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The Landau-Khalatnikov-Fradkin transformations (LKFTs) represent an important tool for probing the
gauge dependence of the correlation functions within the class of linear covariant gauges. Recently these
transformations have been derived from first principles in the context of non-Abelian gauge theory (QCD)
introducing a gauge invariant transverse gauge field expressible as an infinite power series in a Stueckelberg
field. In this work we explicitly calculate the transformation for the gluon propagator, reproducing its
dependence on the gauge parameter at the one-loop level and elucidating the role of the extra fields involved
in this theoretical framework. Later on, employing a unifying scheme based upon the Becchi-Rouet-Stora-
Tyutin symmetry and a resulting generalized Slavnov-Taylor identity, we establish the equivalence between
the LKFTs and the Nielsen identities which are also known to connect results in different gauges.
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I. INTRODUCTION

Gauge symmetries are a ubiquitous feature in our theo-
retical understanding of physical interactions at their fun-
damental level. The quantum field theory of the Standard
Model of elementary particles as well as the classical theory
of general relativity describing gravitational force contain
redundant degrees of freedom in their dynamical field
content. They transform nontrivially under a local gauge
transformation which leaves the action invariant.
Unlike global (rigid) symmetries, gauge symmetries do

not rotate physical observables which are manifestly gauge

invariant quantities. In a continuum formulation of the
theory, these quantities are generally extracted from gauge
dependent correlation (or Green) functions. It is a nontrivial
problem to understand how the gauge dependence gets
canceled in calculating physical observables both in per-
turbative and nonperturbative calculations.
In the continuum treatment of field theories, which

preserves Lorentz symmetry (or its Euclidean counter-
part), one can work with a gauge fixing procedure à la
Faddeev-Popov [1]. Within the linear covariant gauges
considered here, this procedure ensures that the gauge
dependence of the correlation functions is manifest in the
appearance of the gauge fixing parameter in their explicit
expressions.
Landau-Khalatnikov-Fradkin transformations (LKFTs)

[2,3] (see also [4,5] for a derivation using functional
methods) are a set of identities which interpolate an
arbitrary n-point correlation function for different values
of the gauge parameter. These transformations have been
investigated primarily in the Abelian case (QED) [6–20]
(see however [21]) and have focused exclusively on the
fermion propagator.
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In the non-Abelian case (QCD) the constraints imposed
by the gauge transformations on the correlation functions
have been mainly studied in the form of the Slavnov-Taylor
identities [22] (their Abelian counterpart are the Ward-
Takahashi identities [23]). These identities can be derived
by exploiting the invariance of the effective action under
the Becchi-Rouet-Stora-Tyutin (BRST) symmetry trans-
formation [24] which guarantees the renormalizabilty of the
theory. Besides being an essential tool in order to prove
renormalizability to all orders, these identities have con-
stituted the main guide to constructing viable Ansätze for
the dressed fermion-boson vertex inside the fermion gap
equation [25–38]. The latter is a nonperturbative key
element in the continuum for studying quark confinement
and dynamical chiral symmetry breaking (DCSB) [39,40].
The gap equation for the quark propagator constitutes one
piece of an infinite tower of nonlinear coupled Schwinger-
Dyson equations for the n-point 1-particle irreducible (1PI)
correlation functions. This system of equations needs to be
truncated at some level in order for it to be analytically and
numerically tractable. Therefore, there is an intrinsic need
to provide a model for the higher order Green functions
which are left out unsolved on employing a truncation.
The gauge covariance of the correlation functions,

expressed by the LKFTs, should further restrain the
possible form of the fermion-boson vertex. In addition to
being consistent with its own LKFT, any choice of the
vertex should yield the correct gauge covariance of the
quark propagator within the gap equation, and also guar-
antee the gauge invariance of physical observables.
In [41], a derivation of the LKFTs for the n-point

correlation functions has been detailed, employing gauge
invariant composite operators Ah

μ and ψh which involve a
Stueckelberg type scalar field. These composite fields,
originally introduced in an attempt to construct gauge
invariant colored states [42], have recently received a
renewed spotlight in the context of gauge-fixing procedure
at a nonperturbative level. The context is the problem of
Gribov copies [43], by extending the Gribov-Zwanziger
scenario, originally formulated in Landau gauge, to the
class of linear covariant gauges, while preserving a nilpo-
tent BRST symmetry [44–46]. A derivation of the LKFTs
through the introduction of a Stueckelberg field had already
been carried out in QED [47]. The formalism developed in
[41] generalizes this approach to the non-Abelian case.
In the following sections, we set out to verify the

perturbative validity of the latter formalism which involves
the appearance of new dynamical fields. We derive the
LKFT for the gluon propagator and from there evaluate its
expression at the one-loop level. Our LKFT expression
confirms that the longitudinal part of the gauge boson
propagator does not receive any quantum corrections, a
result which is also true for the Abelian case. However,
unlike the case of a massless U(1) gauge boson, the
transverse part contains a nontrivial dependence on the

gauge parameter. Our LKFT-based result correctly repro-
duces this dependence. Furthermore, using the extended
source formalism, we also discuss and establish the
equivalence between the LKFTs and the Nielsen identities.

II. CLASSICAL ACTION

We consider the following classical action in Euclidean
space [41,48,49]:

S ¼ SQCD þ Sgf þ Sh; ð1Þ
where SQCD is the usual gauge invariant QCD action which
encodes the dynamics of quarks and gluons

SQCD ¼
Z

dDx

�
1

4
Fa
μνFa

μν þ ψ̄ðγμDμ þmfÞψ
�
; ð2Þ

where only one flavor f of quarks is considered for the sake
of simplicity. Fa

μν ¼ ∂μAa
ν − ∂νAa

μ þ gfabcAb
μAc

ν is the
gluon field strength tensor and Dμ ¼ ∂μ − igTaAa

μ is the
covariant derivative, Ta being the generators of the SUðNÞ
group which satisfy the Lie algebra ½Ta; Tb� ¼ ifabcTc. Sgf
includes the gauge-fixing terms in linear covariant gauges

Sgf ¼
Z

dDx

�
α

2
baba þ iba∂μAa

μ þ c̄a∂μDab
μ cb

�
; ð3Þ

where ba is the Nakanishi-Lautrup auxiliary field which
implements the gauge condition [50], α is the gauge
parameter, caðxÞ and c̄aðxÞ are the anticommuting ghost
fields which yield the exponential representation of the
Jacobian arising in the gauge fixing procedure, and Dab

