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Abstract

It is now well appreciated that both crowding and confinement influence enzyme structure and function due to
excluded volume effects; however, the relative efficacies of these environments on protein fates remain unclear due
to a lack of direct comparison studies. In this study, we explore the use of the biopolymer alginate to develop an in
vitro platform to investigate the effects of both crowding and confinement on the behavior of two model enzymes -
horseradish peroxidase and (-galactosidase. Alginate, in its solution phase, can be used as a crowding agent and,
in its gel phase by crosslinking using divalent cations, to encapsulate and confine proteins, thereby allowing us to
use the same system to directly compare the effects of crowding and confinement. Different degrees of crowding
and confinement were achieved by varying the alginate concentration, and these studies demonstrated a clear
dependence of enzyme activity on the degree of crowding and confinement. Moreover, our data also suggested that
protein confinement in crosslinked alginate gels led to higher enhancements in enzyme activity under denaturing
conditions relative to non-crosslinked crowded environments. Results from the kinetic analyses were corroborated
using structural measurements of protein denaturation using the 8-anilinonaphthalene-1-sulfonic acid fluorescence

assay.

Keywords: Protein crowding; Protein confinement; Enzyme activity;
Enzyme structure; Protein denaturing conditions; Alginate solution
and gel

Abbreviations

HRP: Horseradish Peroxidase; P-gal: P-Galactosidase; ANS: 8-
Anilinonaphthalene-1-Sulfonic ~ Acid; ABTS:  2,2'-Azino-Bis(3-
Ethylbenzothiazoline-6-Sulphonic Acid); ONPG: o-Nitrophenyl-3-
Galactoside; GAnHCI: Guanidine Hydrochloride

Introduction

In vitro investigations of protein structure and function have been
most commonly based on simple buffer systems containing low
concentrations of protein that consequently do not sufficiently
replicate the highly crowded or confined intracellular environment of
proteins [1-4]. Recently, several studies have therefore investigated
protein behavior using in vitro conditions that more closely simulate
the in wvivo cellular environments, and supported that both
confinement and crowding can significantly impact protein structure
and function [5-12]. While crowding and confinement are often used
synonymously, there is a significant difference in how the two
environments exert their influence on proteins. Crowding refers to the
presence of a high concentration of macromolecules that reduces the
volume of solvent available to the proteins, while confinement arises
from encapsulation of proteins in spaces only moderately larger than
the proteins themselves [3,4]. Currently, theoretical analyses suggest
that the two environments differ in their extent to which they affect
protein behavior [3,4,13]. Experimental studies support the theory;
however, the evidence has not been compelling, partly due to limited
direct comparisons between the influences of these environments on

protein fates, particularly using the same system and similar
measurement methods of protein structure and function [11,14]. It is
therefore of fundamental interest to develop experimental conditions
to investigate and compare the effects of crowding and confinement on
protein structure and function.

In this study, we report the use of the biopolymer alginate in order
to establish conditions for experimentally distinguishing between the
effects of crowding and confinement, regarding their influence on
protein structure and function. Alginate was used since it is a high
molecular weight, anionic polysaccharide that can act as a crowding
agent in its solution phase; moreover alginate can also be crosslinked
using divalent cations to encapsulate and confine proteins, thereby
allowing us to use the same system to study the effects of both
crowding and confinement [15-17]. Furthermore, as with other
crowding agents, alginate concentration can be varied to control the
degree of crowding, as well as to control the pore size of the gel and
thereby the degree of confinement. The choice of alginate as a
confining agent is relevant, as previous research has shown that
although alginate gels exhibit large heterogeneity in pore size, most of
the pores range around 5-10 nm (especially for those prepared using
prepared using concentrations 1% w/v) [17-19]. In this study, we
used three concentrations of alginate (1%, 5%, and 10% w/v) to study
the roles of crowding and confinement on protein structure and
function. The influence on protein function under both native and
denaturing conditions was captured using kinetic assays on the model
proteins, horseradish peroxidase (HRP) and (-galactosidase (B-gal) -
two enzymes that have been routinely used to study the roles of various
environments on protein function. These studies demonstrated a
strong dependence of enzyme activity under native and denaturing
conditions on the degree of crowding and confinement. Similar results
were also observed for measurements of enzyme structure under
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denaturing environments using the 8-anilinonaphthalene-1-sulfonic
acid (ANS) fluorescence assay (as further detailed in the Results
section). Furthermore, enzymes encapsulated in alginate gels were
significantly more stable relative to enzymes in non-crosslinked
solution-phase alginate, when exposed to denaturing environments.
Our data agrees well with previous theoretical investigations of the
effects of crowding and confinement on protein structure and
function, which suggest that confinement leads to greater
enhancements in protein activity under denaturing conditions relative
to crowding [3,4,13]. To the best of our knowledge, this is the first
experimental investigation demonstrating a clear dependence of
enzyme activity and structure on crowding and confinement using the
same system.

