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1 Introduction

An essential aspect of gauge theories is that all physical observable quantities have to

be gauge-invariant [1, 2]. However, in practice, the explicit calculations of the S-matrix

elements and corresponding cross sections are done by employing the non-gauge-invariant

elementary fields such as the W bosons and the Higgs field of the electroweak theory, giving

results in quite accurate agreement with experimental ones.
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The success of making use of the non-gauge-invariant elementary fields can be traced

back to the so called Nielsen identities [3–7] which follow from the Slavnov-Taylor identities

encoding the BRST symmetry of quantized gauge theories. The Nielsen identities ensure

that the pole masses of both transverse gauge bosons and Higgs field propagators do not

depend on the gauge parameters entering the gauge fixing condition, a pivotal property

shared by the S-matrix elements. Nevertheless, as one can easily figure out, the use of

the non-gauge-invariant fields has its own limitations which show up in several ways. For

example, the analysis of the spectral properties of the elementary two-point correlation

functions in terms of the Källén-Lehmann ( KL) representation is often plagued by an un-

desired dependence of the spectral densities on the gauge parameters and/or the densities

attaining negative values, obscuring their physical interpretation. Indeed, from e.g. non-

perturbative lattice QCD studies, it is well known that not only direct particle-spectrum

related properties are hiding in the spectral functions, but at finite temperature also in-

formation on transport properties in the quark-gluon plasma etc., see for instance [8–12].

The spectral functions considered are those of gauge-invariant operators. Moreover, it is

also known that in certain classes of gauges, the Nielsen identities can suffer from fatal in-

frared singularities [3, 13, 14], obscuring what happens with e.g. the pole mass or effective

potential governing the Higgs vacuum expectation value in such gauges.

A formulation of the properties of the observable excitations in terms of gauge-invariant

variables is thus very welcome. Such an endeavour has been addressed by several au-

thors1 [17–20], who have been able to construct, out of the elementary fields, a set of local

gauge-invariant composite operators which can effectively implement a gauge-invariant

framework by using the tools of quantum gauge field theories: renormalizability, locality,

Lorentz covariance and BRST exact symmetry.

The aim of this work, which generalizes a previous one [21] devoted to the study of the

analytic properties of the propagators of the non gauge-invariant elementary fields, is that

of discussing the features of two local gauge-invariant operators within the framework of

the U(1) Abelian Higgs model, whose action is specified by

S0 =

∫
d4x

{
1

4
FµνFµν + (Dµϕ)†Dµϕ+

λ

2

(
ϕ†ϕ− v2

2

)2
}
, (1.1)

where the photon field-strength tensor and the covariant derivative are respectively given by

Fµν = ∂µAν − ∂νAµ,
Dµϕ = ∂µϕ+ ieAµϕ (1.2)

and the scalar field may be decomposed to account for the Higgs mechanism as

ϕ =
1√
2

((v + h) + iρ) , (1.3)

with h and ρ denoting, respectively, the Higgs and the Goldstone fields, while v is the classi-

cal minimum of the Higgs potential of eq. (1.1), responsible for the photon mass generation

1See [15, 16] for a general review.
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in this Higgs model. The action S0 is left invariant by the following gauge transformations

δAµ = −∂µω, δϕ = ieωϕ, δϕ† = −ieωϕ†,
δh = −eωρ, δρ = eω(v + h) , (1.4)

where ω is the gauge parameter.

Following [17, 18], we shall consider the two local composite operators O(x) and Vµ(x)

invariant under (1.4), given by

O(x) = 1/2(h2(x) + 2vh(x) + ρ2(x)) = ϕ†(x)ϕ(x)− v2

2
,

Vµ(x) = −iϕ†(x)(Dµϕ)(x) . (1.5)

The relevance of these operators can be understood by using the expansion (1.3) and

retaining the first order terms. For the two-point correlator of the scalar operator one finds

(cf. eq. (2.21) for the full expression):

〈O(x)O(y)〉 ∼ v2〈h(x)h(y)〉tree level +O(~) + 〈O
(
h3;hρ2; ρ4

)
〉 , (1.6)

while the contributions to the vector operator at lowest order in the fields read

Vµ(x) ∼ ev2

2
Aµ(x) + total derivative + higher orders . (1.7)

We see therefore that the gauge-invariant operator O(x) is related to the Higgs excitation,

while Vµ(x) is associated with the photon.

In the sequel, we shall compute the BRST invariant two-point correlation functions

〈O(x)O(y)〉 , 〈Vµ(x)Vν(y)〉 , (1.8)

at one-loop order in the ’t Hooft Rξ-gauge and discuss the differences with respect to

the corresponding one-loop elementary propagators 〈h(x)h(y)〉 and 〈Aµ(x)Aν(y)〉 already

evaluated in [21] .

As expected, both correlation functions of eq. (1.8) turn out to be independent

from the gauge parameter ξ. Moreover, we shall show that the one-loop pole masses of

〈Vµ(x)Vν(y)〉T and 〈O(x)O(y)〉 are exactly the same as those of the elementary propagators

〈Aµ(x)Aν(y)〉T and 〈h(x)h(y)〉, where 〈Aµ(x)Aν(y)〉T stands for the transverse component

of 〈Aµ(x)Aν(y)〉, i.e.

〈Aµ(x)Aν(y)〉T =

(
δµρ −

∂µ∂ρ
∂2

)
〈Aρ(x)Aν(y)〉 . (1.9)

This important feature makes apparent that the operators Vµ(x) and O(x) give a gauge-

invariant picture for the photon and Higgs modes. In addition, the correlation functions

〈Vµ(x)Vν(y)〉T and 〈O(x)O(y)〉 exhibit a spectral KL representation with positive spectral

densities, allowing for a physical interpretation in terms of observable particles. This prop-

erty is in sharp contrast with the one-loop spectral density of the elementary non-gauge-

invariant Higgs propagator 〈h(x)h(y)〉, which displays an explicit dependence on the gauge
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parameter ξ [21]. Moreover, the longitudinal part of the correlator 〈Vµ(x)Vν(y)〉 —which

is independently gauge-invariant— is shown to exhibit the pole mass of the Higgs excita-

tion. This last feature reinforces the consistency of the present description of the physical

degrees of freedom of the theory, since the only physically expected elementary excitations

are indeed the Higgs and the photon ones. Let us also underline that, to our knowledge,

this is the first explicit one-loop calculation of the gauge-invariant correlators (1.8) and of

their analytical properties in Higgs-like models.

This work is organized as follows. In section 2.1, we give a short review of the U(1)

Abelian Higgs model and of its quantization in the Rξ-gauge. Then, we compute at one-

loop order the two-point functions: for the elementary fields in 2.2 and for the composite

operators in 2.3. We pay attention on how to partially resum contributions to the con-

nected propagator. This is of particular relevance when considering a composite operator

propagator, where the standard connection of the 1PI self-energy being the inverse con-

nected propagator is lost. In section 3.1, we present an overview of the techniques employed

in [21] to obtain the spectral function up to first order in ~. In section 3.2 we review, for

the benefit of the reader, the results for the spectral functions of the propagators of the

elementary fields [21]. In section 3.3, we provide the detailed analysis of the computation of

the gauge-invariant correlators (1.8) and compare them with the corresponding correlators

of the elementary fields. We connect the subtracted spectral KL representations with the

contact terms that can be added to the action in presence of composite operators. The

unitary limit, in which the gauge parameter ξ tends to infinity, is investigated in section 4,

where we also make the connection with the gauge-invariant spectral densities. Section 5

collects our conclusion and outlook. The final appendices contain the derivation of the

Feynman rules and of the one-loop diagrams contributing to (1.8).

2 The gauge-invariant operators Vµ(x) and O(x) in the U(1) Higgs model

In this section, we will follow the steps outlined in [15, 16, 22] to obtain the two-point

functions for the composite gauge-invariant operators (Vµ(x), O(x)) in the Abelian Higgs

model. In 2.1 we shall lay out some of the essential properties of the Abelian Higgs model

quantized in the Rξ-gauge. The cancellation of the gauge parameter ξ will help us to

verify the explicit gauge independence of the correlation functions (1.8). In 2.2 we will

shortly review the expressions of the two-point functions of the elementary fields, obtained

in [21]. In 2.3 we shall compute the two-point function of the two composite gauge-invariant

operators (Vµ(x), O(x)).

2.1 The Abelian Higgs model: some essentials

We start from the U(1) Abelian Higgs classical action as given in eq. (1.1). The parameter

v, corresponding to the minimum of the classical potential present in the starting action,

gives the vacuum expectation value (vev) of the scalar field to zeroth order in ~ , 〈ϕ〉0 = v.

As usual, the Higgs mechanism [23–26] is implemented by expressing the scalar field as an
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expansion around its vev, namely

ϕ =
1√
2

((v + h) + iρ), (2.1)

where the real part h is identified as the Higgs field and ρ is the (unphysical) Goldstone

boson, with 〈ρ〉 = 0. Here we choose to expand around the classical value of the vev,2 so

that 〈h〉 is zero at the classical level, but receives loop corrections.3 The action (1.1) now

becomes

S0 =

∫
d4x

{
1

4
FµνFµν +

1

2
∂µh∂µh+

1

2
∂µρ∂µρ− e ρ ∂µhAµ + e (h+ v)Aµ∂µρ

+
1

2
e2Aµ[(h+ v)2 + ρ2]Aµ +

1

8
λ(h2 + 2hv + ρ2)2

}
(2.2)

and we notice that both the gauge field and the Higgs field have acquired the following

masses

m2 = e2v2, m2
h = λv2. (2.3)

With this parametrization, the Higgs coupling λ and the parameter v can be fixed in terms

of m, mh and e, whose values will be suitably chosen later on in the text.