μ ¼
∂μδ

ab − gfabcAc
μ is the covariant derivative in the adjoint

representation. The Landau gauge corresponds to α ¼ 0,
for which the auxiliary field ba strictly enforces the
transversality condition ∂μAa

μ ¼ 0.
This standard gauge-fixed QCD action is augmented by

the term

Sh ¼
Z

dDx½τa∂μA
h;a
μ þ η̄a∂μDab

μ ðAhÞηb�; ð4Þ

where Ah
μ is the composite operator which incorporates the

gauge field Aμ and the scalar Stueckelberg field ξ,

Ah
μ ¼ h†Aμhþ i

g
h†∂μh; h ¼ eigT

aξa : ð5Þ

Its gauge invariance is guaranteed by the action of the
SUðNÞ gauge transformation U ¼ eigT

aαa on h

hU ≡U†h; AU
μ ¼ U†AμU þ i

g
U†∂μU

⇒ ðAh
μÞU ¼ ðh†ÞUAU

μ hU þ i
g
ðh†ÞU∂μhU ¼ Ah

μ; ð6Þ
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where the gauge transformed fields are denoted with the
superscript U. Ah

μ is forced to be transverse through the
introduction of the auxiliary field τa in Sh. It is the localized
representation of the gauge invariant nonlocal operator that
minimizes the functional

R
dDxTrAU

μ AU
μ along a gauge

orbit, given by (see for instance [44])

Ah
μ ¼

�
δμν −

∂μ∂ν

∂2

��
Aν − ig

�
1

∂2
∂σAσ; Aν

�

þ ig
2

�
1

∂2
∂σAσ; ∂ν

1

∂2
∂σAσ

�
þOðA3Þ

�
: ð7Þ

Each term in this nonlocal expression contains at least one
factor of the gauge field divergence, which makes it explicit
how in Landau gauge (∂μAμ ¼ 0) Ah

μ ¼ Aμ. By expanding
(5) in powers of ξ and imposing the transversality con-
dition, one can iteratively solve for the Stueckelberg field ξ,

ξ ¼ 1

∂2
∂μAμ þ i

g
∂2

�
∂μAμ;

∂σ

∂2
Aσ

�
þ i

g
∂2

�
Aμ;

∂μ

∂2
∂σAσ

�

þ i
g

2∂2

�∂μ

∂2
Aμ; ∂σAσ

�
þOðA3Þ; ð8Þ

and recover the nonlocal representation given in (7). The
introduction of a new pair of Grassmannian ghost fields η
and η̄ in (4) is required in order to take care of the nontrivial
Jacobian arising through the dependence of Ah

μ on the
Stuckelberg field. In fact, if one integrates back the auxiliary
field τ and the pair of ghost fields, one is left with the path
integration over the Stueckelberg field, yieldingZ

Dξδð∂μAh
μÞ det ð−∂μDμðAh

μÞÞ ¼ 1: ð9Þ

We point out that this result is based on the perturbative
solution1 of the τ-equation of motion, which results in the
unique perturbative series solution (8). Beyond perturbation
theory, this uniqueness might not prevail. This is the
same identity introduced in the Faddeev-Popov gauge-
fixing procedure. This means that the insertion of Sh
does not change the physical content of the theory. It
leads to a classical action that is nonpolynomial, given
the infinite number of terms obtained by expanding (5) in
terms of ξ

Ah;a
μ ¼ Aa

μ −Dab
μ ξb −

g
2
fabcξbDcd

μ ξd

−
g2

3!
fabdfdceξbξcDef

μ ξf þOðξ4Þ: ð10Þ

Despite this fact, we emphasize that the Lagrangian is still
local since each term in (10) is comprised of at most one
derivative of ξ. This feature is easily understood through

dimensional analysis, the Stueckelberg field being dimen-
sionless. This scenario shares similarities with the one
encountered in the nonlinear sigma models.
Due to the gauge invariance of Ah

μ, the new term
represented by Sh clearly does not spoil the standard
BRST symmetry of the classical action; while the new
fields τ, η and η̄ are BRST singlets, the BRST transformation
of the Stueckelberg field can be obtained iteratively from the
transformation of h, (shij ¼ −igcaðTaÞikhkj), yielding

sξa ¼ −ca þ g
2
fabccbξc −

g2

12
fabcfbdecdξeξc þOðξ3Þ:

ð11Þ

The introduction of the gauge invariant field Ah
μ makes it

straightforward to accommodate a dimension d ¼ 2 gluon
operator in a gauge invariant fashion. It is achieved by
adding the term 1

2
m2Ah;a

μ Ah;a
μ to the action. This term takes

into account the nonperturbative formation of a dimension
two gluon condensate [51–55] which is responsible for the
infrared saturation of the gluon propagator, a behavior
emerged in different continuum approaches [56–62] and
observed in lattice simulations [63–66]. In particular, in
Landau gauge, where Ah

μ ¼ Aμ, this gauge invariant
massive term will reduce to the massive extension of
Yang-Mills theory, known as Curci-Ferrari model, which
has recently been proved very successful in reproducing
lattice results for the correlation functions [67,68]. Since we
are merely interested in reproducing the correct gauge
covariance of the gluon propagator at a perturbative level
for now, we will not dwell on the effects of this massive
operator.
It is noteworthy that, whether the massive

operator is included or not, action (1) defines a quantum
theory which is renormalizable to all orders in perturbation
theory [48,49,69]. It is quite remarkable given the infinite
number of interactions present. For this fundamental prop-
erty to hold, the transversality of the field Ah

μ is the key
factor which distinguishes this formulation from the
original nonpower counting renormalizable Stueckelberg
action [70].

III. LANDAU-KHALATNIKOV-FRADKIN
TRANSFORMATIONS

Although the addition of Sh to the classical
action does not change the physical content of the theory
and appears to present a pointless complication, the
introduction of the gauge invariant field Ah

μ makes it
straightforward to derive the gauge covariance of the
correlation functions (see [41] for an alternative derivation
based on functional integration). In fact, we can define the
corresponding gauge invariant operators for the fermion
fields1We thank Urko Reinosa for discussion on this point.
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ψh ¼ h†ψ ; ψ̄h ¼ ψ̄h;

⇒ ðψhÞU ¼ ðh†ÞUψU ¼ h†UU†ψ ¼ ψh; ðψ̄hÞU ¼ ψ̄h;

ð12Þ

which can be expanded in terms of the Stuckelberg
field ξ as

ðψhÞi¼ψ i− igξaðTaÞijψ j−
g2

2
ξaξbðTaÞikðTbÞkjψ jþOðξ3Þ:

