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Abstract

We study the class of disentangled realized estimators for the integrated covariance matrix of

Brownian semimartingales with finite activity jumps. These estimators separate correlations and

volatilities. We analyze different combinations of quantile- and median-based realized volatilities,

and four estimators of realized correlations with three synchronization schemes. Their finite sample

properties are studied under four data generating processes, in presence, or not, of microstructure noise,

and under synchronous and asynchronous trading. The main finding is that the pre-averaged version

of disentangled estimators based on Gaussian ranks (for the correlations) and median deviations (for

the volatilities) provide a precise, computationally efficient, and easy alternative to measure integrated

covariances on basis of noisy and asynchronous prices. A minimum variance portfolio application

shows the superiority of this disentangled realized estimator in terms of numerous performance metrics.
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1 Introduction

Many activities in financial institutions - such as risk management, portfolio selection, and asset pricing -

require precise measures that summarize the relationships between risk factors. Among these measures,

correlations and volatilities are of paramount importance as they provide, on the one hand, estimates of

the links between assets and, on the other hand, the inputs for various risk measures.

Realized correlations and volatilities are nonparametric estimators of the ex-post variation of prices.

In both the univariate and multivariate cases, the baseline estimators (simply obtained by summing

intraday squared returns or intraday product of returns) face numerous drawbacks.

First, empirical properties of asset prices suggest the existence of jumps. Jumps enable to accommodate

fat tails in the empirical density of returns and smiles in volatility surfaces of option prices. Models for

jumps can be of two types: either with finite amount of large jumps or with infinite amount of small

jumps. Jumps introduce an additional source of variation in prices which is of interest for many purposes,

but may may lead to biases in covariance measurements. Several estimators are able to separate these

sources of variations. For the univariate case see e.g. bipower variation (Barndorff-Nielsen & Shephard

(2004b)), quantile-based realized variances (Christensen et al. (2010b)), and MinRV and MedRV (Andersen

et al. (2012)). In the multivariate case, bipower covariations are proposed in Barndorff-Nielsen & Shephard

(2004a), thresholds covariances in Mancini & Gobbi (2012), outlyingness weighted covariances in Boudt

et al. (2011b), and disentangled covariances in Boudt et al. (2012).

Second, intraday prices are unreliably recorded, as they do not necessarily correspond to those at

which the underlying asset has been traded, as pointed out in Zhou (1996). This phenomenon, labeled as

market microstructure noise (noise henceforth), affects significantly the properties of realized measures.

Several solutions are provided in the literature both for realized variances and covariances. They include,

among others, sparse sampling (Andersen et al. (2001) and Bandi & Russell (2008)), multi-scale estimators

(Zhang et al. (2005) and Zhang (2006)), pre-averaging techniques (Podolskij & Vetter (2009), Jacod et al.

(2009), Christensen et al. (2010a) and Christensen et al. (2013)), realized kernels (Barndorff-Nielsen et al.

(2008) and Barndorff-Nielsen et al. (2011)), pseudo-maximum likelihood techniques (Aı̈t-Sahalia et al.

(2010)), and measures based on the Kalman filter and the EM algorithm (Shephard & Xiu (2012) and Corsi

et al. (2014)).

Third, and this is specific to the multivariate setup, while price series are non-synchronous and

discrete, the underlying theory of realized estimators is based on continuous stochastic processes. As a

result, most of the multivariate tools require synchronous data. Several estimators and sampling methods

have been proposed to cope with non-synchronous transactions. A first generation of interpolation

techniques are documented in Dacorogna et al. (2001) and have been extensively used. Despite their

success, they are known to produce downward biases in correlations at very high frequencies. The

latter phenomenon, known as the Epps effect, is well documented in the empirical literature (see Epps

(1979) and Reno (2003)). Modern synchronization devices have been proposed recently to construct
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homogeneous prices (see e.g. Hayashi & Yoshida (2005), Barndorff-Nielsen et al. (2011), Corsi & Audrino

(2012) and Aı̈t-Sahalia et al. (2010)).

This article investigates the properties of the class of disentangled realized covariance estimators

(DRC) introduced by Boudt et al. (2012), i.e. realized covariances computed as the product of realized

volatilities and correlations. The reason for disentangling covariances into correlations and volatilities is

the optimal use of the available information. Measuring separately volatilities and correlations allows to

measure each component using the largest amount of available information. Indeed, as returns only need

to be synchronized for correlations, volatilities are measured using the full sample of data. This approach

has potential advantages in terms of precision for the estimation. In fact, separating the estimation of

correlations and volatilities is not an uncommon practice in econometrics. In the parametric multivariate

GARCH set up, Bollerslev (1990), Tse & Tsui (2000), and Engle (2002) propose equivalent approaches

with CCC and DCC models (see Bauwens et al. (2006) for an extensive review). Halbleib & Voev (2011)

propose a mixed approach, combining the DCC for the correlations and the realized estimators for the

volatilities.

Our main contribution is twofold. First, we investigate the best estimator among the class of DRC.

Namely we look for the estimator that combines robustness to jumps and resilience to noise and asyn-

chronicity. Second, we show that in finite samples the chosen estimator compares well with a wide array

of competitors, and under challenging data generating processes. The Monte Carlo study is based on four

different models that are frequently used in the literature. For testing our estimators in a realistic setting,

these models are simulated along with different components to accommodate finite activity jumps,

microstructure noise, and asynchronous trading. We find that the pre-averaged version of DRC computed

with realized Gaussian ranks for the correlations and median-based realized volatilities provide the most

precise results in presence of jumps. Moreover, this estimator is simple to program, computationally fast,

and the estimated matrix is positive definite.

We empirically assess the goodness of disentangled realized covariances through an indirect evalua-

tion based on a minimum variance portfolio management exercise. Data represent the largest companies

traded on the NYSE. Competing estimators are also evaluated in the application. We find that disentan-

gled realized covariances can be used reliably with forecasting models such as the HEAVY of Noureldin

et al. (2012). Finally, we underline different empirical implications from the use of different forecasting

models.

Throughout the paper, we use the following notations, unless explicitly stated otherwise: i) p denotes

the dimension of the random vector of returns, which has a covariance matrix with elements generically

indexed by i and j, ii) t denotes time (measured in low frequency, typically a day), iii) N is the number

of high frequency observations (intraday observations if t is measured in days) with index m (i.e. m =

0, ..., N), iv) every day is divided in K blocks or subsamples indexed by q (i.e. q = 1, ..., K), and k is

the number of observations in each block or subsample. The hierarchy of frequency is therefore: 1 day

composed by N intraday observations, divided in K blocks (or subsamples) with k observations within
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each block (or subsample). Characters in bold denote vectors and matrices.

The rest of the paper is organized as follows. In Section 2 we first introduce the data generating

process, notation, and the class of disentangled estimators. In Section 3, we review several procedures to

handle microstructure noise and in Section 4 we define several synchronization schemes. We report the

results of the extensive Monte Carlo study in section 5. Section 6 presents the gains of the disentangled

estimators in terms of returns on investment. Section 7 concludes. Additional results are reported in the

Appendix.

2 Jump-robust covariation measurement

We consider a p-dimensional random vector of no-arbitrage log-prices denoted {Xt}t≥0 and defined on a

filtered probability space (Ω,A, (At)t∈[0,1],P). We assume that the process is adapted to the filtration

(At)t∈[0,1] and that the vector of log-prices behaves as an Itō semimartingale with finite activity jumps:

Xt =
∫ t

0
µudu +

∫ t

0
ΛudWu + ∑

0≤s≤t
Js. (1)

The process µu is locally element-wise bounded predictable, and the elements of Λu are adapted

cádlag processes such that Σu = ΛT
u Λu. The matrix Σu denotes the spot (or instantaneous) covariance

matrix of the process. The random vector Wu denotes a p-dimensional standard Brownian motion and

Js denotes the jumps magnitude. Jumps are driven by a finite activity counting process Nt such that

E[Nt] < ∞. The component
∫ t

0 µudu +
∫ t

0 ΛudWu in (1) is the continuous part and denoted by Xc
t , so that

Xt = Xc
t + ∑

0≤s≤t
Js.

