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ABSTRACT

The ever increasing processing power of modern computers, as well as the increased

availability of large and complex data sets, has led to an explosion in machine learning

research. This has led to increasingly complex machine learning algorithms, such

as Convolutional Neural Networks, with increasingly complex applications, such as

malware detection.

Recently, malware authors have become increasingly successful in bypassing tra-

ditional malware detection methods, partly due to advanced evasion techniques such

as obfuscation and server-side polymorphism. Further, new programming paradigms

such as fileless malware, that is malware that exist only in the main memory (RAM)

of the infected host, add to the challenges faced with modern day malware detection.

This has led security specialists to turn to machine learning to augment their malware

detection systems. However, with this new technology comes new challenges. One of

these challenges is the need for interpretability in machine learning.

Machine learning interpretability is the process of giving explanations of a machine

learning model’s predictions to humans. Rather than trying to understand everything

that is learnt by the model, it is an attempt to find intuitive explanations which are

simple enough and provide relevant information for downstream tasks. Cybersecurity

analysts always prefer interpretable solutions because of the need to fine tune these

solutions. If malware analysts can’t interpret the reason behind a misclassification,

they will not accept the non-interpretable or “black box” detector.

In this thesis, we provide an overview of machine learning and discuss its roll in cy-

ber security, the challenges it faces, and potential improvements to current approaches

in the literature. We showcase its necessity as a result of new computing paradigms

by implementing a proof of concept fileless malware with JavaScript. We then present

techniques for interpreting machine learning based detectors which leverage n-gram

analysis and put forward a novel and fully interpretable approach for malware detec-

tion which uses convolutional neural networks. We also define a novel approach for

evaluating the robustness of a machine learning based detector.
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CHAPTER 1

Introduction

Machine Learning has come a long way in recent years. There has been a vast

amount of papers published in the last decade which offer a number of substantial

improvements on machine learning algorithms both old and new. Along side this

research there has also been many papers which study the various applications of

machine learning algorithms. From perhaps the most well known, even among non-

experts, such as machine vision and natural language processing, to the less well

known but all the while pervasive and significant medical, commercial, and industrial

applications.

Machine learning is the study of algorithms which allow computers to preform a

specific task without the use of explicit programming. These algorithms accomplish

this by using statistics and inference techniques to detect or “learn” patterns within

data (hence machine learning is considered a type of pattern recognition). These

patterns are then used in various ways to preform a certain task.

The data used by the machine learning algorithm, referred to as the “data set”,

is typically a table where each row is considered a single record or “sample” and each

column corresponds to a “feature” whose values describe said feature for each sample

in the data set. For example, a housing market data set would have a separate row

for each house and a column for each feature, such as the number of rooms, square

footage, and so on. In practice, a data set of n samples and m features is an n ×m

array (table, matrix, etc.) of values where the ith row of the feature array gives the

“feature vector” of the ith sample. Meanwhile, the jth column in the ith row gives the

1



1. INTRODUCTION

value of the jth feature for the ith sample. This value is denoted denoted xi,j however

the row index i is omitted when the context makes it obvious we are discussing a

single example. The processes of choosing features and determining their value for

each sample are known as feature selection and feature extraction respectively. In

some cases, such as computer vision with neural networks, feature extraction is done

by the machine learning algorithm automatically from raw data such as images (e.g.

pixel RGB values).

Machine learning can be broadly separated into two categories, supervised and

unsupervised learning. In supervised learning, each sample is accompanied by a

“label”, and the 1 × n array of labels forms a column vector where the ith element,

denoted yi, is the label of the sample ith sample. The machine learning algorithm

uses a subset of the data set, called the training set, in order to learn the relationship

between the feature values and the label. This learnt relationship is referred to as

“the model” and can be used to predict the label of previously unseen samples from

their feature values. However, before being used as a predictor, to ensure the model

is effective at making predictions, the trained model makes predictions on a portion

of the labeled data set which was left out during training, called the test set. The

predicted labels are compared with the known labels to see if the predictions are

reliable. What is considered reliable is application specific, and as we shall see later,

goes far beyond simple metrics such as accuracy.

Supervised learning can be further divided into two subcategories, regression and

classification. In the former case, the model predicts a real value such as a the price

a house will sell for. In the latter case, the model predicts a discrete value which

corresponds to the class of a sample. For example, in binary classification the model

may predict either 0 or 1 which may correspond to the rejection class or approval

class of mortgage applicants based on features extracted from financial histories.

In the case of unsupervised learning, samples in the data set are not accompanied

by labels and here the objective is to find unknown structure and relationships in the

data. Models trained using unsupervised learning can find anomalous data points or

uncover potential classes to be used later in a supervised approach. We hold off on a

2



1. INTRODUCTION

discussion of unsupervised machine learning techniques as they are not the focus of

this thesis.

Next we introduce a high level discussion of the machine learning models used

later in this thesis, specifically in Chapter 4. This will serve as a preliminary for

understanding what is discussed there for readers without a background in machine

learning.

1.1 Machine Learning Algorithms

One of the most basic and widely used machine learning algorithms is Linear Re-

gression. Linear Regression models are used for regression by simply calculating a

weighted sum of a sample’s feature values and adding a real valued “bias” which

yields it’s predicted label. The weight of the jth feature is denoted wj resulting in the

following equation for predicting a samples label:

y =
m∑
j=1

xjwj + β (1)

A version of Linear Regression adapted for binary classification is Logistic Regres-

sion in which the result of the sigmoid function applied to the weighted sum is used

to determine the label. Since the sigmoid function outputs only values between 0 and

1, a sample is predicted to belong to class 0 if it produces an output less than 0.5,

otherwise it is predicted to belong to class 1. In the case where there are more then

two classes, a Logistic Regression model is trained for each class. For the kth Logistic

Regression model, only the samples belong to the kth class are labeled 1 and the rest

are labeled 0. Thus the multi-class scenario is treated as multiple binary classification

scenarios. During prediction, a sample is predicted as the class whose Logistic Regres-

sion model produced the highest output. This is known as one-vs-rest classification.

Below is the function a logistic regression model uses to make predictions.

y =
1

1 + e−z
where z is the result of equation 1 (2)

3



1. INTRODUCTION

So far we have seen how linear regression and logistic regression models make

predictions, but as of yet we have not discussed how they are trained. Before we can

do this we must introduce the idea of the “loss function”. The loss function provides

a measure of the error in a models predictions given a set of labeled samples and must

be differentiable with respect to the parameters of the model which we wish to learn.

Here parameters refers to any values which we learn during training, such as feature

weights and the bias. (Values which are not learnt during training and are chosen

before hand are called hyper-parameters.) When we say “differentiable with respect

to the parameters we wish to learn”, we are saying that we can determine if increasing

one of the parameters by a very small amount will cause the loss function to decrease

or increase. For a more detailed discussion of linear and logistic regression, we refer

the reader to [2]

Since the loss function is a measure of our model’s error, and we wish to minimize

the error, we also wish to minimize the loss function. Therefore, we determine for each

trainable parameter whether increasing it or decreasing it will cause the loss function

to decrease and we add/subtract a very small amount to/from the parameter’s value

based off this. Once we do this for all parameters, we recalculate the loss function

and repeat. Since we cannot jump directly to the values where the loss function is

minimized, because the derivative only gives local information about the parameters

effect on the output of the loss function, we must take small steps each iteration

and repeat. In this way, making locally optimal decisions with course corrections

along the way, we ideally arrive at a “global minimum”. That is, the values for the

parameters of the model for which the loss function is lowest given the training set.

The mathematical construct which specifies the direction to move each parameter

in order to minimize the loss function is called the “gradient” and since we use this

gradient to descend the loss function, we call this process gradient descent. There

are many things to consider when preforming gradient descent, such as the size of

changes to parameters at each iteration, but we refer the reader to [3] for a more

thorough and detailed discussion.

Another classic machine learning algorithm is the decision tree. Decision trees

4



1. INTRODUCTION

can be used for regression or classification but here we will focus on the classification

case. Decision trees are made up of three parts; a root node, where the decision

process starts, leaf nodes, which are at the other end of the tree opposite of the root

node, and internal nodes, which lay along the path from root to leaf node. There

is only one path from the root node to any given leaf node. During prediction, the

algorithm moves from the root node, through some internal nodes to a leaf, and the

value of said leaf node determines the predicted class of the sample. The path which

the algorithm takes is determined by the value of the sample’s features and “split

conditions” in each of the root and internal nodes, such as xj > 13.

Decision trees are trained by using a labeled training set to determine the split

condition at each node which maximizes the “information gain” in the child nodes.

Starting at the root node which is reachable by all training samples, a split is chosen

which best separates the classes within the training set. This is repeated at the child

nodes of the root node, and repeated again for their children and so on, until the

child nodes produced by a splitting condition are only reachable by training examples

which all belong to the same class, or some other stopping condition is met, such as

maximum depth of the tree. In the case where the leaf node is reachable by training

samples from more then one class, the prediction is the class which the majority of

those training samples belong to.

An extension of the decision tree algorithm is the Random Forest algorithm which

trains a large number of decision trees on random subsets of the training set, using

random subsets of the feature set. At prediction time, each constituent decision tree

predicts the class of the sample which counts as a vote for said class. The votes

from all the sub trees are counted and the class with the most votes is the prediction

of the Random Forest. This is known as an ensemble method, and its strength is

that misclassification occurs only if the majority of the constituent decision trees

make a misclassification. Further, since the constituent decision trees all use different

feature sets and were trained with different training sets, a feature value which is

uncommon for one class will not trick all of the constituent decision trees. The end

result is a model which is more stable when encountering unseen data, achieving
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better performance. This is known as generalizability. We say a model generalizes

well when it achieves performance which is equal or better with unseen data as with

the training data. For a deeper discussion on random forests we again refer the reader

to [2]

The last machine learning algorithm which we’ll introduce here is the Neural

Network. Neural networks are much more complex then the algorithms discussed so

far but some of the ideas are the same. The standard neural network architecture

is the feed forward architecture such as the one shown in figure 1.1.1. This type

of neural network makes predictions as follows. The feature values are inputted

into their respective input neuron (or node) in the first layer, called the input layer.

(i.e. feature xj is inputted to the jth neuron in the input layer.) Next, this value

is propagated along the connections (shown in 1.1.1 as lines connecting the neuron

(circles) in different layers) from the input layer to the first hidden layer. When

the neurons in the next layer receive the values from the previous layer along these

connections, they multiply them by the weight associated with each connection and

sum the results along with a bias. This weighted sum is identical to that calculated

in equation 1 for the linear regression algorithm, except that the feature values are

replaced by the outputs of neurons in the previous layer. Each neuron then applies

an “activation function”, of which there are many different types, such as the sigmoid

function from equation 2. The output of the activation applied to the weighted sum

of incoming signals from the previous layer is the output of that node, which is sent

to the next layer. This process is repeated for an arbitrary number of layers until the

final layer outputs a value which indicates the predicted class.

The way neural networks are trained is also similar to the way the linear and

logistic regression models were trained. Except here there loss function is a complex

composite function where the derivative must be taken with respect to many more

parameters, in some cases well into the tens of millions. However, the basic idea of

gradient descent still applies, incrementally make very small changes to the weights

in a direction which decreases the loss function given a training set, and repeat until

we find some minimum. There are many intricacies to workout when implementing

6



1. INTRODUCTION

Fig. 1.1.1: Neural Network with 6 nodes in the input layer, 6 in the hidden layer, and
3 in the output layer

such a method but we do not busy our selves with them here. For a more detailed

discussion of neural networks, architecture and activation function choices, and loss

functions, we refer the reader to [1].

This concludes our preliminary discussion of machine learning. Table 1.1.1 sum-

marizes more in depth sources on the topics briefly discussed here, which the reader

can make use of at their own discretion.

Table 1.1.1: Machine Learning Further Readering

Logistic Regression [2]

Linear Regression [2]

Gradient Descent [3]

Random Forest [2]

Neural Networks [1]

1.2 Machine Learning Interpretability

In the previous section we discuss the basics of machine learning and introduced some

of more well known machine learning algorithms. We discuss how the machine learn-

ing algorithms are trained and how they make predictions but we now introduce one
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of the central topics of this thesis, interpretability. Machine Learning interpretability

is the process of giving explanations of a models predictions to humans. It is not an

attempt to understand every thing that is learnt by the model, rather it an attempt

to find intuitive explanations which are simple enough and give information pertinent

to down stream tasks. For example, sometimes we wish to select the best feature set

for a given model, in this case we would like to determine the most significant fea-

tures for feature selection. The processes which determine the feature significances,

of which there are many, is a simple form of machine learning interpretation.

The perfect interpretation of a machine learning model tells us only what we

need to know while leaving out details of the model itself. It leaves out the messy

complexities of the model in order to give us enough information for later tasks. It

is usually not possible to get clear, high fidelity interpretations. Most times we have

to settle for more vague interpretations such as “this input is more influential then

the others” or “the model will still be accurate with such and such features no longer

behaving in an informative way”.

In terms of varieties of interpretations, they can generally be divided into two

groups. Local interpretations are interpretations which apply only to a single sample

or a subset of the sample space. Meanwhile Global interpretations apply to the

entire sample space. Interpretation techniques can also be divided into categories.

Model agnostic, that is techniques which can be applied to any type of machine

learning model, and model specific which can only be applied to a single type of

machine learning model. To be clear, global vs. local is a categorization of the

interpretations themselves, while model-agnostic vs. model-specific is a categorization

of the techniques used to arrive at interpretations.

One last note, since interpretation is done for the sake of down stream tasks,

and further, it is influenced by the type of model and features used, this makes

machine learning interpretation a application specific problem. Hence, the techniques

on exposition in this thesis may be applicable with varying amounts of modification

in other domains, but they are chiefly applicable in the malware detection domain.
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1.3 Machine Learning in Cyber Security

Machine Learning’s application in the cyber security domain is discussed at length in

the following chapter so we give only a brief overview as a primer for the discussion

to come, as well as to elucidate the connection between the various chapters in this

thesis.

Recently, there has been increased ability for malware authors to bypass tradi-

tional malware detection methods. Techniques such as obfuscation and server-side

polymorphism can help authors automatically change malware to be unrecognizable

enough to bypass simple detection techniques. Further, new programming paradigms

such as fileless malware, that is malware that does not exist on the file system of the

infected machine, mean that new malware may not leave behind binaries to study

and be used with traditional detection methods. This has lead security specialists to

turn to machine learning algorithms to augment malware detection systems. How-

ever, with this new detection technique comes new challenges, one of which and the

focus of this thesis, is the need for interpretable machine learning methods.

1.4 Thesis Overview

The remainder of this thesis is laid out as follows. In Chapter 2, we discuss Machine

Learning’s roll in cyber security, the challenges presented with its application in mal-

ware detection, and some potential improvements to the current approaches in the

literature. Further we discuss the necessity for machine learning based malware de-

tection as a result of new computing paradigms such as fileless malware, among other

emerging threats. In Chapter 3, we provide a proof of concept fileless malware which

uses benign functionality of JavaScript in order to carry out its malicious actions. We

then test various malware detection softwares against out malware in order to show

the severity of the threat of fileless malware. In Chapter 4 we present techniques for

interpreting machine learning based malware detection models which leverage n-gram

analysis. In Chapter 5 we put forward a novel and fully interpretable approach for
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malware detection which leverages convolutional neural networks. In Chapter 6 we

define a novel approach for evaluating the robustness of a machine learning based

malware detector based off the features it uses. Lastly, we end off in Chapter 7 with

our conclusions and a discussion of future work.
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CHAPTER 2

The Curious Case of Machine

Learning in Malware Detection
Sherif Saad, William Briguglio, and Haytham Elmiligi

In Proceedings of the 5th International Conference on Information Systems Security
and Privacy

2.1 Introduction

Nowadays, computer networks and the Internet have become the primary tool for

spreading and distributing malware by malware authors. The massive number of

feature-rich programming languages and off-the-shelf software libraries enable the

development of new sophisticated malware such as botnet, fileless, k-ary and ran-

somware. New computing paradigms, such as cloud computing and the Internet of

Things, expand potential malware infection sites from PC’s to any electronic device.

To decide if software code is malicious or benign, we could either use static anal-

ysis or dynamic analysis. Static analysis techniques do not execute the code and

only examine the code structure and other binary data properties. Dynamic analysis

techniques, on the other hand, execute the code to observe the execution behaviors

of the code over the network or at end-point devices. Some malware detection sys-

tems apply only static or dynamic techniques, and some apply both. While dynamic

malware analysis techniques are not intended to replace static analysis techniques,

recent unconventional malware attacks (botnet, ransomware, fileless, etc.) and the

use of sophisticated evasion techniques to avoid detection have shown the urgent need

of dynamic analysis and the limitations of static analysis. In our opinion, the use of
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dynamic and behavioral malware analysis will dominate the next-generation malware

detection systems.

There is a general belief among cybersecurity experts that antimalware tools and

systems powered by artificial intelligence and machine learning will be the solution

to modern malware attacks. The number of studies published in the last few years

on malware detection techniques that leverage machine learning is a distinct evidence

of this belief as shown in section 2.2. In the literature, various malware detection

techniques using machine learning are proposed with excellent detection accuracy.

However, malware attacks in the wild continue to grow and manage to bypass malware

detection systems powered by machine learning techniques. This is because it is

difficult to operate and deploy machine learning for malware detection in a production

environment or the performance in a production environment is disturbing (e.g. high

false positives rate). In fact, there is a significant difference (a detection gap) between

the accuracy of malware detection techniques in the literature and their accuracy in

a production environment.

A perfect malware detection system will detect all types of malicious software

and will never consider a benign software as a malicious one. Cohen provided a

formal proof that creating a perfect malware detection system is not possible [7, 6].

Moreover, Chess and White proved that a malware detector with zero false positives

is not possible [4]. Selcuk et al. discussed the undecidable problems in malware

detection in more details [31]. In light of this, the high levels of accuracy claimed

by commercial malware detection systems and some malware detection studies in

literature seems questionable.

