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We extend previous work on dynamical AdS/QCD models by introducing an extra ingredient under 
the form of a background magnetic field, this to gain insight into the influence such field can have 
on crucial QCD observables. Therefore, we construct a closed form analytic solution to an Einstein-
Maxwell-dilaton system with a magnetic field. We specifically focus on the deconfinement transition, 
reporting inverse magnetic catalysis, and on the string tension, reporting a weaker/stronger confinement 
along/perpendicular to the magnetic field. The latter, being of importance to potential modelling of heavy 
quarkonia, is in qualitative agreement with lattice findings.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Quantum chromodynamics (QCD) is the quantum field theory 
of strong interactions capable of describing sub-atomics particles 
such as quarks and gluons. Two of its main characteristic features 
are color confinement and chiral symmetry breaking [1]. It is by 
now well known that QCD at low temperature and chemical poten-
tial exhibits confinement and chiral symmetry breaking whereas 
at high temperature and chemical potential it undergoes a phase 
transition to a chiral symmetry restored phase where deconfine-
ment also sets in. Understanding the complete phase diagram of 
QCD in the parameter space of temperature, chemical potential etc. 
is a challenging task, and is of utmost importance in high energy 
physics. Indeed, the investigation of the QCD phase diagram and 
the search of new phases of matter are of great relevance, attract-
ing worldwide attention, be it from the experimental, lattice or 
theoretical communities [2].

Recent experiments with relativistic heavy ion collisions have 
suggested the possibility of new parameters in the QCD phase dia-
gram. In particular, it is expected that a very strong magnetic field 
eB ∼ 0.3 GeV2, which is created in the early stages of noncentral 
relativistic heavy ion collision [3–7], might have important conse-
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quences on the QCD phase diagram [8–10]. The extremely large 
magnetic field rapidly decays after the collision, however, it is ex-
pected that it still remains sufficiently large at the time when the 
quark-gluon plasma (QGP) forms [11,12], hence it can affect the 
QCD matter near the deconfinement transition temperature [10]. 
This expectation has led to an intense investigation of QCD in the 
presence of a background magnetic field. Because of its many in-
teresting properties and phenomenological relevance for e.g. the 
chiral magnetic effect [13,14], (inverse) magnetic catalysis [15–36], 
early universe physics [37,38], dense neutron stars [39] etc., the 
area of magnetised QCD drew much attention in recent years. For 
detailed reviews on these subjects, see for example [8,9].

It was expected from the work of [40,41] that the magnetic 
field has a constructive effect on the quark condensate and the 
deconfinement transition temperature, a phenomenon commonly 
termed as the magnetic catalysis. Further investigations, both from 
lattice simulations and from theoretical models based on weak 
coupling approximations, had confirmed these results [15–24]. 
However, it came as a big surprise when state of the art lattice 
calculations instead found inverse magnetic catalysis, i.e. the mag-
netic field was found to facilitate the destruction of the quark con-
densate and thence decreased the transition temperature [25–27]. 
Subsequently, several interesting physical scenarios, though not en-
tirely satisfactory, were suggested to explain the reason behind the 
inverse magnetic catalysis, see for example [28–36].

It is widely expected that the inverse magnetic catalysis be-
haviour mainly results from the strongly coupled dynamics around 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the transition temperature, as most perturbative QCD calculations 
and other effective models instead suggest magnetic catalysis. 
Since the dominant physics near the deconfinement and chiral 
phase transition is non-perturbative, it is therefore more appro-
priate to study the magnetic field effects in QCD using techniques 
that are more reliable at strong coupling. Here the idea of gauge-
gravity duality, apart from the usual lattice calculations, appears 
as a natural candidate [42–44]. The idea that certain strongly cou-
pled field theories without any gravitational degrees of freedom 
can be mapped to classical Einstein gravity via the gauge-gravity 
duality provides an elegant method by which the strongly coupled 
regime of QCD can be probed. Indeed by now, after certain mod-
ifications of the original model of the gauge-gravity duality, many 
characteristic features of QCD have been reproduced from hologra-
phy, and in some cases, new and interesting predictions have also 
been made, for a recent review see [45].

In recent years, the effect of a background magnetic field on 
the chiral condensate and deconfinement transition has also been 
discussed holographically. This question has been addressed in 
both top-down as well as bottom-up models of holographic QCD 
[46–64]. The top-down models, —unfortunately, not entirely ap-
propriate to describe QCD-like physics in the first place, but more 
satisfactory as far as the correctness and validness of the du-
ality is concerned—predict magnetic catalysis [46]. On the other 
hand, some phenomenological bottom-up holographic soft and 
hard wall QCD models do predict inverse magnetic catalysis for the 
deconfinement transition, however, they continue to show mag-
netic catalysis behaviour for the chiral transition [51,55]. Moreover, 
these soft and hard wall models do not always solve the gravity 
equations explicitly and in most cases the running of the coupling 
constant (or the dual dilaton field) is introduced by hand in an 
ad hoc way into the Einstein-Hilbert action. In recent times, more 
advanced phenomenological bottom-up holographic QCD models, 
which correctly solve the gravity equations, have been constructed 
that display inverse magnetic catalysis. In 2 + 1 dimensions, sen-
sible gravity solutions displaying inverse magnetic catalysis have 
been found in [57–59], while in 3 + 1, [61,62] displayed the pos-
sibility of inverse catalysis in the deconfinement as well as in the 
chiral sector, depending on the value of a new parameter c which 
can influence AdS/QCD at vanishing magnetic field as well. The 
specific rôle and influence of this parameter c is to the best of 
our knowledge an interesting open question.

Another interesting inherently non-perturbative QCD quantity, 
with direct observable consequences, is the string tension be-
tween heavy quarks. This is relevant to understanding the binding 
(and consequent melting at higher temperatures) of heavy quark 
states such as charmonium, in particular when relying on poten-
tial modelling [65,66]. Original lattice data of [67,68] predicts an 
increase, respectively decrease, in the string tension perpendicular, 
respectively, parallel to the quark-antiquark orientation. Support-
ing evidence for such scenario came in from modelling the non-
perturbative QCD vacuum in a specific way [69]. In [70], a semi-
classical reasoning was provided to argue against QCD string break-
ing in the perpendicular direction for sufficiently large magnetic 
field. To our knowledge, the magnetic field induced anisotropies 
in the string tension are not that well explored from a holographic 
viewpoint (a general discussion can be found in [71]) and we want 
to bridge this gap.1 Of course, specific effects that anisotropy can 
have in a holographic context, have been explored, see e.g. [73–77].