Since we are interested in robustness to large unexpected deviations in asset prices, we limit to finite

activity jumps driven by a Poisson process as described in (1), despite the fact that infinite activity jumps

processes are also considered in practice (e.g. Carr et al. (2002)). Further work might integrate finite and

infinite activity jumps, and test whether it is possible to separate between large and small jumps in the

price process using the statistics presented hereafter.

The period of interest is [0,1] (e.g. one day). We denote by πN an ordered set of times such that

0 = t0 < t1 < ... < tm < ... < tN = 1 forming a partition (see definition 1 below) of the period considered,

and µ(πN) is the mesh of the partition. In this setup, the πN-quadratic variation process of {Xt}t≥0

coincide with the baseline realized covariance and is defined as the random process

QπN (Xt) =
N

∑
m=1

(Xtm∧t − Xtm−1∧t)(Xtm∧t − Xtm−1∧t)
T . (2)

If QπN (Xt) converges in probability to a process {Vt}t∈[0,1] for any sequence partition πN over the

interval [0,1] such that µ(πN)→ 0 as N → ∞, then we call {Vt}t∈[0,1] the quadratic variation, which for

simplicity we denote by [X]t. Assuming X0 = 0, it is well known for Itō semimartingales that

[X]t = [X]ct + ∑
0≤s≤t

∆Js∆JT
s , (3)
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where [X]ct =
∫ t

0 Σudu is the ”path-by-path” continuous part of the quadratic variation (Protter (2004)),

which also corresponds to the quadratic variation of the continuous part Xc
t . The realized covariance

QπN (Xt) can therefore be seen as a finite sample measure of risk composed of two sources: risks related

to the Brownian component and risks related to the finite activity jumps.

Considering σ
i,j
u as the i-th row and j-th column element of Σu, we have that σ

i,j
u = ρ

i,j
u σi

uσ
j
u, where σi

u

and σ
j
u are the spot volatilities and ρ

i,j
u is the spot correlation. Our object of interest is the estimation of

[X]c1 by estimating separately the elements ρ
i,j
u , σi

u and σ
j
u

[X]
c,i,j
1 =

∫ 1

0
ρ

i,j
u σi

uσ
j
udu. (4)

In other words, we are interested in a jump robust estimator of the daily integrated covariation by

considering separately spot correlations and volatilities. As mentioned above, this approach allows to

use the full data sample for volatilities σi
u i = 1, . . . , p as no synchronization technique is required for

their estimation.

We now define more rigorously the partitions one might encounter:1

Definition 1 Let πNi := [0 = ti
0 < ti

1 < ... < ti
m < ... < ti

Ni−1 < ti
Ni

= 1] be the partition on the time interval

[0, 1] for asset i. Likewise for asset j. We say that πNi and πNj are

1. synchronous and evenly spaced: Ni = Nj, πNi = πNj and ti
m − ti

m−1 = tj
m − tj

m−1 = 1
N .

2. synchronous and irregularly spaced: Ni = Nj, πNi = πNj but time intervals between prices are not

deterministic.

3. partially asynchronous: πNi 6= πNj but we might have that πNi ∩ πNj 6= {0, 1}, i.e. there may be

common points in the two sets except the first and the last (both sets are partitions of the same interval).

4. completely asynchronous: πNi 6= πNj and πNi ∩ πNj = {0, 1}.

Figure 1 provides a diagrammatic representation of the partitions. The upper two lines corresponds

to a partition of type 1. The arrival times are regularly spaced and synchronized. The next two lines

represent the partition of type 2, in which arrival times are also synchronized but irregularly spaced.

The bottom half of the figure represents the partitions 3 and 4 in which observations are asynchronized,

though in partition 3 there maybe sporadic common arrival times, an event excluded in partition 4.

In order to introduce the class of estimators in a clear way, we first assume that πNi and πNj are

of type 1. Then, the time intervals are denoted as ∆N
m t = tm − tm−1 and equal to 1/N. Let ∆N

m X =

Xm/N −X(m−1)/N = (Xi,m/N −Xi,(m−1)/N , Xj,m/N −Xj,(m−1)/N) be the vector of synchronous log-returns

computed over the period of interest.2 The returns scaled (by time) are ∆N
m X∗ = (∆N

m t)−
1
2 ∆N

m X =
√

N∆N
m X.

We construct K non-overlapping smaller subsets (or blocks) of returns containing each k data points,

1This definition is in terms of 2 assets and it can be generalized to any dimension.
2Note that since partitions are of type 1, Xtm = Xm/N .
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Figure 1: This figure provides a diagrammatic representation of the four different partitions. The upper two lines correspond to a

partition of type 1. The arrival times are regularly spaced and synchronous. The next two lines represent the partition of type 2, in

which arrival times are also synchronous but irregularly spaced. The bottom half of the figure represents the partitions 3 and 4 in

which observations are non-synchronous, though in partition 3 there maybe sporadic common arrival times, an event excluded in

partition 4.

i.e. N = K × k.3 We denote by Bk
qX∗ = (∆N

m X∗)(q−1)k+1≤m≤qk the subset of scaled returns contained in

block q.

The class of Disentangled Realized Covariances between assets i and j is

DRCi,j(K) =
1
K

K

∑
q=1

ri,j(Bk
qX∗)vi(Bk

qX∗)vj(Bk
qX∗), (5)

where ri,j(Bk
qX∗), vi(Bk

qX∗) and vj(Bk
qX∗) denote respectively estimators of the correlation and volatilities

for assets i and j computed using the scaled returns contained in block q. The choice of these estimators

determine the properties of (5).

Indeed, many choices are available for ri,j(Bk
qX∗), vi(Bk

qX∗) and vj(Bk
qX∗). In this article we select

some and analyze them. The methodology we use is somewhat inductive. We begin by studying the

goodness of combinations of estimators for volatilities and correlations with Monte Carlo simulations.
3In some instances the last block may have a different amount of points depending on the initial amount of observations and

the amount of blocks.
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Then, on basis of the finite sample results, we select the best estimator and compare its performances

with benchmark jump-robust estimators from the literature. Our approach therefore extends Boudt et al.

(2012) as several combinations of estimators are considered, different sampling schemes are used, and

noise is introduced.

We close this sub-section with three remarks. The first concerns consistency and the jump-robust

properties of the estimators. In a small interval, log-returns generated by the process (1) can be well

approximated by a Brownian motion with constant covariance matrix. I.e. if (q− 1)k + 1 ≤ m ≤ qk, then

∆N
m X ≈ Λ (q−1)k+1

N
∆N

m W where the subindex (q−1)k+1
N corresponds to the starting time of block q (see e.g.

Mykland & Zhang (2009)). Since the approximated contiguous scaled returns located in block q display

constant spot covariance matrix and have distribution N(0, Σ (q−1)k+1
N

), consistent robust estimators under

Gaussianity enable to estimate the spot covariance matrix in each block. The average over blocks provides

an estimator of the integrated covariance matrix that intuitively maps to a Riemann sum over time

intervals.

Second, the finite activity jumps that we consider correspond to large unexpected movements. In a

small block, these jumps can be mapped intuitively to outliers in the statistical sense. Estimators that are

robust to outliers thus eliminate the effect of finite activity jumps.

Third, in the case of synchronous data (πNi and πNj are of types 1 or 2 in definition 1), measuring

volatilities and correlations separately has of course little interest since no efficiency can be gained from

disentangled estimation. Our class of estimator is best suited in the case of partitions πNi and πNj that

are of type 3 or 4, requiring a synchronization technique to estimate the spot correlations within each

block. We discuss this point more in detail below.

2.1 Estimation of the spot volatilities

In this section we describe two jump-robust estimators of spot volatilities. They are derived from two

classes of integrated volatility estimators proposed by Christensen et al. (2010b) and Andersen et al. (2012).

We limit the analysis to these two classes as both are based on a blocking strategy, and hence dovetail

into the class of disentangled realized covariances.