ð13Þ

Combining these gauge invariant fields, one can derive the
LKFTs for the correlation function of an arbitrary product of
gauge and fermion fields. The crucial point is that the
correlation function of a product of gauge invariant (and
therefore BRST invariant) operators Ah

μ and ψh does not
dependon thegaugeparameter [48,49,71].Therefore,wehave

hAh
μ1ðx1Þ…Ah

μnðxnÞψ̄hðy1Þψhðz1Þ…ψ̄hðymÞψhðzmÞiα
¼ hAh

μ1ðx1Þ…Ah
μnðxnÞψ̄hðy1Þψhðz1Þ…ψ̄hðymÞψhðzmÞiα0 ;

ð14Þ
where the subscript α (α0) refers to the value of the gauge
parameter used to evaluate the correlation function. If one now
sets α0 ¼ 0 (Landau gauge), the right-hand side of (14)
reduces to the correlation function under interest of the usual
elementary fields, since in this particular gauge the
Stueckelberg field ξ is forced tobe zeroon-shell [71], implying
Ah
μ ¼ Aμ and ψhðψ̄hÞ ¼ ψðψ̄Þ. This can also be observed by

looking at the form of the Stueckelberg propagator [see below,
hξðpÞξð−pÞi ¼ α

p4], which vanishes in the Landau gauge.

The left-hand side of (14), on the other hand, can be
expanded using (10) for Ah and the corresponding series for
ψh and ψ̄h in terms of the Stueckelberg field. Therefore,
one can formally write the identity

hAμ1ðx1Þ…AμnðxnÞψ̄ðy1Þψðz1Þ…ψ̄ðymÞψðzmÞiα
¼ hAμ1ðx1Þ…AμnðxnÞψ̄ðy1Þψðz1Þ…ψ̄ðymÞψðzmÞiα¼0 −Rαðx1;…; xn; y1;…; ym; z1;…; zmÞ; ð15Þ

where Rαðx1;…; xn; y1;…; ym; z1;…; zmÞ stands for the
remaining expression coming from the expansion of the gauge
invariant fields. It represents an infinite series of correlation
functions of composite operators, which in principle can be
evaluated, at least in perturbation theory at any fixed order,
using the propagators andvertices derived fromaction (1)with
an arbitrary value α for the gauge-fixing parameter.

A. Feynman rules

In order to carry out an actual evaluation of a relatively
simple LKFT (see section below), we need to derive the
Feynman rules for the propagators and vertices. The expres-
sions for the tree-level propagators, which are the elements of
the inverse of the quadratic part of the classical action, were
given in [69]. The nonvanishing ones are given by

hAa
μðpÞAb

νð−pÞi0¼
1

p2

�
δμνþðα−1Þpμpν

p2

�
δab;

hAa
μðpÞbbð−pÞi0¼

pμ

p2
δab;

hAa
μðpÞξbð−pÞi0¼−iα

pμ

p4
δab;

hbaðpÞξbð−pÞi0¼
i
p2

δab;

hξaðpÞξbð−pÞi0¼
α

p4
δab;

hξaðpÞτbð−pÞi0¼hc̄aðpÞcbð−pÞi0
¼hη̄aðpÞηbð−pÞi0¼

1

p2
δab; ð16Þ

where the mixing fields propagators result from the fact that
the quadratic part in the action is not diagonal. The auxiliary
field ba, despite appearing in mixing propagators, does not
show up in loop diagrams, since its own propagator vanishes
in any gauge and it does not interact with any other field.
Note that in [69], besides including the massive gluon

parameter which enters the transverse part of the gluon
propagator and yields a nonvanishing expression for the τ
field propagator, an additional dimensional gauge-fixing
parameter μ is introduced in a BRST-exact fashion. It is
conveniently used in order to regularize the potentially
dangerous infrared divergences originated, in four dimen-
sions, by the dipole ghostlike propagator of the dimension-
less Stueckelberg field. This extra unphysical scale (see
[46] for a different infrared regularization) enters in the
propagators given in (16) and adds a nonvanishing expres-
sion for hAa

μðpÞτbð−pÞi to that list.
For the evaluation of the one-loop LKFT for the gluon

propagator, we set this infrared regularizing parameter to
zero in order to simplify the calculations. Additionally, the
absence ofmassive parameters allows us to evaluate the one-
loop integrals with ease in arbitrary spacetime dimensions.
The employment of dimensional regularization indeed
generates some spurious infrared divergences in the inter-
mediate steps but they eventually cancel out in the final
result. We stress that the same calculation has been per-
formed by also including the regularizing parameter μ, and
the same result, in D ¼ 4 dimensions, has been obtained
once μ is set to zero in the final expression. Said otherwise,
there is no need for an infrared regularization/renormaliza-
tion in our calculation.
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In order to obtain the LKFT for the gluon propagator at
the one-loop level, we need to keep terms up toOðg2Þ in the
expansion of Ah

μ in (10) and derive Feynman rules for the
those tree-level vertices which add to the usual vertices of

QCD arising from the action Sh in (1). These have been
obtained using theMathematica package FeynRules [72], and
are given by (a total momentum conservation is implicitly
understood)

hAa
μðpÞτbðqÞξcðkÞi0 ¼ −igfabcqμ;

hτaðpÞξbðqÞξcðkÞi0 ¼
g
2
fabcp · ðk − qÞ;

hη̄aðpÞηbðqÞAc
μðkÞi0 ¼ igfabcpμ;

hη̄aðpÞηbðqÞξcðkÞi0 ¼ −gfabcp · k;

hAa
μðpÞτbðqÞξcðkÞξdðlÞi0 ¼ i

g2

2
qμðfadefebc þ facefebdÞ;

hτaðpÞξbðqÞξcðkÞξdðlÞi0 ¼
g2

6
½fadefebcp · ðk − qÞ þ facefebdp · ðl − qÞ þ fabefecdp · ðl − kÞ�: ð17Þ

IV. LKFT FOR THE GLUON PROPAGATOR

The transformation (15) for the case of 2-point gauge fields, where the remaining part is obtained by expanding Ah
μ up to