In this Chapter, we briefly review the current state of the art in malware detection

using machine learning approaches. Then, we discuss the importance of dynamic

and behavioral analysis based on emerging malware threats. Next, the shortcomings

of the current machine learning malware detectors are explained to indicate their

limitations in the wild. Finally, we discuss the possible solutions to improve the

quality of malware detection systems and point out potential research directions.
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2.2 Literature Review

In recent years, machine learning algorithms have been used to design both static and

dynamic analysis techniques for malware detection. Hassen et al. proposed a new

technique for malware classification using static analysis based on control statement

shingling [15]. In their work, they used static analysis to classify malware instances

into new or known malware families. They extracted features from disassembled

malicious binaries and used the random forest algorithm to classify malware using

the extracted features. Using a dataset of 10,260 malware instances, they reported

up to 99.21% accuracy.

Static analysis has been used to study malwares that infect embedded systems,

mobile devices, and other IoT devices. Naeem et al. proposed a static analysis

technique to detect IoT malware [24]. The proposed technique converts a malware

file to a grayscale image and extracts a set of visual features from the malware image

to train an SVM classifier that could distinguish between malware families using

visual features. Using a dataset of 9342 samples that belong to 25 malware families,

they reported 97.4% accuracy. Su et al. proposed a similar technique to classify

IoT malware into malware families using visual features and image recognition [34].

Their approach is very similar to the one proposed in [24]. They used a one-class

SVM classifier and tested their approach on IoT malwarethat infect Linux-like IoT

systems; they reported 94.0% accuracy for detecting malware and 81.8% accuracy

for detecting malware families. Raff et al. proposed a malware detection technique

using static analysis and deep learning [29]. The proposed technique achieved 94.0%

detection accuracy.

Several works have been proposed to detect Android malware apps using static

analysis techniques. Sahin et al. proposed an Android malware detection model that

uses app permission to detect malicious apps [26]. They used the permissions required

by the app with a weighted distance function and kNN plus Naive Bayes classifier to

detect malicious apps. They reported an accuracy up to 93.27%. Su and Fung used

sensitive functions and app permissions to detect Android malware [35]. They used
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different machine learning algorithms such as SVM, decision tree, and kNN to build

an android malware detector. They reported an average accuracy between 85.0% and

90.0%

Collecting and monitoring all malware behaviors is a complicated and time con-

suming process. For that reason, several works in the literature focused on collecting

partial dynamic behaviors of the malware. Lim et al. [19] proposed a malware detec-

tion technique by analyzing network traffic generated when the malware communi-

cates with a malicious C&C server such as in the case of botnet or ransomware. The

proposed technique extracts a set of features from network flows to present a flows

sequence. The authors used different sequence alignment algorithms to classify mal-

ware traffic. They reported an accuracy above 60% when analyzing malware traffic

in a real network environment.

Kilgallon et al. applied machine learning and dynamic malware analysis [17]. The

proposed technique gathers register value information and API calls made by the

monitored malware binaries. The collected information is stored in vector structures

and analyzed using a value set analysis method. Then, they used a linear similarity

metric to compare unseen malware to known malware binaries. Their experiment

showed that the proposed technique could detect malware with an accuracy up to

98.0%

Omind and Nathan proposed a behavioral-based malware detection method using

a deep belief network [9]. The proposed method collected data about malware behav-

iors from a sandbox environment. The collected data is API calls, registry entries,

visited websites, accessed ports, and IP addresses. Then using a deep neural network

of eight layers, it generates malware signatures. These signatures could be used to

train malware detectors. In their experiments, they reported up to 95.3% detection

accuracy with a malware detector utilizing the SVM algorithm.

Yeo et al. proposed a new malware detection method by monitoring malicious be-

haviors in network traffic [38]. They designed 35 features to describe malicious traffic

of malware instances. They tested several machine learning algorithms including

CNN, MLP, SVM, and random forest. The proposed method achieved an accuracy
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above 85% when utilizing CNN or random forest. Prokofiev et al. proposed a machine

learning technique to detect C&C traffic of infected IoT devices [28]. The proposed

approach used network traffic features such as port number, IP addresses, connection

duration and frequency. They reported a detection accuracy up to 97.3%. However,

the proposed approach is still relying on traditional malware analysis methods and

will not be able to work in production IoT deployment as discussed in [33]. Several

hybrid malware detection techniques that combine both static and dynamic analysis

have also been proposed [21, 27]. These techniques try to improve the quality and

performance of malware detection systems by taking advantage of static and dynamic

analysis to build robust malware detection systems.

2.3 Emerging Malware Threats

With the recent changes in malware development and the rise of commercial malware

(malicious code rented or purchased), many new challenges are facing malware ana-

lysts that make static analysis more difficult and impractical. These challenges will

force anti malware vendors to adapt behavioral malware analysis and detection tech-

niques. In our opinion, there are two main reasons behind these challenges; the rise of

unconventional computing paradigms and unconventional evasion techniques. There

is a new generation of malware that take advantage of unconventional computing

paradigms and off-the-shelf soft-ware libraries written by feature-rich programming

languages. The current state-of-the-art malware analysis/detection techniques and

tools are not effective against this new generation of malware.

2.3.1 Unconventional Computing Paradigms

New computing paradigms and technologies such as cloud computing, the internet of

things, big data, in-memory computing, and blockchain introduced new playgrounds

for malware authors to develop com-plex and sophisticated malwares that are almost

un-detectable. Here we describe several recent examples of new malware threats that

are difficult to detect or analyze using static analysis.
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For instance, the Internet of Things (IoT) is an appealing platform for modern

and sophisticated malware such as ransomware. Zhang-Kennedy et al. discussed the

ransomware threat in IoT and how a self-spreading ransomware could infect an IoT

ecosystem [39]. The authors pointed out that the ransomware will mainly lock down

IoT devices and disable the essential functions of these devices. The study focused

on identifying the attack vectors in IoT, the techniques for ransomware self-spreading

in IoT, and predicting the most likely class of IoT applications to be a target for

ransomware attacks. Finally, the authors identified the techniques the ransomware

could apply to lock down IoT devices. Authors in [39] used a Raspberry Pi to develop

a proof of concept IoT ransomware that can infect an IoT system. One interesting

aspect in [39] is the need for collaboration or swarming behavior in IoT ransomware,

where the IoT ransomware will spread as much as possible and then lock down the

devices or device and then spread.

Miller and Valasek developed a proof-of-concept for malicious code that infects

connected cars and lockdowns key functions [22].For instance, the authors demon-

strated the ability for the malicious code to control the steering wheel of a vehicle,

disable the breaks, lock doors, and shut down the engine while in motion. Behaving

as ransomware, this real example of a malware that locks and disables key features

in IoT systems (e.g. connected cars) could have life threatening consequences if the

ransom is not paid. The study explained a design flow in the Controller Area Network

(CAN) protocol that allows malicious and crafted CAN messages to be injected into

the vehicle CAN channel by a compromised mobile phone that is connected to the

vehicle entertainment unit. It was reported that for some vehicles only the dealership

could restore and patch the vehicle to prevent this attack. Choi et al. proposed a

solution for malware attacks in connected vehicles using machine learning [5]. The

solution uses SVM to distinguish between crafted malicious CAN messages, and be-

nign CAN messages generated by actual electronic control units (ECU). The model

extracts features from the vehicle ECUs and creates fingerprints for those ECUs.

The ECU fingerprint is noticeable in a benign CAN message and does not exist in a

malicious message.
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Azmoodeh et al. discussed a new technique to detect ransomware attacks in IoT

systems by monitoring the energy consumption of infected devices [3]. As a proof

of concept, they studied the energy consumption of infected Android devices. The

devices were infected by a ransomware with crypto impact. They used different

machine learning models (kNN, SVM, NN, and Random Forest) to analyze energy

consumption data and extract unique patterns to detect compromised Android de-

vices. They reported a ransomware detection accuracy of 95.65%.

In 2015, Karam (INTERPOL) and Kamluk (Kaspersky lab) introduced a proof of

concept distributed malware that also takes advantage of blockchain technology [16].

In 2018, Moubarak et al. provided design and implementation of a K-ary mal-

ware (distributed malware) that takes advantages of the blockchain networks such

as Etherum and Hyperledger [23]. The proposed malware is stored and executed in-

side blockchain networks and acts as a malicious keylogger. While detecting a K-ary

malware is an NP-hard problem [10], it is also complicated to implement a K-ary

malware. However, Mubarak’s works demonstrated the simplicity of K-ary malware

development by taking advantage of blockchain technology as a distributed and de-

centralized network.

2.3.2 Unconventional Evasion Techniques

The new generation of malware will use advanced evasion techniques to avoid de-

tection by antimalware systems and tools. New evasion techniques implemented by

malware authors use new technologies and off-the-shelf software libraries that enable

the design of sophisticated evasion methods. Antimalware vendors and malware re-

searchers discussed recent examples of using new antimalware evasion techniques in

the wild.

Fileless malware or memory-resident malware is the new technique used by mal-

ware authors to develop and execute malicious attacks. Fileless malware resides in

device memory and does not leave any files on the infected device file system. This

makes the detection of the fileless malware using signature-based detection or static

analysis infeasible. In addition, the fileless malware takes advantage of the utilities
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and libraries that already exist in the platform of the infected device to complete

its malicious intents. In other words, benign applications and software libraries are

manipulated by fileless malware to accomplish the attack objectives.

Fileless malware attacks and incidents are already observed in the wild compromis-

ing large enterprises. According to KASPERSKY lab, 140 enterprises were attacked

in 2017 using fileless malwares [11]. Ponemon Institute reported that 77% of the

attacks against companies use fileless techniques [36]. Moreover, there are several

signs that ransomware attacks are going fileless, as discussed in [20]. Besides these

signs, there are other reasons in our opinion that confirms that ransomware and other

malware attacks will be fileless. One main reason is the moving towards in-memory

computing.

In recent years, in-memory computing and in-memory data stores became the first

backbone and storage technology for many organizations. Many bigdata platforms

and data grids (Apache Spark, Redis, HazelCast, etc.) enable storing data in memory

for performance and scalability requirements. Valuable data and information is stored

in memory for a longtime before moving to a persistent data store. In-Memory

ransomware that encrypts in-memory data (such as recent transactions, financial

information, etc.) present a severe and aggressive attack. This is because any attempt

to reset or reboot the machine to remove the ransomware from the device memory or

shutdown the application will result in losing this valuable data permanently.

The moving towards distributed and decentralized computing is another reason

for the rise of fileless ransomware. In distributed and decentralized computing several

nodes and devices are available to store the in-memory malware, which will increase

the life expectancy of the malware since there will always be a group of active nodes

were the malware could replicate and store itself.

The recent and massive development in machine learning/artificial intelligence

(aka data science) and a large number of off-the-shelf machine learning libraries enable

malware authors to develop advanced evasion techniques. Rigaki and Garcia proposed

the use of deep learning techniques to create malicious malware samples that evade

detection by mimicking the behaviors of benign applications [30]. In their work, a
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proof of concept was proposed to demonstrate how malware authors could cover the

malware C&C traffic. The authors use a Generative Adversarial Networks (GANs)

to enable malware (e.g., botnet) to mimic the traffic of a legitimate application and

avoid detection. The study showed that it is possible to modify the source code

of malware to receive parameters from a GAN to change the behaviors of its C&C

traffic to mimic the behaviors of other legitimate network applications, such as Face-

book traffic. The enhanced malware samples were tested against the Stratosphere

Linux IPS (slips) system, which uses machine learning to detect malicious traffic.

The experiment showed that 63.42% of the malicious traffic was able to bypass the

detection.

A research team from IBM demonstrated the use of artificial intelligence to en-

gineering malware attacks [8]. In their study, the authors proposed DeepLocker as

a proof of concept to show how next-generation malware could leverage artificial in-

telligence. DeepLocker is a malware generation engine that malware authors could

use to empower traditional malware samples such as WannaCry with artificial intelli-

gence. A deep convolutional neural network (CNN) was used to customize a malware

attack by combining a benign application and a malware sample to generate a hybrid

malware that bypasses detection by mimicking benign behaviors. Besides that, the

malware is engineered to unlock its malicious payload when it reaches a target (end-

point) with a loose predefined set of attributes. In the study, those attributes were

the biometrics feature of the target such as facial and voice features. The malware

uses CNN to detect and confirm target identity, and upon target confirmation, an

encryption key is generated and used by the WannCry malware to encrypt the files

on the target endpoint device. The encryption key is only generated by matching

the voice and the facial features of the target. This means reverse engineering the

malware using static analysis is not useful to recover the encryption key.
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2.4 Practical Challenges

The new and emerging malware threats discussed in section 2.3 provide strong evi-

dence for the need of adopting dynamic and behavioural analysis to build malware

detection tools. The use of machine learning is the most promising technique to

implement malware detectors and tools that apply behavioural analysis as shown

in section 2.2. While the use of machine learning for malware detection has shown

promising results in both static and dynamic analysis, there are significant challenges

that limit the success of machine learning based malware detectors in the wild.

2.4.1 Cost of Training Detectors

The first challenge is the cost of training and updating malware detectors in pro-

duction environments. Malware detection is unlike other domains where machine

learning techniques have been applied successfully such as computer vision, natural

language processing, and e-commerce. Malware instances evolve and change their be-

haviors over a short period; some studies by antimalware vendors reported that a new

malware instance could change its behaviors in less than 24 hours since it has been

released [13, 2]. This means a frequently trained machine learning model will become

out-dated. This also means we need to frequently retrain our malware detectors to

be able to detect new and mutated malware instances. Therefore, adaptability in

machine learning models for malware detection is a crucial requirement and not just

an ancillary capability.

Recently, the challenge of adaptability, and scalability of machine learning models

for malware detection in the wild has become obvious [25]. The majority of the work

proposed in the literature has done very little to reduce and optimize the feature

space to design detectors ready for early malware detection in a production environ-

ment [14]. For instance, it is not clear how the proposed detection methods will scale

when the number of monitored endpoints increases. Unlike computer vision, natural

language processing and other areas that utilize machine learning, malware instances

continue to evolve and change. This mostly requires retraining machine learning mod-
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els in production, which is an expensive and complicated task. Therefore, when using

machine learning for malware detection, we need to think differently. New methods

to reduce the cost of retraining malware detectors and improve detection quality are

urgent.

2.4.2 Malware Detector Interpretability

Cybersecurity analysts always prefer solutions that are interpretable and understand-

able, such as rule-based or signature-based detection. This is because of the need to

tune and optimize these solutions to mitigate and control the effect of false positives

and false negatives. Interpreting machine learning models is a new and open chal-

lenge [32]. However, it is expected that an interpretable machine learning solution

will be domain specific, for instance, interpretable solutions for machine learning mod-

els in healthcare are different than solutions in malware detection [1]. Any malware

detector will generate false positives, and unless malware analysts can understand

and interpret the reason that a benign application was wrongly classified as mali-

cious, they will not accept those black box malware detectors. To our knowledge, no

work in the literature investigated the interpretability of machine learning models for

malware detection.

One difficulty with machine learning interpretability in this domain is that many

of the features are not meaningful to humans without the context which they appear

in. This means it is necessary to map back from features to raw data in order to better

understand the feature and its context at the time of classification. The problem of

mapping features to raw data is touched upon in Chapters 4 and 5 and applies to

malware detectors which use ngrams or binaries converted to images. However, the

techniques used to map features to raw data will also be application specific.

2.4.3 Adversarial Malware

Last but not least, a malware detection system utilizing machine learning could be

defeated using adversarial malware samples. For instance, Kolosnjaji et al. showed
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in [18] that by using an intelligent evasion attack they can defeat the deep learning

detection system proposed in [29] by Raff et al. They simply used their knowledge of

how the proposed deep learning detection system operates and designed a gradient-

based attack as an evasion technique to overcome it. With adversarial malware, the

system detection accuracy dropped from 94.0% to almost 50.0%. Machine learn-

ing algorithms are not designed to work with adversarial examples. Grosse et al.

demonstrated that using adversarial malware samples; they could reduce the detec-

tion accuracy of a malware detection system that uses static analysis and machine

learning to 63.0% [12]. They also showed that adopting anti adversarial machine

learning techniques used in computer vision is not effective in malware detection.

Yang et al. proposed adversarial training as a solution for adversarial malware [37].

They designed a method for adversarial android malware instances generation. The

proposed method requires access to the malware binaries and source code, besides, it

is mainly useful for static malware detection systems.

2.5 Bridging the Detection Gap

To overcome the challenges we discussed in section 2.4, we propose new solutions to

mitigate these challenges and reduce the gap.

2.5.1 Disposable Micro Detectors

Current best practices in constructing and building machine learning models follow

a monolithic architecture. In a monolithic architecture, a single computationally

expensive (to build and train) machine learning model is used to detect malware.

While this architecture or approach for building machine learning models is successful

in other domains, we believe it is unsuitable for malware detection given the highly

evolving characteristics of malware instances. We propose a new approach inspired by

the microservices architecture. In this approach, multiple, small, inexpensive, focused

machine learning models are built and orchestrated to detect malware instances. Each

model or detector is built to detect the behaviors of a specific malware instance (e.g.,
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Mirai, WannaCry), or at most a single malware family (a group of similar malware

instances). Also, each model or detector is built using features that are similar, such as

having the same computational cost, or unique to the specific execution environment.

This is because out of the super set of features designed to detect malware, it is

common that a subset of these features could be more or less useful to detect a specific

malware instance or family. The use of micro (small) and focused detectors reduce the

cost of retraining and deployment in production. This is because detectors for new

malware could be trained and added without the need to retrain existing detectors.

In addition, when malware detectors become outdated as a result of a malware’s

evolving behavior, the outdated detectors are disposed of and replaced by new ones.

The use of micro-detectors enables adaptability by design rather than attempting to

change machine learning models and algorithms to support adaptability.

2.5.2 Analyst Friendly Interpretation

Adopting sophisticated machine learning techniques for malware detection in a pro-

duction environment is a challenge. This is because most of the time it is not possible

to understand how the machine learning systems make their malware detection deci-

sions. Therefore, tuning and maintaining these systems is a challenge in production

and new techniques for malware analysts to interpret and evaluate the performance

of malware detectors are needed. We propose the use of evolutionary computation

techniques such as genetic algorithms or clonal selection algorithms to generate an

interpretation for black-box machine learning models such as deep learning. Using

evolutionary computation, we could describe the decisions of malware detectors us-

ing a set of IF-Then rules. The only information required is the input features the

malware detector uses to make a decision.