2.1.1 Gauge fixing

Quantization of the theory (2.2) requires a proper gauge fixing. We shall employ the gauge

fixing term

Sgf =

∫
d4x

{
1

2ξ
(∂µAµ + ξmρ)2

}
, (2.4)

known as the ’t Hooft or Rξ-gauge, which has the pleasant property of cancelling the

mixed term
∫
d4x(ev Aµ∂µρ) in the expression (2.2). Of course, (2.4) breaks the gauge

invariance of the action. As is well known, the latter is replaced by the BRST invariance.

In fact, introducing the FP ghost fields c̄, c as well as the auxiliary field b, for the BRST

transformations we have

sAµ = −∂µc, sc = 0, sϕ = iecϕ, sϕ† = −iecϕ†,
sh = −ecρ, sρ = ec(v + h), sc̄ = ib, sb = 0. (2.5)

Importantly, the operator s is nilpotent, i.e. s2 = 0, allowing to work with the so-called

BRST cohomology [27], a useful concept to prove unitarity and renormalizability of the

2In principle, a non-perturbative gauge-invariant setup implies that 〈ϕ〉 = 0, so that this expansion with

〈ϕ〉 6= 0 is only well-defined in the gauge fixed framework that will be described in the next subsection. As

is well-known the gauge fixed description of the Higgs mechanism is a successful approach to perturbative

calculations in the continuum as the one pursued in the current work. For a more thorough discussion on

gauge invariance and the Higgs mechanism, the reader is referred to [19, 20].
3There is of course an equivalent procedure of fixing 〈h〉 to zero at all orders, by expanding ϕ around

the full vev: ϕ = 1√
2
((〈ϕ〉+ h) + iρ). See [21] for details.
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Abelian Higgs model [28–30], see also [31]. We can now introduce the gauge fixing in a

BRST invariant way via

Sgf = s

∫
ddx

{
−i ξ

2
c̄b+ c̄(∂µAµ + ξmρ)

}
,

=

∫
ddx

{
ξ

2
b2 + ib∂µAµ + ibξmρ+ c̄∂2c− ξm2c̄c− ξmec̄hc

}
. (2.6)

Notice that the ghosts (c̄, c) get a gauge parameter-dependent mass, while interacting

directly with the Higgs field.

The total gauge fixed BRST-invariant action then becomes

S=S0+Sgf =

∫
d4x

{
1

4
FµνFµν+

1

2
∂µh∂µh+

1

2
∂µρ∂µρ−eρ∂µhAµ+ehAµ∂µρ+

1

2
m2AµAµ

+
1

2
e2Aµ[h2+2vh+ρ2]Aµ+

1

8
λ(h2+ρ2)(h2+ρ2+4hv)+

1

2
m2
hh

2+mAµ∂µρ+
ξ

2
b2+ib∂µAµ

+ibξmρ+c̄(∂2)c−m2ξcc̄−mξec̄ch

}
, (2.7)

with

sS = 0 . (2.8)

In appendix A we collect the propagators and vertices corresponding to the action (2.7)

of the Abelian Higgs model in the Rξ gauge.

Let us end this section by pointing out that the two local operators (Vµ(x), O(x))

belong to the cohomology of the BRST operator [27], i.e.

sVµ(x) = 0 , Vµ(x) 6= s∆µ(x)

sO(x) = 0 , O(x) 6= s∆(x) , (2.9)

for any local quantities (∆µ(x),∆(x)).

2.2 One-loop propagators for the elementary fields

In [21], we studied the spectral properties of the one-loop propagators for the photon

field Aµ(x) and the Higgs field h(x) and evaluated them for d = 4 through dimensional

regularization in the MS-scheme.

For the photon field, the transverse part of the connected propagator GAAµν (p2) up to

order ~ is given in momentum space by

〈Aµ(p)Aν(−p)〉 =
1

p2 +m2
+

1

(p2 +m2)2
ΠAA(p2) +O(~2) (2.10)
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Figure 1. Resummed photon propagator, with all quantities given in units of appropriate powers

of the energy scale µ, for the parameter values e = 1, v = 1µ, λ = 1
5 .

with the self-energy given by

ΠAA(p2) = 2
e2

(4π)2

∫ 1

0
dx

{
p2x(1− x) +m2x

+m2
h(1− x)(1− ln

p2x(1− x) +m2x+m2
h(1− x)

µ2
) +m2

h

(
1− ln

m2
h

µ2

)
+
m4

m2
h

(
1− 3 ln

m2

µ2

)
+ 2m2 ln

p2x(1− x) +m2x+m2
h(1− x)

µ2

}
, (2.11)

and we can resum all one-loop self-energy insertions into the connected propagator via

GTAA(p2) =
1

p2 +m2 −Π(p2)
, (2.12)

shown in figure 1.

For the Higgs field, we find

〈h(p)h(−p)〉 =
1

p2 +m2
h

+
1

(p2 +m2
h)2

Πhh(p2) +O(~2) (2.13)
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with

Πhh(p2) =
1

(4π)2

∫ 1

0
dx

{
e2

[
p2

(
1− ln

m2

µ2
− 2 ln

p2x(1− x) +m2

µ2

)
(2.14)

− p4

2m2
ln
p2x(1− x) +m2

µ2
− 6m2

(
1− ln

m2

µ2
+ ln

p2x(1− x) +m2

µ2

)]
+λ

[
1

2
m2
h

(
−6 + 6 ln

m2
h

µ2
− 9 ln

p2x(1− x) +m2
h

µ2

)]
−
[
ξ(e2p2 + λm2)

(
1− ln

ξm2

µ2

)
−
(
e2 p4

2m2
− λ

m2
h

2

)
ln
p2x(1− x) + ξm2

µ2

]}
.

Before trying to resum the self-energy insertions again, we notice that this resummation is

tacitly assuming that the second term in (2.13) is much smaller than the first term. Then,

we see that eq. (2.13) contains terms of the order of p4

(p2+m2
h)2

ln
p2x(1−x)+m2

h
µ2

, which cannot

be resummed for big values of p. We therefore use the identity

p4 = (p2 +m2
h)2 −m4

h − 2p2m2
h, (2.15)

to rewrite

p4

(p2 +m2
h)2

ln
p2x(1− x) +m2

h

µ2
= ln

p2x(1− x) +m2
h

µ2
− (m4 + 2p2m2)

(p2 +m2)2
ln
p2x(1− x) +m2

h

µ2
.

(2.16)

The underlined term in (2.16) can be safely resummed. We thence rewrite

Πhh(p2)

(p2 +m2
h)2

=
Π̂hh(p2)

(p2 +m2
h)2

+ Chh(p2), (2.17)

with

Π̂hh(p2) =
1

(4π)2

∫ 1

0
dx

{
e2

[
p2

(
1− ln

m2

µ2
− 2 ln

p2x(1− x) +m2

µ2

)
+

(m4
h + 2p2m2

h)

2m2
ln
p2x(1− x) +m2

h

µ2
− 6m2

(
1− ln

m2

µ2
+ ln

p2x(1− x) +m2

µ2

)]
+λ

[
1

2
m2
h

(
−6 + 6 ln

m2
h

µ2
− 9 ln

p2x(1− x) +m2
h

µ2

)]
(2.18)

−
[
ξ(e2p2 + λm2)

(
1− ln

ξm2

µ2

)
+

(
e2 (m4

h + 2p2m2
h)

2m2
+ λ

m2
h

2

)
ln
p2x(1− x) + ξm2

µ2

]}
.

and

Chh(p2) = − e2

2m2(4π)2

∫ 1

0
dx

{
ln

(
p2x(1− x) +m2

h

µ2

)
− ln

(
p2x(1− x) + ξm2

µ2

)}
(2.19)

and the reliable resummed approximation becomes

Ghh(p2) =
1

p2 +m2 − Π̂(p2)
+ Chh(p2), (2.20)

which is shown in figure 2.
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Figure 2. Resummed Higgs propagator, with all quantities given in units of appropriate powers of

the energy scale µ, for the parameter values e = 1, v = 1µ, λ = 1
5 .

For completeness, let us mention here that the integrals over the Feynman parameter

x that appear in the propagators can be done analytically, see appendix B. Since the

transverse component ATµ of the Abelian gauge field is gauge-invariant, it turns out that the

transverse photon propagator is independent from the gauge parameter ξ, while the Higgs

propagator does depend on ξ, in agreement with the Nielsen identities analyzed in [32].

2.3 The correlation functions 〈O(x)O(y)〉 and 〈Vµ(x)Vν(y)〉 at one-loop order

We are now ready to study the two-point correlation functions of the local gauge-invariant

operators (Vµ(x), O(x)). For the correlator of the scalar composite operator we get:

〈O(x)O(y)〉 = v2 〈h(x)h(y)〉+ v 〈h(x)ρ(y)2〉+ v 〈h(x)h(y)2〉+

+
1

4

(
〈h(x)2ρ(y)2〉+ 〈h(x)2h(y)2〉+ 〈ρ(x)2ρ(y)2〉

)
. (2.21)

Individually, the terms in the expansion (2.21) are not gauge-invariant, but their sum is.