Materials and Methods

Materials

Horseradish peroxidase (HRP) and [P-galactosidase (B-gal), as well
as all reagents for the quantification of enzyme structure and function
were obtained from Sigma Aldrich (St. Louis, MO). Alginic acid
(sodium salt, low viscosity, 4-12 cP, 1% w/v in H,O at 25 °C) and
calcium chloride for the crowding and confinement experiments were
also purchased from Sigma Aldrich and used as received.

Experimental setup for confinement and crowding studies

For the confinement studies, enzymes were first encapsulated in
alginate before conducting the spectroscopic measurements. Briefly,
enzyme and alginate solutions in 100 mM pH 8.0 Tris-HCI buffer were
combined to yield final alginate concentrations of 1%, 5%, or 10% w/v.
50 pL of the enzyme-alginate mixture was pipetted into wells of a 96-
well plate, followed by the addition of 100 uL of 100 mM CaCl, in Tris-
HCI buffer to crosslink the alginate. After 10 min, CaCl, solution was
replaced with 100 pL of Tris-HCI buffer containing no CaCl,. For the
crowding experiments, alginate stocks in 100 mM pH 8.0 Tris-HCI
buffer were added to the enzyme assay mixtures such that the final
alginate concentration was 1%, 5%, or 10% w/v alginate.

Enzyme kinetic assays

The initial reaction rates of alginate gel-encapsulated enzymes and
enzymes in various concentrations of alginate were determined using a
Tecan Infinite 200 PRO spectrophotometer (Durham, NC). HRP
activity was determined by monitoring H,O, mediated oxidation of
2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) at 420
nm; HRP concentration was 90 nM, and ABTS and H,0,
concentrations were 10 uM and 40 uM, respectively. To estimate the
Michaelis-Menten kinetic constants, the concentration of ABTS was
varied between 0-30 uM, while keeping the concentrations of HRP and
H,0, constant. The reaction rates were then fitted to a non-linear
regression model using GraphPad Prism to determine Ky; and V . B-
gal activity was measured by monitoring the hydrolysis of o-
Nitrophenyl-p-galactoside (ONPG) to o-nitrophenol at 420 nm; -gal
concentration was 10 nM and the ONPG concentration was 80 uM.
Initial rates of ABTS oxidation and ONPG hydrolysis by alginate gels
and solutions containing no enzyme were measured as controls. To
determine enzyme activity in the presence of the denaturant - ethanol,
enzymes in various alginate solution- and gel-phase conditions were
first equilibrated in buffer solutions containing 35% ethanol for ca. 5
minutes, followed by measurement of initial reaction rates (35%

ethanol was used based on our preliminary experiments that indicated
that this concentration strongly inhibited enzyme function). We
confirmed, by comparing the viscosity of alginate solutions prepared
using standard buffer and 35% ethanol, that the addition of ethanol did
not affect alginate solution properties. We also performed rheological
characterization of alginate gels soaked in buffer and 35% ethanol for
ca. 30 min and did not notice any significant differences between the
elastic properties of buffer- and ethanol-soaked samples (data not
shown). For thermal denaturation experiments, the various enzyme
formulations were maintained at 80 °C for different periods of time
and then cooled to room temperature in an ice bath before measuring
the initial rates at room temperature. Enzyme assays were also
performed after incubating stock solutions of HRP and f-gal with 100
mM CaCl, for 10 min to confirm that the addition of CaCl, (for
enzymes in alginate gel preparations) did not impact enzyme reaction
rates. We also confirmed, by exposing HRP- and B-gal-containing
alginate gels to buffer solutions for different periods of time (up to 60
min) that the enzymatic activities of the leachate was <10% of those of
the alginate gel-encapsulated enzymes (data not shown).