The estimator of integrated volatility proposed by Christensen et al. (2010b) is based on quantiles and

defined, for asset i, as

QRVi(λ, K) =
1
K

K

∑
q=1

si(Bk
qX∗, λ)

ν(λ)
, (6)

where si(Bk
qX∗, λ) = g2

λk(Bk
qX∗) + g2

(1−λ)k+1(Bk
qX∗) and the function gk(x) = x(k) denotes the k-th order

statistics. The parameter λ is the probability level at which QRV is computed.4 The term ν(λ) in (6) is a

scaling factor given by ν(λ) = E[
∣∣∣U(λm)

∣∣∣2 + ∣∣∣U(m−λm+1)

∣∣∣2], where U(λm) is the λm-th order statistics of a

4The information contained at more than one probability level can be exploited by considering QRVi
N(λ) = αTQRVi

N(λ),

where α is a vector (summing to one) that has the same size as λ.
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sample of m i.i.d. normal random variables (U1, ..., Um). This scaling can be computed by simulation and

ensures consistency of the estimator under Gaussianity.

The second class of estimators for integrated volatility is a generalization of those proposed by

Andersen et al. (2012). For asset i they are

MinRVi
K =

1
ξMin(k)

K

∑
q=1

min
(∣∣∣Bk

qX∗
∣∣∣)2

and

MedRVi
K =

1
ξMed(k)

K

∑
q=1

med
(∣∣∣Bk

qX∗
∣∣∣)2

.

(7)

The scalings ξMin(k) and ξMed(k) are such that the summands are consistent estimators of the spot

volatility in the corresponding block under the assumption that observations are i.i.d. Gaussian. These

constants are functions of the number of observations per block. Andersen et al. (2012) consider k equal

to 2 and 3 for MinRVi
N and MedRVi

N respectively, for which the scalings have closed-form expressions.

For other values of k, they may have to be computed by simulations.5 If k = 1, the scaling equals 1 for

both estimators, which coincide with the baseline realized variance estimator. If k→ ∞, the scaling for

MedRV converges to 2.198, while the scaling for MinRV increases exponentially to infinity.6 Because of

this drawback, and because of the sensitivity to zero returns (leading to a bias towards zero), we do not

consider the MinRV estimator. MedRV by contrast strikes a good balance between stability and jump

robustness.

Based on QRVi(λ, K) and MedRVi
K, the estimators for the spot volatility vi(Bk

qX∗) we consider are

QRVi
k,q(λ) =

s(Bk
qX∗, λ)

ν(λ)
and

MedRVi
k,q =

med
(∣∣∣Bk

qX∗
∣∣∣)2

ξMed(k)
.

(8)

And likewise for vj(Bk
qX∗).

2.2 Estimation of the spot correlations

The statistical literature on robust estimators for correlations is extensive (see e.g. Shevlyakov & Smirnov

(2011) and references therein). We measure spot correlations using benchmarks of this literature (Kendall’s

τ and Spearman’s ρ), as well as other alternatives – quadrant signs and Gaussian ranks – that deliver

good results in the realized literature (Boudt et al. (2012)).

To facilitate notations in this section, we denote Lq = (q− 1)k + 1 and Uq = qk the lower and upper

bounds for the index of returns belonging to Bk
qX∗.

Kendall’s τ is based on the statistical and geometric properties of elliptical distributions. Heuristically, it

considers concordance of the combinations of observations by means of the signs. Kendall’s τ between
5Boudt et al. (2012) use k = 5 for the MedRV and a scaling of 1.624.
6The constant 2.198 is the square of 1.483, which is the scaling factor of the median absolute deviation in an i.i.d. Gaussian

setup (Rousseeuw & Croux (1993)).
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two random variables Xi and Xj is defined as

ρ
i,j
τ = E(sign(Xi − X̃i)(Xj − X̃j)),

where (X̃i, X̃j) is an independent copy of (Xi, Xj). In our setup, the estimator for block q is

ri,j
τ,q =

2
k(k− 1) ∑

Lq≤n<s≤Uq

sign((∆N
n X∗i − ∆N

s X∗i )(∆
N
n X∗j − ∆N

s X∗j )).

The estimated Pearson correlation is obtained as ri,j
q = sin

(
π
2 ri,j

τ,q

)
. It is pairwise and does not

necessarily provide positive definite estimated matrices. However, if the sample size is at least three

times larger than the cross section, the resulting matrix is positive definite with probability one (Boudt

et al. (2011a)).

Spearman’s rho is based on the Pearson correlation between cumulative distribution functions. If one

defines Fi(x) = P(Xi ≤ x) (and likewise for Xj), the Spearman’s correlation is

ρ
i,j
Sp = ρi,j(Fi(Xi), Fj(Xj)).

The estimator for block q, denoted ri,j
Sp,q, is the sample Pearson correlation between ranks of the vectors in

Bk
qX∗. The estimated Pearson correlation between Xi and Xj is then ri,j

q = 2sin
(

π
6 ri,j

Sp,q

)
. The estimated

matrix is positive definite with probability one if the sample size is at least two times larger than the cross

sectional size (Boudt et al. (2011a)).

Quadrant signs, or quadrant correlations are defined as

ρ
i,j
Qd = E(sign(X1 −median(X1))(X2 −median(X2))).

The estimator based on Bk
qX∗ is the sample average of the signs

ri,j
Qd,q =

1
k

Uq

∑
n=Lq

sign((∆N
n X∗i −median(∆N

n X∗i ))(∆
N
n X∗j −median(∆N

n X∗j ))).

The estimated Pearson correlations and the condition for positive definite estimated matrix are the same

as for the Kendall’s τ.

Gaussian ranks is a direct estimator of the Pearson correlation:

ri,j
Φ,q =

1
ψk

Uq

∑
n=Lq

Φ−1
(

rank(∆N
n X∗i )

k + 1

)
Φ−1

( rank(∆N
n X∗j )

k + 1

)
,

where ψk = ∑k
n=1 Φ−1

(
n

k+1

)2
only depends on the amount of points k in block q, Φ−1(·) denotes the

quantile function of the standard normal distribution, and rank(∆N
n X∗i ) the rank of ∆N

n X∗i in block q.

Positive semi-definiteness is ensured as long as the sample size is greater than the cross section.
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2.3 Positive definiteness and number of blocks

The matrix version of (5) is

DRC(K) =
1
K

K

∑
q=1

S(Bk
qX∗)R(Bk

qX∗)S(Bk
qX∗), (9)

where R(·) denotes the jump robust estimator of the spot correlation matrix and S(·) is a diagonal matrix

containing jump robust estimates of the spot volatilities of each asset over block q.

Positive definiteness of DRC(K) depends on R(·) and S(·). If R(·) is positive definite, and if the

diagonal matrix S(·) has no zero entries, then S(·)R(·)S(·) and the average (9) are positive definite.

In practice choices have to be made for the number of blocks K (and hence the number of observations

per block k), which, for a fixed sample size N, lead to the classical trade-off between precision and

bias. A smaller amount of blocks implies a larger amount of available observations for the estimation.

In the opposite, estimation based on a larger amount of blocks allows to decrease the sensitivity to

zero-returns, reducing the chances of downward biases. Moreover, the spot correlations and volatilities

being time-varying, inference based on a small amount of blocks is unlikely to capture accurately the

dynamics, advocating the use of a larger number of blocks.

Applied aspects must also be considered as different assets classes imply different trading hours.

For instance, currencies trade continuously, commodities have several daylight trading breaks (e.g. corn

traded at CBOT has a daylight trading break from 14:15 to 20:00), and equities typically trade from 9:30

to 16:00 (though some stock exchanges have lunch breaks). Trading hours therefore impact significantly

the optimal sampling and blocking approaches. A second consideration is liquidity, as frequently and

infrequently traded stocks belong both to the investment universe. Liquidity disparities greatly constrain

the amount of blocks to use. Hautsch et al. (2012) proposed a liquidity-driven composite approach for

realized kernels which tackles this problem.