1 Although the anisotropic effects of the background magnetic field on the probe 
quark-antiquark free energy have been discussed previously in [72], however, it did 
not provide any concrete result on the string tension, which is not surprising given 
the non-confining N = 4 SYM setup of the latter work.
One of the main problems that have hindered the construc-
tion of a genuine phenomenological holographic QCD model with 
a background magnetic field is the difficulty to find a dilaton 
backreacted magnetised AdS solution. This will require a simul-
taneous solution of the Einstein-Maxwell-dilaton system with a 
non-trivial and consistent profile for the dilaton field. Indeed, a 
magnetic field embedded Einstein-Maxwell-dilaton gravity system 
corresponds to a few second-order non-linear coupled differential 
equations. Closed-form analytical solutions are rather difficult to 
be found. In this work, using the potential reconstruction method 
[78–87], we will remedy this problem and find a complete solution 
to the Einstein-Maxwell-dilaton gravity system, containing both 
the magnetic field as well as the running dilaton. In particular, 
we will show that a consistent solution to the Einstein-Maxwell-
dilaton system can be found in terms of a single scale function 
A(z) (see eqs. (2.12), (2.13), (2.15), (2.16) and (2.17)). This scale 
function will be further chosen by taking inputs from real QCD and 
by matching holographic QCD results with real QCD with vanishing 
magnetic field. Moreover, in addition to the finite temperature and 
magnetic field, we extend our model to include the chemical po-
tential as well. This is desirable as computations with finite chem-
ical potential are currently very challenging for lattice techniques 
due to the well-known sign problem in Euclidean space-time.

2. Einstein-Maxwell-dilaton gravity with a magnetic field

In order to construct a magnetised holographic QCD model with 
running dilaton and chemical potential, we consider a five dimen-
sional Einstein-Maxwell-dilaton (EMD) gravity system with two 
Maxwell fields,

S E M = − 1

16πG5

∫
d5x

√−g

[
R − f1(φ)

4
F(1)MN F MN

− f2(φ)

4
F(2)MN F MN − 1

2
∂Mφ∂Mφ − V (φ)

]
, (2.1)

where F(1)MN and F(2)MN are the field strength tensors for two 
U (1) gauge fields, φ is the dilaton field, f1(φ) and f2(φ) are the 
gauge kinetic functions representing the coupling between the two 
U (1) gauge fields on one hand and the dilaton on the other hand. 
V (φ) is the potential of the dilaton field, whose explicit form will 
depend on the scale function A(z) (see below), and G5 is the New-
ton constant in five dimensions. The inspiration for this kind of 
modelling came from [84], albeit that the latter work happened 
in a different context. Concerning the interpretation of the Abelian 
gauge fields, we can consider A1 as the dual of a (neutral) flavor 
current, capable of creating mesons, while A2 is the dual of the 
electromagnetic current. In principle, the latter can create a differ-
ent neutral meson. Since we work with U (1) × U (1), the mesons 
are charge neutral, so we cannot directly couple electromagnetism 
to them. Indeed, we do not have a direct coupling between the 
2 gauge fields, so we will never be able to couple e.g. a mag-
netic field B to the neutral meson(s). For our current purposes, 
we will employ the second gauge field just to introduce a (con-
stant) magnetic field B , i.e. we have no interest in the fluctuations 
of A2. Notice that this B is the 5-dimensional magnetic field, that 
needs to be suitably rescaled via the AdS length L to get the 
physical, 4-dimensional, magnetic field B. How to do this can be 
found in [51]. As we are mostly interested in qualitative features 
in terms of the magnetic field, we will deliberately keep using the 
5-dimensional B .

One major drawback of the action (2.1) is that it neither explic-
itly incorporates the dynamics of the chiral condensate nor that it 
directly couples the chiral condensate to the magnetic field. Conse-
quently, the effects of the magnetic field on the chiral condensate 
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can only be incorporated indirectly from the background metric, 
see also [51]. Therefore, contrary to real QCD, the backreaction of 
the chiral condensate on the quark-antiquark free energy and vice 
versa will be completely ignored in the holographic model (2.1). 
This is a major disadvantage of all probe-approximated AdS/QCD 
models, like eq. (2.1), where no explicit interplay between the chi-
ral condensate and Polyakov loop exists. A more accurate and real-
istic holographic QCD model, that incorporates the backreaction of 
the chiral field on the spacetime geometry from the start, would—
although very interesting—be extremely challenging to construct 
analytically. We are thus working with a kind of holographic ana-
logue of the quenched QCD approximation known from lattice QCD 
(no dynamical quarks). As such, one might question how to even 
couple the magnetic field to the theory if there are no dynamical 
charge carriers. Here, we follow the pragmatic approach of e.g. [88,
89], in itself magnetic field-dependent generalizations of the sem-
inal works [90,91], and we thus consider our engineered boundary 
model capable of mimicking some essential QCD features, after 
which it can be used to describe, without further input, other QCD-
ish properties. Notice that Einstein-Maxwell-dilaton models have 
been used throughout literature as an effective way to describe 
QCD in presence of electromagnetic background fields, as it is evi-
dent from our extensive reference list.

By varying the action (2.1) one can derive the equations of mo-
tion for Einstein, Maxwell and dilaton fields. Since, in this work we 
are mostly interested in a magnetised black brane solution with 
running dilaton, we consider the following Ansätze for the metric 
gMN , field strength tensor F(i)MN and dilaton field φ,

ds2 = L2 S(z)

z2

[
−g(z)dt2 + dz2

g(z)
+ dy2

1 + eB2z2
(

dy2
2 + dy2

3

)]
,

φ = φ(z), A(1)M = At(z)δt
M , F(2)MN = Bdy2 ∧ dy3 , (2.2)

where S(z) is the scale factor, L is the AdS length scale and g(z)
is the blackening function. z is the usual holographic radial coordi-
nate, and in our coordinate system it runs from z = 0 (asymptotic 
boundary) to z = zh (horizon radius), or to z = ∞ for thermal AdS 
(without horizon). We introduced a background magnetic field B
in the y1-direction. Because of this background magnetic field, the 
system no longer enjoys the S O (3) invariance in boundary spatial 
coordinates (y1, y2, y3), and we precisely chose the metric An-
sätze such that as soon as we switch off the magnetic field the 
S O (3) invariance is recovered.