Oðg2Þ, reads

hAa
μðxÞAb

νðyÞiα ¼ hAa
μðxÞAb

νðyÞiα¼0 þ 2hAa
μðxÞ∂νξ

bðyÞiα − h∂μξ
aðxÞ∂νξ

bðyÞiα
þ 2gfbcdhAa

μðxÞAc
νðyÞξdðyÞiα − 2gfbcdh∂μξ

aðxÞAc
νðyÞξdðyÞiα

− g2facefbdfhAc
μðxÞξeðxÞAd

νðyÞξfðyÞiα þ gfbcdhAa
μðxÞξcðyÞDde

ν ξeðyÞiα
− gfbcdh∂μξ

aðxÞξcðyÞDde
ν ξeðyÞiα − g2facefbdfhAcðxÞξeðxÞξdðyÞ∂νξ

fðyÞiα
−
g2

4
facefbdfhξcðxÞ∂μξ

eðxÞξdðyÞ∂νξ
fðyÞiα þ

g2

3
fbcefedfhAa

μðxÞξcðyÞξdðyÞ∂νξ
fðyÞiα

−
g2

3
fbcefedfh∂μξ

aðxÞξcðyÞξdðyÞ∂νξ
fðyÞiα þOðg3Þ; ð18Þ

where the symmetry under the interchange a ↔ b,
μ ↔ ν, x ↔ y has been employed [e.g., hAa

μðxÞ∂νξ
bðyÞi ¼

h∂μξ
aðxÞAb

νðyÞi]. The last two terms in the first line
of (18), evaluated at zeroth order, yield the longitudinal
part of the gluon propagator at tree level. In fact, Fourier
transforming to momentum space (∂μ → −ipμ) and sub-
stituting the Feynman rules given in (16) for the Aμ-ξ and ξ
correlation functions, we readily see that these two terms
add up to αpμpν=p4. Note that in the Abelian case this
represents the whole content of the LKFT, since all the
other terms in (18) vanish and there are no quantum
corrections beyond tree level for the terms in the first line.
It is due to the fact that there are no interactions among the
extra fields, as it is easily seen setting the structure
constants to zero. Though the LKFT for the photon
propagator is rather trivial, it encodes the fundamental
property of gauge independence of the vacuum polari-
zation, which is related to the physical character of
the effective electric charge, and the nondressing of
the unphysical longitudinal part of the propagator. This

conclusion can also be inferred from the Ward identity. The
longitudinal part remains undressed in the non-Abelian
case. However, the transverse part acquires a nontrivial
dependence on the gauge parameter which we obtain by the
explicit evaluation of the correlation functions in (18) to
Oðg2Þ.
The corresponding Feynman diagrams have been gen-

erated by implementing the model with FeynArts [73],2

and evaluated using the reduction routine of FeynCalc

[74]. The automatization of the calculation is in order,
due to the proliferation of diagrams expected from the
presence of the mixing propagators and extra vertices.
The correlation functions below the first line in (18) are

expectation values of composite operators. They include at
least two fields evaluated at the same point. The practical way
to calculate the corresponding Feynman diagrams is to

2We are specially grateful to Thomas Hahn for fixing a bug
concerning the generation of diagrams involving mixing scalar
propagators.
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introduce external sources attached to these composite oper-
ators and then evaluate the 2-point correlation functions
involving one (or more) extra source which takes care of
inserting the corresponding composite operator. Therefore, to
the classical action, we add a term that includes three external
sources attached to the three composite operators which
appear in the expansionofAh

μ (10) up toOðg2Þ consideredhere

SJ ¼ −
Z

dDx

�
gfabcξbAc

μJ
1;a
μ −

g
2
fabcξbDcd

μ ξdJ2;aμ

−
g2

3!
fabdfdceξbξc∂μξ

eJ3;aμ

�
: ð19Þ

It yields additional vertices with the following Feynman rules:

FIG. 1. Transverse parts of different correlation functions that enter the LKFT of the gluon propagator [see Eq. (18)] at the one-loop
level in D spacetime dimensions.
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hJ1;aμ ðpÞAb
νðqÞξcðkÞi0 ¼ −gfabcδμν;

hJ2;aμ ðpÞξbðqÞξcðkÞi0 ¼ i
g
2
fabcðkμ − qμÞ;

hJ2;aμ ðpÞAb
νðqÞξcðkÞξdðlÞi0 ¼ −

g2

2
ðfacefbde þ fadefbceÞ

× δμν;

hJ3;aμ ðpÞξbðqÞξcðkÞξdðlÞi0 ¼ i
g2

6
½fadefbceðkμ − qμÞ

þ facefbdeðlμ − qμÞ
þ fabefcdeðlμ − kμÞ�: ð20Þ

In order to illustrate the details of the computation, we focus
exclusively on the nontrivial transverse part of the LKFT. We
leave the discussion of the longer longitudinal part to the
Appendix, where it is found that these contributions sum up to
zero beyond tree level, as dictated by the Ward identity. This
serves as an important consistency check on both methodol-
ogy and explicit computation.
The transverse part involves considerably fewer dia-

grams than the longitudinal one. It owes itself to the fact
that the external mixing scalar-vector propagators, being

proportional to the external momentum, do not show up.
Moreover, the correlation functions in (18) involving a
derivative of an elementary field, like the ones in the first
line, also contribute only to the longitudinal part once
Fourier transformed. However, note that if a derivative is
part of a composite operator, that correlation function can
yield transverse contributions, since, once Fourier trans-
formed, the derivative translates to a loop momentum
instead of an external one.
We also stress that at the one-loop level the new ghost

fields do not appear in the transverse part of the LKFT,
while they play an important role in canceling longitudinal
contributions (see Appendix).
In Fig. 1, we show the Feynman diagrams and their

corresponding expressions in D spacetime Euclidean
dimensions which contribute to the transverse part of
the correlation functions in (18) at the one-loop level.
The upper symbol ⊥ on the correlation functions stands
for the transverse part, meaning that their expressions
have been contracted with ðδμν − pμpν=p2Þ=ðD − 1Þ.
Putting all the pieces together, the final result for the
LKFT of the gluon propagator in momentum space is3

hAa
μðpÞAb

νð−pÞiα ¼ hAa
μðpÞAb

νð−pÞiα¼0 þ α
pμpν

p4
δab −

�
δμν −

pμpν

p2

�
δab

g2CA

ð4πÞD=2 p
D−6

×
αðαðD − 4Þ þ 6D − 20ÞΓ2ðD=2ÞΓð2 −D=2Þ

2ðD − 2ÞΓðD − 1Þ : ð21Þ

It coincides with the known result obtained from a direct
evaluation in a generic linear covariant gauge (see for
instance [75]) in the usual formalism of QCD.

V. NIELSEN IDENTITIES

We recall here that the Nielsen identities [76] can also be
used to derive an explicit relationship of the variation of any
Green function under a gauge parameter change, see also
[77,78]. Therefore, we expect the LKFTs and the Nielsen
identities to have common grounds and origins. We
uncloak this overlap by employing the Slavnov-Taylor
identity, which itself expresses the BRST invariance of the
underlying theory. For the record, in [79] the problem of the
gauge dependence of 1PI correlators has been approached
via a canonical transformation explicitly solving the
extended Slavnov-Taylor identity.