The IF-Then rules are useful to explain the behaviors that trigger a specific deci-

sion (e.g., malicious or benign) by the malware detector. Cybersecurity and malware

analyst are comfortable working with IF-Then rules. These rules will help in under-

standing the decision made by malware detectors, explain the scope of the detection,

and identify potential over generalization or overfitting that could result in false pos-
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itives or false negatives.

It is essential that the IF-Then rules set interpretation of the malware detector is

expressed in raw malware behaviors and not in machine learning features. Machine

learning features are most likely understandable by machine learning engineers and

experts. The interpretation should be acceptable to a malware analyst who does not

need to be a machine learning expert.

Other model specific Interpretations techniques, such as the ones discussed in

chapters 4 and 5 of this thesis, can be utilized to improve model confidence so stake-

holders are more likely to trust machine learning based malware detectors. Further,

these approaches can ensure the model is not easily manipulated and thus prone to

adversarial malware by over-relying on easy to change and superficial features. In this

way, interpretation can help ensure model robustness. Lastly, machine learning mod-

els learn complex patterns that can be utilized making beyond making classification

decisions. Interpretation can be used so that patterns learn by a machine learn-

ing model can help malware analyst with downstream tasks such as finding import

snippets of code.

2.5.3 Anti Adversarial Malware

To improve the resilience of malware detectors against adversarial malware, we be-

lieve it is essential to study the effort required by the malware authors to design an

adversarial malware for specific malware detectors. For example, what technique a

malware author would use to probe and study a malware detector in production to

design a malware that could bypass a detector.

Measuring the effort to probe detectors and design adversarial malware under

two main settings is essential. The first setting is black-box, where the malware

authors have minimum knowledge about the malware detector’s internal design and

the features used by the machine learning algorithm. The second setting is white-box,

where the malware authors have sufficient knowledge about the malware detector’s

internal design and the machine learning algorithm. Training and updating malware

detectors is likely the most efficient solution against adversarial malware. Knowing
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the effort needed to evade a malware detector will help in designing training strategies

and policies to increase the effort required to evade the detectors.

As we mentioned before, Cohen provided a formal proof that creating a perfect

malware detection system is not possible [7, 6]. We believe that designing a perfect

adversarial malware is not possible. Therefore we expect that using ensemble-based

hybrid machine learning approach for malware detectors will be effective against ad-

versarial malware. It is expected that by creating a malware detector using an en-

semble hybrid machine-learning approach, the risk of evading detection will decrease

and the effort to design adversarial malware will increase. A hybrid machine learning

model is when two or more different machine learning algorithms are used to construct

the model. In the literature, adversarial malware samples evade malware detectors

that use a single machine learning algorithm or technique [37, 12, 18]. In our method,

a hybrid machine learning approach for building a malware detector is an approach

to provide a defense-in-depth model for malware detectors.

2.6 Conclusion

In this Chapter, we reviewed the current state-of-the-art in malware detection using

machine learning. We discussed the recent trends in malware development and emerg-

ing malware threats. We argued that behavioral analysis would dominate the next

generation anti malware systems. We discussed the challenges of applying machine

learning to detect malware in the wild and proposed our thoughts on how we could

overcome these challenges. Machine learning malware detectors require inexpensive

training methods; they need to be interpretable for the malware analysts and not

only for machine learning experts. Finally, they need to tolerate adversarial malware

by design
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JSLess: A Tale of Fileless
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Malware
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3.1 Introduction

Fileless malware is a new class of the memory-resident malware family that success-

fully infects and compromises a target system without leaving a trace on the target

filesystem or secondary memory (e.g., hard drive). Fileless malware infects the tar-

get’s main-memory (RAM) and executes its malicious payload. Fileless malware is

not just another memory-resident malware. To our knowledge, Fred Cohen developed

the first memory-resident malware (Lehigh Virus) in the early 80s. This usually leads

some researchers to believe that fileless malware is not a new malware threat but

only a new name for an old threat. However, this is not true, fileless malware has

some distinguishing properties. First, malware attacks require some file infection or

writing to the hard drive, this includes traditional memory resident malware. Fileless

malware infection and propagation does not require writing any data to the target

device filesystem. However, it is possible that the malicious payload (e.g., the end

goal ) of the fileless malware writes data to the hard drive, for example, a fileless

ransomware, but again the ransomware propagation and infection are fileless. The
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second key property of fileless malware is that it depends heavily on using benign

software utilities and libraries already installed on the target device to execute the

malicious payload. For instance, a fileless ransomware will use cryptographic libraries

and APIs already installed on the target to complete its attack rather than installing

new cryptographic libraries or implementing its own.

There are other unique properties of fileless malware, but the most important

ones are the fileless infection approach and the use of benign utilities and libraries

of the compromised machine to execute the malicious payload. Those two properties

of fileless malware make it an effective threat in evading and bypassing sophisticated

anti-malware detection systems. This is because most anti-malware relies on scan-

ning the compromised filesystem to detect malware infections. Also, because fileless

malware use legitimate software utilities and programs to attack computer systems,

it is challenging for anti-malware systems that use dynamic analysis to detect fileless

malware. Moreover, being fileless is an anti-forensics technique, since it does not leave

any trace after the attack is complete, it is tough for forensics investigator to reverse

engineer the malware.

Fileless malware attacks and incidents are already observed in the wild compromis-

ing large enterprises. According to KASPERSKY lab, 140 enterprises were attacked

in 2017 using fileless malwares [5]. Ponemon Institute reported that 77% of the attacks

against companies use fileless techniques [18]. Also, CYREN recently reported that

during 2017 there was over 300% increase in the use of fileless attacks. Moreover, they

expected that the new generation of Ransomware would be fileless [7]. This expec-

tation proved to be correct when TrendMicro reported the analysis of SOREBRECT

Ransomware, the first fileless ransomware attack in the wild [19]. However, we think

that it is inaccurate to describe SOREBRECT Ransomware as fileless malware, since

it places an executable file on the compromised machine which injects the malicious

payload into a running system process. Then, it deletes the file and any trace on

the system logs using a self-destruct routine. Because the infection and the injection

of SOREBRECT Ransomware requires placing files on the compromised host, we do

not think it is a true fileless malware. Moreover, deleting the files is not enough to
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hide the trace, file carving techniques could be used to recover the deleted files.

Another common trend in developing fileless malware is the use of Microsoft Pow-

erShell. PowerShell is a command-line shell and scripting language that allows system

administrators to manage and automate tasks related to running processes, the op-

erating system, and networks. It is preinstalled by default on new Windows versions

and it can be installed on Linux and MacOS systems. PowerShell is a good example

of a benign and powerful system utility that could be used by fileless malware. Sev-

eral reports by anti-malware vendors discuss how malware authors take advantages

of PowerShell to develop sophisticated fileless malware [10].

In this chapter, we summarize our research on fileless malware attacks in modern

web applications. We investigate the possibility of developing a fileless malware using

modern JavaScript(JS) features that were introduced with HTML5. In our assessment

of the potential threats of fileless malware attacks, we explore the use of benign

JavaScript and HTML5 features to develop fileless malware. Based on our analysis

we implemented JSLess as a proof-of-concept(PoC) fileless JavaScript malware that

successfully infects a web browser and executes several malicious payloads.

The contribution of this Chapter is threefold. First, identify the malicious poten-

tial of new benign features in web technology and how they could be used to develop

fileless malware. Second, design and implement JSLess as a PoC fileless JS malware

that uses a new dynamic injection method and advanced evasion techniques to infect

modern web apps and execute a variety of attacks. Third, demonstrate the threats

of fileless malware in modern web applications by evaluating the proposed fileless

malware with several free and commercial malware detection tools that apply both

static and dynamic analysis.

This chapter is organized as follows; section 3.2 is a literature review of fileless

malware and JavaScript malware. In section 3.3, we explain new benign features in

modern JavaScript and HTML5 and their security issues. Then, in section 3.4 we

present our JavaScript fileless malware design and implementation. Next, in section

3.5 we evaluate the evasion behaviors of the JS fileless malware against free and

commercial anti-malware tools, then we discuss possible detection and mitigation

33



3. JSLESS: A TALE OF FILELESS JAVASCRIPT MEMORY-RESIDENT MALWARE

techniques. Finally, a conclusion and possible future work is presented in section 3.6.

3.2 Literature Review

Code injection attacks have been studied from different perspectives in the literature.

The research in this area tried to detect malicious behaviors in JavaScripts using

various methods, including signature-based analysis, utilizing machine learning algo-

rithms, using honeynets, and applying several deobfuscation techniques. This section

discusses the main research directions in this area and highlights some of the most

important contributions in the literature.

S. Yoon et al. proposed a method to generate unique signatures for malicious

JavaScripts [23]. The authors used content-based signature generation techniques

and utilized the Term Frequency - Inverse Document Frequency (TF-IDF) and Bal-

anced Iterative Reducing and Clustering using Hierarchies methods to generate the

conjunction signatures for JavaScripts [23]. Although signature-based analysis can

help detect several malicious behaviours, the work in [23] is based on the assumption

that the attack type of the input JavaScripts is known, which is not always a practi-

cal assumption in real-life environments. Moreover, obfuscation remains a challenging

problem that reduces the effectiveness of signature-based techniques.

G. Blanc et al. tried to address the obfuscation problem by applying abstract

syntax tree (AST) based methods to characterize obfuscating transformations found

in malicious JavaScript [2]. The authors used AST-based methods to demonstrate

significant regularities in obfuscated JavaScript programs. The work in [2] is based

on generating AST fingerprints (ASTFs) for each JS file present in their learning

dataset then manually picking representative subtrees for further processing. The

manual intervention in this procedure and relying only on the training data sets

without providing a mechanism to update the training set with new samples raise

many questions about the feasibility of this solution. Moreover, the work in [2] did

not consider the different categories of obfuscation techniques in real-world malicious

JavaScript, which was analyzed by W. Xu et al. in [22]. Similar work was done by I.
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AL-Taharwa1 et al. to detect obfuscation in JavaScript using semantic-based analysis

based on the variable length context-based feature extraction (VCLFE) scheme that

takes advantage of AST representation [17].

One controversial issue in this area of research is the physical location where the

detection mechanism takes place. One approach is to collect and analyze HTTP

traffic via local proxy and implement the detection algorithm on the proxy side [12].

Another approach is to implement the detection mechanism on the client side, such as

the work done by V. Sachin et al., who used light-weight JavaScript instrumentation

that enables static and dynamic analysis of the visited webpage to detect malicious

behavior [13]. R. K. Kishor et al. took an extra step and developed an extension that

can be installed on the client web browser to detect malicious web contents [6]. Similar

work was done by C. Wang et al., who focused on the browser detection mechanism

integrated with HTML5 and Cross Origin resource sharing (CORS) properties [20].

In recent years, JavaScript became a very popular solution for hybrid mobile ap-

plications. This recent adoption of technology in mobile applications poses a new

risk of malicious code injection attacks on mobile devices. J. Mao et al. proposed

a method to detect anomalous behaviors in hybrid Android apps as anomalies in

function call behaviors [9]. The authors instrumented the JavaScript code dynami-

cally in the JavaScript engine to intercept function calls of JavaScript in hybrid apps.

They also extracted events from the Android WebView component to enhance the

performance of their proposed detection model [9].

Since the feature engineering step is the core of any machine-learning malware

detection solution, many researchers focused on developing a feature engineering

methodology. H. Adas et al. proposed a method to extract inspection features from

over two million mobile URLs [1]. The authors used a MapReduce/Hadoop based

cloud computing platform to train and implement their classifier and evaluate its

performance. Although this is a good step towards building a cloud-based classifier,

more experiments need to be conducted to evaluate its efficiency with respect to real-

time detection of malware. Moreover, the classification model in [1] was trained with

features based on the static analysis of the malicious code, which is not an efficient
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approach in detecting most fileless malwares.

S. Ndichu et al. developed a neural network model that can be trained to learn

the context information of texts [11]. The main contribution of the work in [11] is

developing a new feature extraction method and using unsupervised learning algo-

rithms that produce vectors of fixed lengths. These vectors can be used to train a

neural network that classifies the JavaScript code as normal or malicious [11]. Similar

work was done earlier by Y. Wang et al. using deep learning [21]. Wang et al. used

deep features extracted by stacked denoising auto-encoders (SdA) to detect malicious

JavaScript codes [21].

Neural networks were not the only machine learning framework used to detect

malicious JavaScript codes. Seshagiri et al. used Support Vector Machine (SVM) to

detect malicious JavaScript codes [15]. Features were extracted using static analysis

of web pages. Although ML is a promising solution, there are many challenges that

face developers during the implementation of such solutions. The main challenge is

creating a feature vector that can truly characterize the behaviour of fileless malware.

Fileless malware does not leave clear traces on the victim’s machine and therefore are

very difficult to identify.

Other research directions are considered in the literature. The following are few

examples of different approaches considered by researchers in the last few years. B.

Sayed et al. proposed a model that uses information flow control dynamically at

run-time to detect malicious JavaScript [14]. Y. Fange et al. used Long Short-Term

Memory (LSTM) to develop a malicious JavaScript detection model [4]. V. Shen

used a high-level fuzzy Petri net (HLFPN) to detect JavaScript malware [16]. D.

Cosovan used hidden markov models and linear classifiers to detect JavaScript-based

malware [3]. Last but not least, D. Maiorca et al. used discriminant and adversary-

aware API analysis to detect malicious scripting code[8].

Although the previous work in this research area presented promising results, there

are many challenges that prevent accurate detection of fileless malwares in real web

applications. To highlight the significance of the threat posed by fileless malwares,

this chapter presents a practical design and implementation of a fileless malware as
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a PoC to demonstrate the threats of fileless malware in web applications.

3.3 Benign Features with Malicious Potentials

With the introduction of HTML5, a new generation of modern web applications

become a reality. This is mainly because HTML5 introduced a rich-set of powerful

APIs and features that can be used by JavaScript. Some of the new features and APIs

in HTML focus on enabling the development of web apps with high connectivity and

performance. Further, HTML5 provides a set of APIs that allow web applications

written in JavaScript to access information about the host running the web app

and also other peripheral devices connected to the host. For instance, a web app

developed with HTML5 and JavaScript could have access to the user geolocation,

device orientation, mic, and camera.

While these new powerful features were proposed to improve web application

development, we found in our analysis of these features that hackers and malware

authors could misuse them. Many of these benign features have serious malicious

potential. In this section, we will mainly focus on HTML5 features that were proposed

to boost web application performance, scalability, and connectivity.

3.3.1 WebSockets

WebSocket is a new communication protocol that enables a web-client and a web-

server to establish a two-way (full-duplex) interactive communication channel over

a single TCP connection. It provides bi-directional real-time communication which

is an urgent requirement for modern interactive web applications. With WebSocket,

the communication method between the web-client and the web-server is not lim-

ited to pull-communication. Instead, push-communication and even an interactive

communication become possible. For this reason, WebSocket becomes the dominate

technology in developing instant messaging apps, gaming applications, streaming ser-

vices, or any web app which requires data exchange between the client and the server

in real-time.
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WebSocket is currently supported by all major web browsers such as Chrome,

Firefox, Safari, Edge, and IE. Moreover, the WebSocket protocol is supported by

common programming languages such as Java, Python, C#, and others. This enables

the development of desktop, mobile apps, or even microservices that communicate

using WebSocket as a modern and convenient communication protocol.

It is clear that by using WebSocket the connectivity of web apps becomes much

higher quality and much more reliable. However, WebSocket is considered by web

security researchers a security risk. WebSocket enables a new attack vector for mali-

cious actors. Common web attacks such as cross-site scripting (XSS) and man in the

middle (MitM) are possible over WebSockets. WebSocket by design does not obey

the same-origin policy; this means the web browser will allow a WebSocket script

to connect to different web pages even if they do not share the same-origin (same

URI scheme, host and port number). Again WebSocket by design is not bound by

cross-origin resource sharing (CORS). This means a web app running inside the client

web browser could request resources that have a different origin from the web app.

This flexibility could be easily abused by malicious actors as we will demonstrate in

the next section.

3.3.2 WebWorker

Originally JavaScript is a single-threaded language which means in any web app there

is only a single line of code or statement that can be executed at any given time. As

a result, JavaScript cannot perform multiple tasks simultaneously. WebWorker is

a new JavaScript feature that was introduced with HTML5 to improve the perfor-

mance of the JavaScript applications. WebWorker enables JavaScript code to run in

a background thread separate from the main execution thread of a web app. In other

words WebWorker allows web applications to execute tasks in the background with-

out impacting the user interface as it works completely separate from the UI thread.

For this reason, WebWorkers are typically used to run long and expensive operations

without blocking the UI. For instance, the code in listing 3.1 initializes a new web

worker object and runs the code in worker.js asynchronously in a new thread.
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if (typeof(worker) == "undefined") {

worker = new Worker("worker.js");

}

Listing 3.1: WebWorker Initialization Example

WebWorker should be used to do computationally intensive tasks to avoid block-

ing the UI or any other code executed in the main thread. If a computationally

intensive task executes in the main JavaScript thread, the web app will freeze and

become unresponsive to the user. WebWorker is currently supported by all major

web browsers such as Chrome, Firefox, Safari, Edge, and IE.

As we can see WebWorker is an essential feature for developing a modern and

responsive web application. However, the devil is in the details. While WebWorker

seems like a harmless feature, it opens the door for several malicious scenarios and

security issues. For example, is allows DOM-based XSS. CORS does not bind it, and

hence a web worker could share and access resources from different origins. But in

our opinion, the most critical security issue with WebWorker is its ability to insert

silent running JavaScript code. This could enable a malicious payload to run in a

background thread created by malicious or compromised web apps. One possible

example is using a WebWorker with a malicious web app to preform cryptocurrency

mining without the users’ consent. On the bright side, the WebWorker will terminate

if the user closes the web browser or the web app that created the web worker object.

However, as we will see in the next subsection, malware authors can work around this

with ServiceWorkers.