ANS fluorescence assays

ANS fluorescence emission spectra (between 450 and 550 nm) of
enzymes in various alginate solution- and gel-phase conditions in
standard Tris-HCI buffer conditions and denaturing conditions were
collected after excitation at 360 nm using the Tecan Infinite 200 PRO
spectrophotometer. The enzyme formulations were first equilibrated in
either Tris-HCI buffer or chemical denaturant conditions (i.e. in buffer
solutions containing either 35% ethanol or 6 M GdnHCI) for ca. 5
minutes prior to the fluorescence measurements. For thermal
denaturation experiments, the various enzyme formulations were
maintained at 80 °C for 60 minutes and then cooled to room
temperature in an ice bath before the fluorescence measurements. The
final protein concentration was 40 ug/mL for all the measurements and
the ANS concentration was 13.5 pM. ANS fluorescence spectra of
alginate solutions and gels containing no enzyme were recorded
similarly and subtracted from the spectra of enzyme (please note that
both solution- and gel-phase alginate had minimal interference with
the fluorescence measurements).

Results

Kinetic parameters of enzymes in crowded and confined
environments

Alginate, a naturally occurring high molecular weight
polysaccharide that can form hydrated gels in the presence of
multivalent cations [17], was chosen as a flexible platform to explore
the roles of crowding and confinement on protein structure and
function. We first investigated the role of such environments on
enzyme kinetic parameters. Figure 1 shows the initial reaction rates of
HRP and B-gal in alginate solution- and gel-phase conditions for
various concentrations of alginate relative to enzymes in standard Tris-
HCl buffer. The data indicated a decrease in initial rates of the enzymes
for alginate solution- and gel-phase conditions in an alginate
concentration dependent manner. Excluded volume due to crowding
or confinement arguments alone cannot be used to explain these
results, since excluded volume effects have been shown to increase
effective enzyme concentration and thereby enzymatic reaction rates
[2,3].
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Figure 1: Initial rates of (a) HRP and (b) B-gal in alginate solutions (grey bars) and alginate gels (black bars) for various concentrations of
alginate relative to the respective enzymes in buffer. Data shown are the mean of triplicate measurements plus standard deviation. *P<0.05
relative to the values obtained for alginate solutions as determined by Student’s unpaired two-tailed t test. The experiments were repeated at
least three times with similar results.

However, our data is not entirely surprising as previous studies have
attributed decreases in initial rates for enzymes under similar
conditions to diffusion-controlled enzyme kinetics [4,9,12,20-22].

We performed additional kinetic analysis to estimate the apparent
Michaelis-Menten kinetic constants Ky; and V., for HRP in alginate
solution- and gel-phase conditions (Table 1). These studies revealed an
alginate concentration dependent increase in the KM values for HRP
in alginate solutions and gels compared to those for HRP in standard
buffer conditions. The observed increases in the Ky; values in the
alginate based-crowded and confined environments can be attributed
to previously established roles of decreased enzyme and substrate
diffusion [9,22]. We also observed slight decreases in the values of

Vmax for HRP in alginate conditions, which is inconsistent with
previous literature suggesting that an increase in the effective enzyme
concentration due to excluded volume effects can lead to increases in
Viax [4,22]. However, our results are consistent with literature that
explains a decrease in Vi, due to either conformational changes of
the enzyme active site or increase in effective inhibition by the product
[9,23,24]. More importantly, it is noteworthy that the differences in
apparent Ky as well as the initial rates and V,,, (relative to enzymes
in buffer) were more significant for gel-encapsulated enzymes than for
enzymes in alginate solutions, providing additional evidence that
alginate gels and alginate solutions present different environments to
the proteins.

Solution phase Gel phase
Condition

Vinax ("M 1) K (uM) Vmax (nM s™) K (uM)
0% alginate 10.3+0.3 4.8+0.6 n/a n/a
1% alginate 99+04 51+04 9.3+0.3 58+0.5
5% alginate 84+09 79+1.0 76+04 84+0.7
10% alginate 7904 8.8+0.4 64+0.5 10.1+0.6

Table 1: Kinetic constants of ABTS oxidation by HRP in alginate solutions and gels.

Effect of degree of crowding and confinement on enzyme
activity under denaturing conditions

Next, we proceeded to evaluate the roles of crowding and
confinement on enzyme activity under denaturing conditions. For this,
we compared the initial rates of the various HRP and [-gal
formulations in standard buffer and buffer containing 35% (w/v) of the
denaturant ethanol. Ethanol was chosen as the protein denaturant [25],
instead of the more widely used guanidine hydrochloride (GdnHCI)
[26,27], because GdnHCI interfered with the experiments used to
measure enzyme activity (i.e. the ABTS and ONPG enzyme assays).
Figure 2 clearly shows that both crowding and confinement led to

