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Almost all bacteria secrete spherical membranous nanoparticles, also referred to as
membrane vesicles (MVs). A variety of MV types exist, ranging from 20 to 400 nm
in diameter, each with their own formation routes. The most well-known vesicles
are the outer membrane vesicles (OMVs) which are formed by budding from the
outer membrane in Gram-negative bacteria. Recently, other types of MVs have been
discovered and described, including outer-inner membrane vesicles (OIMVs) and
cytoplasmic membrane vesicles (CMVs). The former are mainly formed by a process
termed endolysin-triggered cell lysis in Gram-negative bacteria, the latter are formed
by Gram-positive bacteria. MVs carry a wide range of cargo, such as nucleic acids,
virulence factors and antibiotic resistance components. Moreover, they are involved in
a multitude of biological processes that increase bacterial pathogenicity. In this review,
we discuss the functional aspects of MVs secreted by bacteria associated with cystic
fibrosis and nosocomial pneumonia. We mainly focus on how MVs are involved in
virulence, antibiotic resistance, biofilm development and inflammation that consequently
aid these bacterial infections.
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DIVERSITY OF MEMBRANE VESICLES

Secretion of membrane vesicles (MVs) is a common feature in almost all bacteria. Over
the last decade, studies of the MV content and physiological analyses revealed that bacterial
MVs are involved in a wide range of biological processes, including virulence, antibiotic
resistance, horizontal gene transfer, cell-cell communication, iron scavenging, nutrient acquisition,
modulating the host immune system, and protection against phage infections (Manning and
Kuehn, 2011; Elhenawy et al., 2014; Haurat et al., 2015; Schwechheimer and Kuehn, 2015).
MVs protect their cargo against extracellular degrading enzymes, enable long distance transport,
facilitate efficient delivery to target host cells and deliver their cargo at increased concentrations,
which makes them perfectly suited for secretion or uptake of nucleic acids, proteins and other
biomolecules (Bonnington and Kuehn, 2014).

Early MV research focused on one specific type of MVs, namely the outer membrane vesicles
(OMVs). They are formed by pinching of the outer membrane (OM) of Gram-negative bacteria
and are enriched for OM proteins and periplasmic components. Several mechanisms of OMV
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production have already been described (Mashburn-Warren
et al., 2008, 2009; Deatherage et al., 2009; Tashiro et al., 2010;
Schwechheimer et al., 2014; Haurat et al., 2015; Schwechheimer
and Kuehn, 2015; Roier et al., 2016a,b; Florez et al., 2017;
Horspool and Schertzer, 2018; Cooke et al., 2019). Up until
recently, OMVs were the only known MVs secreted by Gram-
negative bacteria. Today, several other types of MVs have been
discovered and described, for example outer-inner membrane
vesicles (OIMVs) and cytoplasmic membrane vesicles (CMVs).
Compelling evidence was provided that OIMV production
in Pseudomonas aeruginosa is dependent on the action of a
prophage endolysin, resulting in a phenomenon referred to as
phage endolysin-triggered cell lysis (Turnbull et al., 2016). Lastly,
it was thought that MVs only arose from Gram-negative bacteria,
but the observation of vesiculation in several Gram-positive
bacteria changed that view (Brown et al., 2015). Since Gram-
positive bacteria do not possess an OM, MVs released by these
bacteria are termed cytoplasmic membrane vesicles (CMVs).
CMV release can be triggered by phage endolysin-triggered
cell lysis as well, as was demonstrated in Bacillus subtilis and
Staphylococcus aureus (Toyofuku et al., 2017; Andreoni et al.,
2019). The different MV types each with their own formation
routes were recently reviewed by Toyofuku et al. (2019). It
should be recognized that some forms of MVs were only recently
described. Previous studies may have ignored them and their
results could thus refer to a mixture of different types of MVs
instead of pure OMVs. Consequently, in this review, we use the
term MVs to cover all types.