We can now analyze the connected diagrams for each term, up to one-loop order, through

the action (2.2). We calculated the one-loop diagrams in appendix C. Looking at the

diagrams in figure 15, we can see that the correlation function 〈O(p)O(−p)〉 will have the

following structure

〈O(p)O(−p)〉1−loop =
Afin(p2) + δAdiv(p2)

(p2 +m2
h)2

+
Bfin(p2) + δBdiv(p2)

(p2 +m2
h)

+Cfin(p2) + δCdiv(p2), (2.22)

– 9 –
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where (Afin, Bfin, Cfin) stand for the finite parts and (δAdiv, δBdiv, δCdiv) for the purely

divergent terms, i.e. the one-loop pole terms in 1
ε obtained by means of the dimensional

regularization (d = 4− ε), namely

δAdiv(p2)
ε→0
=

v2

8π2ε

(
2v2λ2 − e2(p2(−3 + ξ) + v2λξ)

)
,

δBdiv(p2)
ε→0
=

v2(6e4 − λ2 + e2λξ)

8π2ελ
,

δCdiv(p2)
ε→0
=

1

8π2ε
, (2.23)

while

Afin(p2) =
v2

(4π)2

∫ 1

0
dx

{
e2

[
p2

(
1− ln

m2

µ2
−2ln

p2x(1−x)+m2

µ2

)
− p4

2m2
ln
p2x(1−x)+m2

µ2
−6m2

(
1− ln

m2

µ2
+ln

p2x(1−x)+m2

µ2

)]
+λ

[
1

2
m2
h

(
−6+6ln

m2
h

µ2
−9ln

p2x(1−x)+m2
h

µ2

)]
−
[
ξ(e2p2 +λm2)

(
1− ln

ξm2

µ2

)
−
(
e2 p4

2m2
−λ

m2
h

2

)
ln
p2x(1−x)+ξm2

µ2

]}
,

Bfin(p2) =
1

(4π)2m2
h

∫ 1

0
dx

{
−m2ξm2

h ln

(
m2ξ

µ2

)
+m2ξm2

h+m4
h

(
3ln

(
m2
h+p2(1−x)x

µ2

)
+ln

(
m2ξ+p2(1−x)x

µ2

))
−3m4

h ln

(
m2
h

µ2

)
+3m4

h+2m4−6m4 ln

(
m2

µ2

)}
,

Cfin(p2) = − 1

2(4π)2

∫ 1

0
dx

{
ln

(
m2
h+p2(1−x)x

µ2

)
+ln

(
m2ξ+p2(1−x)x

µ2

)}
. (2.24)

The divergent terms (δAdiv, δBdiv, δCdiv) can be eliminated by means of the standard

counterterms as well as by suitable counterterms in the external source part of the action

SJ accounting for the introduction of the composite operator O(x), see [27, 33–36] for a

general account on this topic, i.e.

SJ = S +

∫
d4x

[
(1 + δZ0

div)J(x)O(x) + (1 + δZdiv)
(J(x))2

2

]
, (2.25)

where J(x) is a BRST invariant dimension two source needed to define the generator Zc(J)

of the connected Green function 〈O(x)O(y)〉:

〈O(x)O(y)〉 =
δ2Zc(J)

δJ(x)δJ(y)

∣∣∣∣
J=0

. (2.26)

It is worth emphasizing here that we have the freedom of introducing a pure BRST invariant

contact term in the external source J(x):∫
d4x

α

2
J2(x), (2.27)
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which can be arbitrarily added to the action (2.25). Including such a term in (2.25) will

have the effect of adding a dimensionless constant to GOO = 〈O(p)O(−p)〉, i.e.

GOO(p2)→ GOO(p2) + α. (2.28)

In particular, α can be chosen to be equal to −GOO(0), implying then that the modified

Green’s function

GOO(p2)−GOO(0) (2.29)

will obey a once substracted KL representaion, see section 3 for more details on this.

Inserting the unity

1 = (p2 +m2
h)/(p2 +m2

h) = ((p2 +m2
h)/(p2 +m2

h))2, (2.30)

into the finite part of 〈O(p)O(−p)〉, we write

〈O(p)O(−p)〉fin =
v2

p2 +m2
h

+
~v2

(p2 +m2
h)2

Π(p2) +O(~2) (2.31)

where

ΠOO(p2) =
1

v2

(
(Afin(p2)) + (p2 +m2

h)(Bfin(p2)) + (Cfin(p2))(p2 +m2
h)2
)
,

=
1

32π2v2m2
h

∫ 1

0
dx

{
− 8m2

hm
4 − 2m2p2(m2

h + 6m2) ln

(
m2

µ2

)
+

+m2
h

[
− (p2 − 2m2

h)2 ln

(
m2
h + p2(1− x)x

µ2

)
−(12m4 + 4m2p2 + p4) ln

(
m2 + p2(1− x)x

µ2

)]
+

+2p2(3m4
h +m2

hm
2 + 2m4)− 6m4

hp
2 ln

(
m2
h

µ2

)}
. (2.32)

Since (2.32) contains terms of the order of p4

p2+m2 ln(p2), we follow the steps (2.15)–(2.17)

to find the resummed propagator in the one-loop approximation

GOO(p2) =
v2

p2 +m2
h − Π̂OO(p2)

+ COO(p2) (2.33)

with

Π̂OO(p2) =
1

32π2v2m2
h

∫ 1

0
dx

{
− 8m2

hm
4 − 2m2p2(m2

h + 6m2) ln

(
m2

µ2

)
+

+m2
h

[
3(m4

h + 2m2
hp

2) ln

(
m2
h + p2(1− x)x

µ2

)
−(12m4 + 4m2p2 −m4

h − 2p2m2
h) ln

(
m2 + p2(1− x)x

µ2

)]
+2p2(3m4

h +m2
hm

2 + 2m4)− 6m4
hp

2 ln

(
m2
h

µ2

)}
, (2.34)
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and

COO(p2) = − 1

32π2

∫ 1

0
dx

{
ln

(
m2
h + p2x(1− x)

µ2

)
+ ln

(
m2 + p2x(1− x)

µ2

)}
. (2.35)

It is crucial to stress here that, if we had also resummed COO(p2) into the inverse prop-

agator, we would have encountered an (unphysical) tachyon into the composite operator

propagator, as at some point the exploding large p2-behaviour in COO(p2) would completely

wash out the other “UV tamed” contributions.

The propagator is depicted in figure 3 and we notice that the Green function GOO(p2)

becomes negative for large enough values of the momentum p. As one realizes from expres-

sion (2.33), this feature is due to the growing in the UV region of the logarithms contained

in the term COO(p2), see eq. (2.35). It is worth mentioning that this behaviour is also

present when the parameter v is completely removed from the theory. In fact, setting

v = 0, the action S0 in eq. (1.1), reduces to that of massless scalar QED, namely

S0|v=0 =

∫
d4x

(
F 2
µν

4
+ (Dµϕ)†(Dµϕ) +

λ

2
(ϕ†ϕ)2

)
, (2.36)

with

ϕ|v=0 =
1√
2

(h+ iρ). (2.37)

Of course, when v = 0, the operators O = ϕ†ϕ and Vµ = −iϕ†Dµϕ are still gauge-invariant.

Though, from eqs. (2.34)–(2.35), computing 〈O(p)O(−p)〉v=0, one immediately gets

〈O(p)O(−p)〉v=0 = COO(p2)
∣∣
v=0

= − 1

16π2

∫ 1

0
dx ln

p2x(1− x)

µ2
. (2.38)

This equation precisely shows that the term COO(p2), and thus the negative behaviour for

large enough values of p, is what one usually obtains in a theory for which v = 0, making

evident that the presence of COO(p2) is not peculiarity of the U(1) Higgs model, on the

contrary. However, in addition to the term COO(p2) and unlike massless scalar QED, the

correlation function 〈O(p)O(−p)〉 of the U(1) Higgs model exhibits the term v2

p2+m2
h−Π̂OO

,

which will play a pivotal role. Indeed, as we shall see later on, this term, originating from

the expansion of ϕ around the minimum of the Higgs potential, ϕ = 1√
2
(v + h + iρ), will

enable us to devise a gauge-invariant description of the elementary excitations of the model.

Let us end the analysis of the correlation function GOO(p2) by displaying the behaviour

of its first derivative, ∂GOO(p2)
∂p2

, as well as of the once subtracted correlator GOO(p2) −
GOO(0), see figure 4. The first derivative, as expected, is negative while, unlike GOO(p2),

it decays to zero for p2 → ∞. The quantity ∂GOO(p2)
∂p2

will be helpful when discussing the

spectral representation corresponding to 〈O(p)O(−p)〉.
Then, for the vectorial composite operator Vµ(x), we first observe that

Vµ(x) = −iϕ†(x)(Dµϕ)(x)

= eϕ†(x)Aµ(x)ϕ(x)− 1

2
iϕ†(x)∂µϕ(x) +

1

2
iϕ(x)∂µϕ

†(x)− i∂µO(x), (2.39)
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Figure 3. Resummed propagator for the scalar composite operator. All quantities are given in

units of appropriate powers of the energy scale µ, with the parameter values e = 1, v = 1µ, λ = 1
5 .

