during the pre-breeding period while they are preparing to 

invest in reproduction (Table 3). The North Atlantic Oscillation (NAO) is a prominent pattern of 

atmospheric variation and an index of the severity of storms across the Eastern Canadian Arctic 

(Hurrell 1995). The NAO index is a commonly used proxy for broad environmental conditions, as 

its impact spans a wide area, and the relationship between temporal NAO values and energetic 

constraints has been validated in multiple seabird species (Hallett et al. 2004; Sandvik & 

Erikstad, 2008; Stenseth et al. 2003). Furthermore, the NAO overlaps with the annual 

distribution of females nesting at this colony (Mosbech et al. 2006; Descamps et al. 2010; 

Steenweg et al. 2017) and is therefore a relevant, broad scale environmental metric.  A positive 

NAO value represents high storm activity and low temperatures in the Eastern Canadian Arctic, 

which represents a metric of environmental conditions which eiders face during important life 

history stages, and the demography of key prey species (Reusch & Chapman, 1995). We 

calculated the average winter NAO (December-March), which has been shown to directly impact 

the arrival body condition of eiders breeding at MI (Descamps et al., 2010) and impacts the 

average spring NAO (April-July; pre-breeding conditions for eiders at MI). NAO values were 

obtained from the National Weather Service (https://www.cpc.ncep.noaa.gov/). As a proxy for 

localized environmental conditions, we also used ambient temperature (Ta) measured at the 

Coral Harbour Airport Weather Station (approximately 70 Km from the MI breeding colony). 

Within a given year we calculated the mean Ta based on the date that coincides with the date of 

isotopic incorporation. Since stable isotopes in eider plasma has a turnover rate of roughly 2 

days (see below), to capture the isotope incorporation date we used a conservative timeframe 

of 3 days pre-capture (Hahn et al., 2012; Hobson & Clark, 1993). We then calculated the average 
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Ta for a four-day window leading up to, and including, the isotope incorporation date and 

determined the mean Ta during that isotopic incorporation period.  

Stable isotope analysis, niche metrics, and interpretation 

Since the female eiders we catch are roughly 1.5-2 kg, and the half-life of plasma is around 3 

days (Hahn et al., 2012; Hobson & Clark, 1992), we therefore used collected plasma samples as 

they provide the opportunity to analyze the most recent isotopic niche space used by individuals 

(Hobson & Clark, 1992, Table 2. Stable Isotope analyses were based on previously validated 

techniques (see Hobson & Clark 1992 for details). Briefly, we freeze-dried 100 uL of plasma from 

each individual until achieving a constant mass (minimum of 78 hours). All samples were then 

ground into a homogenized, fine powder using a metal spatula. Since plasma is often high in 

lipids we then performed a lipid extraction for all plasma samples using a 2:1 

choloroform:methanol solution (based on Bligh and Dyer 1959). Post-lipid extraction, we used a 

fine-scale (4 digit) balance to weigh between 0.3-0.5 mg of each sample into individual 3.5x5 

mm tin capsules for δ13C and δ15N analysis.  

Analyses for plasma isotopes were conducted using continuous-flow isotope-ratio mass 

spectrometry (CFIRMS) at the Environment Canada Stable Isotope Hydrology and Ecology 

Research Laboratory in Saskatoon, Saskatchewan. Material was then combusted online using a 

Eurovector 3000 (Milan, Italy) elemental analyzer. We separated CO2 and N2 analyte gases 

resulting from the combustion of samples by gas chromatograph, and we introduced gases into 

a Nu Horizon triple-collector isotope-ratio mass-spectrometer (Nu Instruments, Wrexham, UK) 

via an open split and compared to a pure CO2 or N2 reference gas. Stable nitrogen (15N/14N) and 

carbon (13C/12C) isotope ratios were expressed in delta notation (δ), as parts per thousand 

deviation from the primary standards: atmospheric nitrogen and Vienna Pee Dee Belemnite 

(VPDB) carbonate standards, respectively.  

We used a bivariate approach to calculate the size of the isotopic niche for each year 

within the SIBER package (Jackson et al., 2011). The outputs we used from this model include 

mean next neighbor distance (MNND), maximum range of δ13C and δ 15N, and 40% standard 

ellipse area corrected for small sample size (SEAC). These metrics have been used in multiple 

studies as a proxy for foraging decisions, habitat usage, and to represent of how a population is 

responding to environmental perturbations (Herman et al., 2017; Layman et al., 2007; Le Bot et 
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al., 2019). MNND measures the average distance between two points (in this study, individuals) 

in isotopic space with higher values representing a group that is accessing resources in multiple 

trophic levels (as opposed to single trophic levels; smaller MNND values). Calculating the range 

of δ13C and δ 15N provides information on the breadth of dietary decisions eiders make within a 

given year. The size of the standard ellipse provides an estimate of the population niche width, 

with a larger value indicating higher amounts of individual spacing in isotopic space (Newsome 

et al., 2007).  

Along with our estimation of niche breadth, we included the mean (AVG), standard 

error of the mean (SEM), and standard deviation (SD) for both δ15N and δ13C values for each 

year, as well as the coefficient of variation (%CV) to evaluate variation around these means 

(Table 2). Stable isotopes are useful to infer spatial movements of individuals, and trophic 

positioning (Boecklen et al., 2011). Nonetheless, understanding the degree of individual 

specialization is challenging with a dataset lacking prey data, however it is possible to use %CV 

as a qualitative proxy for the degree of colony-level specialization within a given year (Herman 

et al., 2017, Donnelly & Krammer, 1999). Finally, we used two principal component analyses 

(PCA) to collapse down our 1) eight isotopic metrics and 2) three environmental metrics into 

more manageable indices to simplify eventual analyses (Table 4). Principle components with 

eigen values of 1 or greater were used. The PCA for isotopic metrics detected 3 principal 

components, explaining 46.8, 18.6, and 16.0% of variance of isotopic metrics, with eigenvalues 

of 3.75, 1.49, and 1.28, respectively. For the first principal component, δ13C range and SEAc were 

positively loaded (with correlation values of 0.46 and 0.47, respectively) and %CV δ13C 

negatively loaded (-0.43, Table 4), overall representing a metric of spatial foraging breadth. For 

the second isotopic principal component, the δ15N range and MNND were positively loaded 

(0.51 and 0.40, respectively), while AVG δ13C was negatively loaded (-0.58), overall representing 

a metric of niche breadth. The third and final isotopic principal component included δ15N range 

(which was negatively loaded onto the PC; -0.57), MNND and %CV δ15N, (both positively loaded 

onto the PC; 0.63 and 0.44, respectively), representing a metric of trophic position.  

There were two environmental principal components detected, explaining 37.7 and 

33.6% of variance, with eigenvalues of 1.14 and 1.01, respectively. Spring NAO positively loaded 

(0.60) and Ta negatively loaded (-0.72) onto PC1, representing a metric of pre-breeding 

environmental conditions. For the second environmental principal component, Spring NAO 
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negatively loaded (-0.53) and Winter NAO positively loaded (0.85) onto the PC score, together 

representing pre-breeding NAO.  

Statistical analyses 

We had three goals in our statistical analyses, namely examining whether: (1) Isotopic niche at 

the population level varies across years and breeding stages (Table 2, 2); (2) inter-annual 

variation in environmental indices (winter NAO, spring NAO; pre-breeding ambient temperature 

PC groups) predicts inter-annual variation in isotopic metrics (Table 3); and (3) inter-annual 

variation in isotopic metrics predicts variation in key breeding parameters (Table 4).  

To examine inter-annual population-level variation in δ15N and δ13C values, we ran a 

MANCOVA (with δ15N and δ13C as dependent variables) using the entire 9-consecutive-year 

database for common eider females including year, breeding stage, the interaction between 

year and breeding stage, body mass and relative arrival date as independent variables. Since 

each isotope represents a specific dietary variable (i.e., δ15N: trophic position; δ13C: spatial 

foraging), we then performed separate one-way ANCOVAs for δ15N and δ13C that included year, 

breeding stage, the interaction between year and breeding stage, body mass and relative arrival 

date as independent variables. To examine finer-scale, breeding stage-specific changes in 

foraging strategies via variation in δ15N and δ13C, we conducted break-point analyses. Using a 

series of data points in time, this analysis identifies sudden and significant positive or negative 

changes in the dataset (Hennin et al., 2015). The procedure identifies and estimates breakpoints 

by iteratively fitting a model with a linear predictor. For each iteration, a standard linear model 

is fitted, and the breakpoint value is updated until algorithm convergence occurs. Using this 

procedure, we were therefore able to detect any significant changes (i.e., breakpoints) in the 

trophic position (δ15N) or spatial foraging (δ13C) of individuals (dependent variables) across the 

pre-laying period. We performed break point analyses for each dependent variable separately 

using the delay before laying as an independent variable. All segmented models were fitted 

using the Segmented R package (Muggeo 2003; R Core Team 2014).  

To determine whether inter-annual variation in isotopic metrics can be predicted by 

inter-annual variation in environmental traits, we ran separate ANCOVAs with isotopic PC scores 

(see Stable Isotope Analysis, Metrics and Interpretation) as our dependent variables and 

environmental PC scores (see Stable Isotope Analysis, Metrics and Interpretation) as our 
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independent variables. Lastly, to test whether inter-annual mean isotopic metrics predicted 

variation in population mean arrival and breeding parameters (e.g., breeding propensity, the 

delay between arrival at the colony and laying, and relative lay date) we ran an ANCOVA. All of 

our analyses met the assumptions of a parametric test. All statistical tests were run using JMP 

(Version 14.1.0, SAS).  

Results 

Inter-annual and breeding stage variation in isotopic signatures 
Using a MANOVA approach we found a significant year x breeding stage interaction explaining 

variation in the isotopic signatures (δ15N and δ13C) of female common eiders (Table 5; Figure 1, 

2, 3, 4). Using ANCOVAs to analyse the two isotopes separately revealed that only δ15N showed 

significant year and breeding stage effects (with no year by stage interaction), while variation in 

δ13C was only explained by highly significant negative relationship with relative arrival date 

where later arriving females had lower δ13C values (more inshore foraging; Table 5). 

Changes in isotopic values across breeding stages 

A breakpoint was detected for δ15N, where values were relatively consistent throughout the pre-

laying period and then increased significantly roughly two days prior to laying (breakpoint value: 

1.8 ± 5.4 days, Fig. 5b). A breakpoint was also detected for δ13C where values were relatively 

consistent across the pre-laying period, until 7.4 days prior to laying, roughly around the 

initiation of the RFG period when δ13C values began increasing significantly (breakpoint value: 

7.4 ± 2.5 days, Fig. 5a). 

Using climate to predict isotopic metrics  

We found a significant negative relationship between PCENV2, which represents North Atlantic 

Oscillation values, and PCISO3, which represents eiders trophic position (ANCOVA, F1,1=8.26, 

p=0.03), suggesting that milder environmental conditions during spring are associated with 

more variable trophic dynamics. However, we did not detect any other relationships between 

environmental variables and isotopic metrics (Table 6).   
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Using isotopic metrics to predict breeding parameters  

We detected a significant negative relationship between PCISO2 (isotopic niche breadth) and 

breeding propensity (one-way ANCOVA: F1,7=15.37, p=0.01, Table 7), where foraging inshore and 

within a narrower niche was related to a higher probability of breeding. However, we did not 

detect any significant relationships between isotopic metrics and all other arrival or breeding 

parameters (Table 7).  

Discussion 

Using a 9-consecutive-year data set (2010-2018) collected from a focal breeding population of 

common eiders nesting at Mitivik Island, Nunavut, Canada, we used inter-annual and inter-stage 

variation in isotopic niche dynamics to assess the ‘resiliency’ of this species to current and 

expected environmental change. We found that eiders demonstrated both significant breeding 

stage-related and inter-annual variation in their δ15N values, suggesting that access to certain 

trophic levels or foraging choices for certain trophic levels differ for specific breeding stages. 

This supports the idea that breeding stages require the input of specific resources; isotopic niche 

(specifically δ13C, i.e., the location of foraging) changed significantly from arrival on the breeding 

grounds leading up to laying, potentially supporting the idea that females in different stages are 

foraging in different areas and possibly targeting different prey items. For instance, we found 

that early arrival on the breeding ground was associated with foraging closer to shore within a 

narrower (i.e., more specialized) niche, which in turn predicted a higher probability of breeding. 