MEMBRANE VESICLES FROM
BACTERIA ASSOCIATED WITH CYSTIC
FIBROSIS AND NOSOCOMIAL
PNEUMONIA

Several bacterial species are associated with airway infections
in immunocompromised and cystic fibrosis (CF) patients,
including the Gram-negative bacteria P. aeruginosa,
Acinetobacter baumannii, Stenotrophomonas maltophilia,
Klebsiella pneumoniae, Haemophilus influenzae, Moraxella
catarrhalis, and Burkholderia spp., and the Gram-positive
bacteria Streptococcus pneumoniae and S. aureus. They all
produce MVs involved in a multitude of biological processes
that increase bacterial pathogenicity (Figure 1). Table 1 gives an
overview of the different pathogenicity mechanisms associated
with MVs secreted by these pathogens.

MV Cargo
The cargo of MVs can be very versatile, from nucleic acids
to virulence factors and antibiotic resistance components.
Depending on the different MV formation routes, different
types of cargo are selected. Logically, OMVs tend to be enriched
for OM proteins and periplasmic components, while OIMVs
and CMVs are enriched for DNA, RNA and cytoplasmic
proteins. Extracellular oriented membrane components
such as lipopolysaccharides (LPS) might be expected in any
of these vesicles.

Pseudomonas aeruginosa MVs released during the exponential
growth phase were specifically packed with chromosomal DNA,
consisting of specific chromosomal regions encoding proteins
involved in stress response, virulence, metabolism and antibiotic
resistance. These MVs can transfer DNA or sRNA into cultured
lung epithelial or bronchial cells and by doing so, modulate
the host cell responses (Koeppen et al., 2016; Bitto et al.,
2017). Next to nucleic acids, P. aeruginosa MVs tend to pack
several proteinaceous virulence factors, including hemolytic
phospholipase C, alkaline phosphatase and the cystic fibrosis
transmembrane conductance regulator (CFTR) inhibitory factor
Cif. The latter inhibits CFTR-mediated chlorine secretion in
the airways resulting in a decreased mucociliary clearance
(Kadurugamuwa and Beveridge, 1995; Bomberger et al., 2009).
Other proteins identified in P. aeruginosa MVs are involved in
proteolysis, antibiotic resistance, and bacteria-host interactions
(Choi et al., 2011).

Acinetobacter baumannii MVs are likewise enriched for
several virulence factors, such as proteases, phospholipase
C, hemolysins and leukotoxins. The MVs seem to interact
with and deliver their content to host cells. In addition, the
cytotoxic outer membrane protein A (OmpA) was identified
in these MVs as well. OmpA, an important virulence factor
in A. baumannii, is targeted to the mitochondria in epithelial
cells and consequently induces apoptosis in these cells (Kwon
et al., 2009; Jha et al., 2017). Moreover, Dallo et al. (2012)
discovered that the elongation factor Tu (EF-Tu) is associated
with A. baumannii MVs and interacts with macrophages through
its binding with fibronectin.

Burkholderia cepacia MVs contain peptidoglycan-degrading
enzymes together with a variety of virulence factors, including
lipases, phospholipases and proteases (Allan et al., 2003). In
S. pneumoniae, MVs are mainly enriched for lipoproteins as well
as the cytosolic pore-forming toxin pneumolysin (Olaya-Abril
et al., 2014). Further, MVs from clinical S. aureus isolates have
a different cytotoxic activity on host cells, depending on their
MV proteomes. The exfoliative toxin A (ETA) was specifically
enriched in MVs with a high cytotoxic activity (Jeon et al., 2016).

Interaction of MVs With Lung Epithelial
Cells and Macrophages
The presence of MVs in the lungs of patients with severe lung
infections (Bomberger et al., 2009) and the fact that MVs can
carry virulence factors, may point to a role of these MVs in the
infection process. A few examples of MV-host cell interactions
were already mentioned above. Additionally, Bauman and Kuehn
(2009) discovered that MVs from a P. aeruginosa CF isolate
interact with human lung cells and were internalized in a time-
and dose-dependent manner. These bacteria secrete PaAP, an
aminopeptidase mainly present on the surface of MVs and
was found to be important for the association of the MVs
with the lung cells. Further, MVs secreted by P. aeruginosa
interact with cholesterol-rich lipid rafts in the apical membrane
of lung epithelial cells. By doing so, P. aeruginosa is able
to deliver the virulence factor Cif to the cytoplasm of the
host cell and consequently reduce the CFTR chloride secretion
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FIGURE 1 | Overview of functions of MVs secreted by bacteria involved in CF and nosocomial lung infections.