A. BRST invariance and its extended version

The action given in (1) enjoys exact BRST nilpotent
symmetry, sS ¼ 0, with

sAa
μ ¼ −Dab

μ cb;

sψ i ¼ −igcaðTaÞijψ j;

sψ̄ i ¼ igcaψ̄ jðTaÞji;
sca ¼ g

2
fabccbcc;

sc̄a ¼ iba;

sba ¼ 0;

sτa ¼ 0;

sη̄a ¼ sηa ¼ 0: ð22Þ

The BRST operator s is nilpotent, i.e.,

s2 ¼ 0: ð23Þ

3Here we have used the result, proved in the Appendix,
that all the longitudinal contributions cancel out beyond the tree
level.
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B. Extended BRST invariance

One notices that the Faddeev-Popov gauge fixing term,
Eq. (3), can be rewritten as an exact BRST variation,
namely

SFP ¼
Z

d4xs

�
c̄a∂μAa

μ − i
α

2
c̄aba

�
: ð24Þ

This important property has allowed the authors [80] to
extend the variation of the operator s on the gauge
parameter α itself, by keeping nilpotency, exact BRST
invariance and renormalizability, namely

sα ¼ χ; sχ ¼ 0; s2 ¼ 0; ð25Þ
where χ is a Grassmann parameter with ghost number 1,
which is to be set to zero at the end. Expression (24) now
reads

SFP ¼
Z

d4x

�
iba∂μAa

μ þ
α

2
baba þ c̄a∂μDab

μ cb − i
χ

2
c̄aba

�
:

ð26Þ

Evidently, due to the nilpotent character of the extended
BRST operator, the action S remains BRST invariant.

Nevertheless, as we shall see shortly, the use of the
extended BRST transformation, Eq. (25), will allow us
to derive both LKF transformations and Nielsen identities
from the generating functional of the theory in a very
elegant and powerful way.

C. A generalized Slavnov-Taylor identity

We are now ready to translate the exact BRST invariance
into the functional form of the Slavnov-Taylor identity,
which will enable us to establish useful properties of the
Green functions of the theory. Following the algebraic
setup of [81], we need to introduce a set of external BRST
invariant sources ðΩa

μ; L̄i;Li; La; KaÞ coupled to the non-
linear BRST variations of the fields ðAa

μ;ψ i; ψ̄ i; ca; ξaÞ as
well as the sources ðJ a

μ; T̄ i; T iÞ coupled to the BRST
invariant composite operators ðAha

μ ;ψhi; ψ̄hiÞ, Eq. (5),

sΩa
μ ¼ sLi ¼ sL̄i ¼ sLa ¼ sKa ¼ sJ a

μ ¼ sT̄ i ¼ sT i ¼ 0:

ð27Þ

We shall thus start with the BRST invariant complete action
Σ defined by4

Σ ¼
Z

d4x

�
1

4
ðFa

μνÞ2 þ ψ̄ð=DþmfÞψ þ iba∂μAa
μ þ c̄a∂μDab

μ cb þ α

2
ðbaÞ2 − i

χ

2
c̄aba

þ τa∂μAha
μ þ η̄a∂μDab

μ ðAhÞηb þm2

2
Aha
μ Aha

μ þ J a
μAha

μ þ T̄ iψhi þ T iψ̄hi

−Ωa
μDab

μ cb − igL̄icaðTaÞijψ j þ igLicaðTaÞjiψ̄ j þ g
2
fabcLacbcc þ KagabðξÞcb

�
: ð28Þ

The BRST invariance of the external sources ensures that

sΣ ¼ 0: ð29Þ
Therefore, the complete action Σ obeys the following Slavnov-Taylor identity:

SðΣÞ ¼
Z

d4x

�
δΣ
δΩa

μ

δΣ
δAa

μ
þ δΣ
δL̄i

δΣ
δψ i þ

δΣ
δLi

δΣ
δψ̄ i þ

δΣ
δLa

δΣ
δca

þ iba
δΣ
δc̄a

þ δΣ
δKa

δΣ
δξa

�
þ χ

δΣ
δα

¼ 0: ð30Þ

The all order renormalizability of the action (28) can be established within the algebraic renormalization framework without
any difficulty by repeating the analysis already performed in [82]. We shall thus directly focus on the consequences which
can be derived from the generalized Slavnov-Taylor identity (30). We rewrite it for the generator Γ of the 1PI Green
functions of the theory:

SðΓÞ ¼
Z

d4x

�
δΓ
δΩa

μ

δΓ
δAa

μ
þ δΓ
δL̄i

δΓ
δψ i þ

δΓ
δLi

δΓ
δψ̄ i þ

δΓ
δLa

δΓ
δca

þ iba
δΓ
δc̄a

þ δΓ
δKa

δΓ
δξa

�
þ χ

δΓ
δα

¼ 0: ð31Þ

For later convenience, it is helpful to already perform the Legendre transformation and rewrite the Slavnov-Taylor identity
(31) for the generator of the connected Green function Z½J;Q; μ�

4Where the function gabðξÞ should not be confused with the coupling strength g. The expression for this power series in ξ can be found
in, for instance, [48].
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Z½J;Q; μ� ¼ Γ½Φ;Q; μ� þ
X
i

Z
d4xJðΦÞ

i Φi; ð32Þ

whereby J stands for the standard sources coupled to the
fields of the theory and

Φi ≡ fAμ;ψ ; ψ̄ ; b; c; c̄; ξ; τ; η; η̄g;
Q≡ fΩμ; L̄;L; L; K;J μ; T̄ ; T g;
μ≡ fχ; αg: ð33Þ

From expression (32) we have

δΓ
δΦbos

i
¼ −JðΦ

bosÞ
i ;

δZ

δJðΦ
bosÞ

i

¼ Φbos
i ; ð34Þ

for bosonic fields and

δΓ
δΦfer

i
¼ JðΦ

ferÞ
i ;

δZ

δJðΦ
ferÞ

i

¼ Φfer
i ; ð35Þ

for the fermionic ones. Also

δΓ
δQ

¼ δZ
δQ

;
∂Γ
∂μ ¼ ∂Z

∂μ : ð36Þ

When written in terms of the generating functional
Z½J;Q; μ�, the previous identity, Eq. (31), takes the form:

Z
d4z

�
−JðA

aÞ
μ ðzÞ δZ

δΩa
μðzÞ

− Jðψ iÞðzÞ δZ

δL̄iðzÞ
− Jðψ̄ iÞðzÞ δZ

δLiðzÞ þ JðcaÞðzÞ δZ
δLaðzÞ

þ iJðc̄aÞðzÞ δZ

δJðbaÞðzÞ − JðξaÞðzÞ δZ
δKaðzÞ

�
þ χ

∂Z
∂α ¼ 0:

ð37Þ

We are now ready to exploit Eq. (37) at the level of the
Green functions of the theory.
As we shall see, the identity (37) succinctly encodes both

LKF transformations and Nielsen identities.