higher retention of enzyme activity relative to the no alginate enzyme
control (i.e. enzymes in buffer) and that the degree of stabilization was
strongly dependent on alginate concentration. Additionally, these
results also revealed enhanced stabilization for alginate gel-
encapsulated enzymes relative to enzymes in alginate solutions for all
concentrations of alginate tested. These trends, i.e. higher enzyme
activity in confined vs. crowded environments were also observed for
thermal denaturation (Figure 3). Thus, our experimental analyses of
enzyme activity under denaturing conditions strongly suggest that
confinement leads to higher enhancements in protein stability relative
to crowding.
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Figure 2: Percent activity retained for (a) HRP and (b) p-gal in alginate solutions (grey bars) and alginate gels (black bars) for various
concentrations of alginate in the presence of 35% ethanol. The relative activities were calculated by normalizing the activity in the presence of
35% ethanol to the activity in buffer containing 0% ethanol. Data shown are the mean of triplicate measurements plus standard deviation.
*P<0.05 and **P<0.01 relative to the values obtained for alginate solutions as determined by Student’s unpaired two-tailed t test. The
experiments were repeated at least three times with similar results. The horizontal dashed line represents the average percent activity retained
for the enzymes in buffer exposed to the chemical denaturation conditions.
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Figure 3: Time-dependent deactivation of HRP in buffer (dashed line) and HRP in (a) alginate solutions and (b) alginate gels exposed to 80°C
for various concentrations of alginate — 1% (white squares, solid line), 5% (grey squares, solid line), and 10% (black squares, solid line). Values
for activity retained were calculated by normalizing activities at various time points to the initial activity at t=0 min. Data shown are the mean
of triplicate measurements (with standard deviation <10%). The experiments were repeated at least three times with similar results.

Enzyme structure under denaturing conditions in crowded that the increases in the ANS signal were strongly dependent on
and confined environments alginate concentration. Specifically, when exposed to 35% ethanol,
significant increases in ANS fluorescence were observed for enzymes
in standard buffer conditions and low concentrations of alginate (for
both crowding and confinement), while only a modest increase in the
ANS signal was observed for enzymes in 10% alginate (Figures 4 and
5). Furthermore, consistent with the aforementioned investigations of
enzyme activity, the ANS studies indicated that confinement lead to
higher enhancements in enzyme structural stability relative to
crowding. Additional experiments that tested denaturation induced by
GdnHCI and high temperature under various conditions also showed
similar trends, i.e. enhanced retention of enzyme structure in alginate
based-confined conditions relative to crowded conditions (Figure 5).

Having established the roles of crowding and confinement on
enzyme initial rates and the retention of enzyme activity under
denaturing conditions, we wished to confirm that the functional
stability was correlated with retention of protein structure. In order to
compare the effects of protein crowding and confinement on enzyme
structure under denaturing environments, we used 8-anilino-1-
naphthalenesulfonic acid or ANS-binding fluorescence assay. ANS has
been previously used as a sensitive fluorescent probe for the detection
of partially folded or fully unfolded proteins; fluorescence of ANS
increases substantially upon binding to hydrophobic regions of
proteins that become exposed during denaturation [28-31].

Consistent with the kinetic studies, when we exposed the various
alginate-enzyme formulations to denaturing conditions, we observed
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Figure 4: Average ANS fluorescence intensities (in arbitrary units) for HRP in buffer (dashed line) and HRP in (a) alginate solutions and (b)
alginate gels exposed to 35% ethanol for various concentrations of alginate — 1% (white circles), 5% (grey circles), and 10% (black circles).
Fluorescence intensities for the alginate-protein formulations are reported after subtraction of the spectra of the corresponding alginate
solutions or gels containing no enzyme. Data shown are the mean of triplicate measurements (with standard deviation <10%). The
experiments were repeated at least three times with similar results.

Discussion

Majority previous studies exploring the mechanisms behind protein
structure and function have been performed in simple buffer systems
with low concentrations of the test protein. However, in vivo proteins
have evolved to function in more complex, highly crowded or confined
environments [1-3]. Therefore, recent research has attempted to mimic
the complexity of in vivo environments in order to improve our
understanding of protein behaviors. Crowding and confinement are
related in that both the environments influence protein conformation
and dynamics by reducing the volume accessible to the protein
molecules [2,3,11,32]. However, they are distinct in that crowding
refers to effects of volume exclusion arising from the presence of other
soluble macromolecules, while confinement refers to effects due to the
presence of a fixed, impenetrable boundary. This distinction can lead
to important differences in how crowding and confinement affect
protein fates [3,4,11,32]. For example, using theoretical analyses, it has
been estimated that confinement can lead to higher enhancements in
protein stabilization relative to crowding [3,4,13]. However, these
theoretical analyses are not well supported by experimental evidence.
Specifically, while several research groups have presented evidence that
both these environments can positively influence protein stability and
dynamics [4,11,13,14], direct experimental comparisons between the
influences of crowding and confinement on protein structure and
function have been limited [11,14].