(Bomberger et al., 2009, 2011; Ballok et al., 2014; O’Donoghue
and Krachler, 2016). Lowering the cholesterol content of CF
airway epithelial cells (Phe508del) by cyclodextrin lowers the
impact of P. aeruginosa vesicles on Cl− secretion after lumacaftor
treatment (Barnaby et al., 2019).

Likewise, purified vesicles secreted by Non-Typeable
H. influenzae (NTHi) co-localize with caveolin, a protein
involved in endocytosis. This indicates that the uptake of MVs
is mediated by caveolae, which are cholesterol-rich lipid rafts.
On top of that, the interactions of these MVs with epithelial
cells resulted in the release of the immunomodulatory cytokine
interleukin-8 (IL-8) and the antimicrobial peptide LL-37 (Sharpe
et al., 2011). Further, NTHi released MVs while infecting primary
respiratory epithelial cells grown at the air-liquid interface.
Transmission electron microscopy (TEM) revealed that these
MVs directly interact with the host-cell membranes. However,
the role of these vesicles during NTHi infection is yet to be
determined (Ren et al., 2012).

Membrane vesicles released by S. aureus also fuse in
a cholesterol-dependent manner with the plasma membrane
of human cells, resulting in the delivery of α-toxin. This

toxin, also known as α-hemolysin (HIa), is a 33 kDa pore-
forming protein and a key virulence factor capable of lysing
human cells and the induction of apoptosis in T-lymphocytes.
Furthermore, this MV-associated protein is involved in HeLa cell
cytotoxicity and erythrocyte lysis (Thay et al., 2013). Gurung
et al. (2011) discovered that S. aureus MVs interact with the
plasma membrane of human cells through a cholesterol-rich
micro-domain as well. The MVs subsequently delivered the
immunoglobulin G-binding protein (protein A) and induced
apoptosis of HEp-2 cells in a dose-dependent manner.

The same mechanism is true for A. baumannii. MVs from
A. baumannii ATCC 19606(T) interacted with lipid rafts in
the plasma membrane of human cells and induced apoptosis
in the host cells. The effect was lost when MVs secreted by
the 1ompA mutant strain were studied. Suggesting a role of
the MV-associated virulence factor OmpA in host cell-death
(Jin et al., 2011).

While most of these studies were performed in in vitro
systems, a few studies in mice models also indicate the impact
of bacterial membrane vesicles in lungs. Jang et al. (2015) injected
Escherichia coli derived vesicles intraperitoneally and showed that
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TABLE 1 | Overview of the impact on membrane vesicles produced by species associated with CF and nosocomial pneumonia on pathogenicity, based on factors
identified in MVs.

Impact on pathogenicity Species involved Molecules involved

Virulence factors contained in OMVs P. aeruginosa, A. baumannii, B. cepacia,
S. pneumoniae, S. aureus

CifPa, Phospholipase CPa,Ab, alkaline phosphatasePa,
proteasesPa,Ab,Bc, OmpAAb, haemolysinsAb, leukotoxinsAb,
lipasesBc, pneumolysinSp, α-toxinSa, protein ASa, exfoliative
toxin ASa

Increase of antibiotic resistance A. baumannii, S. maltophilia, H. influenzae,
M. catarrhalis

β-lactamaseAb,Sm,Hi,Mc

Adhesion to lung epithelial cells and
macrophages

P. aeruginosa, A. baumannii, H. influenzae,
S. aureus

PaAPPa, LPSPa, EF-TuAb

Biofilm formation P. aeruginosa, S. aureus eDNAPa, LPSPa, peptidoglycanPa

Immunomodulatory effect (stimulation) P. aeruginosa, S. maltophilia, H. influenzae,
M. catarrhalis, K. pneumoniae, S. pneumoniae

FliCPa

Immunomodulatory effect (quenching) P. aeruginosa, K. pneumoniae, S. pneumoniae sRNAPa, porin-lossKp, DNaseSp

Indices indicate the species to which each molecule belongs, for references, see main text.

these vesicles spread into lungs. Proteins from A. baumannii MVs
delivered intranasally in mice were detected in the lungs and
provoked an immune response (Marion et al., 2019).