D. Derivation of the LKF transformations

In order to derive the LKF transformations for the
connected correlation functions of n gluon fields and m
pairs of fermion and antifermion fields, we act on the
identity (37) with the test operator

∂
∂χ

δ

δJ a1
μ1ðx1Þ

� � � δ

δJ an
μnðxnÞ

δ2

δT i1ðy1ÞδT̄ j1ðz1Þ
� � � δ2

δT imðymÞδT̄ jmðzmÞ
; ð38Þ

and set all sources ðJ;QÞ and the parameter χ equal to zero at the very end. We thus arrive at the result

∂
∂α hA

ha1
μ1 ðx1Þ…Ahan

μn ðxnÞψ̄hi1ðy1Þψhj1ðz1Þ…ψ̄himðymÞψhjmðzmÞi ¼ 0; ð39Þ

expressing the gauge parameter α independence of the BRST invariant Green function

hAha1
μ1 ðx1Þ…Ahan

μn ðxnÞψ̄hi1ðy1Þψhj1ðz1Þ…ψ̄himðymÞψhjmðzmÞi:

From Eq. (39), we immediately deduce

hAha1
μ1 ðx1Þ…Ahan

μn ðxnÞψ̄hi1ðy1Þψhj1ðz1Þ…ψ̄himðymÞψhjmðzmÞiα
¼ hAha1

μ1 ðx1Þ…Ahan
μn ðxnÞψ̄hi1ðy1Þψhj1ðz1Þ…ψ̄himðymÞψhjmðzmÞiα¼0

¼ hAha1
μ1 ðx1Þ…Ahan

μn ðxnÞψ̄hi1ðy1Þψhj1ðz1Þ…ψ̄himðymÞψhjmðzmÞiLandau: ð40Þ

Let us also remind ourselves that, in the Landau gauge, the Stueckelberg field ξa enjoys the important property of being
completely decoupled from the theory, as one can directly realize from its propagator, hξðpÞξð−pÞi ¼ α

p4, which vanishes
when α ¼ 0. As a consequence, Eq. (40), takes the simpler form

hAha1
μ1 ðx1Þ…Ahan

μn ðxnÞψ̄hi1ðy1Þψhj1ðz1Þ…ψ̄himðymÞψhjmðzmÞiα
¼ hAa1

μ1ðx1Þ…Aan
μnðxnÞψ̄ i1ðy1Þψ j1ðz1Þ…ψ̄ imðymÞψ jmðzmÞiLandau; ð41Þ

where hAa1
μ1ðx1Þ…Aan

μnðxnÞψ̄ i1ðy1Þψ j1ðz1Þ…ψ̄ imðymÞψ jmðzmÞiLandau stands for the ðnþ 2mÞ-point connected correlation
function in the Landau gauge. Expanding the composite fields ðAh

μ;ψh; ψ̄hÞ in powers of ξa, Eq. (10), (13), one arrives at
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hAha1
μ1 ðx1Þ…Ahan

μn ðxnÞψ̄hi1ðy1Þψhj1ðz1Þ…ψ̄himðymÞψhjmðzmÞiα
¼ hAa1

μ1ðx1Þ…Aan
μnðxnÞψ̄ i1ðy1Þψ j1ðz1Þ…ψ̄ imðymÞψ jmðzmÞiα þRαðx1;…; xn; y1;…; ym; z1;…; zmÞ; ð42Þ

where Rαðx1;…; xn; y1;…; ym; z1;…; zmÞ collects all higher order perturbative contributions coming from the interaction
vertices of action (1); see [41] for the example of the two-point gauge correlation function.
Finally, we have

hAa1
μ1ðx1Þ…Aan

μnðxnÞψ̄ i1ðy1Þψ j1ðz1Þ…ψ̄ imðymÞψ jmðzmÞiα
¼ hAa1

μ1ðx1Þ…Aan
μnðxnÞψ̄ i1ðy1Þψ j1ðz1Þ…ψ̄ imðymÞψ jmðzmÞiLandau −Rαðx1;…; xn; y1;…; ym; z1;…; zmÞ; ð43Þ

expressing the non-Abelian LKF transformations recently obtained in [41] in a compact form.

E. The Nielsen identities

Let us now proceed by showing that the same identity, Eq. (37), also enables us to derive the Nielsen identities of the
ðnþ 2mÞ-point correlation function. To that end, we let the following test operator act on Eq. (37)

∂
∂χ

δ

δJA
a1

μ1 ðx1Þ
� � � δ

δJA
an

μn ðxnÞ
δ2

δJψ̄
i1 ðy1ÞδJψ j1 ðz1Þ

� � � δ2

δJψ̄
im ðymÞδJψ jm ðzmÞ

; ð44Þ

and set all sources ðJ;QÞ and the parameter χ equal to zero. We thus get (note that we omit the spacetime arguments in the
functional derivatives of the right-hand side)5