In this study, we investigated the effects of crowding and
confinement on enzyme structure and function in physiological buffer
and denaturing conditions using alginate formulations that allowed us
to experimentally distinguish between the effects of crowding and
confinement on protein behavior. Alginate is a high molecular weight
polysaccharide and therefore can be used as a macromolecular
crowding agent. Alginate can also be physically crosslinked using
divalent cations to form a gel and encapsulate proteins to mimic the
effects of confinement. Our data revealed higher enhancements in
protein activity under denaturing environments due to confinement
relative to crowding, which is in good agreement with previous
theoretical investigations of the effects of crowding and confinement

on protein structure and function [3,4,13]. Moreover, our studies also
indicated that the degree of crowding and confinement, varied by
changing the concentration of alginate, also strongly influences protein
activity under denaturing environments. It may be argued that the
observed differences in the activities of the proteins in alginate
solutions and gels are due to the differences in excluded volume effects
arising from variances in the net negative charge of alginate in solution
and calcium-crosslinked gel phases. However, it is important to note
that we see similar effects of crowding and confinement for the two
proteins with different isoelectric points (pI of HRP=8.8 and pI of B-
gal=4.2) used in the study, thereby indicating that the effect of changes
in net charge of alginate on the observed results, if any, are minimal.
Finally, the enzyme activity measurements were supported using ANS
measurements of protein denaturation that revealed higher
enhancements in structural stability for enzymes in confined
conditions relative to crowding. Although ANS fluorescence only
provides an indirect readout of protein structure, we used the assay to
measure relative changes in protein structure (denaturing conditions
relative to buffer conditions), and therefore have confidence in the
conclusions drawn from the data. Future efforts will focus on stability
measurements using more direct approaches, including fluorescence
and circular dichroism spectroscopy.

The outcomes presented in this paper should be of interest to several
areas of research, and in particular, to theoreticians and
experimentalists investigating the role of in vivo and in vivo-like
environments on protein fates and behavior. In what we believe is the
first study of its kind, we directly examined the effects of crowding and
confinement on protein structure and function under native and
denaturing environments. The observed differences can be explained
by previous theoretical studies that indicate that inherent differences in
crowding and confinement, i.e. volume exclusion vs. fixed boundary
effects, lead to differences in protein fates [3,4,13,32]. These studies
have also proposed that, compared to crowding, protein confinement
may lead to decreased folding rates for the proteins. This supports our
observations that demonstrate greater retention in protein activity
under denaturing conditions for confinement relative to crowding.
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Furthermore, several studies have indicated protein unfolding and
aggregation as major causes of common diseases including cataract,
diabetes, and various neurodegenerative disorders [33-35]. Since
crowding and confinement can significantly impact these protein fates,
developing in vitro platforms to evaluate the role of such environments
on protein behavior is also of relevance to human health and medicine
[36-39].
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Figure 5: Average maximum ANS fluorescence intensities (in
arbitrary units) for HRP in alginate solutions (grey bars) and
alginate gels (black bars) for various concentrations of alginate in
the presence of (a) 35% ethanol, (b) 6 M GdnHCl, and (c) after 60
minute exposure to 80°C. Fluorescence intensities for the alginate-
protein formulations are reported after subtraction of the spectra of
the corresponding alginate solutions or gels containing no enzyme.
Data shown are the mean of triplicate measurements plus standard
deviation. *P<0.05 and **P<0.01 relative to the values obtained for
alginate solutions as determined by Student’s unpaired two-tailed t
test. The experiments were repeated at least three times with similar
results. The horizontal dashed line represents the average maximum
ANS fluorescence intensities for HRP in buffer exposed to the
chemical, or thermal denaturation conditions.

Conclusions

In conclusion, in this paper we exploited the ability of alginate, a
high molecular weight polysaccharide, to form ionically crosslinked
gels to study the effects of both crowding and confinement on enzyme
activity. Moreover, by altering the alginate concentration, we also
varied the degree of crowding and confinement. These studies strongly
indicated enhanced enzyme activity under denaturing conditions in
confined environments relative to crowded environments, as well as
due to increases in the degrees of both crowding and confinement.
Taken together, the data presented in this paper significantly
contributes to the growing literature of theoretical and experimental
studies attempting to understand the role of in wvivo cellular
environments on protein behavior.
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