Despite these relationships, we only detected significant relationships between environmental 

conditions and trophic dynamics, but not spatial foraging indices (i.e., δ13C). Few studies are 

capable of obtaining large enough sample sizes from pre-breeding seabirds as they arrive to 

their breeding grounds (Sorensen et al., 2009), and currently no studies have been able to assess 

and relate isotopic variation across pre-breeding stages or to variation in broad-scale 

environmental indices. Our work suggests that flexible foraging may be a strategy that common 

eiders are able to use to overcome environmental constraints and accrue the required resources 

to invest in reproduction, particularly in the context of their rapidly changing environment. 

Considering the rapid and substantial changes occurring in Arctic marine ecosystems, our 

research is a first step towards bridging key mechanistic gaps in determining how large-scale 

environmental processes proximately impact the foraging decisions that ultimately influence 

fitness via effects on breeding decisions. 
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Interactions between inter-annual and breeding-stage related variation in δ15N 

and δ35C values 

Given that energetic management is critical in driving reproductive investment decisions in this 

species (Hennin et al., 2015, 2016, 2018; Legagneux et al., 2016), we expected that isotopic 

niche would vary across breeding stages as the energetic demands for reproductive investment 

change. We found a significant interaction between year and breeding stage in our combined 

isotopic analysis, that largely appeared to be driven by δ15N (i.e., significant year and breeding 

stage effects for δ15N) when analysing the isotopes. Variation in δ15N can be used to infer 

trophic level and varies greatly among prey (Hobson et al., 2014), while δ13C can be used to infer 

foraging location – inshore vs. offshore, pelagic vs. benthic (Kelly, 1999). We therefore expected 

breeding stage to be an important contributor to variation in δ15N, with more energetically 

demanding stages of breeding such as egg production (i.e., the RFG stage) likely requiring higher 

trophic level prey sources to fuel them. We found that δ15N was higher at the pre-recruiting and 

RFG stages compared to the laying stages (Table 7; Fig. 2,5b) which agrees with previous 

research demonstrating that δ15N becomes enriched during energetically demanding periods 

(Hobson & Clark, 1992; Hobson et al., 1993). During this time, eiders are rapidly trying to 

consume the required resources to invest in reproduction (pre-recruiting fattening) and then 

produce eggs (yolk development in RFG) (Descamps et al., 2010; Legagneux et al., 2016; Hennin 

et al. 2016, 2018). As such, we expected to find enriched δ15N at the onset of RFG, as this is the 

most energetically demanding breeding stage (Hennin et al., 2015). It is likely that the 

combination of continued intense foraging during this time, and the increased energetic 

demand associated with egg production may play a role in generating higher δ15N. Given the 

importance of primary producers in Arctic food webs (Hobson, 1993), and the fact that eiders 

are closely associated with retreating ice for access to diving locations for foraging (Heath et al., 

2006), we expected variation of δ13C to play important roles in pre-breeding eiders. 

Interestingly, we did not detect significant inter-annual variation in δ13C values, indicating that 

there may not be substantial differences in the relative abundance or importance of ice algae or 

phytoplankton (see below) as primary producers at East Bay.  

 



 

30 
 

Links between isotopic niche variation and breeding investment decisions 

Common eiders must forage extensively after arriving on the breeding grounds to invest in 

reproduction (Sénéchal et al. 2011) and can therefore be constrained by the amount of sea ice 

impacting access to foraging areas (Goudie et al. 2000; Sénéchel et al., 2011). If important 

foraging areas are covered by ice when eiders arrive to the breeding grounds, they may be 

restricted to forage in sub-optimal (prey-poor) locations; possibly further from shore or deeper 

in the ocean (resulting in varied δ13C values). Previous studies have demonstrated that in years 

with later ice breakup, females were less likely to breed, but this effect was exaggerated in 

females in low body condition (< 2000 g) compared to females in higher body condition (≥ 2000 

g) (Jean-Gagnon et al., 2018). Supporting the idea that specific breeding stages require the input 

of specific resources, we detected a breakpoint in δ15N values nearly two days prior to laying. 

Although this may suggest that females just prior to laying begin incorporating higher trophic 

prey into their diet, this may not be a biologically relevant result, given that the estimated error 

around the breakpoint is nearly 5 days. Therefore, females may be shifting their diet, but the 

evidence from these analyses is not particularly strong and requires further investigation.  

Using breakpoint analyses we found that as females transition from pre-recruiting into 

the RFG period, there was an increase in the amount of δ13C measured in their plasma. Since 

females are under a series of multiple energetic constraints leading up to reproduction, there 

may be different individual-based foraging strategies females have to accumulate the stores 

they need. Therefore, as females approach laying, they begin incorporating more inshore items 

into their diet. The timing of this shift in foraging location matches up with a previously 

documented change in corticosterone secretion at this colony; females just prior to entering 

RFG begin increasing baseline corticosterone secretion, presumably to promote an increase in 

foraging to support follicle growth (Hennin et al. 2015). It may be that the shift in corticosterone 

to promote foraging also plays a role in the shift in foraging behaviour given the role that 

corticosterone plays in mediating foraging behaviour (e.g., Angelier et al. 2007; Crossin et al. 

2012) and mass gain (Holberton 1999; Holberton et al. 2007; Hennin et al. 2016). Alternatively, 

as females approach laying, and become increasingly heavy due to growing fat stores as well as 

reproductive organ and follicle growth (Williams, 2012), the energetic costs of deeper, pelagic 

dives for benthic prey may become greater. Females may instead opt to forage inshore on 



 

31 
 

smaller prey items (e.g., amphipods) more frequently to conserve their energy and fat stores for 

their upcoming incubation fast. 

Interestingly, we found that higher breeding propensity was associated with an inshore, 

smaller niche diet (Table 7; Fig. 1, 5a). Based on our knowledge of ice dynamics at MI (Jean-

Gagnon et al. 2018), the foraging ecology of eiders, and that Arctic environments are seasonally 

constrained (Lepage et al. 2000), it is likely that the ability of eiders to breed in a given year is 

highly influenced by their ability to locate resources across the different stages of the pre-laying 

period, especially in years with extensive ice-cover or late breakup. All of these factors 

combined make it difficult to disentangle the relationships between breeding propensity and in-

shore/specialized foraging. For example, breeding propensity is the cumulative result of at least 

three successful breeding decisions all driven by resource intake, which all build one upon the 

other. The initial decision to invest in reproduction within a given year (i.e., shift from the pre-

breeding to the RFG stage) requires individuals to meet a minimum condition threshold 

following a rapid fattening period (Descamps et al., 2010; Hennin et al., 2015, 2016, 2018). Then 

individuals must successfully forage to fuel follicle production during the RFG stage to eventually 

ovulate follicles, complete the egg production process and lay successive eggs. We already know 

that unpredictable food shortages during the RFG stage reduce the chance an individual will 

reproduce, regardless of reproductive readiness and other breeding parameters (Legagneux et 

al., 2016), suggesting that investing in breeding is highly responsive to the impacts of climate 

change through changes in resource dynamics. Finally, during all of this, birds are continuing to 

top up lipid reserves to fuel the long 24 day fasting incubation period. As such, an inshore, 

smaller niche, diet could impact any (or all) of these stages to have positive downstream 

influences on breeding propensity. Therefore, either eiders may specifically target inshore 

resources, or given the severe constraints of ice cover eiders may be forced to fuel much of their 

reproductive investment using inshore resources around the edge of the melting bay in river 

mouths (Jean-Gagnon et al., 2018), especially in years with extensive ice or late ice breakup. 

Given all of this complexity, it is perhaps unsurprising that we did not detect predictive 

relationships between additional breeding parameters (i.e., laying interval, laying phenology) 

and isotopic metrics, especially with the broad, population-scale, analyses we have started with.  
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Lack of a detectable relationship between environmental conditions and 

isotopic characteristics  

We predicted that in years with warmer winters, warmer springs, and higher overall ambient 

temperatures females (i.e., higher Ta, +/- NAO) female eiders should be able to exploit a wider 

variety of prey items due to a greater degree of open water to forage in, resulting in the colony 

that year having a broader isotopic niche. Surprisingly we found little evidence of environmental 

metrics being able to predict variation in isotopic niche, however we did detect a significant, 

negative relationship between trophic position (PCISO3) and pre-breeding NAO (PCENV2) (Table 

6). More specifically, in years with higher winter storm activity and milder springs, females had a 

greater range and variance in δ15N values, as well as the mean next neighbour distance (MNND). 

In years with harsh winter conditions, muscle beds and other prey sources for eiders may be 

depleted due to the increased storm activity (Reusch & Chapman, 1995). With depleted muscle 

beds, eiders may be forced to expand their spatial foraging range to locate additional prey, 

possible leading to increased variation in prey choice.  

Similarly, we predicted that δ13C would also be strongly related to environmental indices but, 

found no such relationships (Table 6). Given the impacts of environmental conditions (i.e., 

ambient temperature and storm activity) on sea ice dynamics, this result is surprising as eiders 

spatial foraging decisions are likely modulated and constrained by sea ice. However, it is 

possible that the primary production around MI lacks enough diversity to detect a relationship 

between δ13C and environmental conditions in order to infer an interaction between foraging 

decisions and sea ice dynamics. Further, with key-fitness related decisions being modulated by 

both environmental conditions and physiological state in eiders, we may have not been able to 

capture all the relevant variables impacting isotopic signatures in our analyses. 

Conclusions and future directions 

We used a 9-year data set to examine the linkages between environmental conditions, foraging 

niche and reproductive parameters in pre-laying, wild-living common eiders. Although 

environmental conditions did not predict the isotopic niche of common eiders, the isotopic 

dynamics of pre-breeding females varied significantly across years and are likely mediated by 

the intensive energetic demands of the various breeding stages leading up to laying, and 

therefore also by the constraints that sea ice plays on restricting resource access in Arctic 

environments. It is also entirely possible that different breeding decisions in eiders are 
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differentially impacted by resources and changes in ice dynamics, suggesting that determining 

their adaptive capacity to change, as mediated by resources, will be a very complex undertaking. 

Although this research helps to establish links between climate, foraging decisions and 

reproduction, whether eiders possess the ability to mechanistically cope with the projected rate 

of environmental change and succeed is still unknown. Nonetheless, there may be a number of 

ways in which we might improve our predictive power. First, a focus on more specific 

environmental measures known to impact resource availability more directly, such as sea ice 

extent or sea-surface temperature, may help to explain some of the remaining variation. 

Second, our current analyses and scope has been an initial attempt to understand broad (i.e., 

inter-annual and inter-stage) variation in isotopic niches. Another fruitful step will be to examine 

these relationships at the individual level within years and in relations to what stage a given 

female is in at her time of capture. Finally, exploring the foraging decisions eiders across their 

circumpolar range will be an important next step to assessing how the species as a whole may 

be resilient to the predicted ecosystem changes as a result of climate change.  
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Table 2.1 - Summary of key common eider parameters collected from Mitivik Island, Nunavut 

used in the current analyses. Parameters include relative arrival date (RAD), breeding propensity 

(BP), laying interval (LI), relative lay date (RLD).  

Year RAD BP(%) LI RLD 

2010 -0.56 45 3.67 0.78 

2011 0.85 86 7.09 -1.25 

2012 1.50 31 4.13 1.38 

2013 0.09 51 5.09 -1.00 

2014 -1.54 55 3.73 -0.19 

2015 0.33 27 3.20 0.13 

2016 0.68 35 3.59 -0.91 

2017 -1.36 48 2.67 -1.03 

2018 1.13 34 5.33 0.30 
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Table 2.2 - Summary of isotopic metrics from female common eiders breeding at the Mitivik 

Island colony, Nunavut, Canada. 

Mean ± SEM, %CV δ15N and δ13C raw values were calculated to show broad population metrics. 
Isotopic metrics, Mean Next Nearest Neighbor (MNND), Standard Ellipse Area (SEAc), range of 
δ15N, and range of δ13C infer annual foraging niche dynamics. All values are quantified from 
plasma samples and include a combination of breeding stages. 