Effect of Antibiotics on MV Secretion and
Function
Devos et al. (2015) demonstrated that antibiotic stress leads
to an increased secretion of MVs in S. maltophilia 44/98,
suggesting that this could have potential implications on the
function of these MVs. Indeed, the exposure of S. maltophilia
to the β-lactam antibiotic imipenem led to an increased
secretion of MVs comprising two chromosomally encoded
β-lactamases. These β-lactamase-containing MVs are capable of
mediating extracellular β-lactam degradation and consequently
enhance the β-lactam tolerance of other CF pathogens, including
P. aeruginosa and Burkholderia cenocepacia (Devos et al., 2016).
Several other bacteria exposed to β-lactam antibiotics release
MVs containing functional β-lactamases as well. MVs secreted
by β-lactam-resistant M. catarrhalis and NTHi can hydrolyze
amoxicillin and consequently protect co-localized species, such
as Group A Streptococci, S. pneumoniae and H. influenzae,
from killing by amoxicillin (Schaar et al., 2014). In this regard,
imipenem-treatment of A. baumannii resulted in an elevated
secretion of MVs, containing β-lactamase OXA-23, with a higher
cytotoxicity toward A549 human lung cells (Yun et al., 2018).

Moreover, Allan and Beveridge (2003) discovered that the
treatment of P. aeruginosa PAO1 with the aminoglycoside
antibiotic gentamicin resulted in the release of MVs containing
gentamicin and peptidoglycan hydrolase. By becoming
bactericidal, these MVs are capable of killing group IIIa
B. cepacia. Also B. subtilis 168 and S. aureus D2C were affected by
these type of MVs and Listeria monocytogenes ATCC 19113 was
susceptible to a lesser extent (MacDonald and Beveridge, 2002).

On another note, P. aeruginosa infections treated with
tobramycin led to a reduced secretion of MV-associated virulence
factors, including AprA, which is an alkaline protease that
reduces CFTR-mediated chloride secretion. AprA is essential for
the survival of P. aeruginosa in the lungs as it inhibits the bacterial
clearance (Koeppen et al., 2019).

Interspecies Interactions of MVs
Cell-cell communication between bacteria during lung infections
is key to the survival of the infecting species, e.g., in the
mixed species biofilm in the lungs of patients with CF. Most
interspecies interactions have been studied in vitro, but some
advanced three-dimensional lung cell culture models approve
some of the findings performed in co-culturing experiments
(Rodriguez-Sevilla et al., 2018). Communication via MVs can
mediate changes in the expression of biofilm-related genes,
or protect other species from antibiotics and host defense
mechanisms. Kadurugamuwa and Beveridge (1999) discovered
that MVs secreted by P. aeruginosa and Shigella flexneri can
be integrated into the membrane of other Gram-negative
bacteria. Moreover, the MVs of two carbapenem-resistant clinical
strains of A. baumannii harboring the plasmid-borne blaOXA−24
gene, encoding a β-lactamase, were capable of protecting a
carbapenem-susceptible A. baumannii strain. The presence of
these plasmids in the carbapenem-susceptible strain suggests
that A. baumannii releases MVs to mediate horizontal gene
transfer of antibiotic-resistance genes (Rumbo et al., 2011).
In addition, vesicles released by A. baumannii can mediate
gene transfer of the blaNDM−1 and aac(6′)-Ib-cr genes to other
A. baumannii and E. coli recipient cells (Chatterjee et al., 2017).
Next to this, the MVs of M. catarrhalis mediated protection of
H. influenzae against the complement system during infection
(Tan et al., 2007).