Using the Ansätze of eq. (2.2) we get four Einstein equations of 
motion,

g′′(z) + g′(z)

(
2B2z + 3S ′(z)

2S(z)
− 3

z

)
− z2 f1(z)A′

t(z)2

L2 S(z)
= 0 . (2.3)

B2ze−2B2 z2
f2(z)

L2 S(z)
+ 2B2 g′(z)

+ g(z)

(
4B4z + 3B2 S ′(z)

S(z)
− 4B2

z

)
= 0 . (2.4)

S ′′(z) − 3S ′(z)2

2S(z)
+ 2S ′(z)

z

+ S(z)

(
4B4z2

3
+ 4B2

3
+ 1

3
φ′(z)2

)
= 0 . (2.5)

g′′(z)

3g(z)
+ S ′′(z)

S(z)
+ S ′(z)

(
7B2z

2S(z)
+ 3g′(z)

2g(z)S(z)
− 6

zS(z)

)

+ g′(z)

(
5B2z − 3

)

3g(z) zg(z)
+ 2B4z2 + B2z2e−2B2 z2
f2(z)

6L2 g(z)S(z)
− 6B2

+ 2L2 S(z)V (z)

3z2 g(z)
+ S ′(z)2

2S(z)2
+ 8

z2
= 0 . (2.6)

Similarly we get the following equation of motion for the dilaton 
field,

φ′′(z) + φ′(z)

(
2B2z + g′(z)

g(z)
+ 3S ′(z)

2S(z)
− 3

z

)

+ z2 A′
t(z)2

2L2 g(z)S(z)

∂ f1(φ)

∂φ

− B2z2e−2B2z2

2L2 g(z)S(z)

∂ f2(φ)

∂φ
− L2 S(z)

z2 g(z)

∂V (φ)

∂φ
= 0 , (2.7)

and the equation of motion for the first gauge field,

A′′
t (z) + A′

t(z)

(
2B2z + f ′

1(z)

f1(z)
+ S ′(z)

2S(z)
− 1

z

)
= 0 . (2.8)

One can explicitly check that the equation of motion for the second 
Maxwell field is trivially satisfied and hence it will not give any 
additional equation. Therefore, we have in total six equations of 
motion. However, only five of them independent. Below we will 
choose the dilaton equation (2.7) as a constrained equation and 
consider the rest of the equations as independent. In order to solve 
the latter, we impose the following boundary conditions,

g(0) = 1 and g(zh) = 0,

At(0) = μ and At(zh) = 0,

S(0) = 1,

φ(0) = 0 , (2.9)

where μ is the chemical potential of the boundary theory which is 
related to the near boundary expansion of the zeroth component 
of the first gauge field and, as mentioned before, zh is the location 
of the black hole horizon. Apart from these boundary conditions, 
we will also assume that the dilaton field φ remains real every-
where in the bulk. As we will see later, this condition will severely 
restrict our analytic solution for a finite magnetic field.

In order to solve eqs. (2.3), (2.4), (2.5), (2.6) and (2.8) simulta-
neously, we adopt the following strategy.

1. We first solve eq. (2.8) and obtain the solution for At(z) in 
terms of f1(z) and S(z).

2. Using At(z), we then solve eq. (2.3) and find the solution for 
g(z) in terms of f1(z) and S(z).

3. Using g(z), we then solve eq. (2.4) to obtain f2(z).
4. Next, we solve eq. (2.5) and find φ′(z) in terms of S(z).
5. Finally, we solve eq. (2.6) and obtain the dilaton potential in 

terms of S(z) and g(z).

Applying the above strategy and solving eq. (2.8), we get the fol-
lowing solution for At

At(z) = K1

z∫
0

dξ
ξe−B2ξ2

f1(ξ)
√

S(ξ)
+ K2 . (2.10)

Applying the boundary condition (eq. (2.9)), we get

K2 = μ, K1 = − μ∫ zh
0 dξ

ξe−B2ξ2
√

, (2.11)
f1(ξ) S(ξ)
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and the solution for At then becomes,

At(z) = μ

[
1 −

∫ z
0 dξ

ξe−B2ξ2

f1(ξ)
√

S(ξ)∫ zh
0 dξ

ξe−B2ξ2

f1(ξ)
√

S(ξ)

]
= μ̃

zh∫
z

dξ
ξe−B2ξ2

f1(ξ)
√

S(ξ)
.

(2.12)

Substituting eq. (2.12) into eq. (2.3), we get the following solution 
for g(z),

g(z) =
z∫

0

dξ
ξ3e−B2ξ2√

S3(ξ)

[
K3 + μ̃2

L2

ξ∫
0

dξ̃
ξ̃e−B2 ξ̃2

f1(ξ̃ )

√
S(ξ̃ )

]
+ K4 .

(2.13)

The constants K3 and K4 can be fixed from eq. (2.9) and we get

K4 = 1,

K3 = −1∫ zh
0 dξ

ξ3e−B2ξ2√
S3(ξ)

×
[

1 + μ̃2

L2

zh∫
0

dξ
ξ3e−B2ξ2√

S3(ξ)

( ξ∫
0

dξ̃
ξ̃e−B2 ξ̃2

f1(ξ̃ )

√
S(ξ̃ )

)]
. (2.14)

The coupling function can be obtained from eq. (2.4),

f2(z) = −e2B2 z2
L2 S(z)

z

[
g(z)

(
4B2z + 3S ′(z)

S(z)
− 4

z

)
+ 2g′(z)

]
.