  

Year 
δ15N 

(mean±sem) 

δ15N 
(%CV) 

δ13C 

(mean±sem) 

δ13C 
(%CV) 

MNND SEAc 
 δ15N 

(Range) 

 δ13C  

(Range) 

2010 13.3 ± 0.21 12.0 -17.5 ± 0.13 5.60 0.3298986 4.126788 5.66 5.27 

2011 12.3 ± 0.09 9.1 -17.2 ± 0.13 8.90 0.2403756 5.410365 6.07 5.26 

2012 13.1 ± 0.18 9.2 -17.3 ± 0.15 5.70 0.2130465 3.732829 6.34 6.31 

2013 13.3 ± 0.14 9.1 -17.3 ± 0.12 6.20 0.2900655 2.937805 4.94 3.95 

2014 13.5 ± 0.13 7.5 -17.5 ± 0.09 3.80 0.2121922 2.046193 5.33 3.24 

2015 12.4 ± 0.18 10.4 -17.3 ± 0.14 5.70 0.2213423 3.919739 6.41 5.97 

2016 14.5 ± 0.13 8.8 -17.6 ± 0.09 5.20 0.2655668 3.30091 6.08 4.37 

2017 13.3 ± 0.17 11.1 -17.1 ± 0.17 8.50 0.1741301 4.788338 5.75 6.42 

2018 13.5 ± 0.18 9.7 -18.2 ± 0.15 6.10 0.2601373 3.841665 6.61 4.66 
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Table 2.3 - Summary of average Winter North Atlantic Oscillation (Winter NAO), Spring North 

Atlantic Oscillation (Spring NAO), and mean relative ambient temperature (Ta) for the 7 days 

leading up median arrival date, from Coral Harbour Airport Weather Station, Nunavut, Canada 

(closest weather station to the Mitivik Island colony).  

Year Winter NAO Spring NAO Ta 

2010 -0.86 -4.45 6.60 

2011 -0.09 -0.75 6.28 

2012 -1.07 2.55 7.50 

2013 0.61 -0.60 7.20 

2014 -0.35 3.45 7.73 

2015 -0.59 4.55 4.33 

2016 -0.65 1.90 9.43 

2017 0.28 1.05 8.40 

2018 1.46 1.75 6.10 
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Table 2.4 - List of principal component correlation values based on plasma isotopic metrics of 

female common eiders breeding at the Mitivik Island colony, Nunavut, Canada and 

environmental metrics (see Methods for details). Bold values indicate statistically significant 

relationships. 

Group Variable PC1 (Spatial Foraging) PC2 (Niche Breadth) PC3 (Trophic Position) 

Isotopic 

δ15N Range 0.20201 0.51061  -0.57323 

δ13C Range 0.45855 0.13017  -0.12389 

MNND  -0.17996 0.40414 0.63032 

SEAc 0.47159 0.1755 0.08766 

AVG δ13C 0.29675  -0.58426 0.19752 

%CV δ13C  -0.42799 0.08641  -0.13040 

AVG δ15N  -0.35635 0.21296 0.01793 

CV δ15N 0.30971 0.36609 0.44129 

                                Eigenvalue 3.7445 1.4859 1.2791 

                           Cum. Percent  46.806 18.574 15.989 

Group Variable PC1 (Spring Conditions) PC2 (NAO)   

Environmental 

S NAO 0.6001  -0.53296 
 

W NAO 0.35475 0.84569 
 

Ta  -0.71696  -0.02764 
 

Eigenvalue 1.1305 1.0078  

                           Cum. Percent 37.685 33.592  
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Table 2.5 - Summary of analyses examining predictors of variance in plasma δ13C and δ15N 

values in female common eiders breeding at the Mitivik Island colony, Nunavut, Canada. Bold 

values indicate statistically significant relationships. 

 

  

Analysis Variable F value df p 

MANCOVA (δ15N and δ13C) Full Model 4.35 74, 1198 0.0001 

 
Year 5.22 16, 1198 0.0001 

 
Breeding stage 2.97 2, 600 0.03 

 Year*Breeding stage 1.41 48, 1198 0.04 

 
Relative arrival date 19.50 2, 599 0.0001 

 
Body Mass 0.50 2, 599 0.61 

ACNOVA (δ15N) Full Model 5.92 37, 600 0.0001 

 
Year 8.67 8, 8 0.0001 

 
Breeding stage 2.96 3, 3 0.03 

 Year*Breeding stage 1.31 24, 24 0.15 

 
Relative arrival date 1.41 1, 1 0.23 

 
Body Mass 0.13 1, 1 0.71 

ANCOVA (δ13C) Full Model 2.82 37, 600 0.0001 

 
Year 1.15 8, 8 0.33 

 
Breeding stage 0.56 3, 3 0.64 

 Year*Breeding stage 1.34 24, 24 0.13 

 
Relative arrival date 27.00 1, 1 0.0001 

 
Body Mass 0.51 1, 1 0.47 
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Table 2.6 - Summary of regression analyses using environmental metrics (ENVPC1 (Spring 

Weather); and ENVPC2 (NAO)) to predict variation in plasma isotopic metrics (ISOPC1 (Foraging 

Location); ISOPC2 (Niche Breadth); and ISOPC3 (Trophic Position)) in female common eiders 

breeding at the Mitivik Island colony, Nunavut, Canada. Bold values indicate statistically 

significant relationships. 

 
  ISOPC1        ISOPC2  ISOPC3 

Variable  R2 F2,6 p  R2 F2,6 p  R2 F2,6 p 

Model   0.02 0.07 0.93  0.10 0.35 0.72  0.62 4.88 0.06 

ENVPC1  - 0.12 0.74  - 0.17 0.69  - 1.50 0.27 

ENVPC2  - 0.03 0.86  - 0.53 0.49  - 8.26 0.03 
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Table 2.7 - Summary of regression analyses between breeding parameters (relative arrival date 

(RAD); percent breeding propensity (BP); laying interval (LI); relative lay date (RLD)) and isotopic 

metrics (ISOPC1 (Foraging Location); ISOPC2 (Niche Breadth); and ISOPC3 (Trophic Position)).  

   RAD   BP    LI   RLD 

Variable  R2 F1,1 p  R2 F1,1 p  R2 F1,1 p  R2 F1,1 p 

Model  0.34 0.84 0.53  0.73 4.48 0.07  0.01 0.02 1.00  0.23 0.51 0.70 

ISOPC1  - 0.16 0.70  - 0.62 0.47  - 0.03 0.87  - 0.01 0.91 

ISOPC2  - 1.57 0.27  - 12.67 0.02  - 0.00 0.97  - 1.25 0.31 

ISOPC3  - 0.79 0.42  - 0.15 0.72  - 0.02 0.91  - 025 0.64 
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Figure 2.1 - Inter-annual variation in plasma isotopic niche of eiders nesting at Mitivik Island, 

NU. Each colour is an independent year. Ellipses represent 40% of the individuals’ isotopic 

signatures within each year. 40% ellipses are used to represent the placement of birds within 

each year in isotopic space and compare placement among years. 
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Figure 2.2 - Isotopic variation from plasma across breeding stages of eiders nesting at Mitivik 

Island, NU. PR (green line; pre-recruiting), shows 40% of the individuals which started laying at 

least 8 days post-capture; RFG (blue line; rapid follicle growth), is characterized by birds that are 

delayed between 8-1 days before they breed; and Lay (red line; laying or incubating) is the 40% 

ellipse of birds which were laying or incubating the same day of capture. 
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Figure 2.3 - Boxplot of inter-annual variation in plasma δ13C values of female eiders nesting at 

Mitivik Island, Nunavut, Canada. High δ13C values represent an inshore benthic diet, while a low 

δ13C value represent an offshore pelagic diet. 
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Figure 2.4 - Boxplot of inter-annual variation in plasma δ15N values of female eiders nesting at 

Mitivik Island, Nunavut, Canada. High δ15N values represent a higher trophic diet, compared to 

low δ15N values. 
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Figure 2.5 - Variation in plasma δ13C (A), and δ15N (B) values across breeding stages of female 

eiders nesting on Mitivik Island, Nunavut, Canada. Values are represented as mean ± SEM 

provided for each day during pre-breeding (black circle), rapid follicle growth (black square), and 

laying (black triangle). 

A 

B 
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Chapter 3 : 

Investigating resiliency to climate change in an Artic seabird using inter-colony isotopic 

niche variation 

Introduction 

Over the past decade dramatic changes in environmental conditions have occurred globally 

including substantial increases in annual ambient temperature, as well as significant changes in 

oceanic conditions (e.g., decreased pH, increased temperature) (IPCC, 2018). Although these 

changes have caused a myriad of direct and indirect effects on organisms, a primary focus in 

ecology has been to quantify the ability of organisms to successfully time and complete key 

fitness-related life-history stages in the midst of these environmental changes (Root et al., 2003; 

Stearns, 1989). A suite of studies across a diversity of taxa have consistently demonstrated that 

the annual abundance and phenology of prey emergence is constantly changing, the severity of 

which varies spatially (Boggs, 1992; Durant et al., 2007; Post & Forchhammer, 2008; Visser et al., 

1998). While we can generally appreciate that these environmentally-driven changes in prey 

dynamics are driven by human-induced climate change (Karl & Trenberth, 2003; Orlowsky & 

Seneviratne, 2012; Parmesan, 2006; Parmesan & Yohe, 2003), it is yet still unclear whether all 

organisms that are being affected have the ability to keep pace with this degree of change 

(Cohen et al., 2018).  

Arctic ecosystems are particularly susceptible to the impacts of climate change due to 

multiple abiotic and biotic factors (Descamps et al., 2017; Kwok & Rothrock, 2009; Screen & 

Simmonds, 2010). Moreover, as warming continues the usual reflective effects of ice and snow 

cover acting to send ultraviolet (UV) radiation back into the atmosphere are declining rapidly, 

causing increasingly rapid rises in ambient temperatures (i.e., at a rate 2-4% faster than 

anywhere else on Earth; Johannessen et al., 2004). As a result, the timing of Arctic sea-ice melt 

continues to advance (Kern et al., 2010; White et al., 2010) and sea-ice extent has already 

receded significantly (Comiso et al., 2008; Overlsand and Wang, 2010), resulting in several 

downstream impacts on marine wildlife (Doney et al., 2011; Hoegh-Guldberg & Bruno, 2010). 

Nonetheless, despite these dramatic changes it remains difficult to predict the relative 

vulnerability of different species and even populations to this degree of change (Huey et al., 

2012; Pacifici et al., 2015). Importantly, we know little about how this degree of change will 

affect variation and abundance in the resources that form central constraints in the life history 
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investment decisions of organisms (Post & Forchhammer, 2008; Visser et al., 1998). Both 

theoretical and empirical information has suggested that species, populations and individuals 

with more generalized, flexible diets and foraging strategies are better able to withstand intra- 

and inter-annual variation in environmental conditions and as a result will be better equipped to 

invest in and successfully complete energetically demanding life history stages such as 

reproduction (Bolnick et al., 2003; Hamer et al., 2007; Hennin et al., 2015). As such, being able 

to quantify species- or even population-level foraging specialization could provide key 

information as to how sensitive we expect populations to be to environmentally-induced trophic 

disruptions (Post et al., 2009), and therefore their overall resiliency to climate change (Winder & 

Schindler, 2004). 

One group of organisms that has mixed levels of foraging specialization, different 

fitness-related constraints associated with investing in reproduction, and are sensitive to 

climate-induced trophic responses, are Arctic seabirds (Grémillet & Boulinier, 2009). Seabirds 

have evolved to take advantage of abundant and predictable seasonal food sources at marine-

terrestrial interfaces, and often forage on a large diversity of prey items (Barrett et al., 2007). 

Furthermore, due extensive evolutionary radiation within seabirds, there are multiple sub-

species found across their range, all of which show substantial genetic and phenotypic variation 

(Friesen et al., 1996; Jouanin & Mougin, 1979; Nisbit et al., 2017; Wojczulanis-Jakubas et al., 

2014). By virtue of their wide-ranging distribution, sub-species or populations are likely exposed 

to extremely different environmental conditions, driving variation in the differential impact of 

foraging decisions on key life-history decisions, and therefore fitness (Frederiksen et al., 2012; 

Gilchrist & Mallory, 2005; Stempniewicz et al., 2007). Within Arctic ecosystems we expect these 

sub-species or – populations to be differentially impacted by climate change since within the last 

decade lower trophic level Arctic prey organisms - such as bivalves (e.g., blue mussel (Mytilus 

edulis) and small fish (e.g., arctic cod (Boreogadus saida), capelin (Mallotus villosus)) that 

normally form the prey-base for many higher trophic order seabird species have shown 

significant population declines and range changes (Buren et al., 2019; Doney et al., 2012; Harley 

et al., 2006; Philippart et al., 2011). As a result, Arctic seabirds that depend on these organisms 

to fuel key life-history stages such as migration and reproduction (Sydemen et al, 2012) are also 

demonstrating similar population declines (Anderson et al., 2018; Frederiksen et al., 2016; 

Goutte et al., 2015; Perkins et al., 2018). 
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With the impact of climate change varying significantly across the Arctic (Anisimov et al., 

2007), the ability to quantify variation in foraging strategies at both the intra- and inter-

population levels of Arctic species is a vital first step to assessing their ability to adapt to their 

rapidly changing environment. Although previous studies in seabirds have demonstrated 

individual-level variation in foraging decisions (Elliott et al., 2008; Watauki et al., 2004; Woo et 

al., 2008), and individuals with highly flexible (i.e., more generalized) foraging strategies are 

predicted to possess greater potential adaptive capacity (Hamer et al., 2007; Ronconi & Burger, 

2008), little is currently known about the variation in foraging strategies at the level of a species’ 

range. To be able to estimate the resiliency of Arctic seabirds to climate change, we first require 

baseline information on how foraging strategies of seabirds vary across a wide geographic range 

(Moe et al., 2009), as well as information on whether this variation is related to variation in 

environmental conditions (Croxall et al., 2002). Nonetheless, finding effective, efficient and fairly 

non-invasive techniques for quantifying inter-population variance in trophic specialization, and 

therefore foraging strategies, is challenging (Boecklen et al., 2011; Hobson, 1999). In recent 

decades, the quantification of stable isotopes (i.e., nitrogen - δ15N and carbon - δ13C) in seabird 

tissues has proven to be a novel, repeatable and fairly non-invasive technique to investigate 

foraging niche dynamics at multiple temporal and spatial scales (Herman et al., 2017; Hobson, 

1999; Horswill et al., 2016; Le Bot et al., 2019; Pavia et al., 2013). Since information on isotopic 

niches can be used to infer foraging strategies, dynamics, and decisions (Newsome et al., 2007), 

as well as how the trophic dynamics of organisms are being impacted by climate change (Post et 

al., 2009), isotopes and the flexibility in isotopic niches are increasingly used to estimate 

resiliency to change across wide-ranging species (Layman et al., 2007; Munroe et al., 2015). 