MVs in Biofilm
Single- or poly-microbial infections in the lungs are mostly paired
with biofilm formation. Biofilms are characterized by a thick
layer of bacterial cells formed by the co-operation of several
virulence factors, including flagella, fimbriae, pili and LPS, and is
surrounded by a self-producing extracellular matrix consisting of
polysaccharides, proteins, lipids and nucleic acids (O’Toole et al.,
2000; Flemming and Wingender, 2010).

Membrane vesicles are very abundant in biofilm related
infections (Schooling and Beveridge, 2006; Toyofuku et al.,
2012; Grande et al., 2015). Indeed, the proteome analysis of
P. aeruginosa biofilms revealed that MV-associated proteins
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contribute to more or less 20% of the whole matrix proteome. The
MV-related proteins identified were OM enzymes and proteins
involved in the transport of small molecules, the uptake of iron
and antibiotic resistance (Couto et al., 2015). In addition, vesicles
purified from late-stage P. aeruginosa biofilms are enriched for
drug-binding proteins, which makes the bacterial species inside
these biofilms even better protected against antibiotics (Park
et al., 2014). It has been suggested further that MVs secreted
by P. aeruginosa are under the control of the quorum sensing
system and supply the forming biofilm with extracellular DNA
(eDNA) and LPS (Nakamura et al., 2008). Moreover, studies in
P. aeruginosa biofilms revealed that MVs secreted by one species
are able to lyse neighboring bacteria in order to release nutrients
as a source for growth and eDNA to build the biofilm (Beveridge
et al., 1997). However, following research revealed that the
MVs themselves are actually incorporated in the biofilm matrix
(Schooling and Beveridge, 2006). This was seen in Francisella
biofilms as well (van Hoek, 2013).

He et al. (2017, 2019) discovered that MV secretion in
methicillin-resistant S. aureus (MRSA) was correlated with
biofilm formation during improper vancomycin chemotherapy.
They also demonstrated that the treatment of MRSA with
β-lactam antibiotics induces biofilm formation as a consequence
of MV secretion with a higher hydrophobicity.

Immunomodulatory Effects of MVs
Several reports indicated that MVs can exert immunomodulatory
effects and aid in pathogenesis, a few examples were already
mentioned. MVs secreted by P. aeruginosa are able to activate
an IL-8 response by lung epithelial cells, as was seen in NTHi
as well (see above). In this way, vesicles could contribute to
inflammation (Bauman and Kuehn, 2006). It was demonstrated
that P. aeruginosa MVs induce the upregulation of pro-
inflammatory cytokines in macrophages. The response was even
greater compared to the induction of cytokines with purified
LPS. This study revealed that MV-associated LPS is required for
binding to the macrophages and the internalization is mediated
by the protein content of the MVs. Interestingly, they also showed
that intensity of IL-8 response is strain dependent and was the
highest in a CF isolate (compared to the acute PAO1 strain).
In addition, flagellin (FliC) was identified as one of the most
abundant proteins in P. aeruginosa MVs and is responsible for
the cytokine release in macrophages (Ellis et al., 2010). Moreover,
MVs from P. aeruginosa cause pulmonary inflammation in a
bacteria-free in vivo setting. The MVs caused a time- and dose-
dependent pulmonary inflammation comparable to the response
of live bacteria (Park et al., 2013). A. baumannii MVs provoked
an inflammatory response in vivo (mouse model) resulting in
secretion of cytokines and chemokines, mediated via Toll-like
receptors (Marion et al., 2019). Although LPS embedded in MVs
might be very important in this inflammatory response, it should
be noted that MVs obtained from LPS-free Neisseria meningitidis
did not provoke a significant different response than LPS positive
MVs, indicating that other components like OMPs can function
as complement activators (Bjerre et al., 2002).