5 10 15 20
p

-6

-5

-4

-3

-2

-1

0

GOO(p
2)-GOO(0)

Figure 4. The resummed propagator with a single subtraction. All quantities are given in units

of appropriate powers of the energy scale µ, with the parameter values e = 1, v = 1µ, λ = 1
5 .

and since we know that the last term is gauge-invariant, the first three terms together must

also be. We can thus define a new gauge-invariant operator

V ′µ(x) = eϕ†(x)Aµ(x)ϕ(x)− 1

2
iϕ†(x)∂µϕ(x) +

1

2
iϕ(x)∂µϕ

†(x), (2.40)

expanding the scalar field ϕ(x) we find

V ′µ(x) =
1

2

(
e(v + h(x))2Aµ(x) + eρ2(x)Aµ(x) + (v + h(x))∂µρ(x)− ρ(x)∂µh(x)

)
(2.41)
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Figure 5. The first derivative of the resummed propagator. All quantities are given in units of

appropriate powers of the energy scale µ, with the parameter values e = 1, v = 1µ, λ = 1
5 .

so that

〈V ′µ(x)V ′ν(y)〉
ϕ→ 1√

2
(v+h+iρ)

= −1

4

{
− e2v4〈Aµ(x)Aν(y)〉 − 4e2v3〈h(x)Aµ(x)Aν(y)〉

−2e2v2〈h(x)2Aµ(x)Aν(y)〉 − 4e2v2〈h(x)Aµ(x)h(y)Aν(y)〉
−2e2v2〈ρ(x)2Aµ(x)Aν(y)〉 − 2ev2∂xµ〈h(x)ρ(x)Av(y)〉
+4ev2〈∂xµh(x)ρ(x)Aν(y)〉 − 2ev3∂xµ〈ρ(x)Aν(y)〉
−4ev2∂xµ〈ρ(x)h(y)Av(y)〉 − 2v∂xµ∂

y
ν 〈h(x)ρ(x)ρ(y)〉

+4v∂yν 〈∂xµh(x)ρ(x)ρ(y)〉 − ∂xµ∂yν 〈h(x)ρ(x)h(y)ρ(y)〉

+4〈∂xµh(x)ρ(x)h(y)∂yνρ(y)〉 − v2∂xµ∂
y
ν 〈ρ(x)ρ(y)〉

}
+O(~2), (2.42)

where we have discarded the terms that do not have one-loop contributions. In momentum

space, we can split the two-point function into transverse and longitudinal parts in the

usual way:

〈V ′µ(p)V ′ν(−p)〉 = 〈V ′(p)V ′(−p)〉TPµν + 〈V ′(p)V ′(−p)〉LLµν , (2.43)

where we have introduced the transverse and longitudinal projectors, given respectively by

Pµν(p) = δµν −
pµpν
p2

Lµν(p) =
pµpν
p2

. (2.44)

– 14 –



J
H
E
P
0
2
(
2
0
2
0
)
1
8
8

At tree-level, we find in momentum space

〈V ′µ(p)V ′ν(−p)〉tree = −1

4

(
−e2v4〈Aµ(p)Aν(−p)〉 − v2pµpν〈ρ(p)ρ(−p)〉

)
=

1

4

(
e2v4 1

p2 +m2
Pµν + e2v4 ξ

p2 + ξm2
Lµν + v2 p2

p2 + ξm2
Lµν

)
=
e2v4

4

1

p2 +m2
Pµν + v2Lµν . (2.45)

We can now analyze the connected diagrams for each term, up to one-loop order, through

the action (2.2). We calculated the one-loop diagrams in appendix D. Let us start with

the transverse part. Looking at the diagrams in figure 16, we can see that the one-loop

correlation function will have the following structure

〈V ′(p)V ′(−p)〉T,1−loop
=
AVfin(p2) + δAVdiv(p2)

(p2 +m2)2
+
BV

fin(p2) + δBV
div(p2)

(p2 +m2)

+CVfin(p2) + δCVdiv(p2) (2.46)

where (AVfin, B
V
fin, C

V
fin) stand for the finite parts and (δAVdiv, δB

V
div, δC

V
div) for the purely

divergent terms, i.e. the one-loop pole terms in 1
ε obtained by means of the dimensional

regularization, namely

δAVdiv
ε→0
=

e4v4

2(4π)2ε

(
1

3
p2 − 6

(
e2

λ
− 1

2

)
e2v2 + 3λv2

)
,

δBV
div

ε→0
=

v2

(4π)2ε

(
6
e6v2

λ
− 3e4v2 − e2p2

3
+ 3e2λv2

)
,

δCVdiv
ε→0
=

1

6(4π)2ε
(9e2v2 − p2 − 3λv2) (2.47)

and

AVfin =
e4v4

2(4π)2

∫ 1

0
dx

{
p2x(1−x)+m2x

+m2
h(1−x)(1− ln

p2x(1−x)+m2x+m2
h(1−x)

µ2
)+m2

h

(
1− ln

m2
h

µ2

)
+
m4

m2
h

(
1−3ln

m2

µ2

)
+2m2 ln

p2x(1−x)+m2x+m2
h(1−x)

µ2

}
,

BV
fin =

m2

18m2
hp

2(4π)2

∫ 1

0
dx

{
3m4

h

(
m2
h−m2−7p2

)
ln

(
m2
h

µ2

)
,

−3m2
h

(
2p2
(
m2
h−5m2

)
+
(
m2
h−m2

)2
+p4

)
ln

(
xm2

h+m2(1−x)+p2(1−x)x

µ2

)
−3
(
m3
h−m2mh

)2
+9p2

(
m2m2

h+3m4
h+2m4

)
+2p4m2

h

−3m2
(
m2
h

(
p2−m2

)
+m4

h+18m2p2
)

ln

(
m2

µ2

)}
CVfin =

1

36(4π)2p2

∫ 1

0
dx

{
3m2

(
m2
h−m2 +p2

)
ln

(
m2

µ2

)
+3m2

h

(
−m2

h+m2 +p2
)

ln

(
m2
h

µ2

)
+6m2

h

(
p2−m2

)
−5p2

(
3m2

h−9m2 +p2
)
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+3
(
2m2

h

(
p2−m2

)
+m4

h+m4−10m2p2 +p4
)

ln

(
p2x(1−x)+xm2 +(1−x)m2

h

µ2

)
+3m4

h+3m4−54m2p2 +3p4

}
. (2.48)

The divergent terms (δAVdiv, δB
V
div, δC

V
div) can again be eliminated by means of the standard

counterterms as well as by suitable counterterms in the external source part of the action

SVJ accounting for the introduction of the composite operator V ′µ(x), i.e.

SVJ = S +

∫
d4x

[
(1 + δZV,0div )Jµ(x)Vµ(x) + (1 + δZVdiv)

Jµ(x)Jµ(x)

2

]
, (2.49)

where Jµ(x) is a BRST invariant dimension one source needed to define the generator

Zc(J) of the connected Green function 〈V ′µ(x)V ′ν(y)〉:

〈V ′µ(x)V ′ν(y)〉 =
δ2Zc(J)

δJµ(x)δJν(y)

∣∣∣∣
J=0

, (2.50)

and like in the scalar case, we have the freedom of introducing BRST invariant pure contact

terms in the external source Jµ(x):

∫
d4x

1

2
(βv2 Jµ(x)Jµ(x) + γJµ(x)∂2Jµ(x) + σ(∂µJµ(x))2), (2.51)

which can be arbitrarily added to the action eq. (2.49). Including such terms in (2.49) will

have the effect of adding a first order polynomial in p2 to GTV V (p2) = 〈V ′(p)V ′(−p)〉T , i.e.

GTV V (p2)→ GTV V (p2) + βv2 + γp2, (2.52)

where we notice that the last term in (2.51) does not contribute to the transversal part of

the propagator. In particular, β and γ can be chosen so that (2.52) becomes

GTV V (p2)−GTV V (0)− p2 ∂G
T
V V (p2)

∂p2

∣∣∣∣
p=0

. (2.53)

Eventually, we have a Green’s function that obeys a twice substracted KL representation,

see section 3. Following similar steps as for the scalar composite field, (2.25)–(2.30), we find

〈V ′(p)V ′(−p)〉T =
e2v4

4

1

p2 +m2
+

~e2v4

4

ΠT
V V (p2)

(p2 +m2)2
+O(~2), (2.54)
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with

ΠT
V V (p2) = − 1

9(4π)2e2v4m2
h

∫ 1

0
dx

{
− 18m4(m4

h +m4) + 9m2
hp

4(m2
h +m2)

−3m2
hp

2
[
2p2(m2

h − 5m2) + (m2
h −m2)2 + p4

]
× ln

(
m2
h(1− x) +m2x+ p2(1− x)x

µ2

)
+ 2m2

hp
6

+3m4
h ln

(
m2
h

µ2

)[
p2(m2

h + 11m2) + 6m4 − p4
]

+3m2
[
−m2

hp
4 + p2(−m4

h +m2
hm

2 + 36m4) + 18m6
]

ln

(
m2

µ2

)
−3p2(m6

h + 10m4
hm

2 +m2
hm

4 + 12m6)

}
, (2.55)

and following the steps (2.15)–(2.17), we find

GTV V =
e2v4

4

(
1

p2 +m2 − Π̂T
V V (p2)

)
+ CV V (p2) (2.56)

with

Π̂T
V V (p2) = − 1

9(4π)2e2v4m2
h

∫ 1

0
dx

{
−18m4(m4

h+m4)+9m2
hp

4(m2
h+m2)

−3m2
h

[
2(−2m2p2−m4)(m2

h−5m2)+p2(m2
h−m2)2−2m2p2−m4

]
× ln

(
m2
h(1−x)+m2x+p2(1−x)x

µ2

)
+2m2

hp
6 +3m4

h ln

(
m2
h

µ2

)[
p2(m2

h+11m2)+6m4−p4
]

+3m2
[
−m2

hp
4 +p2(−m4

h+m2
hm

2 +36m4)+18m6
]
ln

(
m2

µ2

)
−3p2(m6

h+10m4
hm

2 +m2
hm

4 +12m6)

}
, (2.57)

and

CV V (p2) =
1

12(4π)2

∫ 1

0
dx

{
(2m2

h + p2) ln

(
m2
h(1− x) +m2x+ p2(1− x)x

µ2

)}
. (2.58)

The resummed propagator (2.56) is depicted in figure 6, as well as the subtracted

version (2.53) in figure 7 and the second derivative in figure 8, which will be important

for the spectral analysis in section 3.