Finally, the size of a considered portfolio imposes restrictions on the number of blocks. The amount of

blocks per day should be a decreasing function of the cross section size p. In higher dimensions smaller

amount of blocks should be used in order to preserve positive definiteness. Note that this points favors

estimation of R(·) with Gaussian ranks, which provide positive definite matrices as long as the amount

of assets considered is smaller than the sample size. Many questions nevertheless remain open on this

specific choice which heavily relies on the application. In ours, we use an ad hoc data-driven procedure

for equities imposing each block to contain at least two times the size of the cross section, i.e. each block

should have a minimum amount of point k > 2p.7

7Synchronous prices are obtained from a calendar-time sampling approach, based on a data-driven sampling frequency choice,

as described later in detail.
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3 Market Microstructure noise

Up to this point, we described the class of DRC estimators under the assumption that efficient prices are

observable and hence they are not contaminated by market microstructure noise. In practice, however,

prices do not always match with those that are exchanged on markets (see e.g. Zhou (1996)). From a

modeling viewpoint, noise is an additive component to log-prices that can be written as Yt = Xt + ηt,

where Xt denotes the efficient log-prices (1) and ηt denotes the market microstructure noise. Generally,

noise generates upward biases in standard realized volatilities, though it impact less covariance measures.

In the sequel we describe three techniques for decreasing the influence of noise.

Sparse sampling consists of sampling prices on a sparse grid of time points, i.e. choosing a value for ∆ in

the interpolation scheme. At lower frequencies, the impact of noise is known to be less relevant and the

bias tends to vanish (Barndorff-Nielsen & Shephard (2007)). The resulting estimator is computed using

the synchronous low frequency data. Sparse sampling may reduce significantly the number of available

observations, which has two drawbacks: it limits the size of the cross section for which the estimated

matrix is positive definite, and the precision of the estimates worsens.

Subsampling is introduced in the univariate case by Zhang et al. (2005) and Zhang (2006), and studied

in the multivariate setup by Zhang (2011) and Boudt & Zhang (2013) among others. Instead of using

contiguous non-overlapping blocks of returns, subsampling uses overlapping subsamples containing

returns sampled at a lower frequency. The successive estimates are then averaged.

McAleer & Medeiros (2008) provide the following intuitive example. If one has noisy 1-second returns

and wishes to use subsampling with 5-minute returns, she can compute returns using log-prices recorded

on the following grid of time coordinates [9:30-9:35], [9:35-9:40], [9:40-9:45], ... , [15:55-16:00]. The unused

times are used to construct new series of returns. For example, starting 10 seconds later the new grid

is [9:30:10-9:35:10], [9:35:10-9:40:10], [9:40:10-9:45:10], ... , [15 50:10-15:55:10]. The new series are used to

replace blocks and estimate the covariance.

We construct K overlapping sub-grids at a calendar frequency δ, i.e. we skip δ points in πNi between

two consecutive points of the new sub-grid.8 Returns are computed from prices projected on the sparse

grid of times using previous-tick interpolation. They are denoted by ∆N
m,qY∗ =

√
N/δ

(
Y (q−1)+δm

N
− Y (q−1)+δ(m−1)

N

)
where q = 1, ..., K, m = 1, ..., b(N − q + 1)/δc, and b.c denotes the floor operator.9 We denote the new

set of returns contained in subsample q by Bδ
qY∗ = (∆N

m,qY∗)1≤m≤b(N−q+1)/δc. The estimator is then

computed as in (5) by replacing the blocks by the new subsamples.

Sampling at lower frequencies allows to decrease the impact of noise on estimates, and averaging over

the subsamples allows to increase the efficiency of the estimator. However, the cost of subsampling is that

8For emphasizing that the subsampling and blocks are mutually exclusive, deliberately we use the same notation for both

techniques.
9Note that if returns are sampled every second along a grid πNi of type 1, then K = δ.
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the size of the cross section for which the estimator is positive definite will be limited by the frequency

of the subsamples. The reason is alike to sparse sampling since the average is composed of covariance

matrices based on low frequency data.

Pre-averaging is introduced by Podolskij & Vetter (2009) and studied by Jacod et al. (2009) –multivariate

extensions can be found in Christensen et al. (2010a) and Christensen et al. (2013). Pre-averaging relies

on the intuitive idea that if the noise ηt is i.i.d. with mean zero, then smoothing the log-prices Yt may

decrease the impact of microstructure noise and provide an approximation of the true latent price Xt.

We use pre-averaging in calendar time assuming prices are aligned on an homogeneous grid of time.

If ∆N
m Y∗ denotes the m-th vector of noisy scaled returns, pre-averaged returns are

∆mỸ∗ =
1√
kNψ

kN−1

∑
j=1

g
(

j
kN

)
∆N

m+jY
∗, for m = 0, ..., N − kN + 1, (10)

where g(.) is a kernel function, ψ = 1
kN

∑kN−1
j=1 g2( j

kN

)
and kN/

√
N = θ + o(N−1/4) are computed

following Christensen et al. (2010a). The scaling in front of the sum in (10) is necessary to avoid in-sample

biases of the estimates. The pre-averaged version of the class of DRC is provided by replacing the noisy

returns used to construct the blocks in the previous section by their pre-averaged counterpart ∆mỸ∗, and

compute the estimator following (5).

Pre-averaging of log-returns allows to keep more points than sparse sampling for the estimation.

Consequently, precise estimates can be obtained without reducing the dimension. As pointed out by

Christensen et al. (2010a), there is a strong relationship between pre-averaging and subsampling. Esti-

mators relying on these techniques can be mapped into each other. By using one of these techniques to

compute the cumulative squared returns, the estimators use all the data points, but put slightly different

weights on them, which explains the differences found in the next sections.

4 Synchronization schemes

We now assume that the partitions πN1 and πN2 are of type 3 or 4, i.e. observations are asynchronous and

assets may have different sample sizes. Asynchronous trading induces microstructure effects that can

lead to downward bias in the correlations among assets, such as the Epps effect (after Epps (1979)) that

is illustrated in Figure 2. It shows the baseline realized correlations (of Andersen et al. (2003)) between

Apple and the SPDR S&P500 ETF on April 30 2012 and as a function of the sampling frequency. The

correlation increases with the sampling interval and reach a stable level for low sampling frequencies.

As in the synchronous case, every day there is an opening and a closing, and the day is evenly divided

in K blocks. The main difference with regularly spaced arrivals is that the number of observations per

block is random. Once re-scaled, these observations can be used to estimate the volatilities, one by one

independently of each other. However, for the estimation of the correlations within each block, observa-

tions for all assets need to be synchronized. What follows is the list of the synchronization techniques
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Figure 2: This figure shows an example of microstructure effects induced by asynchronous trading on correlations between SPY

and APPL. The x-axis represents the calendar sampling frequency in seconds.

that we use.

Interpolation is based on first choosing a fixed calendar sampling frequency. Indeed, it is common in

practice to compute returns on basis of prices sampled every 5, 10 and 15 minutes. This is the multivariate

extension of sparse sampling (see Andersen et al. (2001)) and it provides homogenous time series

(Dacorogna et al. (2001)). The sampling frequency is chosen according to an optimality criterion, such as

minimizations related to market microstructure noise and jumps.

The choice of the calendar sampling frequency is delicate and may significantly modify the statistical

properties of the estimators. On the one hand, sampling at higher frequencies entails a larger sample

and potentially more precise estimates. On the other hand, the impact of microstructure noise is more

important at high frequencies.

Once the frequency is chosen, homogeneous price vectors are constructed. If we denote by ∆t the fre-

quency at which we sample returns, the number of observations is bday length (seconds)/∆t(seconds)c.

Then, if one denotes by t0 the starting time of the day, the i-th observation is constructed as Xti = Xtk

where k = max(k̃|tk̃ ≤ t0 + i∆t) and tk ≤ t0 + i∆t ≤ tk+1. I.e. prices are constructed by projecting the

closest past observation to the i-th point of the time grid. This interpolation is called previous tick.