3.3.3 ServiceWorker

ServiceWorker is another new appealing JavaScript feature. We could consider Ser-

viceWorker as a special type of WebWoker. ServiceWorker allows running JavaScript

code in a separate background thread. This is very similar to WebWorker but unlike

WebWorker, the lifetime of the ServiceWorker is not tied to a specific webpage or

even the web browser. This means even if the user navigates away from the web
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app that created the ServiceWorker or closes the web browser, the ServiceWorker

will continue to run in the background. The ServiceWorker will normally terminate

when it has complete its task (e.g., execute its script) or received a termination signal

from the web server, or terminate abnormally as a result of a crash, system reboot or

shutdown.

ServiceWorker was introduced to enable a rich offline experience to users and

improve the performance of modern web apps. The code in listing 3.2 shows an

example that creates a ServiceWorker from the file sw demo.js. ServiceWorkers share

the same security issues and risks that exist in WebWorkers but the lifetime of the

security risks persists longer.

window.addEventListener(’load’, () => {

navigator.serviceWorker.register(’/sw_demo.js’)

.then(( registration) => {

// ServiceWorker registered successfully

}, (err) => {

// ServiceWorker registration failed

});

});

Listing 3.2: ServiceWorker Registration Example

3.4 JavaScript Fileless Malware

In this section, we explain how the benign JavaScript features we introduced in section

3.3 could be used to implement a fileless JavaScript malware. To demonstrate this

threat, we designed and implemented JSLess as a PoC fileless malware. We designed

JSLess as a fileless polymorphic malware, with a dynamic malicious payload, that

applies both timing and event-based evasion.

3.4.1 Infection Scenarios

In our investigation, we define two main infection scenarios. The first scenario is

when the victim (web user) visits a malicious web server or application as illustrated

40



3. JSLESS: A TALE OF FILELESS JAVASCRIPT MEMORY-RESIDENT MALWARE

Fig. 3.4.1: JavaScript Fileless Malware First Infection Scenario

in figure 3.4.1. In this case, the malicious web server will not show any malicious

behaviors until a specific event triggers the malicious behavior. In our demo, the

attack posts specific text messages on a common chat room. The message act as an

activation command to the malware. When the message is received the malware is

injected dynamically into the victim’s browser and starts running as part of the script

belonging to the public chat room.

The second infection scenario is when the malware compromises a legitimate web

application or server to infect the web browsers of the users who are currently visiting

the compromised website as illustrated in figure 3.4.2. In this case, both the website

and the website visitors are victims of the malware attack. The malware will open

a connection with the malicious server (e.g., C&C server) that hosts the malware to

download the malicious payload or receive a command from the malware authors to

execute on the victim browser.

Note that in both scenarios the malicious code infection/injection happens on the

client side, not the server side.
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Fig. 3.4.2: JavaScript Fileless Malware Second Infection Scenario

3.4.2 Operational Scenarios

JSLess is delivered to the victim’s web browser through a WebSocket connection.

When the victim visits a malicious web server, the WebSocket connection will be

part of the web app on the malicious server. However, if the malware authors prefer

to deliver JSLess by compromising a legitimate web app/server to increase in the

infection rate, then the WebSocket delivery code could be added into a third-party

JavaScript library (e.g. JQuery). Almost all modern web application relies on inte-

grating third-party JavaScript files. The WebSocket delivery code is relatively simple

(see the code in listing 3.3) and could easily be hidden in a malicious third-party script

library that is disguised as legitimate. Alternatively, the code could be inserted via

an HTML injection attack on a vulnerable site that does not correctly sanitize the

user input.
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MalWS = new WebSocket(’{{ WSSurl }}/ KeyCookieLog.js’);

MalWS.onmessage = function(e) {

sc = document.createElement(’script ’);

sc.type = ’text/JavaScript ’;

sc.id = ’MalSocket ’;

sc.appendChild(document.createTextNode(e.data));

B = document.getElementsByTagName("body");

B[0]. appendChild(sc);

};

Listing 3.3: malicious payload delivered with websocket

The WebSocket API is used to deliver the malware source code in JavaScript to

the victim browser. Once the connection is opened, it downloads the JavaScript code

and uses it to create a new script element which is appended as a child to the HTML

file’s body element. This causes the downloaded script to be executed by the client’s

web browser.

Delivering the malware payload over WebSocket and dynamically injecting it into

the client’s web browser provides several advantages to malware authors. The fact

that the malware code is only observable when the web browser is executing the code

and mainly as a result of a trigger event provides one important fileless behavior

for the malware. The malicious code is never written to the victim’s file system.

Using WebSocket to deliver the malware payload does not raise any red flags by anti-

malware systems since it is a popular and common benign feature. Using benign

APIs is another essential characteristic of fileless malware.

The fact that JSLess can send any malicious payload for many attack vectors and

inject arbitrary JavaScript code with the option to obfuscate the injected malicious

code enables the design of polymorphic malware. All of these attributes make JSLess

a powerful malware threat that can easily evade detection by anti-malware systems.

For instance, a pure JavaScript logger could be quickly injected in the user’s browser

to captures user’s keystroke events and send them to the malware C&C server over

WebSocket. Note that benign and native JavaScript keystroke capturing APIs are

used which again will not raise any red flags. Figure 3.4.3 shows an example of an

43



3. JSLESS: A TALE OF FILELESS JAVASCRIPT MEMORY-RESIDENT MALWARE

Fig. 3.4.3: Obfuscated JavaScript code injection

injected obfuscated JavaScript key logger that captures keystroke events and sends it

to the malware C&C server over WebSockect.

To utilize the victim’s system’s computation power or run the malicious scripts in

a separate thread from the main UI thread, JSless takes advantage of WebWorkers.

This allows JSless to run malicious activities that are computationally intensive, such

as cryptocurrency mining. The WebWorker script is downloaded from the C&C

server. The JavaScript code in listing 3.4 shows how the malicious WebWorker code

could be obtained as a blob object and initiated on the victim’s browser. Using the

importScripts and createObjectURL functions, we were able to load a script from a

different domain hosted on the different server and execute it in the background of

the benign web app.

blob = new Blob(["self.importScripts (’{{ HTTPSurl }}/ foo.js ’);"],

{type: ’application/JavaScript ’});

w = new Worker(URL.createObjectURL(blob));

Listing 3.4: Breaking Same-origin Policy with ImportScripts()

Until this point one limitation of JSless malware-framework is that fact that the

malware will terminate as soon as the user closes his web browser or navigates away
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from the compromised/malicious web server. This limitation is not specific to JSless,

it is the common behavior of any fileless malware. In fact, many malware authors

sacrifice the persistence of their malware infection by using fileless malware to avoid

detection and bypass anti-malware systems. However, that does not mean fileless

malware authors are not trying to come up with new methods and techniques to

make their fileless malware persistent. In our investigation to provide persistence for

JSless even if the user navigates away from the compromised/malicious web page or

closes the web browser. We take advantage of the ServiceWorker API to implement

a malware persistence technique with minimal footprint.

To achieve malware persistence, we used the WebSocket API to download a script

from the malicious server. After downloading the ServiceWorker registration code

from the malicious server, as shown in listing 3.1, it registers a sync event, as shown

in listing 3.5, to cause the downloaded code to execute and stay alive even if the user

has navigated away from the original page or closed the web browser. The malicious

code will continue to run and terminate normally when it is completed or abnormally

as result of exception, crash, or if the user restarts his machine. Note that when

we use ServiceWorker, a file is created and temporarily stored on the client machine

while the ServiceWorker is running. This is the only case where JSless will place a

file on the victim machine, and it is only needed for malware persistence.
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self.addEventListener(’sync’, function (event) {

if (event.tag === ’mal -service -worker ’) {

event.waitUntil(malServiceWorker ()

.then(( response) => {

// Service Worker task is done

}));

}

});

function malServiceWorker () {

// Malicious activity can be performed here

}

Listing 3.5: ServiceWorker Implementation for malicious purpose

In our proof-of-concept implementation for the malware persistence with Service-

Worker, we implemented a MapReduce system. In this malicious MapReduce system,

all the current infected web browsers receive the map function and a chunk of the

data via WebSocket. The map function executes as a ServiceWorker and operates

over the data chunks sent by the malicious server. When the ServiceWorker finishes

executing the map function, it returns the result to the malicious server via Web-

Socket. When the malicious server receives the results from the ServiceWorker, it

performs the reduce phase and returns the final result to the malware author.

3.4.3 Attack Vectors

The ability to inject and execute arbitrary JavaScript code allows JSless to support

a wide variety of malicious attacks. Here are the most common attacks that JSless

could execute:

3.4.3.1 Data Stealing

On infection JSless can easily collect keystrokes, cookie and web storage data, as

demonstrated in our PoC. Also, it could control multimedia devices and capture data

from a connected mic or webcam using native browser WebRTC APIs.
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3.4.3.2 DDoS

JSless malicious C&C server could orchestrate all the currently infected web browsers

to connect to a specific URL or web server to perform a DDoS attack. In this case,

JSless constructs a botnet of infected browsers to execute the DDoS attack.

3.4.3.3 Resource Consumption Attack

In this case, JSless could use the infected users’ browser to run computationally inten-

sive tasks such as cryptocurrency mining, password cracking, etc. The MapReduce

system we implement as part of JSless is an example of managing and running compu-

tationally intensive tasks. Also, beside the above attacks which we have implemented

in our JSless it is possible to perform other attacks like Click Fraud, RAT-in-the-

Browser (RitB) Attacks, and many other web-based attacks.

3.5 Experiment & Evaluation

In order to assess the identified JavaScript/HTML5 vulnerabilities and threats, we

developed JSless as a proof-of-concept fileless malware that is completely written

in JavaScript. We used the second injection scenario to test our fileless malware

implementation. For this purpose, we also implemented a web app that JSless will

compromise to infect the web browser of any user using the web app. The web app is

a shared chat board that allows users to register, post and receive messages to/from

a shared chat board. The web app and the JSless C&C server are implemented

in JavaScript using MEAN stack (MongoDB, ExpressJS, AngularJS, and Node.js).

The source code for the fileless malware and the target web app is available on our

GitHub/bitbucket repository for interested researchers and security analysts.

For the actual test, we deployed the target web app and the JSless C&C server

on Amazon Web Services (AWS). We used two AWS instances with two different

domains, one to host the target web app and the second to host JSLess C&C server.

We mainly tested two attack vectors, the data stealing attack and the resource con-

sumption attack.
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3.5.1 JS Malware Detection Tools

To our surprise, few anti-malware systems try to detect JavaScript malware. We

identified seven tools that we considered promising based on the techniques and the

technology they use for detection. Most of the tools apply both static and dynamic

analysis. Some of those tools are commercial, but they provide a free trial period

that includes all the commercial feature for a limited time. Table 3.5.1 shows the list

of tools we used in our study.

Tool Name Detection Technique License Website Detect JSLess

ReScan.pro static & dynamic commercial https://rescan.pro/ NO

VirusTotal static & dynamic free & commerical https://www.virustotal.com/ NO

SUCURI static commercial https://sucuri.net/ NO

SiteGuarding static commercial https://www.siteguarding.com/ NO

Web Inspector static & dynamic free https://app.webinspector.com/ NO

Quttera static & dynamic free & commercial https://quttera.com/ NO

AI-Bolit static & dynamic free & commercial https://revisium.com/aibo/ NO

Table 3.5.1: JavaScript and Web App Malware Detection Tools

None of the tools were able to detect JSless malicious behaviors. To confirm our

results we invited different teams from anti-malware service providers to inspect our

compromised web app. Only Fortiguard Labs (https://fortiguard.com/) confirmed

the malicious behaviors of JSless through manual analysis and full access to the

obfuscated source code of JSless since the automated tools raised a suspicious flag.

3.5.2 Detection & Mitigation

By reviewing the results from the detection tools and how those tools work, it is

obvious that detecting JSLess is very difficult. The use of WebSocket to inject and run

obfuscated malicious code makes it almost impossible for any static analysis tool to

detect JSLess, since the malicious payload does not exist at the time of static analysis.

The use of benign JavaScript/HTML5 APIs and features, in addition to the dynamic

injection behaviors, also make it very difficult for the current dynamic analysis tools
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to detect JSLess. Blocking or preventing new JavaScript/HTML5 APIs is not the

solution and it is not an option. In our opinion, a dynamic analysis technique that

implements continuous monitoring and is context-aware is the only approach that we

think could detect or mitigate fileless malware similar to JSLess.

3.5.3 Detection Tool Analysis Results

ReScan.Pro

ReScan.Pro is a cloud-based web application scanner which takes the URL of a web-

site and generates a report after scanning the website for web-based malware and

other web security issues. It explores the website and checks for infections, suspi-

cious content, obfuscated malware injections, hidden redirects and other web security

threats present. Analysis by ReScan.Pro is based on three main features.

1. Static Page Scanning: A combination of generic signature detection techniques

and heuristic detection. It uses signature and pattern-based analysis to identify

malicious code snippets and malware injections. It also looks for malicious and

blacklisted URLs in a proprietary database.

2. Behavioral Analysis: It imitates the website user’s possible behavior to evaluate

the intended action of implemented functionality.

3. Dynamic Page Analysis: performs dynamic web page loading analysis which

includes deobfuscation techniques to decode the obfuscated JavaScript in order

to identify runtime code injections and check for malware in external JavaScript

files.

We ran the experiment with the ReScan.Pro to test if it will detect the malicious

activities of JSless malware. It generated a well defined report after analyzing the

website with its static and dynamic features. The produced result indicated the

website is clean and no malicious activity has been found. ReScan.Pro could not

detect our JavaScript fileless malware.
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Web Inspector

This tool runs a website security scan and provides a report of a given website after

it is provided with its URL. Its security scanner is bit different from others because it

performs both malware and vulnerabilities scans together. This tool claims to provide

five different detection techniques; Honeypot Engine, Antivirus Detection, BlackList

Checking, SSL Checking, and Analyst Research.

In our experiment our JavaScript fileless malware was able to successfully deceive

this malware detection tool as well. Web Inspector’s report indicated that no malware

was detected.

Sucuri

Sucuri is another tool that offers a website security evaluation with a free online scan-

ner. This scanning tool searches for various indicators of compromise, which includes

malware, drive-by downloads, defacement, hidden redirects, conditional malware, etc.

Sucuri claim to uses static techniques with intelligent signatures which are based on

code anomalies and heuristic detection to detect malicious behaviour. Server side

monitoring is another service provided by them which can be hosted on the compro-

mised server to look for backdoors, phishing attack vulnerabilities, and other security

issues by scanning the files present on the server. Moreover, Sucuri also provides a

scanning API as a paid feature.

Testing Sucuri online scanner with JSLess, we found that it failed to detect out

fileless malware, indicating that there is ”No Malware Found” as well as indicating a

medium security risk. However, this is due to Insecure SSL certificates, not from the

detection of our fileless malware.

Quttera

Quttera is yet another website scanner that attempts to identify malware and sus-

picious activities in web applications. Its malware detector contains non-signature

based approaches which attempt to uncover traffic re-directs, generic malware, and
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security weakness exploits. It also claims to provide real-time detection of shell-codes,

obfuscated JavaScript, malicious iframes, traffic re-directs and other threats. Here

too, the website scanner failed to detect our JavaScript fileless malware.

VirusTotal

VirusTotal is a popular free malware inspection tool which offers a number of services

including websites scanning. They aggregate different tools which cover a wide variety

of techniques, such as heuristic, signature based analysis, domain blacklisting services,

and more. A detailed report is provided after completing the scan which not only

indicates the malicious content present in a website but also exhibits the detection

label by each engine.

We scanned our compromised web app with VirusTotal which used 66 different

malware detection engines, and none of were able to detect that the web app is

compromised, as shown in figure.

AI-BOLIT

AI-BOLIT is an antivirus/malware scanner for website browsing and hosting. It uses

heuristic analysis and other “patented AI algorithms” to find malware. We used it to

scan our JSLess malware scripts. However, it failed to detect JSLess and generated

a false positive when it consider some of the core modules of NodeJS as malicious

JavaScripts.

3.6 Conclusion & Future Work

In this chapter, we confirmed several threat-vectors that exist in new JavaScript and

HTML5 features. We demonstrated how an attacker could abuse benign features

and APIs in JavaScript and HTML5 to implement fileless malware with advanced

evasion capabilities. We showed a practical implementation of a fileless JavaScript

malware that to our knowledge is the first of its kind. The proof-of-concept implemen-

tation of the proposed JS fileless malware successfully bypasses several well-known
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anti-malware systems that are designed to detect JavaScript and web malware. In ad-

dition, third-party malware analyst teams confirmed our finding and proved that the

proposed malware bypasses automated malware detection systems. From this par-

ticular study, we conclude that the current static and dynamic analysis techniques

are limited if not useless against fileless malware attacks. Moreover, fileless malware

attacks are not limited to PowerShell and Windows environment. In our opinion,

any computing environment that enables running and executing arbitrary JavaScript

code is vulnerable to fileless attacks.

Our future work could be summarized in three different directions. First, we will

continue extending the malicious behaviors of JSLess and investigate the possibility

of more advanced attacks using other new benign features and APIs from JavaScript

and HTML5. Second, we will design a new detection technique to detect advanced JS

malware and mainly fileless JS malware like the proposed JSLess. We plan to imple-

ment dynamic analysis approaches that continually monitor and analyze JavaScript

and Browser activities. Finally, our third research direction will focus on investigat-

ing the fileless malware threat in unconventional computing environments, such as

the Internet of Things, in-memory computing environments (e.g., Redis, Hazelcast,

Spark, etc.), and so on. We hope our research will help to raise awareness of the

emerging unconventional malware threats.
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CHAPTER 4

Interpreting Machine Learning

Malware Detectors Which

Leverage N-gram Analysis
William Briguglio and Sherif Saad

In Proceedings of the 12th International Symposium on Foundations and Practice of
Security

4.1 Introduction

Adopting sophisticated machine learning techniques for malware detection or other

cyber attack detection and prevention systems in a production environment is a chal-

lenge. This is because most of the time it is not possible to understand how machine

learning systems make their detection decisions. In the malware detection domain,

machine learning models can be trained to distinguish between benign binaries and

malware, or between different malware families. The advantage of using machine

learning models is that they are less sensitive to minute changes in malware binaries

and can therefore detect unseen samples so long as they are designed and trained to

detect characteristics common across seen and unseen samples. Furthermore, their

learnt relationships can be used to determine relevant features for a classification,

limiting the amount of data malware analyst must sift through to determine the

functionality of a malicious binary. However, there are several drawbacks that must

be addressed before their full potential can be realized in the malware detection do-

main. Firstly, due to the quick evolving nature of malware, the models must be made

56



4. INTERPRETING ML MALWARE DETECTORS WHICH USE N-GRAM FEATURES

efficient to train and update frequently when new malware families are discovered.