∂
∂α hA

a1
μ1ðx1Þ…Aan

μnðxnÞψ̄ i1ðy1Þψ j1ðz1Þ…ψ̄ imðymÞψ jmðzmÞi

¼
Xn
k¼1

∂
∂χ

δ

δJA
a1

μ1

� � �
δ

δJA
ak

μk
� � � δ

δJA
an

μn

δ2

δJψ̄
i1 δJψ

j1
� � � δ2

δJψ̄
im δJψ

jm

δZ
δΩak

μk

þ
Xm
k¼1

∂
∂χ

δ

δJA
a1

μ1

� � � δ

δJA
an

μn

δ2

δJψ̄
i1 δJψ

j1
� � � δ2

δJψ̄
ik δJψ

jk
� � � δ2

δJψ̄
im δJψ

jm

δ2Z

δJψ̄
ik δL̄jk

þ
Xm
k¼1

∂
∂χ

δ

δJA
a1

μ1

� � � δ

δJA
an

μn

δ2

δJψ̄
i1 δJψ

j1
� � � δ2

δJψ̄
ik δJψ

jk
� � � δ2

δJψ̄
im δJψ

jm

δ2Z

δLikδJψ
jk
; ð45Þ

namely

∂
∂α hA

a1
μ1ðx1Þ…Aan

μnðxnÞψ̄ i1ðy1Þψ j1ðz1Þ…ψ̄ imðymÞψ jmðzmÞi

¼
Xn
k¼1

hAa1
μ1ðx1Þ…

�
i
2

Z
d4zc̄pðzÞbpðzÞ

�
Dakb

μk ckðxkÞ…Aan
μnðxnÞψ̄ i1ðy1Þψ j1ðz1Þ…ψ̄ imðymÞψ jmðzmÞi

þ
Xm
k¼1

hAa1
μi ðx1Þ � � �Aan

μnðxnÞψ̄ i1ðy1Þψ j1ðz1Þ…
�
i
2

Z
d4zc̄pðzÞbpðzÞ

�

× ½−igψ̄ ikðykÞðTaÞjklψ lðzkÞcaðzkÞ�…ψ̄ imðymÞψ jmðzmÞi

þ
Xm
k¼1

hAa1
μi ðx1Þ � � �Aan

μnðxnÞψ̄ i1ðy1Þψ j1ðz1Þ…
�
i
2

Z
d4zc̄pðzÞbpðzÞ

�

× ½igc̄aðykÞψ̄ lðykÞðTaÞlikψ jkðzkÞ�…ψ̄ imðymÞψ jmðzmÞi: ð46Þ

For instance, in the case of the two-point gluon correlation function, Eq. (46) yields the known result

5The notation Ji means that the term is not included in the product.
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∂
∂α hA

a
μðpÞAb

νð−pÞi ¼ δab
pμpν

p4
ð47Þ

at the first order. In the Abelian case, Eq. (47) holds to all
orders, due to the free nature of the ghost fields.

F. Summary and conclusion

First, we explicitly checked the recently derived non-
Abelian LKFTs [41] at one-loop order to reproduce the
correct gauge parameter dependence of the gluon propa-
gator for its transverse as well as longitudinal projections.
We elucidated the role of the extra fields that were
introduced to encode these LKFTs in a local, renormaliz-
able fashion and set up a computational framework based
on FeynArts, FeynCalc and FeynRules. It can readily be gener-
alized to the fermion sector and higher orders. Our
framework provides a mechanism to deal with composite
operators entering the game.
Second, we derived both the LKFTs and the Nielsen

identities from a unique, generalized Slavnov-Taylor iden-
tity, Eq. (37). This shows the equivalence of both trans-
formations, which enables us to keep control of the gauge
parameter dependence of the Green functions of the theory.
Evidently, the final result is the same when evaluated with
both methods.
Let us end this analysis with a few concluding remarks

and potential applications for the future:
(i) When both identities are applied to the gluon

propagator, the pole mass of the transverse compo-
nent of the propagator turns out to be independent of
the gauge parameter, see also [77,78].

(ii) Inclusion of fermion fields is almost immediate and
straightforward. This is due to the possibility of
introducing a gauge invariant spinor field ψh [41].
As in the case of the gluon propagator, both trans-
formations will give rise to the pole mass independ-
ence of the fermion propagator. These results will be
presented elsewhere.

(iii) The differential form of the Nielsen identities,
Eq. (46), suggests that the dependence on the gauge
parameter α could be exponentiated, as we can
explicitly verify in the case of the gluon propagator.
This means that the whole dependence on the gauge
parameter α would be lifted and isolated into an
exponential. Schematically, we would have

hA1…Aniα ¼ eMðαÞhA1…Aniα¼0; ð48Þ

an equation which would be rather useful for non-
perturbative modeling of (higher order) Green func-
tions. A similar equation should also hold for the
LKFT. In future work, we will employ our calcula-
tional scheme to gain access to the quantity MðαÞ,
related to a set of 1PI correlation functions with
insertions of composite operators; see the right-hand

side of (46). The characterization of the exponential
factor MðαÞ could also lead to investigate the
possible existence of some underlying group struc-
ture behind the changes of the gauge parameter.

(iv) We expect that the LKFT/Nielsen identity for the
fermion propagator will help us understand better
the DCSB in the quark sector, maintaining the
complete gauge independence of the chiral conden-
sate (which can be defined via the fermion propa-
gator), as advocated in [21]. QED has this feature as
demonstrated in [12] and explicitly tested for the
chiral symmetry breaking solution in QED3 in the
same article. Recall

hψ̄ψi ¼
Z

dDphψ̄ðpÞψð−pÞi: ð49Þ

Formally, using Lorentz (or Euclidean) invariance,
we may write for the definition of the chiral
condensate

hψ̄ψi≡ hψ̄ðxÞψðxÞi ¼ 1

V

Z
dDxhψ̄ðxÞψðxÞi;

V ¼ spacetime volume: ð50Þ

The final expression of (50) is gauge invariant.
Transformation to Fourier space of it does yield
the above relation (49), which thus also ought to be
gauge invariant. From (49), we obviously have

∂
∂α hψ̄ψi ¼

Z
dDp

∂
∂α hψ̄ðpÞψð−pÞi ð51Þ

and the latter integrand can be controlled explicitly
via the Nielsen identity. As such, we will investigate
whether this integral vanishes or not when
∂αhψ̄ðpÞψð−pÞi is evaluated via the Nielsen iden-
tity. Let us also draw attention to the fact that
hψ̄hψhi ¼ hψ̄ψi.
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APPENDIX: LONGITUDINAL CONTRIBUTIONS

Here we present the expressions for the diagrams
that contribute to the longitudinal part of the LKFT (18)
of the gluon propagator and demonstrate the way they
cancel among each other in order to guarantee the trans-
versality of the gluon self-energy, as dictated by the
corresponding Ward identity. This is a well-known result

in QCD that we need to recover in this framework with extra
auxiliary fields.
We first consider the one-loop contributions arising from

the terms hAa
μðxÞ∂νξ

bðyÞi and h∂μξ
aðxÞ∂νξ

bðyÞi from the
first line in (18), which, transformed into momentum space,
become ipνhAa

μðpÞξbð−pÞi and pμpνhξaðpÞξbð−pÞi,
respectively. They have several contributions, specially
due to the diagrams which can be drawn with different
combinations of external mixing propagators. Let us
consider the one-loop corrections to hAa

μðpÞξbð−pÞi. The
diagrams with external gluon and Stueckelberg propagators
sum up to zero