Alternatively, one may opt for linear interpolation. The construction is similar to the previous technique

and the amount of points in the homogeneous vector is deterministic. If one denotes by t0 the starting

time of the day, the i-th observation is constructed as

Xti = Xtk +
t0 + i∆t− tk

tk+1 − tk
(Xtk+1 − Xtk ), (11)

where k = max(k̃|tk̃ ≤ t0 + i∆t).
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Refresh time. Barndorff-Nielsen et al. (2011) construct vectors of homogeneous high-frequency prices by

projecting asynchronous data on a grid of time coordinates that has a random amount of data depending

on the relative trading intensity/liquidity of the assets considered. As a result, the less liquid asset drives

the construction of the grid. A similar approach was previously used by Harris et al. (1995) and Martens

(2004).

Refresh time can in fact be seen as a previous-tick interpolation on a grid of time coordinates defined

as follows.

Definition 2 Denote the trading times of an asset i as ti
1, ti

2, ... for i = 1, ..., p and let Nt
i be the amount of trades

recorded up to time t (with N1
i = Ni). Then, the first refresh time is defined as τ1 = max(t1

1, ..., tp
1 ) and the

subsequent refresh times as τj+1 = max(t1
N

τj
1 +1

, ..., tp

N
τj
p +1

).

The time τ1 designates the first moment at which all the assets are traded at least once, i.e. the first

time at which all prices are refreshed. Then, τ2 = max(t1
N

τ1
1 +1

, ..., tp
N

τ1
p +1

) and, from τ1, we have that

Nτ1
i ≥ 1 ∀i ∈ {1, 2, ..., p}. Moreover, if max(t1

1, ..., tp
1 ) = ti

1 then i is such that Nti
1

i = 1. Thus, we have that

Nτ1
i + 1 ≥ 2 ∀i ∈ {1, 2, ..., p} and min(Nτ1

1 + 1, ..., Nτ1
p + 1) = 2. Intuitively τ2 is the first time after τ1 at

which all the assets are traded again. This can be recursively applied for τ3, τ4, ... up to the end of the

sample. The sample size after synchronization is random and large cross sections induce more complex

computations, increasing the risk of deleting a lot of observations.

Refinements have been proposed in the literature. Fan et al. (2012) use a pairwise version of refresh

time (”pairwise-refresh” as opposed to ”all-refresh”). This approach has the advantage of retaining more

observations. However, it does not provide semi-positive definite matrices, as pointed out by Fan et al.

(2012). Hautsch et al. (2012) rank stocks according to their relative liquidity and apply refresh-time to

estimate high-dimensional realized kernels, coupled with blocking and regularization techniques related

to random matrix theory.

Hayashi & Yoshida (2005)’s scheme handles asynchronous data without projecting prices. As a result,

all prices are used in the computation of realized covariances. This scheme was first used to compute

realized covariances by aggregating returns recorded in overlapping time intervals. The estimator of

cumulative covariance between assets i and j is defined as follows:

RCi,j
HY =

Ni

∑
m=1

Nj

∑
n=1

∆Ni
i,mX∆

Nj
j,nX 1{(ti

m−1,ti
m ]∩(tj

n−1,tj
n ] 6=∅}, (12)

where 1{(ti
m−1,ti

m ]∩(tj
n−1,tj

n ] 6=∅} is an indicator function that takes value 1 is the argument is true. This

aggregation scheme can be used with different versions of the cumulative covariance estimator as, for

example, the thresholds realized covariances of Mancini & Gobbi (2012). However, the class of DRC does

not map naturally into the construction of aggregated returns and hence, in our comparison below, we
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only apply it to the realized covariances of Andersen et al. (2003) and the thresholds realized covariances

of Mancini & Gobbi (2012). More details are provided in the next section.

5 Monte Carlo Simulation

We assess the finite sample behavior of the combinations of realized volatilities, correlations and synchro-

nization techniques. We report the performances and compare the best combinations with five competing

estimators: the baseline realized covariance (RC henceforth) of Andersen et al. (2003), realized bi-power

covariation (BPC) of Barndorff-Nielsen & Shephard (2004a), realized outlyingness weighted covariance

(OWC) of Boudt et al. (2011b), the estimators based on thresholds (TC) of Mancini & Gobbi (2012), and

realized kernels (RK) of Barndorff-Nielsen et al. (2011).

We implement these estimators as suggested by the authors. For instance, TC is estimated with a

hreshold value rh,t = 9BPVt∆0.98
t , following Jacod & Todorov (2009), where BPVt is the bipower variation

and ∆t refers to the time interval between two successive returns. We implement OWC with hard rejection

functions and a threshold of 0.999, following the results of Boudt et al. (2011b). As for RK, we use refresh

time and subsampled realized variances to compute the optimal bandwidth. When necessary more details

are given below.

In a nutshell, the conclusion of our study is that across the four simulated models (presented below)

with jumps, noise and asyncrhonous prices, pre-averaged DRC implemented with Gaussian ranks

provides the best results.

5.1 Data generating processes

We simulate 10000 trading days from four models that are often used in the literature: a Brownian motion,

the Heston model, a stochastic volatility with constant correlation, and a continuous GARCH diffusion.

Assuming that the market opens 252 days per year and 6.5 hours per day, a trading day has 23400 seconds.

This is the number of prices we generate per day (using the Euler discretization scheme) and that implies

that 1 second corresponds to 1/(252 x 23400) units of time.

In the sequel of this section we first show the models used to generate the continuous part Xc.

Simulation is done following the choices made in previous works (see Table 1). Next, results are divided

in four sub-sections. We start with the ideal world where assets trade synchronously and without noise

(section 5.2). Then we introduce asynchronicity (5.3), noise (5.4), and asynchronicity and noise (5.5).10

Model 1 is a Brownian motion with constant parameters:

dXc
it = σidWit, (13)

for i = 1, 2, and where Wit are Brownian motions (also denoted by Bit in the next models) and

< dW1t, dW2t >= ρdt. The initial log prices are X1,0 = log(100) and X2,0 = log(40).

10We show results for RK for the two cases with noise.
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Table 1: Parameter choices
Model 1 – Standard Brownian Motion

σi ρ

i = 1 0.15 0.3

i = 2 0.45

Model 2 – Aı̈t-Sahalia et al. (2010)

µi κi λi σ̄2
i si θi ηi ρi ρ

i = 1 0.05 3 12 0.16 0.8 -5 0.8 -0.6 0.5

i = 2 0.03 2 36 0.09 0.5 -6 0.5 -0.75

Model 3 – Barndorff-Nielsen et al. (2011)

µi β0i β1i αi ρi

i = 1 0.03 -5/6 1/8 -1/40 0.5

i = 2 0.03 -5/6 1/8 -1/40 0.5

Model 4 – Voev & Lunde (2007) and Andersen & Bollerslev (1998)

ki θ2
i ωi σ2

i,0 kx θx ωx ρ0

i = 1 0.35 0.636 0.296 0.64 0.03 0.64 0.118 0.5

i = 2 0.35 0.636 0.296 0.16

Model 2 is the Heston model, in which correlations remain constant while volatilities change over time

and display jumps, as in Aı̈t-Sahalia et al. (2010) and Shephard & Xiu (2012). For i = 1, 2, we simulate

log-prices as

dXc
it = µidt + σitdWit

dσ2
it = κi(σ̄

2
i − σ2

it)dt + siσitdBit + σit− JVol
it dNit,

(14)

where < dWit, dBjt >= δijρidt (δij denotes the Kronecker delta), < dW1t, dW2t >= ρdt, and κi > 0. The

model is calibrated as in Aı̈t-Sahalia et al. (2010). For each new path we generate a starting value for

σ2
it0

from a Gamma distribution Γ(2κiσ̄
2
i /s2

i , s2
i /2κi), the jump size logJVol

it is distributed like N(θi, ηi),

Nit is a Poisson Process with parameter λi, and initial log-prices are set equal to X1,0 = log(100) and

X2,0 = log(40).

Model 3 also has stochastic volatility and constant correlation. It follows the model on Barndorff-Nielsen

et al. (2011), used for assessing the finite sample properties of multivariate realized kernels. For i = 1, 2,

we simulate log-prices as

dXc
it = µidt + dVit + dFit

dVit = ρiσitdBit

dFit =
√

1− ρ2
i σitdWt

σit = exp(βi0 + βi1ζit)

dζit = αiζitdt + dBit,

(15)

where < dWt, dBjt >= 0, < dX1t, dX2t >=
√

1− ρ2
1

√
1− ρ2

2dt. We calibrate the model following
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Barndorff-Nielsen et al. (2011).