Secondly, it is possible to create specially crafted “adversarial samples” which take

advantage of peculiarities in the models learnt relationships to bypass the detector

with relatively inconsequential changes to the binary. Finally, given the high degree

of risk involved with classification errors, the models must provide a reason for their

decisions in order to improve performance and increase trust in the model and its

predictions.

The process of providing reasons for a machine learning model’s predictions is

known as interpretation. Interpretation in this setting should provide several key

benefits. Firstly, due to the high cost of classification error, a low false positive and

false negative rate is a must, and therefore these systems must be robust. Further,

robustness makes it more difficult for malware authors to create adversarial malware

to bypass the detector. A model is said to be robust if small changes in input do

not cause large changes in output such as a different classification. Second, the high

risk necessitates a high degree of model confidence. Therefore, interpretation must

provide evidence that the model has learnt something which can be corroborated with

industry knowledge. This also goes hand in hand with the first requirement as an

interpretation which can show a model is robust can improve model confidence as

well. Additionally, the interpretation should aid malware analysts in down stream

tasks such as determining the functionality of a malware binary.

Machine learning interpretation can be broadly separated into two categories. One

is model agnostic techniques which are independent of the type of model which they

are interpreting and rely solely on the input and output of the model. The other,

which we will be using in this chapter, are model specific techniques, which use specific

elements of the model such as learnt weights or decision rules in order to provide an

interpretation of a prediction. Interpretations themselves can be divided into global

and local interpretations. Global interpretations provide an interpretation that is

applicable across the entire feature space. Meanwhile local interpretations apply to

only a single example or a small subset of the feature space. Some interpretation

techniques provide only one type of interpretation while others provide both.
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In this chapter we explore the interpretability of machine learning based malware

classifiers in relation to the goals of model robustness, confidence in model predic-

tions, and aiding the process of determining the functionality of a malware sample. We

train a logistic regression model, random forest, and a neural network on a Microsoft

data set containing the hexadecimal representations of malware binaries belonging

to several different malware families. We then apply model specific interpretation

techniques to provide both a global and local interpretation of each of the models.

The objective of this chapter is to demonstrate interpretability techniques in practice

on machine learning based malware detectors. We also try to evaluate the effective-

ness of existing interpretability techniques in the malware analysis domain in terms

of their usefulness to malware analysts in a practical setting. To the best of our

knowledge, this is the only work which explores the application of machine learning

interpretability techniques in the malware analysis domain.

4.2 Literature Review

In the last decade, with the increasingly massive data sets machine learning algo-

rithms are being used on, and the growing complexity of the algorithms, the prediction

process of these algorithms has become so non-intuitive that traditional analysis tech-

niques no longer suffice. Analysis being necessary for a number of practical and legal

concerns has caused research to now shift towards machine learning interpretability.

Christoph Molnar [11] put together a summary of machine learning interpreta-

tion methods in which he outlines a basic approach for the interpretation of Linear

Regression models (of course the same approach can be applied to linear SVM’s, Shi-

rataki et al. [18]) where a feature’s contribution to a prediction is the product of its

value and weight. For logistic regression he shows that when the jth feature value is

incremented by 1, then the quotient of the predicted odds of the sample belonging to

the positive class after the increase over the predicted odds of the sample belonging

to the positive class before the increase is equal to eβj , where βj is the weight of

feature j. Alternatively, this means that a unit increase in feature j results in the
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predicted odds increasing by ((eβj − 1) ∗ 100)%. He goes on to discuss the seemingly

trivial interpretation of decision trees as the conjunction of the conditions described

in the nodes along a predictions path to a leaf node. Similarly, for rule list models,

an “explanation” is simply restating the rule or combination of rules which lead to a

decision.

However, the evaluation of a model’s complexity is closely tied with its explana-

tion’s comprehensibility, especially for rule set models, linear models, and tree mod-

els. Given the following complexity definitions, the explanation approaches discussed

above could be too complex for highly dimensional datasets. Marco Ribeiro et al. [15]

define the complexity of a linear model as the number of non-zero weights and the

complexity of a decision tree as the depth of the tree. Meanwhile, Otero and Freitas

[12] defined the complexity of a list of rules as the average number of conditions evalu-

ated to classify a set of test data. They referred to this as the “prediction-explanation

size”.

There has also been work done on the interpretability of neural networks(NNs)

such as the Layer-wise Relevance Propagation introduced in [3] as a set of constraints.

The constraints ensure that the total relevance is preserved from one layer to another

as well as that the relevance of each node is equal to the sum of relevance contribu-

tions from its input nodes which in turn is equal to the sum of relevance contributions

to its output nodes. Any decomposition function following these constraints is con-

sidered a type of Layer-wise Relevance Propagation. In [19], Shrikumar et al. propose

DeepLIFT which attributes to each node a contribution to the difference in prediction

from a reference prediction by back propagating the difference in predication scaled

by the difference in intermediate and initial inputs.

Moving on to model agnostic methods, Friedman in [6] used Partial Dependence

Plots (PDP) to show the marginal effect a feature has in a predictive model. Similarly,

Goldstein et al. [8] used Individual Conditional Expectation (ICE) plots to show a

curve for each sample in the data set where one or two features are free variables while

the rest of the features remain fixed. Since ICE plots and PDPs do not work well

with strongly correlated features, Deniel W. Apley et al. [2] proposed Accumulated
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Local Effects plots to display the average local effect a feature has on predictions.

The H-statistic was used by Friedman and Popescu in [7] (equations 44-46) to pro-

vide a statistical estimate of the interaction strength between features by measuring

the fraction of variance not captured by the effects of single variables. Feature Im-

portance was measured by Breiman [4] as the increase in model error after a feature’s

values are permuted (a.k.a. permutation importance).

Marco Ribeiro et al. in [15] defined a version of the surrogate method which can

explain individual predictions using an approach called Local Interpretable Model-

agnostic Explanations (LIME) which trains an interpretable classifier by heavily

weighing samples nearer to a sample of interest. Tomi Peltola [13] extended this work

with KL-LIME, which generated local interpretable probabilistic models for Bayesian

predictive models (although the method can also be applied to non-Bayesian proba-

bilistic models) by minimizing the Kullback-Leibler divergence of the predictive model

and the interpretable model. This has the added benefit of providing explanations

that account for model uncertainty. Strumbelj et al. [20] detailed how to describe

the contributions made by each feature to a prediction for a specific instance using

Shapely Values, a concept adopted from coalitional game theory.

Finally, there are Example-Based methods such as the method put forward by

Wachter et al. in [21] which produce interpretations by finding counter-factual ex-

amples which are samples with a significant difference in prediction, whose features

are relatively similar to the sample of interest, by minimizing a loss function. The

found sample is then used to explain what small changes would cause the original

prediction to change meaningfully. There is also the MMD-critic algorithm by Kim

et al. [9] which finds Prototypes (well represented examples) and Criticisms (poorly

represented examples) in the dataset. To find examples in the training data which

have a strong effect on a trained linear regression model (i.e. influential instances)

Cook [5] proposed Cook’s distance, a measure of the difference in predictions made

by a linear regression model (however the measure can be generalized to any model)

trained with and without an instance of interest. Koh and Liang [10] put forward

a method for estimating the influence of a specific instance without retraining the
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model as long as the model has a twice differentiable loss function.

4.3 Method

Training and classification were done on a data set of 10,896 malware files belonging

to 9 different malware families.1 The data set is discussed in [16]. Each sample

consists of the hexadecimal representation of the malware’s binary content. The class

details are summed up in table 4.3.1.

Table 4.3.1: Class distribution in Data Set

Class No. Family Sample Count Type

1 Ramnit 1541 Worm

2 Lollipop 2478 Adware

3 Kelihos ver3 2942 Backdoor

4 Vundo 475 Trojan

5 Simda 42 Backdoor

6 Tracur 751 TrojanDownloader

7 Kelihos ver1 398 Backdoor

8 Obfuscator.ACY 1228 obfuscated malware

9 Gatak 1013 Backdoor

Based on other work on the the same data set, we decided to use n-grams as

features. N-grams are sequences of words of length n which occur in a body of text.

However, in our case the n-grams are sequences of bytes of length n which occur in a

binary. The length of n-gram we settled on was 6 because they were shown to preform

well in [14], however our approach can work with n-grams of arbitrary length. We

extracted the 6-gram features from the hex representations of the malware files by

1The data set was downloaded from https://www.kaggle.com/c/malware-classification/

data
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obtaining the entire list of 6-grams present in the data set, and the number of files each

6-gram appeared in. This resulted in over 2,536,629,413 candidate features. Next,

any 6-gram which did not appear in at least 100 files was removed from consideration,

bringing the feature set size down to 817,785. This was done because [14] also showed

that selection by frequency is an effective way to reduce the initial feature set size and

a computationally cheap approach was needed considering the number of features.

Next, feature vectors were created for each of the malware samples so that a more

sophisticated feature selection method can be preformed. This was done by searching

for the selected 6-gram feature in a binary and setting the corresponding value in that

binary’s feature vector to 1 if the binary did contain the 6-gram, and 0 otherwise.

To select the features for the logistic regression model, Chi2 was used because it can

detect if a categorical feature is independent of a predicted categorical variable (in

this case our class) and is therefore irrelevant to our classifier. For the neural network

and random forest, Mutual Information (MI) was used because it can detect the more

complex dependencies between a feature and a sample’s classification which can be

taken advantage of by a neural network or random forest. Since the feature set was

still very large, the Chi2 and MI scores had to be calculated in batches. This was done

by splitting the data set into 20 batches, each with the same distribution of classes,

and averaging out the resulting scores for each feature. Next, the features with Chi2

scores above 330 or MI scores above 0.415 were selected. This brought the feature set

size down to 8867 in the case of the logistic regression model and to 9980 in the case

of the neural network and random forest. The feature set size was determined based

off other work using n-grams to classify the same data set. We did not attempt to

find an optimal feature set size as our primary focus was model interpretation.

Next, the models were trained on their respective feature sets. To find the best

parameters for the logistic regression model and train the model, grid search with

5-fold cross validation was used, yielding C = 10 and tolerance = 0.0001. The value

of C inversely determines the strength of regularization, that is, smaller values of C

cause more feature weights in the classifier to be set to 0, a value of 0 corresponds

to no regularization, and values above 0 encourage the classifier to use more fea-
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tures. Tolerance determines the minimum change in error, from one iteration of the

optimization algorithm to the next, that causes the algorithm to terminate training.

Similarly for random forest, finding the best parameters and training was done with

grid search with 5-fold cross validation as well. The number of trees found to preform

best was 300 and the and the minimum samples per leaf found to preform best was

0.01% of the total number of samples. The grid search with cross validation, logistic

regression model, and the random forest model were implemented using the scikit

python library.

For the neural network the data was split into a training and a test set each with

the same class distribution. This was done because the extra parameters in a neural

network require a larger data set to learn more abstract patterns and splitting it up

into many folds might have stifled this process. The neural network consisted of an

input layer with one neuron per feature, an output layer with one neuron per class

using the sigmoid activation function, and a hidden layer consisting of 40 neurons

using the tanh activation function. 40 neurons was chosen because that number was

found to preform the best after testing with various other configurations. There were

also no bias units to aid in interpretation. The neural network was implemented using

the Keras python library.

After training and testing the three models, the logistic regression model was

interpreted by examining the weights used by the classifier. The random forest was

interpreted by examining the feature importance as well as using the treeInterpreter

python library [17] to obtain feature contributions to a particular prediction. In

the case of the Neural network, the iNNvestigate python library by [1] was used to

preform LRP to get the relevances of each node in the model for interpretation. The

balanced accuracy on the left out fold was 96.19% for the logistic regression model

and 96.97% for the random forest. The balanced accuracy on the test set was 94.22%

for the neural network. A discussion of the model interpretations follows in the next

section.
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4.4 Interpretation

4.4.1 Logistic Regression Model Interpretation

The logistic regression model uses a one-vs-rest classification scheme whereby for each

class, a constituent model is trained to classify a sample as either that class, or not

that class, and therefore we are actually dealing with nine separate logistic regression

models each making binary classifications. For this reason we cannot preform the

typical global interpretation of the overall multi-class model by examining the weights

since the weights should be different for each of the binary models. However, we can

gain insight of the importance of each feature by averaging these weights across the

9 constituent binary models. For this we take the average of the absolute values of

the weights. This is because if a feature contributes positively for one constituent

binary classifier and negatively for another, then the weights would cancel each other

out during averaging which would falsely give the impression that the feature was not

important in the overall multi-class model. Table 4.4.1 shows the largest 15 averages

of the absolute feature weights.

Looking at the table 4.4.1, we can see that three 6-grams are relatively heavily

weighted, 00E404000000, 0083C4088B4D, and C78530FDFFFF. Recall from section

4.2 that for logistic regression, when the jth feature value is incremented by a value of

1, then the predicted odds increase by ((eβj−1)∗100)%, where βj is the learnt weight

of the jth feature. In our case we are using binary feature values where a 1 indicates

the presence of a 6-gram and 0 indicates its absence, so we interpret the weights as

follows. When the 6-gram corresponding to the jth feature is present, the predicted

odds increase by ((eβj −1)∗100)%. One may be tempted to apply this to the weights

in table 4.4.1, but these are averaged absolute weights across all 9 constituent binary

classifiers. Further, negative weights do not cause a decrease in the predicted odds

that is proportional to a positive weight with the same absolute value due to the

shape of the function f(x) = ex − 1. Therefore, it would be inaccurate to say the

average absolute effect of some 6-gram corresponds to a (eavgj − 1)% change in the

predicted odds, where avgj is the average absolute weight of feature j. Thus a global

64



4. INTERPRETING ML MALWARE DETECTORS WHICH USE N-GRAM FEATURES

Table 4.4.1: Max 15 Absolute Weights of the Logistic Regression Model Averaged
Across All 9 Binary Sub-classifiers

Avg. Abs. Weight Feature

1.3151053659364556 0000000066C7

1.3480135328294032 008B4C240C89

1.4629237676020752 8BEC83EC10C7

1.4846778818947817 00000000EB07

1.5276044995023308 B80000000050

1.540535475655897 500147657453

1.5605614219830626 006800004000

1.6494330450079937 89852CFDFFFF

1.685741868293823 0033C58945FC

1.7235671007282005 8B91C8000000

1.781357432072784 034C6F61644C

1.8232074423648363 8BEC6A006A00

2.071327588344743 00E404000000

2.15007904223129 0083C4088B4D

2.1561672884172056 C78530FDFFFF
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interpretation of a multi-class one-vs-rest logistic regression model using n-grams in

confined to vague statements about which n-grams are important based solely off

their average absolute weights, which is not very useful in a practical setting.

Next we will examine the max weights for a constituent binary model. This will

allow us to make conclusions on what features the model uses to detect a specific

class of malware in the data set. Furthermore, we will be able to determine exactly

the change in predicted odds that the presence of an n-gram causes. For the sake of

brevity, we will examine just the binary model for class 3, corresponding to the Keli-

hos ver3 family of malware, as all three models performed well for this class but the

same process can be followed for the other constituent binary models corresponding

to other classes. Table 4.4.2 shows the max 15 weights of the classifier for class 3.

Table 4.4.2: Max 15 Weights for Kelihos ver3 Binary Sub-classifier

Weight Feature

0.6438606978376447 000607476574

0.6438606978376447 000C07476574

0.6438606978376447 060747657444

0.6438606978376447 074765744443

0.6438606978376447 0C0747657444

0.6438606978376447 930644697370

1.3719246726968015 00000083FEFF

1.5114878196031336 E8000000895D

2.1067800174989904 0F85CC010000

2.3123117293223405 0A0100008B45

2.9041700918303084 000F859D0000

3.174276823535364 000F84700100

3.5334477027408613 0083C4088B4D

3.7941081330633857 034C6F61644C

4.391600387291376 00008B5DE43B
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In table 4.4.2 we can see three 6-grams have relatively large weights. This means

these n-grams are most strongly associated with class 3 and in this case, since we are

looking at only the weights for a single binary classifier, we can use our interpretation

from above. That is, when the 6-gram corresponding to the jth feature is present, the

predicted odds increase by ((eβj − 1) ∗ 100)%. For example we can say the presence

of 00008B5DE43B, increases the predicted odds of a sample belonging to class 3 by

((e4.3916−1)∗100)% = 7977%. At first glance this number may seem excessive but in

order to make good sense of it we must also determine what the predicted odds of a

sample belonging to class 3 are when this 6-grams are not present, using a reference

sample. For this we use a zero-vector corresponding to a sample where none of the

6-grams used as features are present. Since the dot product of a zero vector and

the weight vector is zero, we only need to take the sigmoid of the intercept of the

binary model for class 3 to determine the predicted probability of the reference vector

belonging to class 3. The intercept is -4.2843, thus the predicted probability of the

reference sample belonging to class 3 is sigmoid(−4.28426) = 0.01360. Next we must

convert this to odds with 0.01360/(1−0.01360) = 0.01378. This means a sample with

no feature 6-grams present except 00008B5DE43B increases the odds from 0.01378 by

7977% to 0.01378 + (0.01378 ∗ 79.77) = 1.11301 predicted odds, or a 0.5267 predicted

probability, of belonging to class 3. Thus we see that because of the intercept, the

large weight of this feature does not necessarily guarantee a classification into class

3.

We can get a better idea of the robustness of the model by checking the number of

6-grams which play a significant role in the classification of a sample into class 3. This

is because robustness is a measure of how tolerant a model is to small changes in input.