Here we use information on the foraging niche (δ13C and δ15N isotopic dynamics) of pre-

laying common eiders (Somateria mollissima, hereafter eider) collected from 8 distinct breeding 

colonies across the species’ breeding range to assess the resiliency of common eiders to 

environmental change. Eiders make an excellent system to test these questions for several 

reasons. First, eiders are comprised of six subspecies which have been hypothesized to vary 

significantly between specialist and generalist diets (Goudie et al., 2000; Jónsson, personal 

communication) and, by proxy, foraging strategies and niche. Secondly, eiders are widely 

distributed across the northern hemisphere where a significant number of seabird species 

reside, and as such they are exposed to a substantial amount of variation in available prey. 

Therefore, eiders are a useful representative species for seabirds in general as they are exposed 
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to a suite of environmental and dietary variation. Finally, due to their wide distribution, 

environmental variation may impose colony or sub-species-specific constraints in acquiring and 

digesting food, which then may be exacerbated by climate change (Stempniewicz et al., 2007; 

Sydeman et al., 2015). 

To begin answering our questions, we first examined inter-colony variation in both 

isotopic values (nitrogen - δ15N and carbon - δ13C) and trophic position as a means of measuring 

the breadth of their isotopic niche and assess the level of specialization in foraging strategies 

across colonies (Newsome et al., 2009). Based on specialist versus generalist theory (Bearhop et 

al., 2004; Julliard et al., 2006; Martinez del Rio et al., 2009; Newsome et al., 2009), we predicted 

that the niche characteristics of colonies would vary significantly across the range of eiders 

(Horswill et al., 2016). This is because we expect not only that different populations may have 

evolved differential specializations to locally-available prey, but also that we expect the impacts 

of climate change to interact differentially across space and time as the associated responses of 

lower trophic organisms vary across the Northern Hemisphere. From a resiliency point of view, 

we predicted that colonies with a larger breadth of intra-population isotopic variation would 

possess a wider breadth of foraging strategies (generalist strategy) and would therefore be 

more resilient to constraints generated by resource limitation (i.e., variable distribution and 

quantity of prey). Next, to assess whether variation in environmental conditions influences 

isotopic niche dynamics, and therefore the relative risk of a given colony to the effects of 

climate change (Becker & Beissinger, 2006; Jaeger et al., 2010), we used variation in sea-surface 

temperatures (SST; an environmental variable which has previously been shown to influence 

seabird foraging and reproduction) (Paiva et al., 2013) to predict variation in isotopic niche 

dynamics. Given that warmer sea surface temperatures have been shown to negatively impact 

the abundance and distribution of key prey items for eiders (Beukema et al., 2005), we 

predicted that the specific sea surface temperatures that eiders experience at arrival on their 

own breeding grounds would negatively impact (i.e., restrict) their isotopic niche (Cherel et al., 

2006). Again, we expect that colonies with a more generalist foraging niche to be more resilient 

to changes in localized environmental conditions, which may be driving prey distribution due to 

climate change, as these colonies should be able to locate and take advantage of a wider array 

of prey resources (Pavia et al., 2013). Finally, we propose a novel, qualitative method of 

assessing population-level foraging specialization built on three criteria from previous 

specialization theory (Bearhop et al., 2004; Julliard et al., 2006; Martinez del Rio et al., 2009; 
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Newsome et al., 2009). First, specialist colonies lack dispersal ability, and therefore will have a 

narrower breadth of δ13C values. Second, specialist colonies will have a less diverse diet, and will 

likely have a narrower breadth of δ15N values. Finally, specialist colonies will respond strongly to 

environmental variation and are less likely to adapt successfully to novel conditions.Overall, our 

aim of this study was to provide a biologically relevant and analytically efficient means to help 

conservation ecologists and wildlife managers predict the resilience of this species to climate 

change across its range, with the goal of extending this framework to other at-risk species and 

systems.  

Methods 

Study sites and blood sample collection 

We collected blood samples of pre-breeding and nesting (i.e., incubating) eider females from 8 

colonies across their breeding range in 2018 (Table 1, Fig. 1). At each study colony, colony-

relevant methods were used to capture females, which was largely dependent on their breeding 

stage at capture. At Mitivik Island, Nunavut, Canada we caught pre-laying females at arrival from 

wintering grounds using large flight-nets. Within 3 minutes of a female hitting the flight net, 

females were extracted, and blood sampled to obtain baseline blood samples to eliminate any 

effects of capture stress (Hennin et al., 2015, Hobson et al., 1992). At all other colonies, females 

were captured on their nest during the incubation period using a bownet trap or noose-pole.  

At each study location, we collected between 200-1000uL blood samples from 

individuals via the tarsal vein using a 23G thin-wall, 1-inch (c.25-mm) needle attached to a 

heparinized 1-mL syringe. Samples were then transferred to heparinized collection tubes and 

kept cool (~ 10 ⁰C), and within 8 hours of collection, samples were centrifuged at 10,000 rpm for 

10 minutes to separate the plasma and red blood cell fractions. Plasma was decanted into a 

separate cryovial, and both plasma and red blood cell samples were then stored at -20⁰C until 

further analysis.  

Environmental indices 

Sea surface temperature (SST) is a commonly used proxy for localized environmental conditions 

across our sampling locations, and representative of the environmental condition’s eiders are 

directly exposed to while foraging during the pre-breeding period (Pavia et al., 2013). We 

obtained SST data from the National Oceanic and Atmospheric Administration (NOAA - 
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www.ncei.noaa.gov/erddap) (Table 2). Since eider breeding (i.e., laying) phenology varies across 

their range and our sites, we first calculated the mean laying date for each colony and then 

considered the month (i.e., 30 days) prior to that date as the “pre-breeding period” based on 

previous research (Hennin et al. 2015). Using this month time frame for each pre-breeding 

period, we then calculated the average sea surface temperature (AVG), the standard error of 

the mean (SEM), and the percent coefficient of variation (%CV) for SST for each colony as a 

means of generating a relative metric for variation in SST that could be compared across 

colonies.  

Stable isotope analysis 

Stable isotopes fractionate and turnover at different rates in different body tissues. Plasma 

samples have a turnover rate of 3 days (Hahn et al., 2012; Hobson & Clark, 1993) and red blood 

cells at a rate of 2-3 weeks (Hobson & Clark, 1993). Therefore, we were able to obtain pre-

breeding isotopic niche estimates by analysing plasma samples collected from pre-laying eiders 

at Mitivik Island, and red blood cells from incubating females at all other sampling locations 

(Table 1). Stable Isotope analyses were based on previously validated techniques (see Hobson & 

Clark, 1992 for details). All samples were freeze dried until achieving a constant mass (roughly 

72 hours). We then ground freeze dried samples into a fine, homogenized power using a metal 

spatula. Red blood cells were not lipid extracted, as there are no lipids present (Hobson 1992), 

however, plasma samples were lipid extracted using a 2:1 cholorform:methanol solution (based 

on Bligh and Dyer, 1959). We added 1.9 mL of cholorform:methanol solution to 100 uL of each 

freeze-dried plasma sample and incubated them at 30 ⁰C for 24 hours. Samples were then 

centrifuged at 15000 rpm for 10 minutes. Using a p1000 pipette, we removed the lipid solution, 

reserving the plasma pellet. The plasma pellet was then washed once more with an additional 

1.9 mL of cholorform:methanol solution, centrifuged at 15000 rpm for 10 minutes, and lipid 

solution was removed, leaving only the plasma pellet. Samples were left open for 24 hours in 

fume hood, allowing any remaining cholorform:methanol solution to evaporate.  

Using a fine-scale 4-digit balance, 0.3-0.5 mg of each plasma and red blood cell sample 

was weighed into individual tin-capsules for δ13C and δ15N analysis. Analysis of plasma isotopes 

were conducted at the using continuous-flow isotope-ratio mass spectrometery (CFIRMS) at the 

Environment Canada Stable Isotope Hydrology and Ecology Research Laboratory in Saskatoon, 

Saskatchewan. All red blood cell samples were prepared and analysed at La Rochelle Université, 
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France and measured for δ13C and δ15N by mass spectrometry at the Littoral Environment et 

Sociétés (LIENSs) Stable Isotope platform. Both plasma and red blood cell samples were then 

combusted using a Eurovector 3000 (Milan, Italy) elemental analyzer, resulting in the production 

of CO2 and N2 analyte gases, which were separated by gas chromatograph and introduced into a 

NU Horizon (Nu Instruments, Wrexham, UK) triple-collector isotope-ratio mass-spectrometer via 

an open slit, then compared to a pure CO2 or N2 reference gas. Ratios of the stable forms of 

nitrogen (15N/14N) and carbon (13C/12C) were expressed in delta notation (δ), as parts per 

thousand deviation from the primary standards: atmospheric nitrogen and Vienna Pee Dee 

Belemnite (VDPB) carbonate standards, respectively.  

Isotopes are commonly used as both a spatial and temporal marker of dietary 

incorporation (Bearhop et al., 2004; Boecklen et al., 2011), largely due to our knowledge of the 

turnover rates of metabolically active tissues. Since turnover rates are specific to tissues, and 

vary with body size, it is important to use turnover rate values, termed trophic discrimination 

factors (TDF) (Bond & Diamond, 2011; Caut et al., 2009). We used red blood cell and plasma TDF 

values (δ15NeiderTDF) from spectacled eiders (Somateria fischeri), a similar sized, and closely 

related species to common eider, as there is currently no common eider specific TDF value 

(Federer et al., 2010).  

Stable isotopes naturally vary across the globe, providing an isotopic map (isoscape) of 

expected low-trophic (“baseline”) values (Bowen et al., 2009). Temperate isoscapes are well 

established in the literature, but isoscapes are much less pronounced in the Arctic, making it 

challenging to obtain the baseline isotopic values needed to compare isotopic groups (i.e., 

colonies, populations, species) across a wide geographical range (Bowen, 2010; Hobson, 1999a; 

Hobson et al., 2012; Jaeger et al., 2010). To account for baseline variation, we collected recent 

δ13C and δ15N values of known eider prey from the literature (Table 3). These values were then 

applied to the raw δ13C and δ15N eider values measures in our samples to correct our values and 

more accurately compare isotopic values of eiders across our colonies. To correct our raw 

values, we subtracted the baseline value from prey (δ13Cbase and δ15Nbase) from the eider value 

(δ13Ceider and δ15Neider), giving us standardized values to compare across colonies (δ13Ccorr and 

δ15Ncorr). Baseline values were also used to calculate the trophic position (TP) of each colony 

(Vander Zanden et al., 1997; Vander Zanden & Ramussen, 1999):  

TP = ((δ15Neider – δ15Nbase)/δ15NeiderTDF)+ TPbase   



 

60 
 

Where TPbase is the trophic position of the baseline values, and a TP of 2 (a widely accepted 

value to use, and consistent with eider prey) was used.  