(2.15)

Similarly, the dilaton field can be obtained from eq. (2.5)

φ′(z) =
√−8B4z3 S(z)2 − 8B2zS(z)2 − 6zS(z)S ′′(z) + 9zS ′(z)2 − 12S(z)S ′(z)√

2zS(z)
,

φ(z)

=
∫

dz
√−8B4z3 S(z)2 − 8B2zS(z)2 − 6zS(z)S ′′(z) + 9zS ′(z)2 − 12S(z)S ′(z)√

2zS(z)

+ K5 (2.16)

where the constant K5 will be fixed demanding that2 φ|z=0 → 0. 
And finally, eq. (2.6) allows us to find the potential,

V (z) = g(z)

L2

(
−9B2z3 S ′(z)

2S(z)2
+ 10B2z2

S(z)
− 3z2 S ′(z)2

S(z)3

+ 12zS ′(z)

S(z)2
+ z2φ′(z)2

2S(z)
− 12

S(z)

)

− z4 f1(z)A′
t(z)2

2L4 S(z)2
+ g′(z)

L2

(
− B2z3

S(z)
− 3z2 S ′(z)

2S(z)2
+ 3z

S(z)

)
.

(2.17)

It is clear from the above equations that a complete analytic so-
lution to the Einstein-Maxwell-dilaton system with a background 
magnetic field can be obtained in terms of two arbitrary functions, 
i.e. the scale function S(z) and the gauge coupling f1(z). Differ-
ent forms of S(z) and f1(z) will give different physically allowed 
solutions. Indeed, it can be explicitly verified that the Einstein, 
Maxwell and dilaton equations are satisfied for any form of S(z)
and f1(z). Thus we have found a family of analytic solutions for 

2 This simple choice assures we asymptote back to AdS5 near the UV QCD bound-
ary z = 0.
the gravity system of eq. (2.1). Since our aim here is to model 
real QCD properties holographically, we will fix these two arbi-
trary functions by taking inputs from real QCD. For example, by 
comparing the holographic results for the deconfinement transi-
tion temperature and meson mass spectrum with lattice QCD, we 
can fix/constrain the forms of S(z) and f1(z).

The form of the gauge coupling function f1 can be constrained 
by studying the vector meson mass spectrum. In particular, by tak-
ing the following simple form of f1,

f1(z) = e−cz2−B2z2

√
S(z)

, (2.18)

the vector meson spectra can be shown to lie on linear Regge tra-
jectories for B = 0. In particular, the mass squared of the vector 
mesons satisfies m2

n = 4cn. Moreover, the parameter c can also be 
fixed by matching with lowest lying heavy meson states J/� and 
�′ , and by doing that we get c = 1.16 GeV2, see [78,83] for more 
details.

Substituting eq. (2.18) into eqs. (2.13), (2.15) and (2.16), and us-
ing S(z) = e2A(z) , we get the following solutions,

g(z) = 1 +
z∫

0

dξ ξ3e−B2ξ2−3A(ξ)

[
K3 + μ̃2

2cL2
ecξ2

]
,

with K3 = −

[
1 + μ̃2

2cL2

∫ zh
0 dξ ξ3e−B2ξ2−3A(ξ)+cξ2

]
∫ zh

0 dξ ξ3e−B2ξ2−3A(ξ)
.

(2.19)

f2(z) = − L2e2B2 z2+2A(z)

z

[
g(z)

(
4B2z + 6A′(z) − 4

z

)
+ 2g′(z)

]
.

(2.20)

φ(z)

=
∫

dz

√
−2

z

(
3z A′′(z) − 3z A′(z)2 + 6A′(z) + 2B4z3 + 2B2z

)
+ K5 . (2.21)

Notice that 
√

S(z), appearing in eq. (2.18), is then well-defined. 
Also, one can substitute eq. (2.18) into eqs. (2.12) and (2.17) to 
obtain the explicit solutions for At(z) and V (z). Therefore, in 
eqs. (2.12), (2.13), (2.15), (2.16) and (2.17) a complete solution for 
the Einstein-Maxwell-dilaton gravity system is obtained in terms 
of a single scale function A(z).

Let us also note the expressions of black hole temperature and 
entropy, which will be useful later on in the investigation of the 
black hole thermodynamics

T = − z3
h e−3A(zh)−B2 z2

h

4π

[
K3 + μ̃2

2cL2 ecz2
h

]
,

S = eB2z2
h+3A(zh)

4z3
h

. (2.22)

Before we close this section, it is important to emphasize again 
that eqs. (2.17)-(2.21) are a solution of the action (2.1) for any scale 
factor A(z). We therefore have an infinite family of analytic black 
hole solutions for the gravity system of eq. (2.1). These different 
solutions however correspond to different dilaton potentials (and 
therefore to different actions), as different forms of A(z) will give 
different potentials V (z). However, once the form of A(z) is fixed 
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then the form of V (z) also is, and in return eqs. (2.17)-(2.21) cor-
respond to a self-consistent solution to a particular action with 
predetermined A(z) and V (z).

One might also worry that the dependence of V on the parame-
ters zh , μ and B is troublesome as it indicates that different values 
of these parameters correspond to a different action, and there-
fore, to a different gravity model altogether. We like to emphasise 
here that V does not depend on these parameters explicitly at 
the level of the action or equations of motion. These parameters 
appear only when the boundary conditions in eq. (2.9) are im-
posed. Indeed, notice that there is a second independent solution 
to our EMD equations of motion, which corresponds to thermal-
AdS. For the thermal-AdS, we have g(z) = 1. Then it is easy to 
infer from eq. (2.6) that V is independent of zh and μ (the B de-
pendence appears because of the metric and gauge field ansätze). 
If the potential were dependent on zh and μ from the beginning in 
the action itself, then the potential in the thermal-AdS background 
would have depended on zh and μ as well, which is certainly not 
the case in our model as we have alluded to above. Therefore, one 
should interpret the dependence of the potential V on zh and μ as 
an on-shell dependence, and not as an off-shell one. In any case, 
we have numerically checked that the on-shell V depends only 
very mildly on zh , μ and B . In particular, the potential profiles for 
different zh , μ and B values are almost indistinguishable from each 
other in the region away from the horizon whereas they are sepa-
rable only mildly in the near horizon region. Illustrative figures are 
included in Appendix A.