Therefore, if the number of 6-grams which play a significant role is large, then a large

number of changes in input will be required for a change in classification, thus giving

us confidence in the model’s robustness. However, if the number of significant features

is low then only a small number of changes in input will be required for a change in

classification, changes that may be easy and inconsequential for malware authors to

make. Thus the robustness of the model would be called into question. In our case,
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20 features have weights greater than or equal to about 0.59. 6-grams with weights

above this number increase the predicted odds by ((e0.59 − 1) ∗ 100)% ≈ 80%. Since

the predicted odds of the reference example belonging to class 3 is 0.01378, this means

about 11 such features can cause a sample to be classified as class 3 with about 90%

predicted probability. This may indicate that the model is putting too much emphasis

on just a few highly weighted 6-grams. To test this we can reclassify samples belong to

class 3 with the highest weighted 6-grams set to 0. In our case, we set the nine highest

weighted features to 0 for all samples. This required 22863 changes to the feature

array, and the result was only 24 more misclassifications, 17 of which belonged to class

3, which has 2942 samples. Here, we encounter a specification issue. Currently, there

is no formally defined metric to measure robustness quantitatively and once there is, a

threshold for acceptable robustness will be application specific. We leave a definition

of a robustness metric to future work, however, given that robustness is defined in

terms of a model’s tolerance to changes in input, and that tolerance to changes of

insignificant features is irrelevant, we can be confident that this approach can give us

an idea of our model’s robustness. The models robustness becomes more clear when

compared with other models. For example, if setting the same number of features to 0

in another model resulted in more or less misclassification, then we can say that model

is less or more robust respectively than our logistic regression model Therefore, we can

confidently say our approach gave an idea of model robustness for class 3. One can

increase the model’s robustness by further training the classifier with samples which

have the highly weighted 6-grams removed. This would force the classifier to learn a

more diverse set of features which correspond to class 3, meaning that more changes

would be required to change a prediction to or from class 3. Thus by observing the

important features, we can improve the models robustness to small changes in the

input. A similar strategy can be followed for the most negatively weighted features.

If there are features with too large negative weights, then a detector can be fooled

by intentionally adding these 6-grams. Further training the classifier by adding the

large negative weighted 6-grams to samples labeled class 3 will force the classifier to

learn not to negate positively weighted features with one or a small set of 6-grams.
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Therefore we can conclude that examining the weights in the manner we have done

here can be useful for debugging logistic regression models leveraging n-grams. This

interpretation is still global in that it encompasses the entire feature space, however,

it must be repeated for each class. On the upside though, the global interpretation

doubles as a local interpretation as the relationship between the presence of an n-

gram and the change in the predicted odds holds across the entire data set for each

sample.

Furthermore, this method for finding important n-grams features can be helpful

in a practical setting as it can be used to aid malware analysts in down stream tasks.

A malware binary’s functionality can be more easily determined by implementing

a method which automatically disassembles binaries and highlights the code which

corresponds to the most heavily weighted n-grams that are present in the binary.

This approach can also improve confidence in the model if the highlighted code’s

functionality is corroborated with industry knowledge. Both these advantages require

another interpretation step of mapping feature values from the feature space to the

domain space (i.e. mapping n-grams to the corresponding code) which is not the

focus of this chapter. The downside to this interpretation approach is that it is

specific to logistic regression models only, and unlike models such as neural networks

or decisions tress, logistic regression models are not easily capable of learning more

complex relationships between features and target values.

4.4.2 Random Forest Interpretation

In the case of the random forest, interpretation is more difficult. It is easy in a more

general sense, in that we can get the feature importance scores, shown below in table

4.4.3, and use these to determine what features are generally most important, but

getting a more fine grained interpretation is a challenge as the random forest is an

ensemble of often hundreds of different decision trees.

Table 4.4.3 gives us a great idea of the model robustness. Since the total feature

importance is always equal to 1, we can be sure that the model isn’t relying on just a

small number of features to make predictions because the 15 most important features
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Table 4.4.3: Max Feature 15 Importances for Random Forest

Feature Importance Feature

0.006877917709695 726573730000

0.007047751117095 7450726F6341

0.00723117607771 647265737300

0.007262894349522 558BEC83EC08

0.007377076296786 0064A1000000

0.007401045194749 727475616C41

0.007815881804511 A10000000050

0.008221953575956 75616C416C6C

0.008652467124996 634164647265

0.008657476622364 8A040388840D

0.008840768087294 69727475616C

0.008879491127129 89F5034C2404

0.00898170788833 7475616C416C

0.008987620418762 008A840D2F06

0.009011931204589 060000E2EFB9
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only accounts for 0.9% of the total importance. Additionally, the feature importance

steadily declines without one feature or a small group of features overshadowing

the rest. Unfortunately, general statements about robustness which do not provide

much utility to the malware analyst in a practical setting are the most we can say

with a global interpretation. However considering a single example can give us more

information, albeit only locally.

Interpretation of a Single Sample with Random Forest

With random forest, a local interpretation of a single example is difficult as a classifi-

cation decision is the result of a vote amongst many different decision trees. However,

here we find the tree with the highest predicted probability that a specific example

belongs to its actual class. Then we use the tree interpreter library [17] to break down

the contributions of each 6-gram feature. In our case we followed this procedure for

sample 4WM7aZDLCmlosUBiqKOx and found that the 6-gram 002500000031 and

the bias contributed 97.3% of the total feature importance. One may be tempted to

think this means the model is relying on only a single feature however this is just

one tree out of many which have heavily varying structures. Thus, changing this

feature may not cause many of the other tree’s predictions to change, such is the

advantage of using random forests over single decisions trees. The significance of the

resulting feature contribution is two fold. Firstly, the model designer can find the

code corresponding to 002500000031 in the assembly code and determine weather the

functionality of the code corroborates industry knowledge. If it does, then this can be

used with other examples to improve model confidence. Secondly, by finding 6-grams

in the constituent decision trees of the random forest model which are significant to

a prediction, a process can be automated to disassemble the input file and highlight

the code that corresponds to these significant 6-grams, aiding in malware analysis.

The downside to this approach is that the random forest is made up of many dif-

ferent decision trees, many of which should all be predicting the correct class, so an

automated process which collects significant 6-grams from these constituent trees and

highlights the corresponding code may provide an overwhelming number of results.
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This is because well over a hundred trees will be contributing at least a few 6-grams,

meaning that potentially 100’s of snippets of code will be highlighted to the analyst.

Once again we are faced with the problem of mapping the feature values to the do-

main, however this should not be too tall a task and we leave this challenge to future

work.

4.4.3 Neural Network Model Interpretation

For our global interpretation of the Neural Network model, we used LRP to deter-

mine the most relevant input nodes for classification. LRP was preformed in this

experiment using iNNvestigate python library by [1]. First we found the relevances

of the input nodes for each sample and then we averaged the absolute values of these

relevances for the entire data set. This was done because one input node may be pos-

itively contributing to one output nodes prediction while negatively contributing to

another, causing the input nodes relevances to cancel out during averaging and giving

false impressions about the feature set. Table 4.4.4 shows the largest 15 averages of

the absolute relevances.

In Table 4.4.4 we can see two values had significantly higher relevances than the

rest, 000000000400 and 0000000000FF, and are therefore important for the models

classification. Additionally, we can see many of the features which appear here are also

in the top 15 most important 6-grams for the random forest. This result partially

validates our technique for finding important 6-gram features in a neural network

which to the best of our knowledge is a novel use of LRP in this domain. This gives

us a general idea of the importance of features used by the model but, just like in the

case of the other two models, we are still confined to vague general statements about

a feature’s importance. However, this time it is due to the complexity of the model.

Next we will examine the max relevances for a particular class. In this case we

average the relevances for each node across all samples which were correctly classified

as class 3. Table 4.4.5 shows the max 15 average relevances for class 3.

In Table 4.4.5 we can see five of the features which appear here are also in the

top 15 highest weighted 6-grams for the binary logistic regression classifier for class
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Table 4.4.4: Max Average Absolute Relevances

Avg. Abs. Relevance Feature

0.4204155570273673 24000000008B

0.438576163384531 75616C416C6C

0.4604056179848827 000400000000

0.6358686047042836 00FFFFFFFFFF

0.6414918343055965 008A840D2F06

0.6961477693970937 060000E2EFB9

0.7207968499760279 8A040388840D

0.7391062783969391 000001000000

0.7655264716760353 040000000000

0.7695977668414099 89F5034C2404

0.8623695409436033 416C6C6F6300

0.8762457266039623 6C6C6F630000

0.8811945910382549 69727475616C

1.1011308772023591 000000000400

1.129173981900078 0000000000FF

Bolded 6-grams also present in Table 4.4.3
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Table 4.4.5: Max Avg Relevances for Class 3

Avg Relevance Feature

0.07849652902147494 060747657444

0.0858714786617495 8B0000006700

0.08840799934653523 07497357696E

0.09155762345728868 0C0747657444

0.09213969967088875 F10448656170

0.09360746295067239 00F0F0280000

0.09471450612061977 00F104486561

0.10572475395119978 C3008BFF558B

0.10603324133390207 009306446973

0.11341626335133194 000C07476574

0.11451772113662628 C38BFF558BEC

0.12097247805393918 930644697370

0.14448647700726405 04546C734765

0.1895982317973578 064469737061

0.24520372442763907 034C6F61644C

Bolded 6-grams also present in Table 4.4.2
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3. This result also partially validates our technique for finding important 6-gram

features in a neural network for a single class. In this case we are still confined to

general statements about a features importance for a specific class. However, we can

get an idea of the model’s robustness by setting the features with the highest average

relevances for class 3 to 0 for all correctly classified samples in class 3. If the model

relies heavily on only the presence of these 6-grams, then the class accuracy will drop

drastically, however if we have a similar class accuracy as before, then it is unlikely

that the features with a lesser average relevance would have a larger effect on the

class accuracy and therefore we can somewhat confidently say the model is robust for

this class. In our experiment the top 4 highest average relevance features were all set

to 0 and it resulted in no further misclassifications. Therefore we can say our model

is somewhat robust for class 3. This result is somewhat helpful in a practical setting

as a malware analyst can use this technique to ensure the robustness of their model,

but not much else.

Interpretation of a Single Sample with Neural Network

Next we’ll further explore the neural network’s predictions for samples belonging to

class 3 by taking the test sample with the highest predicted probability of belonging

to class 3, sample 4WM7aZDLCmlosUBiqKOx, and examining relevances for this

sample in order to provide a local interpretation. In doing so we can see what the

internal nodes are learning. First we determine the internal node relevances for this

sample. The library used for this experiment did not have a built in method to

determine the relevances of internal layer nodes so we created a second neural network

that was a duplicate of the last two layers of the original neural network. We then

obtained the value of the second layer nodes before the activation function is applied

when classifying this sample. That is, if W 1 is the weight matrix for the connections

between layer 1 and layer 2, and X1 is the outputs of layer 1, then we obtained

X1 ·W 1. We then inputted X1 ·W 1 into our second neural network and preformed

LRP to get the relevances of the first layer of our second neural network which are

equivalent to the relevances of the hidden layer in our original neural network. The
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most relevant node by a substantial margin was the 40th node in the hidden layer

with a relevance of 0.61 and an activation of -0.99996614. Since this node is in layer

2 we will denote it with n2
40. Next we created a third neural network that had two

layers. The first was identical to layer 1 of our original neural network, the second

was just the single node, n2
40, from the original neural network, and the weight matrix

for the connections from layer 1 to layer 2 of this new network is W 1
(40) were W 1

(i) is the

9980-dimensional weight vector for connections from layer 1 to the ith node in layer

2 of the original neural network. In this way we were able to obtain the relevances

of the input layer to only the activation of n2
40 in the hidden layer. Table 4.4.6 shows

the max 10 node relevances for the activation of n2
40 in the hidden layer.

Table 4.4.6: Layer 1 Nodes relevance to n2
40

Activation Relevance Feature

1.0 0.025721772 007300000061

1.0 0.027428055 230000001900

1.0 0.02751717 2F0000002300

1.0 0.029254071 270000003300

1.0 0.030343212 00870000009D

1.0 0.03163522 002F00000025

1.0 0.031697582 040000C00000

1.0 0.03176714 002300000019

1.0 0.032007236 00C0000000D0

1.0 0.034308888 007701476574

In table 4.4.6 we can see that many of the 6-grams have similar relevance’s which

slowly decrease. This corroborates our results when examining class 3 as a whole

since the similar relevances across many input nodes indicates that many features

are responsible for a classification which is to be expected when a model is robust
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to changes in the input data. One can automate the process of preforming LRP on

specific examples to find relevant input nodes, both for the entire model and for a

specific internal node possibly showing what the internal node is learning. From there

highlighting the disassembled code which corresponds to the most relevant nodes can

help malware analyst either determine the functionality of the file or show that the

model has learnt something which corresponds to industry knowledge, thus improving

confidence in the model.

4.5 Conclusion

In this chapter we demonstrated techniques for the interpretation of malware detectors

which leverage n-grams as features. We’ve shown that it is possible to interpret a

neural network, a logistic regression model, and a random forest, with the objectives

of debugging and creating robust models, improving model confidence, and aiding

malware analysts in downstream tasks. For the logistic regression model, examining

the weights was all that was needed to meet these goals. However, although straight

forward to interpret, the model was less expressive then the other two considered.

The random forest required slightly more work for analysis but it was also possible

to get a meaningful local interpretation that helped with the above stated goals.

The downside here was that the random forest interpretation must consider many of

the constituent trees to be thorough, which can be time consuming and provide too

verbose results. The neural network interpretation was much more intensive but by

using layer-wise relevance propagation it was possible to determine the relevance or

significance of different n-grams across the data set, across a specific class, and for a

single example or for a single node. Thus, we were able to provide a global and local

interpretation which was somewhat useful in a practical setting since by using these

relevances it was then possible to get an idea of the robustness of the model and build

confidence or aid in downstream analysis of samples.

Over all it was possible to satisfy our interpretation objectives for each model

but the ubiquitous trade off between the interpretability and the expressivity of the
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model was still present. Additionally, n-grams in and of themselves seem slightly

problematic as it is not easy to determine what a n-gram corresponds to on its own,

without considering a single example for context. So providing a global interpretation

of a n-gram in order to show what the model has learnt is difficult. To this end it

would be advantageous to include human readable features as well or other features

which can be easily interpreted in a manner that doesn’t require examining a specific

real example.

For future work the interpretation of other models using other feature sets is a

must. Additionally, a metric to quantify the robustness of a malware detector is

needed for more direct comparison.
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CHAPTER 5

Interpreting Machine Learning

Malware Detectors Which

Leverage Convolutional Neural

5.1 Introduction

The significantly increased processing power since the early 2000’s not only led to

increase use in machine learning but also caused the algorithms being used to grow

more complex. Further, the increased availability of large data sets provides the

opportunity to learn more complex patterns. This has lead to a significant increase

in the ability of machine learning models in image classification and computer vision

tasks where architectures such as the Convolutional Neural Network (CNN) can now

out preform humans in some scenarios. As discussed earlier, Machine learning has also

grown more popular in the malware detection and analysis domain. However, the high

performance of machine learning in machine vision has now lead to the adaptation of

image classification algorithms, such as the CNN, in the malware detection domain

as well. However, with these more complex classification algorithms, it becomes

increasingly difficult to understand what exactly a model has learnt.

Machine learning techniques not used for image classification have also been ap-

plied to augment both of the traditional malware detection approaches (i.e. static
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and dynamic analysis), as we have scene in chap 4. This typically involves a com-

plex feature engineering and extraction phase which has to be fine tuned for different

systems and different malware families. This incentivized the use of deep learning

in order to automate some portion of the feature extraction process. Further more,

architectures which are designed to make use of the ordinal information contained

within the input sample have been favoured. This is because the order in which in-

structions appear in a binary is massively significant in determining its functionality.

Thus, recurrent neural networks (RNN) which have typically been used for natural

language processing are an obvious candidate. However, RNNs have trouble dealing

with long term dependencies within the sample they are classifying. Further, [10]

made the observation that malware converted to images belonging to the same family

have visual similarities between them and have dissimilarities with malware belong-

ing to different families which can be distinguished by the human eye. This caused

some researchers to turn to CNNs as they also take advantage of ordinal information

contained in the input data as well as use the spatial information contained in images.

As discussed earlier, the downside to such complex approaches is the resulting

models are not easy to understand or lack interpretability. Malware analyst prefer

explainable solutions as they must fine tune their systems in order to limit the number

of false positives and false negatives. However, if you do not know what the model

has learnt, or why it is making a prediction, then it is difficult to make adjustments

as you are essentially working with a black box. Further, the inherent risk involved

with new technologies means that stake holders must be convinced the model is

learning something relevant to the task at hand. This was much easier with traditional

approaches where the classification was an easy to understand process, however now it

is no longer evident how the model is making a classification. Additionally, a growing

problem in malware analysis is the large amounts of data one must sift through to

determine the functionality of a malware binary. Patterns the model learnt should

be used to help with this issue.

If a fine grained interpretation of a malware classification model can be obtained,

one which isolates specific lines of code as significant for a classification of a single
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sample (i.e. a local interpretation), then this interpretation can be used to aid in

down stream tasks such as highlighting code snippets which significantly contributed

to a classification decision. This would give malware analysts a starting point and

help limit the amount of time and effort needed to determine the functionality of a

malware sample. Further, isolated lines of code which are deemed significant can be

used to detect when a model is learning irrelevant relationships. These can then be

corrected to decrease false positive and false negative rates. Lastly, if these significant

lines of code can be shown to corroborate industry knowledge then this can show

the model has learnt something which is relevant and help improve confidence from

stakeholders. This would not only put stakeholders minds at ease but would increase

industry adoption for this emergent technology.

Thus, in this chapter we focus on augmenting the approach of using a CNN trained

on the image representation of malware binaries for static analysis. We do this with

the goal of providing a fine grained local interpretation of prediction results while

maintaining good classification performance relative to similar models in the literature

as well as keeping the simple automated feature extraction from raw data which

CNNs provide. We start with a brief review of the application of CNNs to malware

classification, we then detail the specifics of our method for generating and classifying

malware images and interpreting our classification results. Next we have a discussion

of our results and end with conclusions and future work. To the best of our knowledge,

the interpretation approach used in this work has not been done before.

5.2 Literature Review

Recently there has been some interest in applying CNNs to malware classification.