We calculated average δ15N and δ13C values using the corrected values for each location 

to accurately compare niche dynamics across colonies. Finally, we calculated the percentage of 

the coefficient of variation (%CV) in both δ15N and δ13C, which allowed us to better understand 

inter-colony isotopic variation (Table 4).  

Calculation and interpretation of niche dynamics   

We used the SIBER package in R to calculate and compare the niche characteristics of each 

colony of eiders, using baseline corrected values (Jackson et al., 2011; R Core Team 2014; Table 

5). One of these measurements is the 40% Standard Ellipse Area (SEAc) corrected for small 

sample size. This metric captures 40% of individuals in the colony based on the bivariate normal 

distributions and provides information on the distribution of individuals within a foraging niche 

(Jackson et al., 2011). In addition, we calculated Layman metrics, including the range of both 

δ13C and δ15N, and the mean next nearest distance (MNND), which is a metric of the Euclidean 

distance between two isotopic points (Layman et al., 2007). These variables have been 

previously used to infer and compare foraging decisions (Herman et al., 2017; Le Bot et al., 

2019), and dietary specialization (Newsome et al., 2007). To test these criteria, we first 

conducted a principal component analysis to collapse down our related isotopic metrics 

(average δ13C and δ15N, %CV δ13C and δ15N, SEAc, range of δ13C and δ15N, and MNND). We then 

examined whether environmental conditions (average SST and %CV SST) could predict variation 

in isotopic metrics (Table 6). The PCA identified 3 principal components (PC), explaining 49.4, 

22.0, and 18.0% of variance in our isotopic metrics, with eigenvalues of 3.95, 1.76, and 1.44, 

respectively. SEAc, range of δ15N, and range of δ13C were all positively loaded on the first 

principle component (with correlation values of 0.47, 0.46, and 0.46, respectively), representing 

a metric of isotopic niche breadth. On to the second principal component, %CV δ13C and AVG 

δ15N, were positively loaded (correlation values of 0.50 and 0.65, respectively), and %CV δ15N 

was negatively loaded (-0.39), representing a metric of trophic position. Finally, %CV δ13C and 

MNND both positively loaded onto the third principle component (correlation values of 0.68 and 

0.47, respectively), representing a metric of spatial foraging location. The residuals from our PC 

groups were extracted to test for predictive relationships between isotopic metrics and SST 

metrics (AVG and %CV SST).  
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Statistical analyses 

Our four goals for statistical analyses were to: (1) quantify variation in inter-colony isotopic 

values (Table 4); (2) calculate and compare the trophic position of eiders across colonies (Table 

4); (3) test the relationship between isotopic niche metrics and colony location as a means of 

assessing latitudinal/longitudinal gradients (Table 1, 4); and (4) examine whether environmental 

variables could predict population-level variation in isotopic niche metrics (Table 5). To quantify 

variation in δ13Ccorr and δ15Ncorr (hereafter δ13C and δ15N) across breeding colonies we first ran a 

MANOVA on our corrected isotopic values. We then ran two, one-way ANOVAs to test for 

variation in δ13C and δ15N across locations, followed by a Tukey-HSD post-hoc test to identify 

where specific differences among colonies existed. Secondly, to assess inter-colony variation in 

trophic position (TP) we ran a one-way ANOVA, followed by a Tukey-HSD post-hoc test. Third, to 

assess whether colony location could predict variation in isotopic metrics, we ran two ANCOVAs 

including isotopic PC scores as dependent variables and the latitude and longitude of each 

location and independent variables. Finally, to determine whether inter-colony variation in 

isotopic metrics can be predicted by broad scale environmental metrics, we ran ANCOVAs with 

isotopic PC scores as our dependent variables and environmental PC scores related to sea 

surface temperature as our independent variables. All of our data met the assumptions of a 

given parametric test. All analyses were conducted in JMP version 14.1.0 (SAS). 

Results 

Inter-colony variation in isotopic values  

Examining δ13C and δ15N together, we detected significant inter-colony variation in isotopic 

signatures of pre-breeding eiders (MANOVA Wilk’s Lambda, F14,364=26.2, p<0.0001, Fig. 2). We 

also detected significant variation in δ15N (one-way ANOVA, F7,183=23.0, p<0.0001), trophic 

position (one-way ANOVA, F7,183=19.3, p<0.0001, Fig. 3), and δ13C across colonies (one-way 

ANOVA, F7,183=29.8, p<0.0001, Fig. 4). Post-hoc analyses revealed a diversity of complex inter-

colony differences for δ13C, δ15N, and trophic position  (Fig. 3,4).  

Spatial predictors of isotopic variation 

Amongst the variables we used to represent spatial variation (i.e., latitudinal and longitudinal), 

only a handful significantly predicted variation in isotopic metrics. The range of 13C values were 

marginally significantly different across colonies (F2,5=4.43, p=0.08), and by latitude (F1,1=8.44, 
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p=0.03), but not longitude (F1,1=0.21, p=0.67; Table 7). We found that next neighbor distance 

differed significantly by colony (F2,5=8.61, p=0.02), and with latitude (F1,1=17.20, p=0.01), but not 

longitude (F1,1=2.81, p=0.15). Finally, we found a significant difference in trophic positions 

(PCISO2) across colonies (F2,5=4.24, p=0.08), driven by longitude (F1,1=3.08, p=0.04) across 

colonies, but there were no differences in latitude across colonies (F1,1=3.08, p=0.14). 

Inter-colony variation in environmental variables  

We found that average sea surface temperature differed significantly by colony (F2,5=9.45, 

p=0.02), as well as across latitude (F1,1=8.56, p=0.03) and longitude (F1,1=16.5, p=0.01) (Table 7). 

However, while there was a marginally significant difference in the percent coefficient of 

variation (%CV) for SST across longitude (F1,1=5.10, p=0.07), there were no differences between 

colonies (F2,5=2.98, p=0.14) or across latitudes (F1,1=2.85, p=0.15).   

Relationship between isotopic niche and environmental variables 

A significant, positive relationship was detected between average sea surface temperature (AVG 

SST) and trophic position (PCISO2; F1,1=13.1, p=0.02) (Table 8). However, no other significant 

relationships were detected between isotopic niche variables and environmental variables 

(Table 8).  

Discussion 

To date, few studies have managed to successfully quantify dietary markers across the range of 

Arctic seabirds, many of which have pan-Arctic distributions (Dean et al., 2015; Herman et al., 

2017; Votier et al., 2010). As a result, it is now critical to broadly assess the resiliency of seabirds 

to environmental changes to determine which populations or species are most at-risk from 

climate change. Using an international dataset collected from 8 breeding colonies of common 

eiders we aimed to use inter-colony variation in isotopic niche variables to begin estimating the 

resiliency of this species to climate change. First, we found significant inter-colony variation in 

δ15N and δ13C values (corrected for baseline variation in prey δ15N and δ13C values). These stable 

isotopes provide information on spatial and trophic foraging decisions, and the degree of 

foraging specialization (Bearhop et al., 2004; Newsome et al., 2007) and therefore their ability to 

overcome foraging constraints associated with climate change (Hamer et al., 2007). Second, we 

found mixed relationships between isotopic metrics and colony location (i.e., latitude and 

longitude), suggesting that foraging decisions are highly variable across the range of eiders. 
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Third, we found that eider isotopic signatures were generally not related with variation in 

localized environmental conditions. Together, these results suggest that certain eiders colonies 

may be more flexible in adjusting their diet and niche to respond to changes in prey composition 

and distributions relative to other colonies. Following a discussion of the implications of these 

results in more detail, we combine our results to propose a novel method of interpreting the 

degree of isotopic variation across colonies, in terms of foraging specialists versus generalists, as 

a means of helping to predict the resiliency of different eider breeding populations and other 

Arctic seabird species to the ongoing effects of climate change. 

Inter-colony variation in isotopic niches  

Little is currently known about the degree of variation in foraging decisions and isotopic niche 

across colonies of seabird species, especially common eiders. Nonetheless, given that the 

impacts of climate change on resource availability and diversity, and fitness related metrics (i.e., 

breeding) are inconsistent across broad spatial scales this is a critical variable to assess in the 

context of a changing Arctic. Interpreting only one year of isotope data, as we have here, can be 

challenging, and inferences from inter-colony variation should be made with caution. For 

example, the ability to accurately compare isotopic values across geographically distinct colonies 

hinges on the ability to correct a consumer’s isotopic signature for baseline isotopic variation 

(Kline et al., 1993; Kling et al., 1992). Isotopic signatures of low trophic species naturally 

fluctuate between years, reflected in geographical isoscapes, which can be reflected in the 

isotopic signature of consumers, such as eiders (Cabana & Ramussen, 1996; Mehl et al., 2005). 

Isoscapes are less pronounced in the Arctic, making it challenging to understand what is driving 

baseline isotopic variation (Ainley et al., 2006; Moody et al., 2012; Schell et al., 1998). However, 

given the number and diversity of locations of colonies that we were able to sample, paired with 

our use of literature-derived baseline values to account for as much baseline variation as 

possible, strengthens our ability to interpret our data with confidence. As such, our results 

suggest that eiders do indeed have varied foraging strategies across their range which is 

corroborated by the variation in environmental variables quantified from our colonies. 

Additionally, our international collaborators have provided qualitative confirmation of our 

trophic position results for locations. For instance, the Faroe Island colony (i.e., S.m. faeroeensis) 

were believed to target only lower trophic organisms, such as amphipods (Gammarus ap.) 

despite having a relatively diverse prey selection (Jónsson, personal communication). Based on 
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our stable isotope results, S.m. faeroeensis indeed appears to forage a full trophic level lower 

compared to other eider colonies (Fig. 2,3), suggesting they forage predominantly on prey such 

as amphipods. In contrast, the Mitivik Island colony appears to incorporate more benthic, 

macroinvertebrate prey in their diets, resulting in a higher trophic level for the colony overall. 

These results are corroborated with isotopic studies of eider tissue and egg components 

conducted at this site (Sénéchal et al., 2011).  

It is certainly possible other factors beyond prey distribution and choice may influence 

inter-colony isotopic variation, including the extreme variation in eider life history events and 

phenology that occurs across their range (Goudie et al., 2000). Some of the breeding colonies 

we sampled are migratory, while others are year-round residents, which likely generates inter-

colony variation in energetic constraints and demands prior to breeding. Stress and energetic 

management are two important factors to account for because they can impact isotopic 

signatures (Sears et al., 2009; Williams et al., 2007). Previous studies have shown that 

metabolically active tissues are sensitive to the effects of stress and become increasingly 

enriched isotopically during these times (Hobson et al., 1993). As such, the energetic demand of 

migration and variation in exposure to extreme environmental conditions (Arctic versus 

Temperate conditions) across the annual cycle, particularly during the pre-breeding stage we 

focus on in this study, may explain some of the isotopic enrichment detected here.  

Environmental variation weakly relates to inter-colony variation in isotopic 

niches 

Climate change poses many risks to Arctic wildlife, either indirectly through trophic disruptions 

(Rosenblatt & Schmitz, 2016), or through direct interactions between an individual’s physiology 

and localized environmental conditions (Doney et al., 2012; Grémillet & Boulinier, 2009). It is 

likely that a latitudinally- or longitudinally-based gradient in environmental conditions may be 

responsible for variation in the isotopic signatures across breeding colonies (Yurkowski et al., 

2016). We confirmed that average sea surface temperature significantly related to both latitude 

and longitude, demonstrating a stronger relationship with longitude and that many isotopic 

metrics also differed by both latitude and longitude. Considering the role sea surface plays in 

influencing prey species distribution and abundance (Arula et al., 2014), it is likely that sea 

surface temperature also plays an important role in affecting variation in foraging conditions 

and therefore isotopic niche. In agreement with this, we found that colonies in warmer locations 



 

65 
 

(i.e., John’s Island, Canada, Kirkjubøhólmur, Faroe Islands, Breiðafjörður, Iceland, and Grindøya, 

Norway) appeared to forage in larger, low trophic, niches compared to colonies in colder 

locations such as Kongsfjorden, Norway, Mitivik Island, Canada, and Tern Island, Canada, which 

forage within a higher trophic level and smaller niche. This is consistent with other studies which 

have found that broad-scale temperature patterns are able to predict isotopic metrics (Barnes et 

al., 2007). 

Even so, based on our data there does not appear to be a clear gradient in 

environmental and weather patterns. For example, Kongsfjorden, Norway was the most 

northern colony sampled, but it has relatively warmer environmental conditions (i.e., sea 

surface temperature and ambient temperature) than some more southern Arctic colonies, such 

as Tern Island, Mitivik Island, Onega Bay, and Iceland (Table 2, Fig. 1) (Descamps et al., 2017; 

Svendsen et al., 2002). This supports previous research in which many of the high-Arctic areas 

experience milder conditions, compared to lower latitude locations in the spring (Johannessen 

et al., 2004; Wassmann et al., 2010). Therefore rather than solely gradients in climate, it may be 

that Arctic oceanic patterns and currents likely play a role in generating some of the complexity 

in the relationship between geographic location and isotopic niche.  