3. Results

Following [78], we will depart from the B = 0 Ansatz3

A(z) = −az2 . (3.1)

Let us first note the expression of φ(z)

φ(z) =
(
9a − B2

)
log

(√
6a2 − B4

√
6a2z2 + 9a − B4z2 − B2 + 6a2z − B4z

)
√

6a2 − B4

+ z
√

6a2z2 + 9a − B2
(

B2z2 + 1
)

−
(
9a − B2

)
log

(√
9a − B2

√
6a2 − B4

)
√

6a2 − B4
. (3.2)

Similar expressions can be found for At(z), g(z), f2(z) and V (z)
as well. However, these expressions are too lengthy to reproduce 
here and also not particularly illuminating, we therefore just men-
tioned the functionality of φ(z) since it gives the stability criteria 
of our solution. Indeed, from eq. (3.2), we learn that the dilaton 
field is real-valued only when B4 ≤ 6a2. This condition severely 
restricts the validity of our gravity solution and below we will 
work with only those values of a and B for which this condition 
is satisfied. Moreover, it is also interesting to note that the Gubser 
criterion [94]—the scalar potential must be bounded from above, 
V (z) ≤ V (0), for a physically acceptable holographic solution—is 
always satisfied under the same condition B4 ≤ 6a2. In partic-
ular, the potential is almost constant having value −12/L2 near 
the asymptotic boundary and then decreases in the deep IR. This, 
therefore, gives a strong self-consistency check on our constructed 
solution.

3 In ongoing work, a more general form factor will be employed so that next to 
a confining linear potential, also asymptotic freedom can be built in, see e.g. [92,
93]. In any case, our main results concerning the anisotropic string tension will 
remain the same even after employing a more sophisticated form factor which will 
guarantee asymptotic freedom in UV.
Fig. 1. Temperature T as a function of horizon radius zh for various values of the 
magnetic field B and μ = 0. Here red, green, blue, brown and orange curves corre-
spond to B = 0, 0.15, 0.30, 0.45 and 0.6 respectively. In units GeV.

Fig. 2. Free energy F as a function of temperature T for various values of the mag-
netic field B and μ = 0. Here red, green, blue, brown and orange curves correspond 
to B = 0, 0.15, 0.30, 0.45 and 0.6 respectively. In units GeV.

3.1. Black hole thermodynamics and confinement-deconfinement phase 
transition

The thermodynamics of the gravity solution with the scale fac-
tor of eq. (3.1) is shown in Figs. 1 and 2. In Fig. 1, the variation 
of Hawking temperature T with respect to the horizon radius zh
for various values of the magnetic field B is shown. We find that 
there exists a minimum temperature Tmin below which no black 
hole solution exist. However, for T > Tmin , there are two black hole 
solutions, a large and a small one, which are marked by 1 and 

2 respectively. The small black hole phase for which T increases 
with zh is unstable whereas the large black hole phase for which 
T decreases with zh is stable. The unstable-stable nature of the 
small-large black hole phases can be seen from the free energy be-
haviour shown in Fig. 2. Here, we have normalised the free energy 
of the black hole with respect to the thermal AdS case, zh → ∞. 
We see that the free energy of the small black hole phase is always 
larger than the large black hole and thermal AdS phases, indicat-
ing the unstable nature of this small black hole phase. Importantly, 
upon varying the Hawking temperature, a phase transition from 
the large black hole phase to thermal AdS phase takes place at 
a critical temperature Tcrit . This is the famous black hole-thermal 
AdS Hawking-Page phase transition [95].

Interestingly, the above thermodynamic behaviour occurs for 
small but finite values of the magnetic field as well. For finite 
magnetic field, we again find the unstable small-stable large black 
hole phases, with thermal AdS dominating the physics at small 
temperatures. Importantly, the Hawking-Page thermal AdS–black 
hole phase transition persists even for finite values of the mag-
netic field. The main difference appears in the magnitude of the 
critical temperature Tcrit . In particular, Tcrit decreases for higher 
values of magnetic field. The dependence of Tcrit on B is shown 
in Fig. 3, which is also one of the main results of this paper. Since 
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Fig. 3. The variation of thermal AdS–black hole phase transition critical temperature 
Tcrit with magnetic field B . Here μ = 0 is considered. In units GeV.

Fig. 4. The variation of thermal AdS–black hole phase transition critical temperature 
Tcrit with magnetic field B for various values of chemical potential μ. Here red, 
green, blue, brown and orange curves corresponds to μ = 0.0, 0.3, 0.6, 0.9 and 1.2
respectively. In units GeV.

these thermal AdS and black hole phases in the usual language of 
gauge-gravity duality are dual to the confinement and deconfine-
ment phases in the dual boundary theory, accordingly, our result in 
Fig. 3 predicts inverse magnetic catalysis for the dual confinement-
deconfinement transition. Our result in Fig. 3, therefore, provides a 
major improvement on several soft and hard wall models of holo-
graphic QCD, which did already suggest inverse magnetic catalysis 
in the deconfinement sector, however based on a ad hoc choice of 
the dilaton. Here, we have explicitly included the backreaction of 
the dilaton field in a not overly complicated way.

One can naively expect by looking at Figs. 1 and 2 that the 
above scenario for the thermal AdS–black hole phase transition 
might change for large magnetic fields. However, we need to be 
careful here. As mentioned before, the dilaton field, and therefore 
our gravity solution, only makes sense when the condition B4 <

B4
c = 6a2 is satisfied. Since we took a = 0.15 GeV2 for a decent 

match with the lattice QCD deconfinement temperature at B = 0
[78], our gravity solution is trustworthy only for Bc 
 0.61 GeV. 
Then we find that for all B ≤ Bc , the thermal AdS–black hole phase 
transition occurs. We have also explicitly checked that it persists in 
terms of a varying a. Moreover, the critical temperature Tcrit de-
creases with magnetic field even for these different values of a, 
indicating the inverse magnetic catalysis again, in line with inde-
pendent lattice QCD predictions.

We now move on to discuss the thermodynamic behaviour in 
the presence of chemical potential μ. We find similar results (as 
discussed above) with finite μ as well, and therefore, we can be 
very brief here. Our results are summarized in Fig. 4. One of the 
main outcomes here is that our holographic model continues to 
exhibit inverse magnetic catalysis behaviour for non-zero values 
of μ as well. Unfortunately, we do not have lattice results for 
(inverse) magnetic catalysis at finite μ yet, as lattice simulations 
usually suffer from the sign problem with μ. Therefore, the results 
in Fig. 4 can be considered as a genuine prediction of our holo-
graphic model of eq. (2.1).