In [20], they were able to achieve a 96.7% accuracy classifying malicious binaries

against benign binaries. This was accomplished by first mapping op code sequences

of length 2 from a sample to a 2 dimensional feature map where the value of each

“pixel” in the feature map was determined by multiplying the information gain of

the corresponding op code sequence in the sample by the probability of said op code
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given said sample. Next the resulting “images” where enhanced to create a larger

contrast between the malicious and benign samples before applying a CNN to the

final image set for classification.

In [19] they converted the first 784 bytes of various network traffic representations

into 28× 28 grey scale images to train a CNN to detect malicious network traffic and

different families of malicious network traffic. With their best preforming representa-

tion, their CNN achieved a 100% accuracy when distinguishing between malicious and

benign network traffic and a 98.65% accuracy when distinguishing between families

of malicious network traffic.

In [8], they were able to classify a data set containing both benign and malicious

binaries belonging to 12 different malware families by using a hybrid feed forward-

CNN classifier. The feed forward portion of the classifier used features extracted from

the PE meta data and imports while the CNN used opcode sequence data where each

row of the input volume corresponded to the one hot encoding of an opcode vector.

Their architecture was able to achieve a 0.92 f1-score, however the feed forward and

CNN alone were able to achieve a 0.90 and 0.91 f1-score respectively while an SVM

trained on the same features achieved a 0.92 f1-score, so these results serve more as

a proof of concept rather then indicating a superior solution.

As you can see there are various methods used to convert malware samples to

input for CNN classifiers. However one popular method put forward in [10] and used

in the following works is to convert the binaries to grey scale images by interpreting

the raw binary data as a sequence of pixels, where each byte represents the grey scale

value of its corresponding pixel in the range [0,255]. The problem with this process

is that the resulting images are not of uniform length, thus they must be reshaped in

order to match the input dimensions of the CNN classifier.

In [5], the authors used a CNN with alternating convolutional then subsampling

layers and several fully connected layers to classify a data set of grey scale images from

25 malware families. Here the input was rescaled to uniform dimensions, losing some

information. They also preform image augmentation such as rotation and shifting to

reduce overfitting. The resulting model managed to obtained a 94.5% accuracy when
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classifying malicious vs. benign samples.

The authors in [18] were able to classify malicious Internet of Things (IoT) mal-

ware by converting the binaries in a data set containing 365 samples to grey scale

images and then rescaling the images to uniform dimensions to train a CNN with.

Half of the samples were IoT malware belonging to two major IoT malware families,

and the other half were benign Ubuntu system files. The resulting classifier achieved

a 94% accuracy.

Transfer learning was used in [13] by taking the first 49 layers of the ResNet-

50 architecture and swapping the last layer for a 25-node softmax layer to make

classifications on a data set that contained grey scale images of 25 different families

of malware. The images were first converted to RGB since ResNet-50 is designed for

3-channel image input. During training all but the final layer weights were frozen and

the classifier was able to obtain an accuracy of 98.62%. Here, the varying size of the

malware binaries created varying sized images that were rescaled, still offering good

results despite the loss of information.

[3] also used transfer learning on the same data set as the above, except they

used the Inception-V1 architecture and froze all but the last fully connected layer

and the softmax layer which was replaced with a 25-node softmax layer. Similarly

they converted the grey scale images to RGB images by duplicating the grey scale

channel three times. Their approach obtained a very impressive 99.25% accuracy.

They also claim to provide an interpretation of the predictions by using LIME

[14] to highlight important areas of an input sample. However, the proposed method

can only highlight important regions of the input image called “super-pixels” which

encompass very many pixels which each map to a byte of code. The regions are of

varying size but there are 200 total, meaning that even a modestly sized binary of

200,000 Bytes would have super pixels highlighting on average 1000 bytes of code

each. We would like to improve on this approach in order to provide more granular

interpretations. Further, [3] also used their approach on the same data set used in

this chapter and obtained a 98.13% accuracy. We will return later to these results for

comparison between our methods.
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Additionally, [6] converts the same data set used in this chapter into grey scale

images and trains a CNN classifier without the use of transfer learning after down

sampling the images to unifrom size. The classifier has 3 convolutional layers followed

by a fully connected layer and a softmax classification layer and was able to achieve

a 97.5% accuracy. We will return also to these results for comparison between our

method with a trained from scratch method.

There has been a plethora of papers published with differing techniques used to

interpret or visualize what machine learning models and neural networks have learnt.

However, for the sake of brevity, we will discuss some of the techniques used for

convolutional neural networks only.

Layer-wise Relevance Propagation (LRP), described in [2] as a set of constraints, is

used to visualize where the model is placing its emphasis when making classifications

by back propagating a models prediction using its weights and some decomposition

function which returns the relevance of previous nodes to that prediction. The con-

straints ensure that the total relevance is preserved from one layer to the next as well

as that the relevance of each node is equal to the sum of relevance contributions from

its input nodes which in turn is equal to the sum of relevance contributions to its

output nodes. Any decomposition function following these constraints is considered

a type of LRP.

In [17], they propose DeepLIFT which, in contrast to LRP, attributes to each node

a contribution to the difference in prediction from a reference prediction. DeepLIFT

back propagates just this relative difference in prediction scaled by the difference in

intermediate and initial inputs.

The authors in [14] put forward Local Interpretable Model-agnostic Explanations

(LIME), which was used in [3] above, to explain predictions using an approach which

trains an interpretable classifier by heavily weighing samples nearer to a sample of in-

terest in order to locally approximate the non-interpretable or black-box model. This

work was extended by Tomi Peltola in [11] to generate local interpretable probabilis-

tic models by minimizing the Kullback-Leibler divergence of the predictive model

and the interpretable model in order to provide explanations that account for model
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uncertainty.

There have also been several implementations of the above methods. The creators

of LIME developed a python library available at https://github.com/marcotcr/

lime. Additionaly, there is the iNNvestigate [1] python library available at https:

//github.com/albermax/innvestigate which was used in this chapter and provides

implementations of LRP as well as many other useful interpretation methods met for

convolutional neural networks, although many of them can be applied to other types

of neural networks not working with image data.

5.3 Method

Training and classification were done on a subset from a data set of 10,896 malware

files belonging to 9 different malware families.1 The data set is discussed in [15]. Each

sample consists of the hexadecimal representation of the malware’s binary content in a

.bytes file as well as its corresponding assembly code in an .asm file. The hexadecimal

representations were preprocessed as followed. First, we determined the total length

of each binary. Since our goal is to provide a fine grain interpretation, we wanted to

avoid resizing images to fit the input of the CNN if the resizing caused information

loss. Thus, we deiced to only scale up images by padding them with zeros, rather

then scaling them down. This is because when we scale down an image the resulting

image’s pixels will actually map to more then one pixel in the original, and therefore

more then one byte of code. Therefore, even if we obtain the importance of a single

pixel of the rescaled input image, we still do not have a fine grained approach, since

the mapping from rescaled input image to full sized image and then to the bytes and

finally the assembly code will be a one-to-many mapping, which is increasingly so

with large binaries that require more drastic rescaling. So, we picked a size range

where the majority of the binaries resided, that is the range of 101,400 to 200,934

bytes. The files which were less then 200,934 bytes in length were padded with bytes

of all 0’s before and after the binary so that all the binaries were the same size.

1The data set was downloaded from www.kaggle.com/c/malware-classification/data
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The padding before and after the binaries was equal so that the actual binary was

centred vertically in the image, although it took up the entire width of the image.

The resulting data set contained 2,114 binaries with 6 classes total. The class details

are summed up in table 5.3.1.

Table 5.3.1: Class distribution in Data Set

Class No. Family Samples Type

1 Ramnit 635 Worm

2 Lollipop 68 Adware

4 Vundo 188 Trojan

6 Tracur 145 TrojanDownloader

8 Obfuscator.ACY 810 obfuscated malware

9 Gatak 268 Backdoor

Next, the binaries where converted into image tensors of the shape (183, 183, 6).

This was done by placing the first 6 bytes of the binary in the input tensor positions

at location (0,0,0) through (0,0,5) the next six bytes in the tensor positions at location

(0,1,0) through (0,1,5), and so on, until all the bytes were processed. The reason 6 was

chosen as the number of channels was because [12], which examined the effectiveness

of different lengths of byte-grams for malware classification, found that 6-byte-grams

were the most effective compared to other lengths of byte-grams. A byte-gram is as

a sequence of bytes which appear consecutively in a binary. These are analogous to

n-grams which are a sequence of n words or characters which appear in text. The

intuition here was that each pixel, which contains the 6-byte-gram in the pixel’s 6

channels, would contain what could be thought of as a “byte word” leaving the filters

to learn to detect significant byte words and in later layers significant sequences of

byte words.

To the best of our knowledge, this the first time someone has applied a CNN to a

malware binary classification task where the binaries were converted to “images” with

6 channels without the use of downsizing. The 6-channel input has an added benefit

of fitting more information into a smaller volume, this means we can have a compact
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input volume which can still contain all the information of a 200,934 byte binary,

therefore helping in our task of creating fine grain interpretations. The other two

dimensions were set to
√

200, 934÷ 6 = 183, since this created a square image, which

is what the models we are using for comparison (discussed in section 5.2) also used.

Figure 5.3.1 shows the resulting images of two samples for each of the 6 classes. The

images in the column labeled F are the first three channels of the samples interpreted

as RGB channels while the images in the columns labeled L are the last three channels

of the samples interpreted as RGB channels. As you can see there is some similarity

between images of the same classes and greater difference between images of different

classes. Additionally, there is a lot of similarity between the last and first three

channels. However, the CNN model is indifferent to the number of colour channels

or human detectable features and can find structure, imperceptible to humans, in an

arbitrary number of channels, therefore we must wait until the classification results

before we can draw any conclusions.

The neural network starts with 2 blocks of the classic convolution, ReLU, MaxPool

architecture. This architecture was chosen as it has been shown to work well in the

literature and is also similar to what was used by the models used for comparison.

We went with just 2 blocks as we wanted to limit the number of parameters given the

small size of our data set. These 2 blocks were followed by a single fully connected

layer with 512 neurons with the ReLU activation function then a softmax classification

layer with 6 neurons. 512 neurons were used as experimentation showed this number

to work best on the validation set despite adding a large number of parameters and the

possibility of over fitting. The two convolutional layers used 128, then 256, 5x5 filters

with strides of 2 and the MaxPool layers used 2x2 pool size with strides of 2. This was

done mainly because the small data set size meant we had to shrink the volume as fast

as possible in order not have too many layers or too many neurons in the last volume

before the first dense layer thus keeping the number of parameters low. To reduce over

fitting dropout with a rate of 0.4 was also used on the connections between the last

MaxPool layer and the first fully connected layer since these connections accounted

for 13,107,712 of the 13,949,575 trainable parameters. Further, L2 regularization was
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Fig. 5.3.1: Images from two samples from each of the 6 classes. Images in columns
labeled F are the first three channels of the samples interpreted as RGBchannels while
the images in columns labeled L are the last three channels

used with a 0.1 penalty on both convolutional layer weights and the weights between

the last MaxPool layer and the first fully connected layer. Figure 5.3.2 shows a

summary of the architecture of the CNN used. The figure was created using software

available online at http://alexlenail.me/NN-SVG/LeNet.html which is described

in [9].

Fig. 5.3.2: Model Architecture

The model was trained as follows. First the data set of 2,114 samples was randomly

split into 3 disjoint sets, the training set, validation set, and the test set, each with
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approximately the same class distribution. The Training set had 1,514 samples, the

validation set 100 samples, and the test set had 500 samples. The validation set was

used to tune the model’s hyper parameters and needed to be small to ensure the test

set was large enough to be significant for evaluation while the training set was large

enough for the model to learn generalized patterns despite the small size of the total

data set. The test set was not used except at the end of training in order to evaluate

the final model. The training was done using the Adam optimizer with 256 batch

size over 80 epochs. Classes were weighted inversely proportionately to the class size

in order to account for class imbalances. The model was implemented and trained

using the Keras [4] python library.

5.4 Results

5.4.1 Evaluation of Our Model

After training the model and using the weights with the lowest validation loss over the

80 epochs the model obtained a 98.1% balanced categorical accuracy and a 0.237595

categorical crossentropy loss on the left out test set. Balanced accuracy was used since

there was a class imbalance in the data set. Further, the model does not seem to suffer

from over fitted as indicated in figure 5.4.1 which shows the test and validation loss

history plotted against the number of epochs. This is also evident from figure 5.4.2

which shows the test and validation categorical accuracy plotted against the number

of epochs.

5.4.2 Interpretation

After training, a process called Layer-wise Relevance Propagation (LRP) [2], which

returns the relevances of all input nodes to a sample’s prediction, was used to find

important input pixels. In our experiment we used the iNNvestigate [1] python li-

brary’s LRP implementation. Once we had the relevances of each input node we

averaged them across the 6 channels to get a 2D relevance map. For visualization,
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Fig. 5.4.1: Test and Validation Loss History

Fig. 5.4.2: Test and Validation Balanced Categorical Accuracy History

we used the seismic colour map from matplotlib [7] to plot the relevance map. Figure

5.4.3 shows the image resulting from taking the first 3 channels of the sample associ-

ated with the binary with ID 0AnoOZDNbPXIr2MRBSCJ, and the image resulting

from taking the last 3 channels of the same sample, as well as its corresponding

relevance map. The pixels highlighted with red contributed positively to the mod-

els prediction while the pixels highlighted in blue contributed negatively. Sample

0AnoOZDNbPXIr2MRBSCJ was correctly classified by our model with a 99.99%

chance of belonging to class 1.

Although we cannot obtain a lot of specific information by looking at these images

and the LRP visualization, we can still obtain some broad insight into the models

prediction. As you can see from figure 5.4.3, the classifier recognized a large set
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Fig. 5.4.3: 0AnoOZDNbPXIr2MRBSCJ Relevance Map

of pixels as an indication that this sample belonged to class 1. Further, there was

still some pixels which contributed negatively to this prediction, mostly in the upper

portion of the image above the band of white which corresponds with bytes of 0’s.

This suggest that the portion of the code containing functionality related to class 1 in

located in the lower portion of the binary and the upper portion is mostly related to

other classes or is benign. However, these statements are always dependent on how

well the classifier was trained to learn relevant information. Further, if the relevance

was intensely focused on a few small areas we could be worried that the model is

relying on a small set of features to make classifications, meaning small changes could

lead to misclassifications, and this can be taken advantage of by malware authors.

To obtain a fine grained interpretation such as highlighting specific lines of code,

we obtain a list of indices of the input pixels sorted by their relevance. We then move

down the list in descending order of relevance and obtain the most relevant 6-grams

93



5. INTERPRETING CNN BASED MALWARE DETECTORS

Fig. 5.4.4: Terminal output when working backwards from the relevant 6-grams to
the code snippets

for interpretation first. The relevant 6-gram’s position in the sample’s input tensor,

the input tensor itself, and the corresponding byte file are needed to determine the

6-gram’s address in the assembly code. These are needed to determine the amount

of padding to account for, as well as the starting address in the byte file, since they

don’t all start at the same number. However, in a application scenario all of this

information would be available. Once we have the exact address in the assembly

code it is a trivial task to find the lines of Assembly code which contain the relevant

6-gram.

It should be noted that finding the exact lines of code which contributed to a

prediction, as well as their exact ordering relative to the size of their contribution, is

very difficult, if not impossible with most other model architectures. For example, if

n-gram analysis was used, where the presence or frequency of an n-gram is used as

a feature, then even though we may have the contribution of each n-gram feature,

we do not know which occurrence of said n-gram in the binary contributed the most.

This is true in some way for most frequency based techniques. Further, for other

CNN based techniques, we have the problem of rescaling causing the contribution of

one input node being distributed across many pixels in the original image. It is only
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when positional information of each 6-gram is maintained from raw binary to input

tensor, as we have done so here, where we are able to so easily make such precise

interpretations of the model.

Figure 5.4.4 shows the terminal output when working backwards from the relevant

6-grams to the code snippets in the assembly code. Note that some of the assembly

code has been truncated so we could not find the corresponding code snippets to

many of the most significant 6-grams but we have done so for the 100th and 122nd

most significant. This is not a problem however as typically you would have the full

assembly code.

The significance of finding these code snippets which contributed heavily to a

prediction is large. For example, there is the case where the code snippets are com-

pletely irrelevant to classifying binaries according to functionality despite the model

achieving good classification results. In this situation, there is the likely culprit of an

incomplete or non-representative data set. It could be that one class has irrelevant

but frequently occurring code-snippets that by chance do not appear in the other

classes. Here, gathering a larger data set, or even augmenting the current data set

so that other classes also include this irrelevant code snippet, can force the model

to learn different patterns that exclude this irrelevant feature, which should also im-

prove generalization performance. If the classification performance drops after this,

then this could hint at poor feature engineering, since the remaining representative

features no longer help the model make predictions. In the case of CNNs applied to

images of binaries, this could mean a deeper model architecture that can create more

abstract hidden features might be needed, or that the representation of binaries as

images themselves is unhelpful.

In the case where code snippets with high relevances to the model’s predictions

are known to be relevant to classifying binaries based off their functionality, then the

results of the model are in a way, validated. As we said earlier, this can help malware

analysts as they can be shown where to start their static analysis, as well as help

stakeholders feel confident in the black-box CNN model.
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5.4.3 Comparison With Other Models

Table 5.4.1 shows the confusion matrix of our model on the left out test set where

we can see the model preformed well for all classes. Table 5.4.2 and 5.4.3 show the

confusion matrix of the models used in [3] and [6] respectively (both are discussed in

section 5.2). The columns and rows for classes 3, 5, and 7, which were not used in

our experiment, have been omitted.