Using isotopic niche specialization to predict resiliency across colonies 

The term isotopic niche has only been present in the literature for roughly 15 years and it 

provides a framework for isotopic ecology (Newsome et al., 2007); however has yet to be 

implemented to predict resiliency of species or populations to climate change. Isotopic niche, or 

isotopic specialization, is related to the realized degree of dietary and foraging specialization or 

generality (Bearhop et al., 2004). Within the isotopic niche framework, a generalist species can 

either be made up of either a wide distribution of individually specialized populations, or by all 

populations sharing a similar degree of generalized diet (Yurkowski et al., 2016). The ability to 

quantify the apparent foraging generalization of a species across its range is critical given that 

we expect it may be the mechanism underlying species resiliency; specialist populations to be at 

greater risk to the effects of rapid environmental change compared to generalist, more flexible 

populations (Terraube et al., 2011). According to specialization theory (Bearhop et al., 2004; 

Julliard et al., 2006; Martinez del Rio et al., 2009; Newsome et al., 2009), we identified and 

quantified three criteria related to population-level foraging specialization. The criteria for 

defining a specialist colony were: 1) a narrower breadth of δ13C values (less dispersal), 2) a 
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narrower breadth of δ15N values (less diverse diet), and 3) strong responses to environmental 

variation. In addition to being considered specialists, colonies that meet these criteria and are 

thought to have less dietary flexibility, be less resilient, and more likely to me impacted by 

climate change.  

Previous studies suggest that as a species, eiders have a largely specialized diet 

consisting largely of mollusks (i.e., blue mussels (Mytilus edulis), limpits (Acmea testudinalis), 

clams (Histella arctica)) (Bustness & Erikstad, 1988; Lovvorn et al., 2003; Merkel et al., 2007). 

Indeed, the morphology and phenology of eiders have evolved to take advantage of abundant 

mollusks across their range (Goudie et al., 2000). However, given the variation in environmental 

conditions across the range of eiders and the role environmental variation plays in modulating 

prey quality and diversity, significant inter-colony differences in the degree of diet specialization 

would be somewhat unsurprising. Indeed, there was significant variation in the breadth of both 

δ13C and δ15N values across our sampled colonies, and some colonies therefore fulfill the first 

two criteria of the definition of a “specialist” colony, while others do not. For instance, the Tern 

Island colony located in Nunavut, Canada had the smallest standard ellipse areas (SEAc; 

assessing breadth of both δ13C and δ15N) and it also experiences extensive sea-ice distribution 

(Saucier et al., 2004), which likely restricts the available foraging locations for birds at this colony 

during the pre-breeding period. Comparatively, John’s Island located off the southern coast of 

Nova Scotia, Canada in the warmer Atlantic Ocean had one of the largest isotopic niches of all 

the colonies, in terms of breadth of δ13C values, likely because there were more available 

foraging areas allowing for greater dispersal. Within this framework, we would therefore predict 

John’s Island (SEAc = 3.78, range 13C = 5.61, range 15N = 3.03) to be more resilient to effects of 

climate change than Tern Island (SEAc = 0.44, range of 13C = 1.89, range of 15N = 1.89). Our 

third and final criteria indicating that a colony was “specialist” was that it shows strong 

responses to environmental variation. We found that colony-wide trophic position was highest 

for colonies foraging in colder temperatures (based on sea surface temperature), which is also 

associated with increased spatial foraging variation. For example, Mitivik Island is situated in the 

Canadian Arctic, as such is exposed to cold sea surface temperature (Table 2) and has a high 

trophic position (Table 4). As such, environmental conditions do seem to drive trophic dynamics 

and foraging decisions to all sampled colonies of  eiders, indicating a degree of specialization 

species-wide for these criteria.  
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Taking these three criteria together, there is strong support that some colonies of eiders 

could be considered specialists, and others generalists. As such, climate change may pose key 

fitness-related downstream constraints which modulate life history investment unequally across 

the distribution of common eiders. However based on these results as a whole, common eiders 

would be considered a generalist species, and therefore likely to be quite resilient to 

environmental changes resulting from climate change. It will be critical to assess moving 

forward is whether colonies are considered specialists because of prey selection, or whether 

they are specialists due to ice-restrictions influencing available foraging areas. Although 

extremely challenging, future studies would benefit from quantifying prey abundances at each 

site in conjunction with ice imagery to determine the underlying mechanism driving 

specialization across these colonies. While additional studies quantifying the foraging and 

breeding responses of birds to environmental variation will be necessary to confirm these 

predictions, our study nonetheless provides the first internationally-coordinated application of 

quantitative isotopic techniques across a large spatial scale estimate foraging specialization and 

therefore the expected resiliency to climate change.   

Conclusions and future directions 

Tracking inter-colony variation in key fitness-related decisions across a widely dispersed species 

is challenging (Cristofari et al., 2016; Younger et al., 2016; Welker et al., 1997). This is especially 

challenging in species with pan-Arctic distributions (Gilchrist, 1999; Hansen et al., 2012; 

Yurkowski et al., 2016), as the impacts of climate change, and associated environmental 

conditions and constraints are highly variable across the Arctic, making it challenging to model 

the responses of Arctic species to environmental variables and constraints (Henry and Molau, 

1997). It has therefore been challenging to develop a framework by which we can estimate how 

the dietary decisions of sensitive Arctic organisms will ultimately impact fitness and population 

resiliency within the ongoing effects of climate change. Using a unique, international dataset, 

we were able to quantify the degree of inter-colony isotopic niche variation in wild-living 

common eiders. Our work suggests that niche characteristics vary across the range of this 

seabird species, which may be driven by a combination of environmental factors including local 

temperatures and oceanic currents. Our results linking trophic position and variation in average 

SST provide further evidence that seabird foraging decisions are modulated by localized impacts 

of environmental conditions. These effects, coupled with the significant inter-colony variation in 
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isotopic niche metrics, suggest that common eider colonies differ in their resiliency across their 

range, making it important to consider population-level responses when considering species-

level resiliency. Considering that colonies with a larger breadth of isotopic signatures are 

predicted to be more resilient to environmental changes due to climate change, our data 

suggest that eider colonies will differ substantially in their resiliency, but at the population level 

will be able to successfully cope with projected environmental change. Although extremely 

challenging, future studies would benefit from collect multi-year datasets from the same 

sampling locations and if possible the same individuals to combine isotopic metrics with key 

breeding parameters, and thereby assess resiliency. This type of sampling approach will provide 

the information necessary data to make stronger quantifications of isotopic specialization and 

therefore more robust predictive models of population resiliency. 
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Table 3.1 – Summary of common eider colonies sampled for stable isotopic analysis. Eiders have 

an expansive range, as such samples from multiple independent colonies provides a metric of 

population-level resiliency. We used red blood cells (RBC) for eiders sampled while incubating 

their nest, and plasma for eiders that were sampled during the pre-breeding period to assess 

pre-breeding isotopic signatures. 

Location  Sub-species Lat Long Colony Tissue 

Kongsfjorden, Norway S. m. mollissima 78.918 11.910 2000 RBC 

Grindoya, Norway S. m. mollissima 69.633 18.844 150 RBC 

Tern Island, Canada S. m. borealis 69.547 -80.812 1000 RBC 

Breiðafjörður, Iceland S. m. borealis 65.078 -22.736 300 RBC 

Oneaga Bay, Russia S. m. mollissima 65.048 35.774 150 RBC 

Mitivik Bay Island, Canada S. m. borealis 64.029 -81.789 1000 Plasma 

Kirkjubøhólmur, Faroe Islands S. m. faeroeensis 61.950 -6.799 80 RBC 

John’s Island, Canada S. m. dresserii 43.645 -66.041 500 RBC 
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Table 3.2 – Summary of average and percent coefficient variation in inter-colony sea surface 

temperature (SST) for the relative pre-laying month for each common eider colony. The 

breeding phenology of eiders varies across their range, with certain colonies laying earlier than 

other. As such, average values (AVG) and percentage of coefficient of variation (%CV) include 

SSTs for the relative month leading up to average colony lay dates.   

Location 
 

Lay Month   AVG   %CV 

Kongsfjorden, Norway  May  1.10  65.04 

Grindoya, Norway  May  5.99  12.55 

Tern Island, Canada  June  0.12  366.99 

Breiðafjörður, Iceland  May  6.34  17.23 

Oneaga Bay, Russia  May  3.02  53.82 

Mitivik Bay Island, Canada  June  0.57  39.86 

Kirkjubøhólmur, Faroe Islands  May  7.98  4.73 

John’s Island, Canada   April   4.35   16.67 
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Table 3.3 – Average prey isotopic signatures were collected from the literature to correct 

common eider isotopic values in order to be able to compare inter-colony isotopic niche. Prey 

isotopic values (also referred to as baseline) vary across the globe, thereby making untreated 

isotopic values collected from multiple source locations non-comparable. 

Location   Prey Type   δ13C   δ15N   Source 

Kongsfjorden, Norway  Hiatella artica  -20.30  6.90  Vieweg et al. 2012 

Grindoya, Norway  Hiatella artica  -19.32  7.26  Fredriksen 2003  

Tern Island, Canada  Hiatella artica  -18.22  8.64  Sénéchal et al. 2011 

Breiðafjörður, Iceland  Mya edulis  -19.60  7.40  Sara et al. 2007 

Oneaga Bay, Russia  Styela rustica  -21.60  6.49  Yakovis et al. 2012 

Mitivik Island, Canada  Hiatella artica  -18.22  8.64  Sénéchal et al. 2011 

Kirkjubøhólmur, Faroes  Mytilus edulis  -19.20  8.41  Bustamante, unpublished  

John’s Island, Canada   Mytilus edulis   -19.99   7.17   English et al. 2015 
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Table 3.4 – Summary of mean ± standard error of mean, percent coefficient of variation (%CV) 

δ15N and δ13C raw values, and average trophic position (TP) of common eiders nesting across 8 

colonies. Prey values (Table 3) are applied to these values in order to make inter-colony 

compassions. These values are for both breeding and non-breeding eiders, depending on 

sampling method. 

Location   AVG δ13C   %CV δ13C    AVG δ15N   %CV δ15N   TP 

Kongsfjorden, Norway  -18.42 ± 0.21  4.61  11.76 ± 0.25  8.52  3.2 

Grindoya, Norway  -17.80 ± 0.14  3.21  11.13 ± 0.10  3.82  3.0 

Tern Island, Canada  -18.83 ± 0.06  1.65  12.37 ± 0.11  4.21  2.9 

Breiðafjörður, Iceland  -17.77 ± 0.19  5.19  11.58 ± 0.22  8.97  3.0 

Oneaga Bay, Russia  -19.42 ± 0.16  3.98  10.15 ± 0.09  4.33  2.9 

Mitivik Island, Canada  -18.16 ± 0.15  6.01  13.51 ± 0.18  9.59  3.0 

Kirkjubøhólmur, Faroe Islands  -18.55 ± 0.36  7.75  10.08 ± 0.24  9.65  2.4 

John’s Island, Canada   -16.88 ± 0.35   9.05   12.04 ± 0.18   6.35   3.0 
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Table 3.5 – Summary of inter-colony common eider stable isotopic metrics calculated using 

SIBER. Isotopic metrics, standard ellipse area corrected for small sample size (SEAc), mean next 

neighbor distance (MNND), range of δ13C values, and range of δ15N range, characterize foraging 

dynamics. All metrics are calculated using corrected δ13C and δ15N values, thereby are 

comparable across colonies. 

Location   SEAc   MNND   δ13C range    δ15N range  

Kongsfjorden, Norway  2  0.40  3  3.43 

Grindoya, Norway  1  0.29  2  1.49 

Tern Island, Canada  0  0.16  1  1.89 

Breiðafjörður, Iceland  3  0.53  3  3.90 

Oneaga Bay, Russia  1  0.29  3  1.78 

Mitivik Bay Island, Canada  4  0.33  5  5.66 

Kirkjubøhólmur, Faroe Islands  3  0.41  5  3.61 

John’s Island, Canada   4   0.57   6   3.03 
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Table 3.6 – List of principal component correlation values based on common eider plasma and 

red blood cell isotopic metrics. Bold values reflect metrics which significantly loaded and 

included in the principal component. 