ðA1Þ

The first two diagrams are scaleless tadpoles, which vanish
in dimensional regularization, while the last two are non-
vanishing and cancel each other out. This cancellation is
attributed to the new ghost fields “eating up” diagrams
which would otherwise contribute to the longitudinal part
of the gauge boson propagator. This result also clearly
shows that there are no contributions to the correlation

function hξaðpÞξbð−pÞi stemming from diagrams with an
external ξ-Aμ mixing propagator or a ξ propagator.
We then consider the contributions to ipνhAa

μðpÞξbð−pÞi
coming from the diagrams with an external gluon propa-
gator and an external τ − ξ propagator. These are given by
the following diagrams6:

ðA2Þ

Without the need of deriving the explicit expression for these diagrams, it is easy to show that these cancel against the
contributions to pμpνhξaðpÞξbð−pÞi coming from the same diagrams but with the external gluon propagator replaced by an
external ξ-Aμ propagator. In fact, if we denote the sum of the diagrams in (A2) with the external propagators amputated by
pμΣAa

μτ
bðpÞ, the expression which contributes to ipνhAa

μðpÞξbð−pÞi is
ipνhAa

μðpÞAc
αð−pÞi0ðpαΣAc

ατ
dðpÞÞhτdð−pÞξbðpÞi0 ¼ iα

pμpν

p2
ΣAa

μτ
bðpÞ; ðA3Þ

where we have substituted the expressions for the tree-level propagators given in (16). On the other hand, the expression
which contributes to pμpνhξaðpÞξbð−pÞi is given by

pμpνhξaðpÞAc
αð−pÞi0ðpαΣAc

ατ
dðpÞÞhτdð−pÞξbðpÞi0 ¼ iα

pμpν

p2
ΣAa

μτ
bðpÞ: ðA4Þ

Hence they exactly cancel out inside the gluon LKFT (18). Note that both the contributions appear twice in (18), on one
hand because there is a factor of 2 multiplying ipνhAa

μðpÞξbð−pÞi, and on the other because there are two topologically
inequivalent sets of diagrams which contribute to pμpνhξaðpÞξbð−pÞi, one with the mixed ξ-Aμ on the left and the mixed
τ-ξ on the right, while the other with the external propagators swapped.

6From now on we will omit all the vanishing scaleless tadpole diagrams.
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Exactly the same argument is in place to show the
cancellation between the expressions for the diagrams with
external Aμ-ξ and τ-ξ propagators which contribute to
ipνhAa

μðpÞξbð−pÞi on one hand, and the diagrams with
external ξ and τ-ξ propagators which contribute to
pμpνhξaðpÞξbð−pÞi on the other. For the former contribu-
tions we have

ipνhAa
μðpÞξcð−pÞi0ðΣξcτdðpÞÞhτdðpÞξbð−pÞi0

¼ α
pμpν

p6
ΣξaτbðpÞ; ðA5Þ

while for the latter ones

pμpνhξaðpÞξcð−pÞi0ðΣξcτdðpÞÞhτdðpÞξbð−pÞi0
¼ α

pμpν

p6
ΣξaτbðpÞ: ðA6Þ

The same exact cancellation does not occur for the
contributions coming from the diagrams with two external
Stueckelberg propagators in hξaðpÞξbð−pÞi because swap-
ping two identical external propagators does not yield
topologically inequivalent diagrams. Fortunately, these
diagrams add up to zero:

ðA7Þ

Again the new ghost fields serve the purpose of cancelling a
loop with internal ξ-τ propagators.
There are also contributions coming from diagrams with

external gluon and Aμ-ξ propagators and with external ξ-Aμ

and Aμ-ξ propagators. The corresponding diagrams with
amputated external propagators are the ones which appear
in the usual QCD gluon self-energy which yield a trans-
verse expression, plus the following extra diagrams, again
involving a loop of ghosts η and a loop of mixed ξ-τ whose
expressions cancel each other out.

ðA8Þ

There are nevertheless contributions to pμpνhξaðpÞξbð−pÞi
which are neither zero nor cancel against corresponding
contributions to ipνhAa

μðpÞξbð−pÞi. These come from
the diagrams with two external ξ-τ propagators, which
have no counterparts with Aμ-τ propagators, because these
propagators are zero in the theory with no explicit infrared
regularizing mass parameter. Taking the longitudinal
part of these contributions [i.e., ðpμpνhξaðpÞξbð−pÞiÞk ¼
p2hξaðpÞξbð−pÞi, where the upper symbol k stands for the
contraction with the longitudinal projector pμpν=p2]
one gets

ðA9Þ

This represents the only nonvanishing contribution to the longitudinal part of the LKFT coming from the first line of (18). It
must be canceled somehow by the correlation functions involving composite operators. Analogous cancellations occur
between diagrams corresponding to hAa

μðpÞObð−pÞik and hð∂μξ
aÞðpÞObð−pÞik, where OðpÞ stands for a composite

operator, and the only contributions that survive, for lack of a counterpart, are the diagrams corresponding to
hð∂μξ

aÞðpÞObð−pÞik with an external ξ-τ propagator. These are derived by evaluating the correlation function between
the mixed field and the external source attached to the corresponding composite operator (see Sec. IV). For instance, the
expression corresponding to gfbcdhð∂μξ

aÞðpÞðAc
νξ

dÞð−pÞik is given by

ðA10Þ
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and the contribution that survives from g
2
fbcdhð∂μξ

aÞðpÞðξcDde
ν ξeÞð−pÞik corresponds to

ðA11Þ

What is left to evaluate are the longitudinal contributions to the correlation functions between composite operators. The
expression for g2facefbdfhðAc

μξ
eÞðpÞðAd

νξ
fÞð−pÞik is given by

ðA12Þ

The expression for g2

2
facefbdfhðAcξeÞðpÞðξd∂νξ

fÞð−pÞik reads as

ðA13Þ

Finally, the last contribution to the longitudinal part comes from g2

4
facefbdfhðξc∂μξ

eÞðpÞðξd∂νξ
fÞð−pÞik and is given by

ðA14Þ

Like the transverse part, there are no contributions of Oðg2Þ to − g2

6
fbcefedfhAa

μðpÞðξcξd∂νξ
fÞð−pÞi, nor

to g2

6
fbcefedfh∂μξ

aðpÞðξcξd∂νξ
fÞð−pÞi.

Adding all the nonzero longitudinal contributions, it is straightforward to see that the final result is zero, as expected [note
that the expressions (A10), (A11) and (A13) have to be multiplied by a factor of 2, because of the duplication of crossing
terms inside the LKFT].
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