Table 5.4.1: Confusion Matrix for Our Model on the Left Out Test Set

Class No. 1 2 4 6 8 9

1 149 0 0 1 0 0

2 0 16 0 0 0 0

4 1 0 44 0 0 0

6 0 0 0 32 1 1

8 2 0 0 0 190 0

9 1 0 0 0 0 62

Table 5.4.2: Confusion Matrix for Model used in [3]*

Class No. 1 2 4 6 8 9

1 154 0 0 0 3 0

2 0 238 0 0 3 1

4 1 0 33 1 0 0

6 1 0 0 63 1 0

8 2 0 0 0 119 0

9 0 4 0 0 0 102

*columns and rows of classes classes

3,5, and 7 have been omitted
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Table 5.4.3: Confusion Matrix for Model used in [6]*

Class No. 1 2 4 6 8 9

1 1490 4 2 9 28 3

2 6 2440 0 7 8 16

4 3 0 461 1 3 2

6 8 6 2 713 10 9

8 44 4 8 17 1138 8

9 2 2 0 6 5 996

*columns and rows of classes classes

3,5, and 7 have been omitted

Using these confusion matrices to calculate the balanced accuracy score of each

model, we can get a decent comparison. However, the reader should note that the

other models were trained on more classes and with much more training data so

these are not perfect direct comparisons of our approaches. Table 5.4.4 sums up the

comparisons between the three models. As you can see, we score competitive balanced

accuracy score with a very light weight model. Further, we are able to give a fine

grained analysis of our predictions using the method detailed in section 5.4.2 and this

method cannot be easily applied to the other models without added processing and

sacrificing the preciseness of our method. This is due the decision to not rescale the

images, meaning we can map one relevant input node to exactly one 6-gram in the

binary and then to the corresponding assembly code.

Our model does have draw backs however. Unlike the other models ours is only

designed to work with samples in a specific size range and therefore one would need

multiple models in order to achieve the same effect across different size ranges. One

possible solution would be to train on a data set where the samples in the appropriate

size range are not rescaled but padded like we did here, and the images which are too

large are rescaled to fit. This however would mean the interpretation method would
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only maintain its fine granularity when classifying samples which were not resized.

Table 5.4.4: Model Comparisons

Model Balanced Acc. Size

Our Model 98.1% 2 conv, 1 Dense

Model from 97.04%* 20+ layers

[3] see [16]

Model from 96.8%* 3 conv, 1 Dense

[6]

Model Interpretation Sample Size

Our Model Fine grained & 104k-200k Bytes

precise

Model from Broad & any size

[3] imprecise

Model from none given any size

[6]

*calculated by omitting columns and rows

of confusion matrix for classes 3,5, and 7

5.5 Conclusion

In summary, we were able to obtain competitive classification results on a subset of a

classic benchmark data set. Compared to other methods we made appropriate trade

offs in terms of broad applicability of our model (in that it only works for malware

in a specific size range) in return for large gains in interpretability. We thus have

provided a proof of concept for 6-channel image based malware classification using

a simple convolutional neural network that did not suffer from excessive overfitting
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despite a small data set. To the best of our knowledge, this the first time someone

has been able to interpret a CNN based malware detector with the granularity which

has been achieved here, by applying CNNs to a malware converted to images with

more then a single channel in order to avoid rescaling of the image and information

loss.

For future work, there is much work to be done in order to better handle binaries of

different sizes. If more sophisticated approaches for dealing with binaries of different

sizes are implemented, which do not result in information loss, then fine grained

interpretations, in the manner we have done so here, can be possible for any malware

file. Further, the data set will not shrink as a result of not considering files which are

too large. This means more advanced models can be deployed without over fitting

the data set, potentially increasing the models performance.

Another interesting possibility is to explore is the application of our approach to

graph convolutional neural networks (GCNNs), which are CNNs applied to graph

representations, trained on malware classification. It is a popular approach in mal-

ware analysis to represent the behaviour or other features of a malware binary in a

graph which in many cases will contain direct and explicit functional information.

If a GCNN is trained on a dataset where each sample is one of these graph repre-

sentations of a malware binary, then less time can be spent worrying about weather

the model learnt to use features indicative of functionality and translating those fea-

tures to functionality afterward for interpretation. Instead interpretability can be

used to directly make statements about the relevant functionality which the model is

perceiving within the sample to make its prediction.
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CHAPTER 6

Robustness Metric

6.1 Introduction

In malware detection a misclassification can cause huge delays if a benign file which is

needed for some time sensitive task is flagged as malicious. Furthermore, there is the

risk that a malicious file is permitted to execute causing unforeseen damage to the

users system. Since a small to large business may encounter thousands to millions

of benign files each day, a hard requirement of malware detection systems relied

upon by large companies is a low false positive rate (FPR). Due to the large volume

of files, even a FPR of one in a thousand would lead to daily stoppages and false

alarms. Furthermore, any fragility in the models accuracy can be taken advantage

of by malware authors looking to bypass detection. It is clear that misclassification

in this scenario carries a heavy risk and to quantify the rate of misclassification,

metrics such as FPR or accuracy are typically used. However, these metrics do not

capture the full story when trying to convey how robust a detection system is to the

anti detection efforts of malware authors. A contrived example would be a model

that learnt to associate a few superficial features strongly with the property of being

benign but none the less has high accuracies on held out test sets. Here, superficial is

taken to mean that the features are not actually indicative of being benign but due

to peculiarities in the model’s training set, the model treats them as such. In such

a case, if a malware author was to learn of this association, they could easily change
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their binaries to bypass the detection system, without having to change the malicious

functionality of their malware. This means that despite the high accuracy, the model

is still not robust to anti detection efforts.

A metric that better illustrates the robustness of a classification model is needed.

This metric should quantify the accuracy in relation to the number of features which

are no longer following the model’s learnt relationships. This is because we want to

measure how well the model preforms as features are made to no longer have their

expected values given a samples actual class and thus no longer aid in prediction. In

this chapter we refer to such features as “deactivated”. Further, the metric should be

concerned only with the inputs and outputs of the model. This allows the model to

be treated as a black box so that the metric can be applied to any model, that is the

metric will be model agnostic. Additionally, the metric should have some degree of

customization. This is because not all models are the same. They use different types

of features with different valid feature ranges and are applied in varying domains.

This means that what it is for a feature to be ”deactivated” will be largely different

among different applications and scenarios and therefore will have to be determined

and asserted by the user of the metric. Further, the technique for calculating the

metric should allow the user to determine which set of features deactivation caused

the accuracy to drop below some minimum performance requirement. This follows

from the fact that not all models use the same features, thus a model may only need

a few features to be deactivated for its performance to drop significantly, however if

the features use by that model are harder to change without removing the malicious

properties of the malware, then this model is still robust.

In this chapter we propose a new robustness metric inspired by area under curve

(AUC) which meets these requirements. We start with a discussion of how the metric

is calculated and why the metric is calculated in this way. We then use the metric on

several classification models that have been trained on a data set of features extracted

from benign and malicious binaries. Finally we end with a discussion of our results

and possible future work.
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6.2 The Robustness Metric

The metric is calculated as follows. First, a numerical measure of feature significance

must be found for each feature. For different models this means different things. In

the case of a logistic or linear regression classifier, the feature significances is equal to

the coefficient or weight of the feature. For decision trees and random forest it is the

gini importance and average gini importance among the constituent trees respectively.

In the case of neural networks we use layer-wise relevance propagation [1] to obtain the

relevance of each input node for each sample. We then average the absolute value of

these relevances in order to get the average relevance of each node. This value is used

as the feature significance of the node’s corresponding feature. The average absolute

value is used because for one sample a node may have a large negative contribution

and for another sample, a large positive contribution. If the actual relevance value

is used, then during averaging these relevances will cancel out despite the associated

feature having a large effect on both predictions. For other models there are typically

already standard accepted practices for obtaining a feature’s significance but in the

case that there is not, a method known as permutation importance [2] can be used.

In this case, classification on a set of samples is done before and after a feature is

permuted. The increase in error is what determines the importance of said feature.

After the feature significance is found, the model’s balanced accuracy on a test set

is found. A test set is used for the same reason you do not report a models accuracy

on the training set. Balanced accuracy is used because it is calculated by taking the

weighted average accuracy for each class, where the weights are inversely proportion-

ate to the class frequency. This means that a random classifier is expected to get 50%

balanced accuracy even on imbalanced data sets. This allows for direct comparison

of the robustness metric when evaluated on test sets with varying class distributions.

Next the most significant feature is deactivated and the balanced accuracy with re-

spect to the same test set is determined again. This process is repeated, deactivating

the next most significant feature each time. The features are deactivated in order

of significance because if a feature is not very important then we are not interested
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in how well the model preforms after its deactivation since a good performance after

removing irrelevant information is not surprising or noteworthy. The way in which

features are deactivated is discussed at the end of this section.

After this we have a list of balanced accuracies {a0, a2, ..., an−1} where ak is the

balanced accuracy of the model when the k most significant features are deactivated.

We then plot these accuracies along the y-axis with the number of deactivated features

on the x-axis to obtain a curve. After this, we take the area under the curve and we

divide it by the number of features there are, then subtract 0.5 and multiply it by 2.

The result is the value of the robustness metric.

The area is taken because it captures the total accuracy across each iteration of

deactivating a feature then evaluating the model. The area is divided by the number

of features because the balanced accuracy, which is on the y-axis, is always between

0 and 1. Thus, if the area is taken between 0 and the number of features, n, then

the area is always between 0 × n and 1 × n. So dividing by n means the area is

scaled between 0 and 1. The scaled area is corrected by subtracting 0.5 because

a random classifier is expected to have a 0.5 accuracy thus half of the area is not

actually attributable to the model. In some rare cases the balanced accuracy may dip

below 0.5 enough that the scaled area is below 0.5, meaning the corrected scaled area

would be negative. In this case, the scaled corrected area is set to 0. This means that

the scaled and corrected area is now in between 0 and 0.5, so it is then multiplied by

2 so that it is between 0 and 1, giving us our final robustness value.

For deactivating features there are several possible methods. A naive approach,

hence referred to as the zeros method, would be to set the feature’s values to 0. How-

ever, this may not correspond to a realistic value for all features and can therefore

give untrustworthy results. Another approach, which we will refer to as the random

permutation method, would be to randomly permute the feature column. This ap-

proach is inspired by the permutation importance method discussed early. Another

approach could be to use a reference sample and set deactivated features equal to

the corresponding feature value in the reference sample. The reference sample can be

hand picked to be an average of some class of interest or some other value. We will
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hence forth refer to this method as the reference method.

This gives the user of the metric a good way of customizing it for their specific

use case. For example they may have a mix of binary features and numerical features

and they may want to set the binary features to 0 and the numerical features to their

average value when deactivating them. In any case the user can define exactly how

each specific feature is deactivated rather then doing the same for all of them. In the

following section, we test all three of these approaches. The reference sample is set to

be the average of the benign class. This was done because we are typically concerned

with detecting malicious samples when classifying binaries, so setting a feature to

its average value within the benign class would isolate the effect that the remaining

features had on obtaining a malicious classification.

The reader should note that sometimes we are more concerned with FPR as appose

to accuracy. In this case one can replace the balanced accuracy at each step with the

FPR and get a similar robustness metric which is conditioned on FPR rather then

accuracy. The same is true for other accuracy like metrics as well.

6.3 Method

In our experiment we first trained a neural network, a decision tree, random forest,

and a logistic regression model on a data set containing 77 features extracted from

malicious and benign binaries. The data set contained 14599 malicious samples and

5012 benign ones. The data set was split into a train and test set containing 17649

and 1962 samples respectively, with equal class distributions. The features were also

all scaled using min-max scaling. The neural network had 77 input nodes, two hidden

layers with 100 and 30 nodes respectively, and an output layer with 2 nodes, one for

each class. Once the training was complete, the models were evaluated on a test

set. The neural network obtained a balanced accuracy of 96.16%, the random forest

a balanced accuracy of 98.44%, the decision tree 98.26% and the logistic regression

model a balanced accuracy of 94.10%. Next we obtained the robustness metric for the

four models using the process detailed in section 6.2, using the test set to determine
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the balanced accuracy at each step. Table 6.3.1 shows the results.

Table 6.3.1: Robustness Metrics For Trained Models

Model Zeros Rand. Perm. Ref. Sample

Neural Network 0.1236 0.0896 0.0973

Random Forest 0.0499 0.0779 0.0880

Decision Tree 0.0543 0.0546 0.0798

Logistic Reg. 0.0000 0.0519 0.0279

As shown, the neural network consistently out preforms the other models in terms

of robustness regardless of which method is used for deactivating the features. This is

expected since the neural network has 130 intermediate nodes across two layers each of

which can learn a different relationship between the features and the predicted value.

This means that if a feature is deactivated, then the nodes which learnt relationships

not relying on said feature can still produce correct predictions.

The random forest got second except for in the case of the zeros method where

it got third. This makes sense as the random forest has many different constituent

classifiers and much like the neural network, when one feature is deactivated, the

trees that do not rely on that feature can produce a correct prediction. In the case of

both the random forest and neural networks, redundancies were able to provide more

robustness, as expected.

The decision tree got third except for in the case of the zeros method where it

got second. Further, the logistic regression classifier consistently got last. This is

to be expected as the logistic regression classifier simply takes the sigmoid of the

features weighted sum and in has no redundancies to deal with misbehaving features

which are heavily weighted. Further, the decision tree only has a single path from

the root to each of its leaves and thus cannot correct if the prediction is lead askew

by misbehaving features.

The resulting plots when finding the robustness measures are shown in figure 6.3.1
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in which you can see the zeros method was much less stable with many spikes in per-

formance which may be misleading as these spikes are the effects of highly unrealistic

feature values. This is the suspected reason the random forest obtained worse robust-

ness using the zeros method. The other methods were much more stable with a steady

decline and are therefore the recommended choice. The random permutation method

can be used to test the models robustness against random chance while the reference

method can be used to test its robustness against samples intentionally designed to

be misleading, such as adversarial malware.

Fig. 6.3.1: Robustness plots with balanced accuracy on the y-axis and number of
features deactivated on the x-axis
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6.4 Conclusion

In summary, we were able to define an effective algorithm for calculating a robustness

metric which met our stated requirements in section 6.1. That is, the metric is defined

in terms of deactivated features, it is model-agnostic as it is only concerned with the

inputs and outputs of the model, and it can be customized, meaning it can be used

meaningfully with many different models, feature types, and use cases. Additionally

it is always between 0 and 1 with 0 representing the negative extreme of a random

classifier that always scores 50% balanced accuracy and 1 representing the positive

extreme of am omniscient classifier that makes perfect classifications, even with no

input. Further more, it automatically accounts for class imbalances with the use of

balanced accuracy.

Our results also validated our approach since the models which are typically as-

sociated with indifference to small changes in input (Neural Network and Random

Forest), and who have theoretical support for higher robustness through the redun-

dancy present in their design, scored better then those which are typically sensitive

to small changes in input (Decision Tree and Logistic Regression).

For future work, experiments with multi-class models can be conducted. The same

method may work for models which return a single set of feature significances even

in the multi-class case, such as decision trees, random forests, and neural networks.

However in the case of logistic regression, there are a separate set of feature signifi-

cances for each class if it is a one-vs-rest scheme. In this case it is not obvious if it

is better to average the feature significances to determine which order to deactivate

the features, or to produce a robustness score for each binary classifier, and then

average these robustness scores. Lastly, a similar method needs to be implemented

for regression models, ideally one whose value can be directly compared to the value

of the robustness metric defined here. Potentially a plot of the mean squared error

(instead of accuracy) the classifier achieves on the test set as features are deactivated

could be used. In this case a smaller area under the plot would be ideal, as this would

be associated with lower mean squared errors as more features were deactivated.
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CHAPTER 7

Conclusion

The work presented in this thesis provided a exploratory overview of machine learn-

ing interpretability in the malware detection domain. Starting with Chapter 1, a

brief overview of machine learning and some of the popular algorithms therein was

provided, as well as an introduction to machine learning interpretability.

In Chapter 2, a literature review concerning the application of machine learning

to malware analysis was provided, as well as a discussion of the current strengths

and weakness of the machine learning based malware detection approaches in their

present state. Emerging threats in the malware domain were discussed, such as fileless

malware and unconventional computing paradigms, as well as the practical challenges

for machine learning based malware detectors, namely, the cost of training detectors,

adversarial malware, and detector interpretability. Lastly, a discussion of possible

solutions to these issues was also presented.

In Chapter 3, a Proof of Concept fileless malware, JSLess, was described thor-

oughly, then implemented, and finally tested against various malware detection soft-

ware in order to showcase the severity of the threat posed by fileless malware and

the necessity for machine learning based malware detectors in the present day. For

future work, the functionality for JSLess can be extended, an approach for detecting

malware similar to JSLesss can be researched, and the threat of fileless malware in

unconventional computing paradigms can be explored.

In Chapter 4, we provided a description of interpretability goals for machine

learning based malware detectors and presented techniques for achieving these inter-
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pretability goals for detectors which leverage n-gram analysis and some of the most

popular classification algorithms, namely; Logistic Regression, Random Forest, and

Neural Networks. The stated interpretability goals were robustness, improving stake-

holder confidence in the detector, and helping malware analysts with downstream

tasks. A suggestion for future work is the specification of interpretation techniques

for other machine learning algorithms or different feature sets.

In Chapter 5, a novel approach for providing fine a grain interpretation of malware

detectors which leverage Convolutional Neural Networks was provided. The approach

was able to out preform other similar methods in the literature while providing far

better interpretations. The downside however was the technique was only usable on

malware binaries within a certain size range. A technique which applies to binaries

of any size is an objective for future research

In Chapter 6 we gave a novel approach for summarizing the robustness of a sin-

gle binary classifier in a single metric. The binary classification case is common in

the malware detection domain where models often classify samples as malicious or

benign, however more work needs to be done on applying the metric to multi-class

classification as well as regression tasks. This is necessary because as we have seen in

Chapters 4 and 5, we are often interested in classifying malware by class as well.

Although machine learning has progressed greatly in the last decade or so, and

despite the interest it generates for various high risk applications, including in cyber

security, it is still a work in progress and there are many unsolved issues machine

learning researchers face. The issue of interpretability is a complex one with no

simple “one size fits all” solution. Even within the malware detection domain, inter-

pretability solutions still differ largely from one model to the next. In this thesis we

presented a step in the right direction but there is still much work to be done, in both

making machine learning models interpretable and in making them practical for large

scale cyber security applications. It is the authors hope that the discussion provided

here is informative to the reader and helps them too form their own opinions about

interpretability, inspires their own interpretability solutions, and in the end, helps

machine learning based malware detectors play an essential role in cyber security.
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