   Principal component  

Variable   1 2 3 

AVG δ13C   -0.124  -0.201 0.676 

%CV δ13C  0.326 0.498  -0.184 

AVG δ15N   -0.091 0.653 0.353 

%CV δ15N  0.332  -0.389  -0.321 

SEAc  0.469 0.053 0.224 

Range δ15N  0.458 0.245  -0.067 

Range δ13C  0.463  -0.117 0.103 

NND  0.340  -0.240 0.466 

Eigenvalue  3.951 1.762 1.440 

Cumulative variance explained  49.384 22.027 18.001 

 

  



 

82 
 

Table 3.7 – Regression analysis between isotopic metrics and principal component residuals as 

dependent variables, and latitude and longitude and independent variables. Bold p-values 

reflect a significant (or marginally significant at the p =0.1 level) relationship between 

dependent and independent variables. 

 
 

Latitude 
 

Longitude 

 Variable F1,1 p 
 

F1,1 p 

Isotopic 
Metrics 

AVG δ13C 0.29 0.61 
 

4.82 0.08 

%CV δ13C 0.05 0.83 
 

1.55 0.27 

AVG δ15N 0.85 0.40 
 

1.63 0.26 

%CV δ15N 0.51 0.50 
 

1.18 0.33 

SEAc 2.92 0.15  0.08 0.78 

δ13C range 8.44 0.03  0.21 0.67 

δ15N range 0.29 0.61  0.27 0.62 

NND 17.20 0.01  2.81 0.15 

ISOPC1 2.45 0.18 
 

0.01 0.92 

ISOPC2 3.08 0.14 
 

7.87 0.04 

ISOPC3 1.30 0.31 
 

1.00 0.36 

Environmental 
Metrics 

AVG SST 8.56 0.03  16.51 0.01 

%CV SST 2.85 0.15  5.10 0.07 
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Table 3.8 – Regression analysis between residual PC scores and sea surface temperature (both 

average (AVG) and percent of coefficient of variation (%CV)). Bold values indicate a significant 

result. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 AVG SST 

 
%CV SST 

Variable  F1,1 p   F1,1 p 

PC1  0 0.99 
 

0.94 0.38 

PC2  13.1 0.02 
 

2.19 0.2 

PC3   0.14 0.72   2.49 0.18 
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Figure 3.1 – Map of 8 breeding common eider colonies. Each location was sampled during the 

pre-breeding or breeding period. 
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Figure 3.2 – Inter-colony variation in isotopic niche of eiders nesting at 8 different breeding 

colonies. Each colour is an independent colony. Ellipses represent 40% of the individuals’ 

isotopic signatures within each year. 40% ellipses are used to represent the placement of birds 

within each colony in isotopic space and compare placement among years. Isotopic values are 

corrected for baseline variation in prey isotopic signatures (i.e., δ15N consumer – δ15N prey). 
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Figure 3.3 – Inter-colony variation in trophic position, with tukey-HSD groups listed above each 

colony. SPIT = Kongsfjorden, Norway; GRIN = Grindoya, Norway; RUSS = Oneaga Bay, Russia; ICE 

= Breiðafjörður, Iceland; MI = Mitivik Island, Canada; JOHN = Johns Island, Canada; TERN = Tern 

Island, Canada; FAR = Kirkjubøhólmur, Faroe Islands. Different letters above boxplots represent 

distinct groups based on the out of variance in trophic position. Groups with two letters were 

described as in between two groups. See methods for description of trophic position calculation.  
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Figure 3.4 – Inter-colony variation in δ13Ccorr values, which have been corrected by baseline prey 

values to make comparable across colonies. See table 3 for further information on prey values, 

and methods for information on correcting values. SPIT = Kongsfjorden, Norway; GRIN = 

Grindoya, Norway; RUSS = Oneaga Bay, Russia; ICE = Breiðafjörður, Iceland; MI = Mitivik Island, 

Canada; JOHN = Johns Island, Canada; TERN = Tern Island, Canada; FAR = Kirkjubøhólmur, Faroe 

Islands. 
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Chapter 4 : 

A novel application of stable isotopes: using isotopic variation to link environmental 

conditions, breeding parameters, and resiliency to change 

The ability to locate resources in a rapidly changing environment is one of the largest constraints 

organisms currently face (Newton, 1998; Stephens & Krebs, 1986). Understanding how the 

foraging flexibility of organisms responds to environmental variation to impact key life history 

investment decisions may provide key information on species resiliency to climate change 

(Oliver et al., 2015). In this thesis I proposed a novel and non-invasive method of using isotopic 

foraging niche as a means of predicting resiliency to environmental change in a model Arctic 

seabird. Specifically, I aimed to quantify the degree of pre-breeding isotopic variation across 

multiple scales, using a diving Arctic seaduck (common eider - Somateria mollissima, hereafter 

eiders), as a useful general model for Arctic seabirds (Goudie et al. 2000). In Chapter 2 my goal 

was to: i) quantify variation in isotopic niche between breeding stages and years, ii) link inter-

annual variation in isotopic niche to variation in environmental conditions, and iii) determine 

whether broad-scale variation in isotopic niche during breeding predicted investment in a 

number of breeding decisions known to impact fitness. First, I found that isotopic values varied 

significantly across years and across multiple, successive pre-breeding stages, providing 

evidence that female eiders modulate their diet to overcome constraints associated with 

resource limitation and environmental conditions (i.e., ice cover) during an energetically 

demanding life history stage (Hennin et al., 2015). Further, I found that isotopic metrics were 

able to predict variation in the ability to invest in reproduction, with certain foraging decisions 

being associated with a higher average population-level breeding propensity. There was also a 

shift in foraging decisions throughout the pre-breeding season, specifically an increase in δ13C at 

the onset of rapid follicle production. Variation in δ13C was associated with spatial foraging 

dynamics (Hobson & Clark, 1992a), and my results indicated that females move closer inshore 

once they near laying. Finally, I generally found that isotopic variation could not be strongly 

explained by variation in two relevant, broad-scale environmental metrics (i.e., NAO, mean 

ambient temperatures). Building off of these results, my primary goal for Chapter 3 was to use 

an international dataset to: i) explore inter-colony variation in isotopic niche, ii) quantify the 

inter-annual trophic position of eiders, and iii) determine whether localized environmental 

conditions predicted variation in isotopic niche. I found that isotopic niche and trophic position 

varied significantly across breeding colonies of eiders, providing evidence for mixed foraging 
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strategies across eider populations. Further, I found that trophic position, but not other isotopic 

metrics, were significantly related to variation in sea surface temperature (SST). It is likely that a 

relationship between isotopic metrics and sea-ice dynamics would provide a stronger result 

which would be the next step to pursue. Collectively, the results of this thesis provide important 

context into predicting the ability of seabirds to adaptively respond to variation in 

environmental conditions through shifts in their trophic dynamics and as such, their ability to 

modulate their foraging decisions to meet the energetic demands associated with reproduction. 

These results also provide a fairly non-invasive alternative method to better predict population 

resiliency to climate change based upon quantifying population-level foraging decisions, which is 

a known constraint affecting the energetics and functioning of organisms (Bolnick et al., 2003). 

Interpreting a novel application of stable isotopes 

Resource accrual is critical for successfully investing in reproduction, with the conditions that 

organisms are exposed to during the pre-breeding period often posing fitness-related 

constraints (Newton, 1998; Stephens & Krebs, 1986). As such, foraging flexibility – the ability to 

switch between a suite of foraging strategies depending on resource availability – is a 

phenotypic response of organisms to match key breeding decisions to trophic dynamics and the 

environmental conditions which link them (Kassen, 2002; Ryall & Fahrig, 2006). With the current 

rate of climate change, it is important to determine how and why these linkages might become 

disrupted, and if organisms possess the breadth of decisions required to accrue the required 

resources under this amount of change (Hamer et al., 2007). The ability to quantify the degree 

of foraging flexibility across relevant spatial and temporal scales provides important information 

on the ability of organisms to overcome fitness-related constraints (Ronconi & Burger, 2008). 

However, there are many gaps in our current understanding of what influences organismal 

foraging flexibility and how and why this flexibility influences breeding investment (Love et al., 

2014). My thesis aims to help fill some of these gaps, by investigating: 1) isotopic variation 

across multiple spatiotemporal scales, 2) the roles of resource acquisition in modulating 

reproductive investment, 3) the relationship between environmental conditions and isotopic 

niche, and 4) whether we can use stable isotopes to predict resiliency to climate change.  
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Spatiotemporal isotopic variation  

Arctic seabirds are a group of diverse organisms that use multiple different foraging strategies to 

invest in reproduction (Ricklefs, 1983). For example, common eider are a species that depend on 

resources to meet the demands of multiple stages of reproduction: from reaching a minimum 

body condition threshold to invest in reproduction (Legagneux et al., 2016; Hennin et al., 2015), 

to fueling the actual production of eggs (Erikstad et al., 1998; Robertson & Cooke, 1993), and 

then depending on stored resources to fuel a 24-day incubation period (Sénéchal et al., 2011). 

As such, resource limitation poses severe fitness-related constraints in this species. Changes in 

the need for different resources are represented in the pre-breeding isotopic signatures of 

eiders, specifically high δ15N and lower δ13C during pre-reproductive investment (Chapter 2). As 

the breeding season progresses, changes in δ13C indicate that eiders also begin to forage closer 

to their breeding colony (Chapter 2). No study to our knowledge has been able to track foraging 

decisions, by means of stable isotope analysis, from breeding investment to the onset of egg 

laying in any seabird. These new results provide evidence that seabirds have the ability to match 

their energetic demand to environmental conditions, which may be limiting resource 

abundance.  

Annual shifts in trophic dynamics are becoming increasingly common (Post et al., 2009), 

with many higher order organisms struggling to keep-pace with the current rate of change 

(Hansen et al., 2013). With this, temporal variation in higher order foraging decisions provides a 

key snapshot into food web resiliency as a whole (Hobson et al., 1994; Horswill et al., 2016). 

However, being able to collect and then quantify this type of information within and across 

years and populations is often very challenging. Seabirds, as a comparative model group, show a 

wide breadth in species-specific foraging flexibility. For instance, results from Chapter 2 suggest 

that common eider show significant flexibility in isotopic values across successive pre-breeding 

stages, which provides further evidence that this species may be highly flexible in their foraging 

decisions in response to the varying energetic demands of specific life stages. Recent work has 

also demonstrated that other seabird species show similar levels of inter-annual responses to 

resource demography (Le Bot et al., 2019). As such, it will be important to continue investigating 

the inter-specific variation in foraging flexibility in relation to investment decisions as a means of 

informing conservation-based management decisions.  
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All species possess a certain level of adaptive capacity, often by means of phenotypic flexibility 

(i.e., shifting the expression of phenotypes to match environmental conditions and phenology), 

to overcome constraints associated with increased environmental variability (Sauve et al., 2019). 

However, since the impacts of climate change are not specific to one region, they are causing 

increased levels of localized environmental variation (IPCC, 2018). In turn, certain populations of 

wide-ranging species may be better able to overcome the constraints associated with localized 

conditions, and the impacts of climate change as a whole (Møller et al., 2008). However, the 

degree to which different populations vary in traits such as their foraging flexibility across the 

range of many species is widely unknown and challenging to quantify. With this, even 

‘snapshots’ of how variable different populations are in their foraging decisions can provide key 

baseline context for improving our understanding of how populations will respond to further 

change. For example, results from Chapter 3 suggest that common eider show significant inter-

colony variation in their foraging decisions, and importantly, that specific eider colonies appear 

to be foraging at completely different trophic levels. These data further support and are 

consistent with other wide-ranging seabird species, which also appear to show colony-specific 

foraging decisions (Herman et al., 2017; Votier et al., 2010). 

Life history investment modulated through foraging decisions 

One of the most energetically demanding life history stages is reproduction (Hennin et al., 2015, 

2016, 2018), and results from Chapter 2 confirm that multiple foraging strategies may be 

required to overcome stage-specific constraints leading up to being able to successfully invest in 

reproduction. It is generally accepted that organisms with a generalist foraging strategy will be 

better equipped to overcome resource-based constraints to successfully invest in reproduction, 

regardless of the associated environmental conditions (Bolnick et al., 2013). For example, during 

resource poor years, some seabird species have been shown to flexibly increase their foraging 

rate to offset the reduced energy gain per prey item (Burger & Piatt, 1990; Litzow & Piatt, 2003). 