For the longitudinal part of the propagator (see appendix D for details), we find the

divergent part

〈V ′(p)V ′(−p)〉Ldiv
ε→0
= −

v2
(
3e4 + λ2

)
(4π)2λε

(2.59)
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Figure 6. Resummed propagator for the vector composite operator. All quantities are given in

units of appropriate powers of the energy scale µ, with the parameter values e = 1, v = 1µ, λ = 1
5 .
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Figure 7. Resummed propagator with a double subtraction for the vector composite operator. All

quantities are given in units of appropriate powers of the energy scale µ, with the parameter values

e = 1, v = 1µ, λ = 1
5 .
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and the total finite correction up to first order in ~ is given by

〈V ′(p)V ′(−p)〉Lfin = v2 −
(m4

h −m4
h ln

(
m2
h

µ2

)
+m4 − 3m4 ln

(
m2

µ2

)
32π2m2

h

)
. (2.60)

From this expression one sees that, as in the case of the tree level, the one-loop correction

to the longitudinal part of the correlator 〈V ′µ(x)V ′ν(y)〉L
fin

remains independent from the

momentum p2. As such, it is not associated to any physical mode.

3 Spectral properties of the gauge-invariant local operators

(Vµ(x), O(x))

In this section, we will study the spectral properties associated with the correlation func-

tions obtained in the last section. In 3.1, we will shortly review the techniques employed

in [21] to obtain the pole mass, residue and spectral density up to first order in ~. In 3.2.1,

we analyze the spectral properties of the elementary propagators. In 3.3, the spectral

properties of the composite operators (Vµ(x), O(x)) are discussed.

3.1 Obtaining the spectral function

For elementary fields we obtain the spectral density function by comparing the ( Euclidean)

KL spectral representation for the propagator of a generic field Õ(p)

〈Õ(p)Õ(−p)〉 = G(p2) =

∫ ∞
0

dt
ρ(t)

t+ p2
, (3.1)
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where ρ(t) is the spectral density function and G(p2) stands for the resummed propagator

G(p2) =
1

p2 +m2 −Π(p2)
. (3.2)

For higher-dimensional operators, the resummed propagator acquires an overall (dimen-

sionful) factor identical to the one appearing in its tree level result, as we have seen in

section 2.3. We also note that in the case of higher dimensional operators, the spectral

representation, eq. (3.1), might require appropriate subtraction terms in order to ensure a

convergent spectral integral. A standard way to cure this problem is to subtract from G(p2)

the first few (divergent) terms of its Taylor expansion at p = 0 [37], making the integral

more and more convergent. These subtraction terms are directly related to the renormal-

ization of the composite operators, and one can see that the modified Green’s functions for

the composite scalar field (2.29) and for the composite vector field (2.53) are in fact subtrac-

tions of the Taylor series to first and second order, respectively. In our theory we can make

use of the subtracted equations at p = 0 because all fields are massive in the Rξ-gauge, so

there are no divergences at zero momentum. Also, we stress that the spectral function ρ(t)

is not affected by the subtraction procedure as polynomials do not display discontinuities

in the complex p2-plane, whilst the spectral function is proportional to the jump across the

branch cut. Moreover, we can see that these subtractions do not have an influence either

on the (second) derivative of the propagator. For the scalar composite operator

∂(GOO(p2)−GOO(0))

∂p2
=
∂GOO(p2)

∂p2
= −

∫ ∞
0

dt
ρ(t)

(t+ p2)2
, (3.3)

which means that for a positive spectral function, the first derivative of GOO(p2) ought to

be strictly negative, as is indeed confirmed from figure 5. For the vector composite operator

∂2(GV V (p2)−GV V (0)− p2G′V V (0))

(∂p2)2
=
∂2GV V (p2)

(∂p2)2
= 2

∫ ∞
0

dt
ρ(t)

(t+ p2)3
, (3.4)

which should be strictly positive for a positive spectral function, consistent with figure 8.

We can also obtain the spectral function directly in the following way. The pole mass

for any massless or massive field excitation is obtained by calculating the pole of the

resummed propagator, that is, by solving

p2 +m2 −Π(p2) = 0 (3.5)

and its solution defines the pole mass p2 = −m2
pole. As consistency requires us to work up

to a fixed order in perturbation theory, we should solve eq. (3.5) for the pole mass in an

iterative fashion. Therefore, to first order in ~ , we find

m2
pole = m2 −Π1−loop(−m2) +O(~2), (3.6)
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where Π1−loop is the first order, or one-loop, correction to the propagator. Now, we write

eq. (3.2) in a slightly different way, namely

G(p2) =
1

p2 +m2 −Π(p2)

=
1

p2 +m2 −Π1−loop(−m2)− (Π(p2)−Π1−loop(−m2))

=
1

p2 +m2
pole − Π̃(p2)

, (3.7)

where we defined Π̃(p2) = Π(p2) − Π1−loop(−m2). At one-loop, expanding Π̃(p2) around

p2 = −m2
pole = −m2 +O(~) gives the residue

Z = lim
p2→−m2

pole

(p2 +m2
pole)G(p2)

=
1

1− ∂p2Π(p2)|p2=−m2

= 1 + ∂p2Π(p2)|p2=−m2 +O(~2). (3.8)

We now write (3.7) to first order in ~ as

G(p2) =
Z

(p2 +m2
pole − Π̃(p2))Z

=
Z

p2 +m2
pole − Π̃(p2) + (p2 +m2

pole)
∂Π̃(p2)
∂p2
|p2=−m2

=
Z

p2 +m2
pole

+ Z

Π̃(p2)− (p2 +m2
pole)

∂Π̃(p2)
∂p2
|p2=−m2

(p2 +m2
pole)

2

 , (3.9)

where in the last line we used a first-order Taylor expansion so that the propagator has an

isolated pole at p2 = −m2
pole. In (3.1) we can isolate this pole in the same way, by defining

the spectral density function as ρ(t) = Zδ(t−m2
pole) + ρ̃(t), giving

G(p2) =
Z

p2 +m2
pole

+

∫ ∞
0

dt
ρ̃(t)

t+ p2
(3.10)

and we identify the second term in each of the representations (3.9) and (3.10) as the

reduced propagator

G̃(p2) ≡ G(p2)− Z

p2 +m2
pole

, (3.11)

so that

G̃(p2) =

∫ ∞
0

dt
ρ̃(t)

t+ p2
= Z

Π̃(p2)− (p2 +m2
pole)

∂Π̃(p2)
∂p2
|p2=−m2

(p2 +m2
pole)

2

 . (3.12)

Finally, using Cauchy’s integral theorem in complex analysis, we can find the spectral

density ρ̃(t) as a function of G̃(p2), giving

ρ̃(t) =
1

2πi
lim
ε→0+

(
G̃(−t− iε)− G̃(−t+ iε)

)
. (3.13)
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Although we restricted our analysis to first order in ~ in this paper, it should not come

as a surprise the foregoing methodology can be adapted order per order in ~.

3.2 Spectral properties of the elementary fields

We first discuss the spectral properties of the elementary fields: the transverse photon

field ATµ (x) and the scalar Higgs field h(x). For illustrational purposes, for the rest of this

section and the next, we shall write all quantities as a function of the renormalization scale

µ and choose the parameters e = 1, v = 1µ, λ = 1
5 , so that m = 1µ and mh = 1√

5
µ.

For this choice of parameters, all one-loop corrections computed are within 20% of the

tree-level results, indicating that our perturbative approximation is under control.

3.2.1 The transverse photon field

Since in the Abelian case the transverse component of the gauge field ATµ (x) is explicitly

gauge-invariant, the corresponding propagator (2.12) is independent from the gauge pa-

rameter ξ, and so are its pole mass, residue and spectral function. Following the steps from

section 3.1, we find the first-order pole mass of the transverse photon to be

m2
pole = 1.05417µ2 (3.14)

and the first-order residue

Z = 0.984983. (3.15)

These values are small corrections of the tree-level ones, m2 = µ2 and Ztree = 1, so that

the one-loop approximation appears to be consistent.

The spectral function is given in figure 9. We can distinguish a two-particle state

threshold at t = (m + mh)2 = 2.09µ2, and the spectral density function is positive, ade-

quately describing the physical photon excitation.

3.2.2 The Higgs field

For the Higgs fields, following the steps from section 3.1, we find the pole mass to first

order in ~ to be

m2
h,pole = 0.237987µ2 = 1.1899m2

h, (3.16)

for all values of the parameter ξ. This means that while the Higgs propagator (2.14) is

itself gauge dependent, the pole mass is gauge independent. This is in full agreement with

the Nielsen identities of the Abelian U(1) Higgs model studied in [32]. For the residue, we

distinguish three regions:

• ξ < 1
20 = λ

4e2
: for these values mh > 2

√
ξm, which means the Higgs particle is un-

stable and can decay into two Goldstone modes. Of course, this process is physically

impossible because the Goldstone boson itself is not physical. It therefore clearly

demonstrates the unphysical nature of the propagator 〈h(x)h(y)〉. For these values

of ξ, the pole mass is a real number located on the (unphysical) branch cut created

by the two-particle Goldstone state. This means that we cannot even properly define

the derivative of the one-loop correction to obtain the corresponding residue (3.8).
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Figure 9. Spectral function for the transverse part of the reduced photon propagator

〈A(p)A(−p)〉T , with all quantities given in units of appropriate powers of the energy scale µ, for

the parameter values e = 1, v = 1µ, λ = 1
5 .