Model 4 is a continuous GARCH diffusion. This is the only model allowing stochastic correlations and

volatilities. For i = 1, 2, we simulate log-prices as

dXc
it = σitdWit

dσ2
it = κi(θ

2
i − σ2

it)dt + ωiσ
2
itdBit

dxt = κx(θx − xt)dt + ωxxtdBxt

ρt = (e2xt − 1)/(e2xt + 1),

(16)

where < dWit, dBjt >= 0, < dW1t, dW2t >= ρtdt. We calibrate the parameters following Voev & Lunde

(2007) and Andersen & Bollerslev (1998).

Jumps, noise, asynchronous trading, and accuracy measure. To allow for co-jumps we simulate three

independent compound Poisson processes. The two first processes correspond to the individual jump

activity while the third process is common to both assets. We simulate jump arrivals with Poisson

processes, and jumps sizes with i.i.d. log-normally distributed random variables. The expected amount of

jumps per day corresponds to the parameter of the Poisson processes and are set to 2 for the individual

jump activities and 4 for the common jump process. I.e. assets are expected to jump 6 times per day.

Jumps sizes are simulated from i.i.d. N(0, ζ) where ζ = 0.7
252 .

We simulate noise as in Barndorff-Nielsen et al. (2008) assuming that ηi
t ∼ i.i.d. N(0, ω2

i ) where

ω2
i = ξ2

√
N−1 ∑N

m=1 σi,4
m/N and ξ2 = 0.01.

Non-synchronous trading is introduced using Bernoulli trials. This technique, based on Aı̈t-Sahalia

et al. (2010), selects randomly prices from a grid of evenly spaced transactions. One difference in our

scheme is that we simulate probability levels from a uniform distribution over [0.25, 1]. It enables to

cover various regimes of relative liquidity between assets and to test the goodness of our estimators

independently from a fixed trading intensity.

Last, to compare the finite sample performances of the estimators we use the root mean squared

relative errors (as in Boudt et al. (2011b)):

RMSE =

√√√√ 1
Tk

T

∑
t=1
||vech(Estimt − ICt)./vech(ICt)||2, (17)

where Estimt denotes the estimator of the integrated covariance matrix for period t, ICt stands for the

integrated covariance matrix for period t, ./ denotes the element wise division, and T is the amount of

simulated periods (days).
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5.2 Synchronous prices & no noise

Table 2 reports the results. It is divided in four panels, corresponding to different intraday sampling

frequencies (30 seconds, and 1, 5, and 15 minutes). Each panel shows the RMSE for eight estimators. The

first four are the competitors (RC, BPC, TC and OWC) while the last four are our combinations, which we

denote Med-Ken, Med-Spear, Med-Quad and Med-Gauss (for instance Med-Spear stands for the MedRV

estimator for the volatilities and Spearman’s ρ for the correlations). Column-wise, the table is divided in

the four models, with and without jumps. In the interest of space the QRV estimators are not shown, as

MedRV is uniformly better (results are nevertheless reported in Table 7 of the Appendix).

Four are the main findings. First, not surprisingly, RC performs well without jumps but it is very

sensitive to them at high frequencies. The other estimators provide better performance in presence of

jumps, as they are robust to them. Second, in general the quality of the estimators decreases with the

sampling frequency. Lower frequencies provide less precise estimates. On average, the relative accuracy

of the estimators for 1-, 5- and 15-minute returns compared to the RMSE of estimators computed on basis

of 30-second returns are of order close to
√

2,
√

10 and
√

30 respectively. Similar results are found by

Boudt et al. (2011b).11

Third, the threshold used for TC provides good results, as the performances of TC are close to those

of RC in absence of jumps and far better when jumps are added.12 Moreover, most of the time OWC

outperforms the other estimators, followed by TC for high frequencies. Our combinations are generally

less accurate than OWC and TC and perform on average better than the BPC. The goodness of our

estimators will appear more clearly in case of asynchronous trading.

Fourth, and as briefly mentioned above, combinations based on median operators for volatility

measures provide in general more accurate measures than those based on quantiles. Moreover, quadrant

correlations perform in a less convincing way than Gaussian ranks, Spearman’s ρ and Kendall’s τ. In

the sequel we only show results for the combination based on median measures for volatilities and

Spearman’s ρ and Gaussian ranks for correlations. We skip Kendall’s τ as it is computationally less

efficient than the others.

5.3 Asynchronous prices & no noise

Next, we study the impact of asynchronous trading. Following Mancini & Gobbi (2012), RC and TC

are implemented with the aggregation scheme proposed by Hayashi & Yoshida (2005); we denote this

estimator as HY-RC and HY-TC. For OWC and BPC, we follow Boudt et al. (2011b) and use returns

aligned on a 5-minute grid with previous-tick interpolation in order to avoid microstructure effects

related to asynchronous trading; we denote the estimators PT-BPC and PT-OWC. Our estimators are

computed with data synchronized using refresh time (denoted RT), 30-seconds previous tick (denoted

PT) and 30-seconds linear interpolation (denoted LI).

11Our model 3 corresponds to Boudt et al. (2011b)’s main model, except that the jump process is different.
12TC is a truncated version of RC and hence should provide equivalent results in absence of jumps
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Table 2: Monte Carlo study – Synchronous trading.

Model 1 Model 2 Model 3 Model 4

no jumps jumps no jumps jumps no jumps jumps no jumps jumps

Panel A: 30-seconds returns

RC 0.082 24.05 0.946 9.421 0.054 3.950 0.062 3.353

BPC 0.100 1.622 0.943 1.583 0.062 0.341 0.073 0.399

TC 0.086 0.085 0.918 0.961 0.060 0.058 0.067 0.065

OWC 0.084 0.087 0.936 0.970 0.056 0.056 0.064 0.065

Med-Ken 0.105 0.114 0.954 1.007 0.083 0.084 0.090 0.092

Med-Spear 0.105 0.113 0.955 1.008 0.083 0.084 0.090 0.092

Med-Quad 0.131 0.134 0.955 1.008 0.087 0.088 0.100 0.101

Med-Gauss 0.103 0.137 0.953 1.007 0.082 0.083 0.088 0.091

Panel B: 1-minute returns

RC 0.116 24.04 0.954 9.414 0.076 3.955 0.089 3.352

BPC 0.140 2.210 0.953 1.930 0.087 0.495 0.103 0.556

TC 0.120 0.123 0.924 0.972 0.083 0.083 0.094 0.092

OWC 0.120 0.121 0.943 0.977 0.079 0.081 0.092 0.092

Med-Ken 0.149 0.173 0.955 1.037 0.117 0.122 0.125 0.132

Med-Spear 0.150 0.169 0.957 1.040 0.116 0.122 0.125 0.133

Med-Quad 0.184 0.193 0.958 1.039 0.121 0.127 0.138 0.146

Med-Gauss 0.146 0.210 0.953 1.036 0.116 0.121 0.123 0.131

Panel C: 5-minute returns

RC 0.258 24.09 0.973 9.473 0.168 3.957 0.197 3.368

BPC 0.309 5.485 0.970 3.347 0.194 1.128 0.226 1.175

TC 0.263 0.918 0.944 1.371 0.179 0.300 0.205 0.344

OWC 0.269 0.293 0.951 1.114 0.177 0.212 0.205 0.240

Med-Ken 0.334 0.582 1.034 1.356 0.253 0.326 0.275 0.371

Med-Spear 0.340 0.577 1.041 1.372 0.253 0.331 0.277 0.383

Med-Quad 0.402 0.556 1.044 1.360 0.264 0.333 0.304 0.390

Med-Gauss 0.328 0.637 1.029 1.352 0.252 0.323 0.274 0.367

Panel D: 15-minute returns

RC 0.443 24.10 1.025 9.380 0.291 3.983 0.335 3.421

BPC 0.521 9.391 1.010 4.830 0.333 1.773 0.380 1.797

TC 0.448 5.839 0.992 3.551 0.310 1.230 0.349 1.337

OWC 0.479 2.986 0.972 2.404 0.327 0.773 0.371 0.866

Med-Ken 0.582 1.504 1.202 2.302 0.451 0.720 0.481 0.874

Med-Spear 0.591 1.525 1.207 2.336 0.452 0.729 0.483 0.895

Med-Quad 0.688 1.367 1.238 2.323 0.467 0.743 0.523 0.917

Med-Gauss 0.571 1.656 1.193 2.304 0.447 0.713 0.474 0.871

Table 2 reports Monte Carlo simulation results for eight estimators of the integrated covariance matrix under four different models,

specified with and without jumps. The entries report the root mean square errors (RMSE) computed as in (17) for 10000 draws of