Similarly, S. pneumoniae MVs are internalized into A549
lung epithelial cells and human monocyte-derived dendritic cells

and result in pro-inflammatory cytokine responses (Codemo
et al., 2018). Also M. catarrhalis MVs are internalized by human
epithelial cells and induce an inflammatory response. On the
other hand, proteomic analyses revealed that these MVs contain
factors that aid these bacteria to evade the host defense system as
well (Schaar et al., 2011). Further, MVs secreted by respiratory
pathogens, including NTHi, M. catarrhalis, and P. aeruginosa,
induce a strong pro-inflammatory response by naïve THP-1
macrophages (Volgers et al., 2017b). Regarding to this, N-acetyl-
L-cysteine (NAC), a mucolytic that reduces the production of
thick mucus, induced the release of pro-inflammatory MVs by
these respiratory pathogens, but decreased the release of pro-
inflammatory cytokines in macrophages (Volgers et al., 2017a).
Moreover, MVs secreted by S. maltophilia ATCC 13637 were
cytotoxic to A549 epithelial cells and induced the expression of
pro-inflammatory cytokine and chemokine genes in these lung
cells (Kim et al., 2016). MVs originated from K. pneumoniae
ATCC 13883 likewise induced changes in the expression of
immune-related genes in epithelial cells. The expression of genes
encoding for IL-8, IL-1b, MIP-1α, HMOX1, HSPA1A, and IL-24,
was increased after treatment of these cells with K. pneumoniae
MVs (Lee et al., 2012; You et al., 2019). Further, several Gram-
negative bacteria bind to epithelial cells through lipid rafts and
deliver peptidoglycan-containing MVs to the intracellular sensor
NOD1 to promote inflammation (Kaparakis et al., 2010).

Koeppen et al. (2016) discovered a novel mechanism of host-
pathogen interaction mediated by MVs secreted by P. aeruginosa.
The MVs are packed with sRNA molecules that bind to
mRNA inside human lung cells and in this way quench the
human immune response. Similarly, an extracellular DNase was
identified in MVs from S. pneumoniae that blocks neutrophil
activity and helps to evade the host innate immune response
(Jhelum et al., 2018). Porin-loss, which is common in antibiotic-
resistant strains of K. pneumoniae, impacts the MV composition
and the host-inflammatory response. MVs lacking several OM
porins were less likely to elicit the secretion of pro-inflammatory
cytokines in macrophages. Antibiotic resistance resulting in
porin-loss in K. pneumoniae can thus have an impact on the
survival of this pathogen (Turner et al., 2015). Further, MVs from
Gram-negative bacteria induced vitronectin in mouse lungs and
in A549 epithelial cells, which is released into the bronchoalveolar
space and mediates protection against complement-mediated
clearance (Paulsson et al., 2018).

The immunomodulatory effects of MVs can be useful
to protect patients from bacterial infections. A vaccine
based on detergent-extracted OMVs originating from the
pathogenic bacterium Neisseria meningitides, complemented
with recombinant proteins, has recently been approved and used
to protect people against meningitis B. Several traits, such as the
overexpression of certain antigens or the modification of the
LPS reactogenicity, can be altered by genetically engineering
the OMV-producing bacteria to yield a vaccine that meets
the specific needs (van der Pol et al., 2015). Furthermore,
active immunization of mice with P. aeruginosa MVs resulted
in mice that were protected from P. aeruginosa infections
(Zhang et al., 2018). Also NTHi, K. pneumoniae and S. aureus
MVs are potential vaccine candidates, as was demonstrated in
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several studies (Lee et al., 2015; Roier et al., 2015; Winter and
Barenkamp, 2017; Askarian et al., 2018).

CONCLUDING REMARKS

Bacteria associated with lung infections are increasingly posing
a threat for the public health worldwide. In particular, the
impact on CF and immunocompromised patients is concerning.
Therefore, it is crucial to shed more light on the mechanisms
these bacteria use to increase their pathogenicity. MVs were
discussed to play an important role herein. By targeting MV-
associated components that are involved in the interaction
of these vesicles with human lung cells or macrophages,
new therapeutic options to treat these infections could arise.
Furthermore, the immunomodulatory effects of MVs could be
exploited to produce vaccines leading to the protection of patients

against the infecting bacteria. Taken together, it is important to
further investigate the role of MVs during bacterial infection
and the use of MVs to eventually combat these infections.
Importantly, more in vivo studies are required to investigate the
real impact of MVs on the progression of disease.
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