Moreover, we also find, like many other holographic QCD mod-
els, a decreasing pattern for the critical temperature with chemical 
potential.

3.2. The anisotropic QCD string tension

In order to study the QCD string tension, our approach is to 
consider the free energy F of a q, ̄q pair via the dual of the gauge 
invariant quantity from which the q, ̄q interaction energy can be 
extracted [96], i.e. via the holographic realization of the Wilson 
loop [97–100]. In particular, the gauge-gravity duality provides a 
correspondence between the F of the q, ̄q pair with separation 
distance � that evolves over a large time T and the Nambu-Goto 
(NG) on-shell action.4 This action describes the physics of the open 
string that evolves in time and sweeps out a two dimensional 
world-sheet which is bounded on the AdS boundary by the rect-
angular Wilson loop � × T . So, we have

F(�, T ) = T Son−shell
NG (�, T ) , (3.3)

where

SNG = 1

2π�2
s

∫
dτdσ

√
−det Gs . (3.4)

Here, Ts = 1
2π�2

s
is the open string tension, the coordinates (τ , σ)

are used to parameterize the two-dimensional world-sheet and 
(Gs)αβ = (gs)MN∂α X M∂β X N , where X M(τ , σ) indicates the em-
bedding of the open string in the gravity background, gs is the 
background metric in the string frame,5 as appropriate to extract 
the string (q, ̄q) free energy [45,89]. Gs is the induced metric on 
the two-dimensional world-sheet.

The above metric solution (2.2) is in the Einstein frame, and the 
standard method to pass to the string frame can be obtained from 

the dilaton transformation [78,89], i.e. (gs)MN = e

√
2
3 φ gMN . So, the 

metric solution (2.2) in the string frame is,

ds2
s = L2e2As(z)

z2

[
−g(z)dt2 + dz2

g(z)
+ dy2

1 + eB2z2
(

dy2
2 + dy2

3

)]
,

(3.5)

where As(z) = A(z) +
√

1
6 φ(z), with A(z) and φ(z) as given in 

eqs. (3.1) and (3.2), respectively. In the following, we consider two 
cases to investigate the effect of magnetic field on the QCD string 
tension, the parallel case, i.e. when the q, ̄q pair is oriented parallel 
to the magnetic field, and then also a perpendicular orientation.

3.2.1. Parallel case
In this case, to parameterize the string world-sheet, we use 

the static gauge, i.e. τ = t and σ = y1. So, one can obtain both 
connected and disconnected solutions that minimize the Nambu-
Goto action from eqs. (3.4) and (3.5). The connected solution is a 

4 In principle, because of the non-trivial dilaton profile, there can be an additional 
term in the NG string world sheet action that describes the coupling between the 
dilaton field and two-dimensional Ricci scalar of the world sheet. However, in the 
large ’t Hooft limit λ → ∞—with which one is implicitly always working in the 
gauge-gravity correspondence—this term will be negligible being an O(α′) ∼ 1√

λ

contribution, and therefore it is always omitted in any kind of applied gauge/gravity 
computation.

5 Hereafter, we use the subscript “s” to indicate that we are working in the string 
frame.
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∪-shape open string configuration with endpoints as the q, ̄q pair, 
so that

F‖
con = L2

π�2
s

z‖∗∫
ε

dz
z‖2∗
z2

√
g(z) e2As(z)−2As(z‖∗)√

g(z)z‖4∗ e−4As(z‖∗) − g(z‖∗)z4e−4As(z)

,

(3.6)

where z‖∗ is the turning point of the ∪-shaped open string that 
stretches from the UV boundary at z = 0 into the bulk at z = z‖∗ , 
while ε is the regulator on the gravity side that corresponds to the 
UV cut-off on the gauge theory side. The relation between the q, ̄q
separation �‖ and z‖∗ reads

�‖ = 2

z‖∗∫
ε

dz

√
g(z‖∗)
g(z)

z2 e−2As(z)√
g(z)z‖4∗ e−4As(z‖∗) − g(z‖∗)z4e−4As(z)

. (3.7)

For the disconnected solution, the free energy of the q, ̄q pair be-
comes

F‖
discon = L2

π�2
s

zh∫
ε

dz
e2As(z)

z2
(3.8)

where in principle, zh is the horizon of the black hole. However, 
as we want to study the effect of magnetic field on the QCD string 
tension in the confined phase, we send zh → ∞ to work in the 
thermal AdS background. In the rest of the section we will work 
in the thermal AdS background for which g(z) = 1. As usual, both 
solutions F‖

con and F‖
discon are UV divergent when ε → 0. In this 

work, we use the subtraction procedure that was mentioned in 
[101]: we minimally6 remove the contribution of pole parts to ob-
tain the renormalized results.

Let us first focus on �‖ vs. z‖∗ behaviour for different mag-
netic fields and μ = 0, as shown in Fig. 5. We see that, when 
we increase �‖ , a dynamical “imaginary wall” appears in the bulk 
spacetime beyond which the connected string world sheet does 
not propagate. This “imaginary wall” appears when the square root 
in the integrand of � can become negative, which is possible when 
the scale factor of the metric in the string frame [93] develops a 
minimum in which case we will encounter an “imaginary wall” 
that moves with different values of the magnetic field. A similar 
type of “imaginary wall” has been reported before as well [78,83,
84]. This means that the original hard or soft wall of models like 
[102,103] gets replaced by a dynamical kind of wall giving similar 
features. We can thus increase the q, ̄q separation � in such a way 
that the q and q̄ that are connected by the open string, remains 
bound and thus cannot dissociate. Accordingly, we may then state 
that the q, ̄q are connected to each other and form a confined state 
on the gauge theory side. In addition, the location of the “imagi-
nary wall” shifts to higher values of z by increasing the magnetic 
field, corresponding to a deeper penetration into the bulk.