23400 observations. Prices are simulated simultaneously each second and without noise. Every panel of the table contains the four

competitors (RC, BPC, TC and OWC), followed by the disentangled estimators (Med-Ken, Med-Spear, Med-Quad and Med-Gauss),

which are computed with 5 blocks (except for 15-minute returns for which only 1 block is used).
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Results are in Table 3 from which we draw two conclusions. First, estimators based on the Hayashi-

Yoshida scheme are quite good. HY-TC is the most efficient way to estimate the integrated covariance

matrix. LT-OWC losses efficiency because of the lower sampling frequency. Nevertheless, at higher

frequencies, biases related with the Epps effect appear, as discussed in Boudt et al. (2011b).

Second, our estimators perform on average less efficiently than HY-TC. The 30-second linear inter-

polation scheme leads to the best results among the different combinations for disentangled realized

covariances. Without jumps it performs less efficiently than HY-RC but better than other estimators.

In presence of jumps it performs better than all its competitors except for HY-TC. This result, though

unfavorable for the class of disentangled realized measures, is logical. Hayashi-Yoshida scheme uses

all the data points by aggregating returns that have been recorded on overlapping time periods. As

mentioned previously, interpolation techniques project prices on fixed grids and inevitably delete data

points, just as refresh time and other generalized synchronization schemes.

Table 3: Monte Carlo – Asynchronous trading and no noise.

Model 1 Model 2 Model 3 Model 4

no jumps jumps no jumps jumps no jumps jumps no jumps jumps

HY-RC 0.030 17.08 0.934 6.874 0.018 2.755 0.021 2.329

PT-BPC 0.317 4.055 0.971 2.714 0.191 0.813 0.225 0.923

HY-TC 0.040 0.034 0.905 0.926 0.031 0.028 0.034 0.030

PT-OWC 0.274 0.292 0.948 1.100 0.176 0.211 0.202 0.247

PT-Spear 0.078 0.101 0.926 0.945 0.039 0.041 0.051 0.049

LI-Spear 0.072 0.092 0.931 0.950 0.028 0.030 0.042 0.042

RT-Spear 0.066 0.068 0.920 0.938 0.062 0.062 0.064 0.062

PT-Gauss 0.076 0.136 0.925 0.946 0.040 0.044 0.051 0.048

LI-Gauss 0.069 0.128 0.930 0.951 0.028 0.031 0.041 0.040

RT-Gauss 0.066 0.075 0.920 0.938 0.063 0.063 0.064 0.062

Table 3 reports Monte Carlo simulation results for eight estimators of the integrated covariance matrix under four different models,

specified with and without jumps. The entries report the root mean square errors (RMSE) computed as in (17) for 10000 draws of

23400 observations. Prices are simulated asynchronously and without noise. The abbreviation corresponds to the synchronization

technique (HY = Hayashi-Yoshida, PT = previous tick interpolation, LI = Linear interpolation, and RT = Refresh Time) followed by

the name of the estimator. Disentangled estimators are computed with 5 blocks.

5.4 Synchronous prices & noise

We now study the impact of noise with synchronous trading. Our estimators are computed with sparse

sampling (denoted by B at the end of the name; e.g. SpearB), sub-sampling (denoted by S), and pre-

averaging (denoted by P). We add the realized kernels of Barndorff-Nielsen et al. (2011) (denoted RK) to

the comparison, and we skip results for 30 seconds, as it is well known to be too high frequency in the

presence of noise.

Results are in Table 4 and three are the main conclusions. First, pre-averaging is the most efficient

technique for dealing with microstructure noise, while sparse sampling gives the worse results. Sub-

20



sampling –implemented on 5-minute returns– increases the efficiency of the estimates compared to

sparse sampling, but provides higher RMSE than pre-averaged estimators. Yet, as the sampling frequency

decreases from 1 to 5 minutes, DRC estimators based on blocks become more efficient, revealing the

goodness of a sparser grid when prices are noisy. Results for 15 minutes-returns provide less clear cut

results and advocates the use of 5 minute returns when using sparse sampling.

Second, for all approaches, the DRC estimator implemented with Gaussian ranks and Spearman’s ρ

provide similar precision, except for model 1 for which Spearman’s ρ has smaller RMSE. These results,

jointly with the milder condition for positive definiteness, supports the use of Gaussian ranks.

Third, when jumps are added the pre-averaged DRC estimators provide uniformly more precise

estimates than the competitors. However, in absence of jumps realized kernels provide slightly more

precise results. For 5-minute returns the two subsampled combinations perform better than most of the

competitors except for OWC. Depending on the simulated model, one performs better than the other.

The competing estimators are described by their respective authors as the least sensitive to noise when

computed on basis of 5-minute returns. These statements are verified.

5.5 Asynchronous prices & noise

Last, we analyze the goodness of the estimators with asynchronous and noisy observations. For the

competing estimators, we focus on 5-minutes frequency As previous sub-sections showed that 5-minutes

sampled observations gave the best results, we focus on this frequency. And since sparse sampling

gave the worst results in previous subsections. The DRC estimators are shown using pre-averaging and

subsampling.13

We synchronize using last tick interpolation at a frequency depending on the trading intensity of the

considered securities.14 Note that Hayashi and Yoshida was used for the RC and TC estimators when

data are clean of noise. However, if returns are noisy, HY becomes impracticable and hence the authors

advise to use last tick interpolation. Realized kernels are implemented with refresh time and subsampled

realized variances to compute to optimal bandwidth, following Barndorff-Nielsen et al. (2011).

Results are shown in Table 5. As in the case of asynchronous trading and noise, pre-averaging

provides better estimates than subsampling. In the absence of jumps, realized kernels provide the best

results, followed by the pre-averaged DRC. With jumps however the realized kernels provide inaccurate

measures.

Pre-averaged DRC strike hence a good balance between jump-robustness and precision and form

a serious alternative to other realized measures. Additionally, results are similar for DRC based on

13Pre-averaging is implemented on basis of the new grid of synchronous prices and subsampling is conducted with 5-minute

returns also sampled from the new grid.
14We compute the 75% quantile of time intervals between trades for each asset, take the minimum and stamp the sampling

frequency to the nearest second. The 75% quantile may be considered as a conservative choice but it allows to keep under control

effects of asynchronous trading causing downward biases in correlations.
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Table 4: Monte Carlo study – Synchronous trading.