• ξ ≤ 3: for these values we find Z > 1.

• ξ > 3: for these values we find Z < 1.

In figure 10, we display the spectral density functions for three values of ξ : 2, 3, 5. For small

t, their behaviour is the same, with a two-particle Higgs state at t = (mh +mh)2 = 0.8µ2,

and a two-particle state for the photon field, starting at t = (m + m)2 = 4µ2. Then, we

see that there is a negative contribution, different for each case, at t = (
√
ξm +

√
ξm)2.

This corresponds to the threshold for creation of two (unphysical) Goldstone bosons. This

negative contribution eventually overcomes the other ones, leading to a negative regime

in the spectral function, independently of the value of ξ. This feature is consistent with

the large-momentum behaviour of the Higgs propagator (2.14), for a detailed discussion

see [21]. As one lowers the value of the gauge parameter ξ, this unphysical threshold is

shifted towards lower t’s and may occur for momentum values lower than the physical two-

particle states of two Higgs particles or two photons. As discussed above, for ξ < λ
4e2

even

the one-particle delta peak becomes located within the unphysical Goldstone production

region and the standard interpretation of the spectral properties is completely lost. It is

therefore clear that this correlation function does not display the desired spectral properties

to describe the Higgs mode in this theory, indicating the necessity of resorting to another

operator as we shall do in what follows.
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Figure 10. Spectral function for the reduced Higgs propagator 〈h(p)h(−p)〉, for gauge parameters

ξ = 2 (Green, dotted), ξ = 3 (Yellow, dashed), ξ = 5 (Red, Solid), with all quantities given in units

of appropriate powers of the energy scale µ, for the parameter values e = 1, v = 1µ, λ = 1
5 .

3.3 Spectral properties of the gauge-invariant composite operators Vµ(x) and

O(x)

3.3.1 The scalar composite operator O(x)

For the scalar composite operator O(x) with two-point function given by expression (2.34),

we find the first-order pole mass for our set of parameter values to be

m2
h,pole = 0.213472µ2, (3.17)

which is exactly equal to the pole mass of the elementary Higgs field correlator. Following

the steps from 3.1, we find the first-order residue to correct the tree-level result Ztree = v2

by ∼ 7%:

Z = v2(1 + ∂p2ΠOO(p2)p2=−m2
h
) = 1.06577v2 , (3.18)

while the first-order spectral function is shown in figure 11. Similarly as for the spectral

function of the Higgs field in figure 10, one finds a two-particle threshold for Higgs pair pro-

duction at t = (mh+mh)2 = 0.8µ2, and a two-photon state starting at t = (m+m)2 = 4µ2.

The difference is that for this gauge-invariant correlation function we no longer have the

unphysical Goldstone two-particle state. Due to the absence of this negative contribution,

the spectral function is always positive. Therefore, this quantity is suitable for describing

a physical Higgs excitation spectrum as opposed to the elementary propagator 〈hh〉.
Finally, it is interesting to note that below the unphysical threshold the elementary cor-

relator displays the same qualitative spectral properties as this gauge-invariant approach.

This means that spectral description of the physical Higgs mode could in principle be suc-

cessfully encoded in the elementary propagator in the unitary gauge, in which ξ → ∞
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Figure 11. Spectral function for the reduced propagator of the scalar composite operator,

〈O(p)O(−p)〉, with all quantities given in units of appropriate powers of the energy scale µ, for

the parameter values e = 1, v = 1µ, λ = 1
5 .

and the Goldstone bosons are infinitely heavy. We shall make an explicit comparison in

section 4.

3.3.2 The vector composite operator Vµ(x)

For the transverse vector composite operator V T
µ (x), with our set of parameters we find

the first-order pole mass

m2
pole = 1.05417µ2, (3.19)

which is —as expected from the Nielsen identities— exactly the same as the pole mass of

the transverse photon field correlator (3.14). Furthermore, we find the first-order residue

Z =
e2v4

4
(1 + ∂p2ΠT

V V (p2)p2=−m2) = 1.09332
e2v4

4
, (3.20)

and the first order spectral density for the reduced propagator is displayed in figure 12.

Like the photon spectral density in figure 9, we find a photon-Higgs two-particle state at

t = (mh +m)2 = 2.09µ2, and the spectral density is again positive for all values of t.

4 Unitary gauge limit

It is well-known [1] that for the Higgs model, the unitary gauge represents the “most

physical” gauge, as it decouples the unphysical fields, i.e. the ghost field and the Goldstone

field. The unitary gauge can be formally obtained from the Rξ-gauges by taking ξ → ∞.
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Figure 12. Spectral function for reduced transverse propagator of the vector composite operator

〈V (p)V (−p)〉T , with all quantities given in units of appropriate powers of the energy scale µ, for

the parameter values e = 1, v = 1µ, λ = 1
5 .

However, this gauge is non-renormalizable, as one can see by looking at this limit for the

tree-level propagator of the photon field

〈Aµ(p)Aν(−p)〉tree
ξ→∞

=
1

p2 +m2
Pµν +

1

m2
Lµν . (4.1)

Nonetheless, we can approximate the unitary gauge by taking larger and larger values of ξ.

This is especially interesting when looking at the spectral function of the elementary Higgs

field, which is ξ-dependent. In figure 13 one finds the spectral function for ξ = 1000 for small

and large ranges of t. In figure 14 we show the spectral function of the scalar composite field

O(x) for the same ranges of t. As one can see, the pictures are qualitatively very similar.

This means that when approximating the unitary gauge, the spectral function of the gauge

dependent, elementary field h(x) approximates that of its composite, gauge-invariant coun-

terpart, thereby clearly showing the physical nature of this gauge. It is intuitively clear

why this happens: all unphysical threshold effects related to ghost and Goldstone modes

are pushed to higher and higher energy scale as the gauge parameter ξ grows.

5 Conclusion and outlook

In the present work, following the local gauge-invariant setup of [17–20], we have evaluated

at one-loop order the two-point correlation functions 〈V ′µ(x)V ′ν(y)〉, 〈O(x)O(y)〉 of the two

local gauge-invariant operators V ′µ(x) = −iϕ†(x)Dµϕ(x)+i∂µO(x) and O(x) = ϕ†(x)ϕ(x)−
v2

2 in the U(1) Abelian Higgs model quantized in the Rξ gauge.

Our results can be summarized as follows:

• both 〈V ′µ(x)V ′ν(y)〉 and 〈O(x)O(y)〉 do not depend on the gauge parameter ξ, as

expected;
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Figure 13. Spectral function for the reduced elementary propagator 〈h(p)h(−p)〉 for small values

of t (left) and large values of t (right), with all quantities given in units of appropriate powers of

the energy scale µ, for ξ = 1000 the parameter values e = 1, v = 1µ, λ = 1
5 .
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Figure 14. Spectral function for the reduced composite propagator 〈O(p)O(−p)〉 for small values

of t (left) and large values of t (right), with all quantities given in units of appropriate powers of

the energy scale µ, for the parameter values e = 1, v = 1µ, λ = 1
5 .

• the pole masses of 〈V ′µ(x)V ′ν(y)〉T and 〈O(x)O(y)〉 are exactly the same as those

of the correlation functions of the elementary fields 〈Aµ(x)Aν(y)〉T and 〈h(x)h(y)〉,
respectively, where 〈· · · 〉T stands for the transverse component of the corresponding

propagator;

• the Källén-Lehmann spectral densities of the correlation functions 〈V ′µ(x)V ′ν(y)〉 and

〈O(x)O(y)〉 turn out to be always positive, in contrast to the one associated with the

(gauge dependent) elementary Higgs field.

These important features give us a fully gauge-invariant picture in order to describe the

spectrum of elementary excitations of the model, i.e. the massive photon and the Higgs

mode.

It is worth underlining that the local gauge-invariant operators V ′µ(x) and O(x) have

their generalization to the non-Abelian case [17–20].4 This might enable us to extend

4See also the recent work [38] for a discussion on higher dimensional gauge-invariant operators for

different gauge groups and representations of the Higgs fields.
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the present work to the case of asymptotically free Higgs-Yang-Mills theories such as, for

example, the SU(2) theory with a single Higgs field in the fundamental representation, see

for example [39]. This model might be of particular interest since non-perturbative effects

can be introduced in order to achieve a better understanding of SU(2) Higgs-Yang-Mills

theory and the fate of the excitations in the infrared region. Indeed, as there is not even

an strict order parameter discriminating between confinement- or Higgs-like behaviour in

such theory, it should intuitively be possible to interpolate from one behaviour to the

other without encountering sharp phase boundaries, a feature potentially encoded in the

gauge-invariant correlation functions.

More specifically, one may for example introduce the Gribov-Zwanziger horizon term,

in its BRST-invariant formulation encoded in the so called Refined Zwanziger-Gribov ac-

tion (cf. [40–43] and refs. therein) implementing the restriction to the Gribov region Ω [44]

in order to take into account the existence of the Gribov copies plaguing the non-Abelian

Faddeev-Popov quantization procedure. As a consequence, the gauge-invariant pole masses

of the non-Abelian generalization of the correlation functions 〈Vµ(x)Vν(y)〉 and 〈O(x)O(y)〉
will now show an explicit dependence on the (BRST invariant) Gribov mass parameter as

well as on the dimension-two condensates present in the Refined-Gribov-Zwanziger ac-

tion [40–43]. Thus, extending the framework already outlined in [45], the aforementioned

pole masses and further spectral properties could be employed as gauge-invariant probing

quantities in order to extract non-perturbative information about the behaviour of the

excitations of Higgs-Yang-Mills theories in the light of the Fradkin-Shenker [46, 47] results.