Let us now consider the free energy of the q, ̄q pair in the con-
nected configuration F‖

con as a function of �‖ for different magnetic 
fields in the thermal AdS background, shown in Fig. 6. We find that 
each of them can be fitted with a Cornell-type potential [104,105],

F‖
con

L2Ts
= −κ‖

�‖ + σ
‖
s �‖ + C‖ (3.9)

6 In particular, we subtracted 2
ε −

√
32
3 (9a − B2) logε from F‖

con and F‖
discon to 

get the renormalized q, ̄q free energy.
Fig. 5. �‖ as a function of z‖∗ in the thermal AdS background for different (small) 
magnetic fields and μ = 0. In units GeV.

Fig. 6. F‖
con as a function of �‖ in the thermal AdS background for different (small) 

magnetic fields and μ = 0. In units GeV.

Fig. 7. σ
‖
s as a function of B in the thermal AdS background with μ = 0. In units 

GeV.

where κ‖ is a Coulomb strength parameter, σ ‖
s is the QCD string 

tension and C‖ is a constant shift in the potential. To be more pre-
cise, all these QCD-related quantities are to be rescaled with Ts L2. 
For small values of �‖ , the Coulomb potential, − κ‖

�‖ dominates and 
for larger values of �‖ , the linear potential part σ ‖

s �‖ dominates. 
The linear part is evidently the driving force behind the confin-
ing potential between the q and q̄. From the linear regime, where 
F‖

con ∝ σ
‖
s �‖ , we can obtain the QCD string tension via σ ‖

s = dF‖
con

d�‖ . 
The behaviour of the QCD string tension for a parallel orientation 
in terms of magnetic field for the thermal-AdS background (still 
μ = 0) is shown in Fig. 7. We clearly observe a decreasing σ ‖

s , 
i.e. a weaker confinement along the applied magnetic field. This is 
compatible with the lattice results that were reported in [67,68].
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Fig. 8. �‖ as a function of z‖∗ in the thermal AdS background and μ = 0. In units 
GeV.

It is important to verify that we work in the regime of �‖ and 
magnetic field for which the energy F‖

con is actually lower than 
F‖

discon . For B = 0, this happens to be the case because the integral 
of F‖

discon is divergent [78]. Indeed, the upper limit of the integral 
in F‖

discon is zh → ∞ and the integrand blows up for large z if 
B = 0. However in some cases with B > 0, various form factors 
which appear in the disconnected integrand cause an exponential 
dampening in F‖

discon at large z, allowing for a richer dynamics. 
With non-zero B , F‖

discon can be lower than F‖
con at larger values 

of � and so would be the favoured string configuration.
In particular, when we work with larger magnetic field values, 

viz. approximately B > 0.37 GeV, the imaginary wall that appeared 
for smaller magnetic field values (approximately B < 0.30 GeV), 
disappears. For example, in Fig. 8, �‖ as a function of z‖∗ for 
B = 0.45 GeV is shown. We see that there are now two solutions 
of z‖∗ for each value of �‖ (provided � < �max) and interestingly if 
one chooses the values of z‖∗ before the maximum (smaller z‖∗ , red 
solid line part), one might still extract the linear behaviour for the 
potential in terms of �.

Via �F‖ =F‖
con −F‖

discon , we found that for large magnetic field 
there is a critical length of interquark distance, �‖

crit , so that for 
�‖ < �

‖
crit the �F‖ is negative and hence the connected configura-

tion is favoured, whilst for �‖ > �
‖
crit the �F‖ is positive, and so 

we must take into account the disconnected string configuration. 
Moreover, we find that if we increase the magnetic field further, 
the value of this �‖

crit decreases (see Fig. 9). Also, since F‖
discon is 

actually independent of �, there would be no linear behaviour for 
the potential either, i.e. no more confinement. It means that even 
though F‖

con exhibits the area law, the correct dynamics of q, ̄q
pair is actually described by the disconnected configuration, and 
the QCD string tension is zero.

For completeness, we depicted the behaviour of F‖ as a func-
tion of �‖ in the thermal AdS background for different (large) mag-
netic fields in Fig. 9. Notice that for �‖ < �

‖
crit the potential is linear 

suggesting confinement whereas for �‖ > �
‖
crit it becomes indepen-

dent of � suggesting q, ̄q pair breaking. Interestingly, if we focus on 
the linear parts of the potential in Fig. 9, we see that the slope of 
these decreases when we increase the magnetic field. Naively, this 
suggests that even for large magnetic fields, in the linear regime, 
the parallel QCD string tension decreases for increasing magnetic 
field.

Although we do not have dynamical (light) quarks in the game, 
the behaviour shown in Fig. 9 resembles that of a string break-
ing when the energy stored in the string (flux tube) connecting 
Fig. 9. F‖ as a function of �‖ in the thermal AdS background for different (large) 
magnetic fields and μ = 0. In units GeV.

the heavy q, ̄q gets large enough to support pair creation, i.e. what 
would happen in genuine QCD [106].

3.2.2. Perpendicular case
Let us now investigate the effect of B on the QCD string ten-

sion when it is perpendicular to the quark-antiquark distance �⊥ . 
Our embedding is then different from the parallel case. We again 
choose the static gauge, i.e. τ = t and σ = y2, to parameterize the 
two-dimensional string world-sheet. Analogously as for the paral-
lel case from eqs. (3.4) and (3.5), we can obtain connected and 
disconnected solutions that minimize the Nambu-Goto action.

The connected solution is still a ∪-shape configuration,

F⊥
con = L2

π�2
s

z⊥∗∫
ε

dz
z⊥2∗
z2

×
√

eB2z2 g(z) e2As(z)−2As(z⊥∗ )√
eB2z2 g(z)z⊥4∗ e−4As(z⊥∗ ) − eB2 z⊥2∗ g(z⊥∗ )z4e−4As(z)

,

(3.10)

where z⊥∗ is the turning point for the perpendicular case and ε
again the UV cut-off. The relation between the q, ̄q separation �⊥
and the z⊥∗ is now

�⊥ = 2

z⊥∗∫
ε

dz

√
eB2 z⊥2∗ g(z⊥∗ )

eB2 z2 g(z)

× z2 e−2As(z)√
eB2z2 g(z)z⊥4∗ e−4As(z⊥∗ ) − eB2z⊥2∗ g(z⊥∗ )z4e−4As(z)

.