In order to successfully invest in reproduction during these poor prey years, individuals must 

work harder, expending more energy, which in itself can have fitness-related consequences 

(Ronconi & Burger, 2008). Since selection in longer lived organisms favours breeding only when 

conditions are optimal (Wooler et al., 1992), and there is less evolutionary cost to forgoing 

reproduction in these species, we would expect a strong link between foraging decisions and the 

ability to invest in breeding in a given year (i.e., breeding propensity). Results from Chapter 2 
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confirm this, where the probability of investing in reproduction was highest in female eiders 

which had both an inshore, small niche diet and shifted niche across breeding stages. Inter-

breeding-stage trends provide evidence that optimal breeding phenology decisions are 

contingent on specific foraging decisions, likely those that enable birds to overcome the 

energetic demand associated with breeding. Overall, these results suggest that the foraging 

strategies of breeding female eiders are very complex, with females needing to make multiple 

flexible foraging decisions in order to successfully meet the energetic demands of successive 

reproductive stages and investment in laying.   

Flexible foraging in response to broad- and fine-scale environmental variation  

Environmental conditions pose both direct and indirect constraints to organisms across the 

globe (Belyea & Lancaster, 1999). One important aspect of this is the impact of environmental 

conditions on trophic dynamics (Wassmann et al., 2011). For lower trophic organisms, these 

constraints are more direct, as low trophic species depend on specific environmental conditions 

to breed compared to higher trophic organisms (Cloern & Jassby, 2008). It is challenging to 

understand these dynamics, as there are multiple environmental conditions which organisms 

are exposed to and depend upon to invest in life history stages. This is particularly true for 

marine organisms, as they persist or depend on the ocean throughout their life, and the ocean 

has shown to be significantly sensitive to the impacts of climate change (Brierly & Kingsford, 

2009). Indeed, environmental conditions can also pose multiple constraints, many of which may 

be synergistic in their impacts on all orders of organisms (Sydeman et al., 2012). Nonetheless, 

we expect that the ability to switch foraging strategies depending on the environmental 

conditions an individual is exposed to will be under increased selection with increased levels of 

environmental variability (Réale et al., 2003). Results from Chapters 2 and 3 indicate that both 

inter-annual and inter-colony trophic dynamics in female common eiders are significantly 

related to localized sea surface temperature during the pre-breeding period. These results 

therefore provide good evidence that the localized environmental conditions that eiders face on 

their breeding grounds may significantly influence the proximate foraging decisions that 

ultimately shape their overall reproductive investment decisions.  

A novel technique estimating resiliency through stable isotope analysis 

Investigating the response of organisms to climate change is challenging, as the impacts of 

climate change pose direct and indirect impacts on multiple life history stages (Sydeman et al., 
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2012), modulating the key fitness-related decisions that higher order species make (Charmantier 

et al., 2008). Indeed, the ability to locate resources in a rapidly changing environment is 

becoming increasingly challenging for organisms and poses downstream constraints on 

investment in life history stages (Boggs, 1992; Newton, 1998; Stephens & Krebs, 1986). As such, 

it is more crucial than ever to determine how species living and breeding in habitats like the 

Arctic, which is showing amplified rates of environmental change, will respond to current and 

future change (Cohen et al., 2014). To begin this daunting process, I used this thesis to propose 

a novel method of quantifying foraging flexibility during breeding, and within and across 

populations, as a means of predicting resiliency to climate change in common eiders. As a 

starting point, one of Chapter 2’s central objectives to achieve our overall goal was to use eiders 

as a model to investigate relationships between environmental conditions and the ability of 

organisms to locate sufficient resources, which then modulates the ability of these organisms to 

invest in reproduction. These relationships can be broad, such as the impact of wide-ranging 

environmental indices (i.e., North Atlantic Oscillation) on breeding propensity (Descamps et al., 

2010), or more localized, such as more fine-scale environmental conditions (i.e., local sea ice 

dynamics, Jean-Gagnon et al., 2018) impacting reproductive costs and constraints (Hepp et al., 

2015).  Chapter 3 simultaneously sought to both refine and broaden these questions by showing 

that variation in localized environmental conditions, such as sea surface temperature (SST) at 

the breeding colony, can provide a window into key trophic dynamics across broadly-distributed 

populations. Taken together, these results provide key evidence that some organisms possess 

enough phenotypic flexibility to cope with highly variable environmental conditions through 

modulating their foraging decisions, and still be able to invest in reproduction. However, across 

the range of species, certain locations may be under greater stress from climate change, and 

therefore lack the resiliency to overcome these constraints.  

Environmental constraints driving foraging decisions 

Environmental conditions are a significant constraint driving life history decisions, and also 

limiting the ability of organisms to invest in reproduction (Boggs, 1992; Daunt et al., 2006; Drent 

and Daan, 1980). Climate change is associated with many global trophic disruptions (Edwards & 

Richardson, 2004; Hjort, 1914), and must be considered when predicting the resiliency of 

organisms. Indeed, the impacts of climate change are highly varied across the globe, and even 

across different regions, such as the Arctic (IPCC, 2018). We proposed the use of a stable isotope 
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analysis in a model seabird organism, across multiple spatiotemporal scales, as a means of 

predicting resiliency to climate change. In this thesis, I used two scales of variation to test for 

isotopic variation as a proxy for foraging dynamics: 1) temporal (Chapter 2), and 2) spatial 

(Chapter 3). As such, relationships between environmental conditions (e.g., inter-annual and 

inter-colony) and isotopic metrics therefore represent responses of organisms to changes in 

conditions. These responses are important to understand, as they provide a window into the 

ability to shift fitness-related foraging decisions, and organismal resiliency (Oliver et al., 2015). 

We found that trophic dynamics of eiders, specifically their trophic position, were most strongly 

related to environmental conditions (Chapter 2). However, we did not find strong relationships 

between δ13C and environmental conditions. This is surprising, as δ13C values represent spatial 

foraging dynamics (Hobson & Clark, 1992a), which are certainly constrained by environmental 

conditions (i.e., sea ice dynamics). There are a few possible explanations for this, which could 

provide important context for further applications. First, it is possible that the model organism 

we chose, common eider, may possess higher adaptive capacity than expected, and may be able 

to overcome many of the associated changes in environmental conditions. The results presented 

in this thesis support the idea of eiders having a generalist diet overall (Chapter 2), with 

significant inter-colony variation in trophic dynamics being detected (Chapter 3). With this, I 

expect that specialized foraging organisms, or specialized individuals within a population (e.g., 

ringed seals, Yurkowski et al., 2016) may lack the required foraging flexibility to keep pace with 

environmental change. 

Another possible explanation is that the environmental indices I selected – relative 

ambient temperature, North Atlantic Oscillation, and relative sea surface temperature – were 

not strong enough predictors of the actual environmental conditions which drive the foraging 

decisions being made by eiders, and by extension possibly other marine organisms. For example, 

previous research has shown that the ability of eiders to invest in reproduction is contingent on 

meeting a threshold body condition (Sénéchal et al. 2010; Legagneux et al., 2016), and doing so 

appears highly constrained by sea-ice dynamics (Jean-Gangon et al., 2018). For this thesis, we 

were unable to include sea-ice dynamics, and instead related sea surface temperature to inter-

colony isotopic niche variation (Chapter 3). Our finding that the breadth of inter-colony niche 

varies significantly with localized sea surface temperature suggest that eiders flexibly adjust 

fitness-related foraging decisions in response to environmental constraints. This provides 
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evidence that, as a species, eiders may be resilient to climate change; although certain colonies 

may be under greater climate-induced pressure, and may lack the required resiliency to persist.  

Modulating foraging decisions across multiple temporal scales 

The isotopic signature of a high-trophic organism is contingent on lower order trophic 

interactions, specifically which primary producers are fueling the trophic dynamics (Yamamuro 

et al., 1995). As such, similar food webs fueled by different primary producers will cause 

bottom-up isotopic variation, as primary producers often vary significantly in their isotopic 

routing (Hanson et al., 2010). For example, climate change has resulted in baseline changes in 

Arctic primary producers, from phytoplankton-based to ice-algal-based (Gosselin et al., 1997; 

Kohlbach et al., 2016). This can have significant ecological implications, as many Arctic 

organisms have evolutionarily timed their life history stages to match the emergence of 

phytoplankton, not ice-algae (Ramírez et al., 2017). It is possible to infer which primary producer 

is fueling the food-web by measuring δ13C in consumers, as ice-algae has higher overall δ13C 

values compared to phytoplankton, and since carbon trophic enrichment is negligible (Budge et 

al., 2008). Our finding in Chapter 2 that the δ13C values of female pre-breeding eiders decrease 

with relative arrival date, where early arriving individuals forage closer to shore, is likely 

associated with sea-ice dynamics and ice-bound primary producers. For many other species and 

systems, this trophic shift has resulted in reduced prey biomass, and fewer adults successfully 

rearing offspring (Burthe et al., 2012). Interestingly, we found that eiders with high δ13C values 

(associated with inshore foraging, or ice-algae based food webs) are more likely to breed than 

eiders with low δ13C values (i.e., birds associated with offshore foraging, or phytoplankton-based 

food webs). In terms of resiliency, these results support the idea that eiders possess sufficient 

foraging flexibility to overcome key fitness-related trophic shifts related to climate change to 

invest in reproduction, regardless of the environmental conditions. Combining all of this 

information suggests that foraging decisions are indeed modulated by environmental conditions 

(i.e., sea ice dynamics), which pose downstream constraints on reproductive investment, and 

that the resiliency of organisms likely vary across multiple scales (both temporal and spatial).  

Future directions and conclusions  

Quantifying foraging flexibility and the degree of foraging specialization in species is challenging 

(Bolnick et al., 2003 , Bearhop et al., 2004), as it requires the collecting of repeated samples 

from individuals over time. Further, with the increased ecological pressure from climate change, 
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shifts in trophic dynamics have led to increased egg predation in seabird colonies by novel 

predators (Drent & Prop, 2008; Iverson et al., 2014). Three of the biggest gaps I was unable to 

examine with my thesis were: 1) whether variation in isotopic niche (i.e., foraging decisions) 

predicts variation in fitness (e.g., breeding success – the ability to hatch ducklings) either within 

or across colonies to quantitatively assess impacts of foraging on resiliency; 2) relating individual 

variation in isotopic variables to breeding parameters; and 3) quantifying intra-individual 

variation in foraging flexibility over time. With regards to quantifying breeding success, 

collecting data on hatching success at the Mitivik Island (focal) breeding colony is now very 

difficult given the fact that very few ducklings survive due to ongoing polar bear predation (Dey 

et al., 2017). We are therefore currently limited to investigating variation in isotopic niche across 

the pre-breeding period and using it to predict the ability to invest in reproduction. The ability to 

apply this framework to a system where offspring survival is high would provide additional, 

highly informative context. At the inter-colony level, many of the collaborative teams that I 

collaborated with do not have the capacity to follow females to the end of incubation to 

estimate breeding success. As such, both at the within- and between-colony levels, it is still 

currently very difficult to quantitively use variation in isotopes to assess how variation in 

foraging flexibility ultimately impacts population resiliency in this species. Secondly, although I 

was able to relate mean isotopic values to mean breeding parameters, I was unable to relate 

individual-based variation in isotopes to their breeding parameters, largely because broad-scale 

metrics like NAO are consistent across all individuals, making it statistically challenging to test 

this at the individual level. However, based on the amount of variation in 13C and 15N values 

across individuals, it is likely that there are indeed individuals with specialist and generalist 

foraging strategies within the colony. To test this idea, future studies may be able to take 

advantage of high quality tracking data throughout the pre-breeding period to relate isotopic 

niche to spatial use of habitat and potential restrictions on foraging areas (i.e., ice cover) to 

verify some of these relationships, particularly with regards to inshore and offshore foraging. 

Although challenging, by synchronously collecting these data, we would be able to assess the 

presence of true specialists and generalists within a colony or population. Finally, collecting 

intra-individual data across years is very challenging in many systems, especially with seabirds 

such as eiders, making it difficult to determine whether individuals show inter-annual flexibility 

in the foraging strategies. Although eiders show a high degree of nest-site fidelity, we have little 

control over which individuals are captured, as we catch and recapture eiders entirely 
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haphazardly. Further, it is important to minimize human influence on seabird colonies to 

prevent depredation from other nearby predatory nesters and to minimize additional stressors 

during an already challenging time, as such capturing eiders on their nest at the focal colony at 

MI is not possible. Other systems, specifically other pelagic seabirds (e.g., thick-billed murre, 

black-legged kittiwake) may be better suited to assess intra-individual foraging flexibility 

because they appear to be more tolerant of human disturbance and easier to recapture. 

Comparing intra- and inter-individual, as well as inter-colony, flexibility will be key to uncover 

additional scales of resiliency.  
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