Another most interesting extension of our methodology would be to the Glashow-

Weinberg-Salam electroweak theory, to have a genuinely gauge-invariant description of at

least the W±, Z0- and Higgs boson sector of the theory, including their spectral functions

bearing information on both pole mass and decay channels [48–51].

We hope to report soon on these interesting and relevant issues.
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A Propagators and vertices of the Abelian Higgs model in the Rξ gauge

A.1 Field propagators

The quadratic part of the action (2.7) in the bosonic sector is given by

Squad
bos =

1

2

∫
d4x
{
Aµ(−∂µν(∂2 −m2) + ∂µ∂ν)Aν − ρ∂2ρ− h(∂2 −m2

h)h+ c̄(∂2 −m2ξ)c

+2ib∂µAµ + ξb2 + 2imξbρ+ 2mAµ∂µρ
}
. (A.1)
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Putting this in a matrix form yields

Squadbos =
1

2

∫
d4xΨT

µOµνΨν , (A.2)

where

ΨT
µ =

(
Aµ b ρ h

)
, Ψν =


Aν
b

ρ

h

 ,

and

Oµν =


(−∂µν(∂2 −m2) + ∂µ∂ν) −i∂µ m∂µ 0

i∂ν ξ imξ 0

−m∂ν imξ −∂2 0

0 0 0 −(∂2 −m2
h)

 .

The tree-level field propagators can be read off from the inverse of O, leading to the

following expressions in momentum space:

〈Aµ(p)Aν(−p)〉 =
1

p2 +m2
Pµν +

ξ

p2 + ξm2
Lµν ,

〈ρ(p)ρ(−p)〉 =
1

p2 + ξm2
,

〈h(p)h(−p)〉 =
1

p2 +m2
h

,

〈Aµ(p)b(−p)〉 =
pµ

p2 + ξm2
,

〈b(p)ρ(−k)〉 =
−im

p2 + ξm2
, (A.3)

where Pµν = δµν − pµpν
p2

and Lµν =
pµpν
p2

are the transversal and longitudinal projectors,

respectively. The ghost propagator is

〈c̄(p)c(−p)〉 =
1

p2 + ξm2
. (A.4)

A.2 Vertices

From the action (2.7), we find the following vertices

ΓAµρh(−p1,−p2,−p3) = ie(pµ,3 − pµ,2)δ(p1 + p2 + p3),

ΓAµAνh(−p1,−p2,−p3) = −2e2vδµνδ(p1 + p2 + p3),

ΓAµAνhh(−p1,−p2,−p3,−p4) = −2e2δµνδ(p1 + p2 + p3 + p4),

ΓAµAνρρ(−p1,−p2,−p3,−p4) = −2e2δµνδ(p1 + p2 + p3 + p4),

Γhhhh(−p1,−p2,−p3,−p4) = −3λ δ(p1 + p2 + p3 + p4),

Γhhρρ(−p1,−p2,−p3,−p4) = −λ δ(p1 + p2 + p3 + p4),

Γρρρρ(−p1,−p2,−p3,−p4) = −3λ δ(p1 + p2 + p3 + p4),

Γhhh(−p1,−p2,−p3) = −3λv δ(p1 + p2 + p3),

Γhρρ(−p1,−p2,−p3) = −λv δ(p1 + p2 + p3),

Γc̄hc(−p1,−p2,−p3) = −mξe δ(p1 + p2 + p3). (A.5)
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Figure 15. One-loop contributions to the propagator 〈O(p)O(−p)〉. Wavy lines represent the

photon field, dashed lines the Higgs field, solid lines the Goldstone boson and double lines the ghost

field. The • indicates the insertion of a composite operator.

B Basic Feynman integral

∫ 1

0
dx ln

[
p2x(1−x)+xm2

1 +(1−x)m2
2

µ2

]
=

1

2p2

{(
m2

1−m2
2

)
ln

(
m2

2

m2
1

)
+p2 ln

(
m2

1m
2
2

µ4

)
−4p2

−2i

√(
m2

1−m2
2

)2
+p4 +2p2

(
m2

1 +m2
2

)
×

tan−1

 −m2
1 +m2

2−p2√
−m4

1 +2m2
1

(
m2

2−p2
)
−
(
m2

2 +p2
)2


−tan−1

 −m2
1 +m2

2 +p2√
−m4

1 +2m2
1

(
m2

2−p2
)
−
(
m2

2 +p2
)2
} (B.1)
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C Contributions to 〈O(p)O(−p)〉

We consider each term in the two-point function 〈O(p)O(−p)〉, given by eq. (2.21). We

will use the following definitions:

η(m1,m2, p
2) ≡ 1

(4π)d/2
Γ

(
2− d

2

)∫ 1

0
dx
(
p2x(1− x) + xm1 + (1− x)m2

)d/2−2

χ(m1) ≡ 1

(4π)d/2
Γ

(
1− d

2

)
m
d/2−1
1 . (C.1)

The first term is the one-loop correction to the Higgs propagator 〈h(p)h(−p)〉 known

from [21], shown in frame 1 in figure 15, which gives

v 〈h (p) ρ (−p)2〉 = −
m2
h

p2 +m2
h

η
(
ξm2, ξm2, p2

)
(C.2)

The second term, the one-loop correction shown in frame 2 of figure 15, gives

v〈h (p) ρ (−p)2〉 = −
m2
h

p2 +m2
h

η
(
ξm2, ξm2, p2

)
(C.3)

The third term, the one-loop correction shown in frame 3 of figure 15, gives

v〈h(p)h(−p)2〉= 1

p2+m2
h

{
−3m2

hη
(
m2
h,m

2
h,p

2
)
−3χ

(
m2
h

)
− 2(d−1)m2

m2
h

χ
(
m2
)
−χ
(
ξm2

)}
(C.4)

The fourth term has no one-loop contributions. The fifth term, the one-loop correction

shown in frame 4 of figure 15, gives

1

4
〈h (p)2 h (−p)2〉 =

1

2
η
(
m2
h,m

2
h, p

2
)
. (C.5)

The sixth term, the one-loop correction shown in frame 5 of figure 15, gives

1

4
〈ρ (p)2 ρ (−p)2〉 =

1

2
η
(
ξm2, ξm2, p2

)
(C.6)

Using the identity (2.30) we are able to write the whole one-loop correlation function

〈O(−p)O(p)〉, up to the order ~, as

〈O(p)O(−p)〉 =
v2

p2+m2
h

+
1(

p2+m2
h

)2{1

2

[
4(d−1)m4+4m2p2+p4

]
η
(
m2,m2,p2

)
(C.7)

+
1

2

(
p2−2m2

h

)2
η
(
m2
h,m

2
h,p

2
)
−p2

[
2(d−1)

m2

m2
h

+1

]
χ
(
m2
)
−3p2χ

(
m2
h

)}
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Figure 16. One-loop contributions for the propagator 〈Vµ(p)Vν(−p)〉. Wavy lines represent the

photon field, dashed lines the Higgs field, solid lines the Goldstone boson and double lines the ghost

field. The • indicates the insertion of a composite operator.

D Contributions to 〈Vµ(x)Vν(y)〉

We consider each term in the two-point function 〈Vµ(p)Vν(−p)〉, given by eq. (2.42).

The first term is the one-loop correction to the photon propagator 〈Aµ(p)Aν(−p)〉 known

from [21], shown in frame 1 in figure 16, which gives

e2v4

4
〈Aµ (p)Aν (−p)〉1−loop

=
e2v4

4
Pµν (p)

 1

(p2 +m2)2

−m2
((
m2
h−m2 +p2

)2−4(d−2)m2p2
)

(d−1)v2p2
η
(
m2,m2

h,p
2
)

+
m2
(

2(d−1)2m2p2 +m2
h

(
p2−m2

)
+m4

h

)
(d−1)v2p2m2

h

χ
(
m2
)

+
m2
(
(2d−1)p2−m2

h+m2
)

(d−1)v2p2
χ
(
m2
h

)]}
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+
e2v4

4
Lµν (p)

 ξ2

(p2 +ξm2)2

m2
(
−2m2

h

(
m2−p2

)
+m4

h+
(
m2 +p2

)2)
v2p2

η
(
m2,m2

h,p
2
)

−
m2
(
2m2

h−2ξm2 +p2
)

v2
η
(
m2
h, ξm

2,p2
)

+
m2
(
2(d−1)m2p2 +m2

h

(
m2−p2

)
−m4

h

)
v2p2m2

h

χ
(
m2
)

−
m2
(
−m2

h+m2−3p2
)

v2p2
χ
(
m2
h

)
+2

m2

v2
χ
(
ξm2

)]}
(D.1)

The second term, the one-loop correction shown in frame 2 of figure 16, gives

e2v3〈(hAµ)(p)Aν (−p)〉

=
e2v3

p2 +m2
Pµν (p)

−e
[
2evm4

h

(
p2−ξm2

)
+evm2

h

(
p2 +ξm2

)2
+evm6

h

]
2(d−1)m2m2

hp
2

η
(
m2
h, ξm

2,p2
)