(3.11)

In this case, the free energy of the disconnected solution reads

F⊥
discon = L2

π�2
s

zh∫
ε

dz
e2As(z)

z2
(3.12)

where zh → ∞ for the thermal AdS background. The employed 
renormalization scheme for F⊥

con and F⊥
discon is similar to the par-

allel case.
First, we consider �⊥ vs. z⊥∗ behaviour for different values of B

with μ = 0. This is shown in Fig. 10. Similar to the parallel case, 
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Fig. 10. �⊥ as a function of z⊥∗ in the thermal AdS background for different (small) 
magnetic fields and μ = 0. In units GeV.

Fig. 11. F⊥
con as a function of �⊥ in the thermal AdS background for different (small) 

magnetic fields and μ = 0. In units GeV.

we again encounter the “imaginary wall” that captures the confine-
ment on the gauge theory side. Interestingly, the location of the 
imaginary wall now shifts toward lower values of z by increasing 
B in the perpendicular case, thereby suggesting less penetration 
of the string world sheet for higher B . This is different from the 
parallel case where the “imaginary wall” shifts to higher values of 
z. The corresponding q, ̄q connected F⊥

con free energy behaviour for 
different (small) B is shown in Fig. 11. Each of them can now again 
be fitted with the Cornell potential [104,105],

F⊥
con

L2Ts
= −κ⊥

�⊥ + σ⊥
s �⊥ + C⊥ . (3.13)

We obtain the QCD string tension in the perpendicular case via 
σ⊥

s = dF⊥
con

d�⊥ by focussing on the linear regime of Fig. 11. We find 
that the QCD string tension (shown in Fig. 12) in the perpendicu-
lar case (slightly) increases with B . This is again in contrast with 
the parallel case where the string tension decreases with B . Sim-
ilar as in the parallel case, here our maximal choice for the small 
magnetic field is B ≤ 0.30 GeV. This enhanced perpendicular con-
finement is also compatible with the lattice results of [67,68].

In the perpendicular case as well, a critical length appears 
with (large) magnetic field such that F⊥

con < F⊥
discon for �⊥ < �⊥

crit
whereas F⊥

con > F⊥
discon for �⊥ > �⊥

crit . Accordingly, we have plot-
ted F⊥ as a function of �⊥ for different (large) magnetic fields 
in Fig. 13. The connected string configuration which is relevant 
for �⊥ < �⊥

crit is denoted by a solid line whereas the disconnected 
string configuration which is relevant for �⊥ > �⊥ is denoted by 
crit
Fig. 12. σ
‖
s as a function of B in the thermal AdS background with μ = 0. In units 

GeV.

Fig. 13. F⊥ as a function of �⊥ in the thermal AdS background for different (large) 
magnetic fields and μ = 0. In units GeV.

a flat dashed line. This behaviour follows that of the earlier dis-
cussed parallel case.

For completeness, we also extracted estimates for both κ‖ and 
κ⊥ in terms of B , finding up to very good accuracy that κ⊥(B) ≈
κ‖(B) ≈ κ(B = 0), thereby suggesting that the Coulomb strength 
is barely B-dependent. This is in line with the (extrapolated) lat-
tice estimates of [68]. On the other hand, the constant terms in 
the Cornell-fitted potential are affected by B and are different for 
parallel and perpendicular cases, while a lattice extrapolation sug-
gested this constant to be universal as well.

4. Outlook

We constructed a sensible, magnetic field dependent gravity 
dual of QCD with the interesting features of anisotropic confine-
ment expressed by an orientation dependent string tension, next 
to inverse magnetic catalysis for the deconfinement sector.

In a next phase of research, we should study whether the in-
verse catalysis phenomenon extends to the chiral sector by adding 
a probe scalar degree of freedom to the theory that describes the 
chiral condensate, following earlier works like [51,103,107]. Avail-
able lattice data suggests that the chiral and deconfinement tran-
sition continues to coincide even in presence of a magnetic field, 
this by using various dedicated order parameters [25]. It is a pri-
ori not clear if this will also hold holographically, see for example 
[61].

Moreover, our model could also be fruitful to study, now in a 
gravitationally consistent setting, the melting and transport proper-
ties of charmonia in magnetic fields, thereby improving upon [64,
108–111], see also [65,112–116].
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Fig. 14. The variation of potential as a function of z for different zh . Here μ = 0
and B = 0 are considered. Here red, green and blue curves correspond to zh = 1, 
zh = 1.5 and zh = 2 respectively.

Fig. 15. The variation of potential with different values of μ. Here B = 0 and zh =
1.5 are considered. Red, green, blue and brown curves correspond to μ = 0, 0.2, 0.4
and 0.6 respectively.

It would also be interesting to find out to what extent the ob-
servation of [61] that the inverse catalysis turns into catalysis again 
if the chemical potential gets larger, is generically valid. In our 
case, this would only happen at the level of the chiral transition, 
since we confirmed already the inverse catalysis in presence of any 
chemical potential.

Another interesting direction to extend our work will be to 
use the entanglement structure, in particular the entanglement en-
tropy, of holographic QCD phases to investigate (inverse) magnetic 
catalysis, following works like [71,117,118].

Moreover, we can further improve our bottom-up model to 
mimic QCD to the best extent possible. One open question is 
whether we can find a gravity solution that remains valid up to 
(much) larger values of the magnetic field, to further probe the 
lattice predictions of [68], which reported via an extrapolation, the 
destruction of the parallel string tension for sufficiently large mag-
netic field. Next to that, we can also adapt a form factor to match 
the running of the QCD strong coupling constant in the IR as well.
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Appendix A. (In)dependence of the potential on temperature, 
magnetic field or chemical potential

Figs. 14–18 illustrate the almost independence of the dilaton 
potential V (z) on the parameter zh (or T ), B and μ.
Fig. 16. The variation of potential with different values of μ. Here B = 0 and zh =
0.5 are considered. Red, green, blue and brown curves correspond to μ = 0, 0.2, 0.4
and 0.6 respectively.

Fig. 17. The variation of potential with different values of B . Here μ = 0 and zh =
1.5 are considered. Red, green, blue and brown curves correspond to B = 0, 0.1, 0.2
and 0.3 respectively.

Fig. 18. The variation of potential with different values of B . Here μ = 0 and zh =
1.5 are considered. Red, green, blue and brown curves correspond to B = 0, 0.1, 0.2
and 0.3 respectively.
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