−
e
[
evm2

h

(
−2(3−2d)m2p2−m4−p4

)
+2evm4

h

(
m2−p2

)
−evm6

h

]
2(d−1)m2m2

hp
2

η
(
m2,m2

h,p
2
)

−
e
[
(d−2)evm2

hp
2 +ξevm2m2

h−evm4
h

]
2(d−1)m2m2

hp
2

χ
(
ξm2

)
−
e
[
3devm2

hp
2−ξevm2m2

h+evm2m2
h−3evm2

hp
2
]

2(d−1)m2m2
hp

2
χ
(
m2
h

)
−
e
[
2(d−1)2 evm2p2−evm2m2

h+evm2
hp

2 +evm4
h

]
2(d−1)m2m2

hp
2

χ
(
m2
)

+
e2v3ξ

p2 +ξm2

1

2vp2
Lµν (p)

{(
m2
h−ξm2 +p2

)2
η
(
m2
h, ξm

2,p2
)

−
[
−2m2

h

(
m2−p2

)
+m4

h+
(
p2 +m2

)2]
η
(
m2,m2

h,p
2
)

+

[
−2(d−1)m2p2 +m2

h

(
p2−m2

)
+m4

h

]
m2
h

χ
(
m2
)

−
(
m2
h−ξm2 +2p2

)
χ
(
ξm2

)
−
[
m2 (ξ−1)+3p2

]
χ
(
m2
h

)}
(D.2)

The third term, the one-loop correction shown in frame 3 of figure 16, gives

e2v2

2
〈
(
h2Aµ

)
(p)Aν (−p)〉 =

e2v2

2

(
1

p2 +m2
Pµν (p) +

ξ

p2 + ξm2
Lµν (p)

)
χ
(
m2
h

)
(D.3)
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The fourth term, the one-loop correction shown in frame 4 of figure 16, gives

e2v2〈(hAµ) (p) (hAν) (−p)〉 = e2v2Pµν (p)

{(
m2
h − ξm2 + p2

)2
+ 4ξm2p2

4m2p2 (d− 1)
η
(
m2
h, ξm

2, p2
)

+
4 (d− 2)m2p2 −

(
m2
h −m2 + p2

)2
4 (d− 1)m2p2

η
(
m2,m2

h, p
2
)

−
(
m2
h − ξm2 + p2

)
4 (d− 1)m2p2

χ
(
ξm2

)
+

(
m2
h −m2 + p2

)
4 (d− 1)m2p2

χ
(
m2
)

− (ξ − 1)

4 (d− 1) p2
χ
(
m2
h

)}
+

e2v2

4m2p2
Lµν (p)

{
−
(
m2
h − ξm2 + p2

)2
η
(
m2
h, ξm

2, p2
)

+
[(
m2
h −m2 + p2

)2
+ 4m2p2

]
η
(
m2,m2

h, p
2
)

+m2 (ξ − 1)χ
(
m2
h

)
+
(
m2
h − ξm2 + p2

)
χ
(
ξm2

)
+
(
−m2

h +m2 − p2
)
χ
(
m2
)}

(D.4)

The fifth term, the one-loop correction shown in frame 5 of figure 16, gives

e2v2

2
〈
(
ρ2Aµ

)
(p)Aν (−p)〉 =

e2v2

2

(
1

p2 +m2
Pµν (p) +

ξ

p2 + ξm2
Lµν (p)

)
χ
(
ξm2

)
(D.5)

The sixth term, the one-loop correction shown in frame 6 of figure 16, gives

− iev
2

2
pµ〈(hρ) (p)Aν (−p)〉 (D.6)

= − iev
2

2

ξ

p2 + ξm2
Lµν (p)

[
ie
(
ξm2 −m2

h

)
η
(
m2
h, ξm

2, p2
)
− ieχ

(
m2
h

)
+ ieχ

(
ξm2

)]

The seventh term, the one-loop correction shown in frame 7 of figure 16, gives

ev2〈(ρ∂µh) (p)Aν (−p)〉

=
ev2

2 (d− 1) p2

1

p2 +m2
Pµν (p)

{
− e

[(
−m2

h + ξm2 + p2
)2

+ 4m2
hp

2
]
η
(
m2
h, ξm

2, p2
)

+e
(
m2
h − ξm2 + p2

)
χ
(
ξm2

)
+ e

(
−m2

h + ξm2 + p2
)
χ
(
m2
h

)}
+
ev2

2p2

ξ

p2 + ξm2
Lµν (p)

{
e
(
m2
h − ξm2

)
χ
(
m2
h

)
+ e

(
−m2

h + ξm2 + 2p2
)
χ
(
ξm2

)
+e
[
−3p2

(
m2
h − ξm2 + p2

)
+
(
m2
h − ξm2 + p2

)2
+ 2p4

]
η
(
ξm2,m2

h, p
2
)}

(D.7)
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The eighth term, the one-loop correction shown in frame 8 of figure 16, gives

− iev
3

2
pµ〈ρ (p)Aν (−p)〉

= − iev
3

2

ξ

(p2 + ξm2)2Lµν (p)

 ie
3v
[(
m2
h −m2 + p2

)2
+ 4m2p2

]
m2

η
(
m2,m2

h, p
2
)

+

[
ie3vm2

h

(
m2
h − ξm2

)
− ie3v

(
p2 +m2

h

) (
m2
h − ξm2 + p2

)]
m2

η
(
m2
h, ξm

2, p2
)

+

[
i (d− 1) e3vp2

m2
h

−
ie3v

(
m2
h −m2 + p2

)
m2

]
χ
(
m2
)

+

[
2ie3vm2

h + 3ie3vp2 − 2ie3vm2

2m2

]
χ
(
m2
h

)
+

3ie3vp2

2m2
χ
(
ξm2

)}
(D.8)

The ninth term, the one-loop correction shown in frame 9 of figure 16, gives

−iev3pµ〈ρ(p)(hAν)(−p)〉 =
1

2(p2+ξm2)
Lµν (p)

{(
p2+m2

h

)(
m2
h−ξm2+p2

)
η
(
ξm2,m2

h,p
2
)

−
[(
m2
h−m2+p2

)2
+4m2p2

]
η
(
m2,m2

h,p
2
)

(D.9)

−
(
p2+m2

h

)
χ
(
ξm2

)
+m2χ

(
m2
h

)
+
(
p2+m2

h−m2
)
χ
(
m2
)}

The tenth term, the one-loop correction shown in frame 10 of figure 16, gives

−v
2
pµpν〈(hρ) (p) ρ (−p)〉 =

vp2

2

1

p2 + ξm2
Lµν (p)

[
e2vm2

h

m2
η
(
ξm2,m2

h, p
2
)

(D.10)

+
(d− 1) e2v

m2
h

χ
(
m2
)

+
3e2v

2m2
χ
(
m2
h

)
+

e2v

2m2
χ
(
ξm2

)]
The eleventh term, the one-loop correction shown in frame 11 of figure 16, gives

ivpν〈(ρ∂µh) (p) ρ (−p)〉 =
m2
h

2

1

p2 + ξm2
Lµν (p)

[(
m2
h − ξm2 − p2

)
η
(
ξm2,m2

h, p
2
)

+χ
(
m2
h

)
− χ

(
ξm2

)]
(D.11)

The twelfth term, the one-loop correction shown in frame 12 of figure 16, gives

1

4
pµpν〈(hp) (p) (hp) (−p)〉 =

p2

4
η
(
ξm2,m2

h, p
2
)
Lµν (p) (D.12)

The thirteenth term, the one-loop correction shown in frame 13 of figure 16, gives

−〈(ρ∂µh) (p) (h∂νρ) (−p)〉

= − 1

4 (d− 1) p2
Pµν (p)

{[(
−m2

h + ξm2 + p2
)2

+ 4m2
hp

2
]
η
(
m2
h, ξm

2, p2
)

+
(
−m2

h + ξm2 − p2
)
χ
(
ξm2

)
−
(
−m2

h + ξm2 + p2
)
χ
(
m2
h

)}
− 1

4p2
Lµν (p)

{
−
(
m2
h − ξm2 − p2

) (
m2
h − ξm2 + p2

)
η
(
ξm2,m2

h, p
2
)

+
(
m2
h − ξm2 − p2

)
χ
(
ξm2

)
−
(
m2
h − ξm2 + p2

)
χ
(
m2
h

)}
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The fourteenth term, the one-loop correction shown in frame 14 of figure 16, gives

v2

4
pµpν〈ρ (p) ρ (−p)〉1−loop =

1

(p2 + ξm2)2

p2

4

{[
m4
h −

(
p2 +m2

h

)2]
η
(
ξm2,m2

h, p
2
)

+
[(
m2
h −m2 + p2

)2
+ 4m2p2

]
η
(
m2,m2

h, p
2
)

+ p2χ
(
ξm2

)
+
(
m2
h −m2

)
χ
(
m2
h

)
−
(
m2
h −m2 + p2

)
χ
(
m2
)}
Lµν (p)
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[16] A. Maas, R. Sondenheimer and P. Törek, On the observable spectrum of theories with a

Brout-Englert-Higgs effect, Annals Phys. 402 (2019) 18 [arXiv:1709.07477] [INSPIRE].

[17] G. ’t Hooft, Why do we need local gauge invariance in theories with vector particles? An

introduction, in Recent developments in gauge theories, Springer, Boston, MA, U.S.A. (1980),

pg. 101.

[18] G. ’t Hooft, A. Jaffe, G. Mack, P. Mitter and R. Stora, Nonperturbative quantum field theory,

Springer Science & Business Media 185, Springer, Boston, MA, U.S.A. (2012).
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