Model 1 Model 2 Model 3 Model 4

no jumps jumps no jumps jumps no jumps jumps no jumps jumps

Panel A: 1-minute returns

RC 0.669 24.62 1.352 9.941 0.647 4.260 0.653 3.758

BPC 0.717 2.978 1.369 2.474 0.683 1.095 0.691 1.178

TC 0.648 0.668 1.314 1.347 0.626 0.654 0.632 0.655

OWC 0.661 0.666 1.337 1.355 0.638 0.656 0.644 0.658

SpearB 0.689 0.747 1.361 1.443 0.664 0.711 0.670 0.717

GaussB 0.686 0.769 1.359 1.447 0.663 0.710 0.669 0.717

SpearS 0.261 0.561 1.031 1.332 0.203 0.327 0.219 0.374

GaussS 0.257 0.739 1.029 1.344 0.202 0.327 0.217 0.384

SpearP 0.141 0.201 0.981 1.076 0.105 0.136 0.116 0.150

GaussP 0.137 0.286 0.979 1.079 0.103 0.134 0.114 0.152

RK 0.115 24.34 0.951 9.612 0.076 3.977 0.088 3.383

Panel B: 5-minute returns

RC 0.323 24.42 1.033 9.659 0.224 3.931 0.251 3.462

BPC 0.378 5.636 1.028 3.397 0.244 1.193 0.278 1.297

TC 0.319 1.011 0.997 1.401 0.222 0.406 0.249 0.442

OWC 0.329 0.368 1.009 1.141 0.223 0.297 0.252 0.325

SpearB 0.411 0.709 1.106 1.425 0.315 0.439 0.343 0.487

GaussB 0.404 0.764 1.100 1.423 0.314 0.437 0.340 0.485

SpearS 0.261 0.561 1.031 1.332 0.203 0.327 0.219 0.374

GaussS 0.257 0.739 1.029 1.344 0.202 0.327 0.217 0.384

SpearP 0.141 0.201 0.981 1.076 0.105 0.136 0.116 0.150

GaussP 0.137 0.286 0.979 1.079 0.103 0.134 0.114 0.152

RK 0.115 24.34 0.951 9.612 0.076 3.977 0.088 3.383

Panel C: 15-minute returns

RC 0.465 24.27 1.055 9.658 0.303 3.938 0.350 3.454

BPC 0.553 9.850 1.036 5.070 0.341 1.844 0.400 1.891

TC 0.468 6.195 1.021 3.758 0.319 1.406 0.363 1.401

OWC 0.501 3.273 0.997 2.402 0.331 0.802 0.382 0.906

SpearB 0.610 1.579 1.248 2.279 0.466 0.784 0.505 0.928

GaussB 0.596 1.733 1.240 2.283 0.462 0.777 0.497 0.926

SpearS 0.261 0.561 1.031 1.332 0.203 0.327 0.219 0.374

GaussS 0.257 0.739 1.029 1.344 0.202 0.327 0.217 0.384

SpearP 0.141 0.201 0.981 1.076 0.105 0.136 0.116 0.150

GaussP 0.137 0.286 0.979 1.079 0.103 0.134 0.114 0.152

RK 0.115 24.34 0.951 9.612 0.076 3.977 0.088 3.383

Table 4 reports Monte Carlo simulation results for eight estimators of the integrated covariance matrix under four different models,

specified with and without jumps. The entries report the root mean square errors (RMSE) computed as in (17) for 10000 draws

of 23400 observations. Prices are simulated simultaneously and with noise. The abbreviations correspond to the the name of the

estimator followed by the noise reduction technique (B = sparse sampling, S = sub-sampling, and P = pre-averaging). Disentangled

estimators are computed with 5 blocks, except for 15-minute returns for which only 1 block is used.
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Table 5: Monte Carlo study – Asynchronous trading and noise.

Model 1 Model 2 Model 3 Model 4

no jumps jumps no jumps jumps no jumps jumps no jumps jumps

LT-RC 0.404 17.47 4.625 9.318 0.386 2.965 0.264 2.439

LT-BPC 0.455 4.366 5.082 6.808 0.407 1.119 0.291 1.015

LT-TC 0.395 0.912 4.567 5.413 0.374 0.560 0.260 0.424

LT-OWC 0.404 0.455 4.550 4.897 0.376 0.477 0.264 0.331

LT-SpearS 0.344 0.650 4.599 5.226 0.355 0.495 0.233 0.365

LT-GaussS 0.341 0.820 4.598 5.255 0.355 0.496 0.231 0.374

LT-SpearP 0.184 0.295 1.366 1.527 0.145 0.191 0.144 0.191

LT-GaussP 0.180 0.454 1.365 1.550 0.143 0.191 0.141 0.199

RK 0.154 17.43 1.030 7.030 0.112 2.827 0.108 2.387

Table 5 reports Monte Carlo simulation results at 5-minute frequency and for six estimators of the integrated covariance matrix

under four different models, specified with and without jumps. The entries report the root mean square errors (RMSE) computed as

in (17) for 10000 draws of 23400 observations. Prices are simulated asynchronously and with noise. The abbreviation corresponds

the used synchronization technique, followed by the name of the estimator and the noise reduction technique. Disentangled

estimators are sub-sampled.

Spearman rho and Gaussian ranks. When jumps occur, they perform slightly less efficiently than OWC.

Nevertheless, this drawback is compensated by a less demanding computational effort.

6 Empirical application

We now study the gains of our estimators from a financial perspective with a long-short portfolio

management exercise. The investment universe is composed of 52 large stocks traded on the NYSE. Data

consists of trades and prices.15 The data covers the period from October 2006 to April 2012 for a total of

1403 observations. The database is cleaned as in Barndorff-Nielsen et al. (2009).

Volatility timing strategies are based on conditional covariance matrix of daily returns, i.e. the

covariance matrix at time t + 1 given information up to time t. Since realized covariances are ex-post

measures of the co-variation between assets, we use one-day ahead forecasts of the covariance matrix Σt

in the portfolio construction. The investor updates and rebalances the portfolio every day on basis of the

new information generated by markets. If we consider a market composed of p assets that the investor

can select in his portfolio, the optimal p× 1 vector of weights ωt for the portfolio allocation are computed

by solving standard conditional mean-variance criterion:

min
ωt

(
ωtΣtωt

)

15The tickers are AA, ABT, AES, AKS, AMD, BMY, BSX, C, CAG, CBS, COH, CSX, CVX, D, DIS, DNR, EMC, EXC, FCX, GE, GIS,

GLW, HAL, HPQ, HST, IRM, JCP, JPM, KEY, KO, MO, MRK, MS, NBR, NEM, ORCL, PFE, PG, RF, S, SLB, T, TJX, USB, VLO, VZ,

WFC, WMT, WU, WY, XRX, SPY.
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subject to ω
′
t1 = 1. The solution ωt to this strategy is well known:

ωt =
Σ−1

t 1
1′Σ−1

t 1
.

Minimum variance portfolios can produce large negative and highly volatile weights. Adding L1

constraints to the minimization problem in known to produce more realistic results as underlined by Fan

et al. (2009). Therefore, we also test the previous problem with an additional constraint |ωt|
′
1 ≤ 1 + 2m

where m provides the short positions boundary. Following Boudt et al. (2012), we set m = 20% which

allows to construct 120/20 portfolios. Solutions to this problem are provided from quadratic programing

solvers.

We evaluate the performance of the portfolio on basis of five criteria: i) the annualized mean returns,

ii) the annualized standard deviation, iii) the annualized Sharp ratio, iv) the annualized average turnover

(given by TOt = |ωt −ωt−1|1p, where 1p is a vector of ones), and v) the cumulated performance in terms

of the return on investment.

6.1 Models for conditional covariance matrices

We consider a set of p stocks and denote the daily returns at t by rt and realized covariance measures on

day t as Vt. Investors believe that asset returns behave as:

rt = µ+ Σ
1
2
t zt,

where zt ∼ i.i.d.N(0, Ip) and Ip denotes the identity matrix of size p, Σt = V[rt|At−1] and At−1 is the

information set.

Three models are considered for Σt. Two of them rely on realized covariances and one on daily returns

only. In other words, we compare investments conducted on basis of two different information sets: ALF
t

and AHF
t . The low frequency information set ALF

t is generated by daily returns, and the high frequency

information set AHF
t is generated by daily returns and realized covariances. More rigorously we have:

ALF
t = σ({rs}, s ≤ t) and AHF

t = σ({rs, Vs}, s ≤ t).

The low-frequency benchmark model is the DCC of Engle (2002):

Σt = DtRtDt where

Rt = (Qt � 1p)
−1/2Qt(Qt � 1p)

−1/2 ,

Qt = (1− α− β)Q̄ + αut−1u′t−1 + βQt−1 ,

Dt = (Σt � Ip)1/2, ui,t = zi,t/h1/2
i,t , and h1/2

i,t denotes the elements on the diagonal of Dt, i.e. the univariate

volatilities which are specified as GARCH(1,1) processes. Long memory is not considered since only one

step ahead forecasts are required.

We consider two models for the conditional covariance matrix based on high-frequency data. First,
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we estimate a rolling window volatility model.16 The estimation procedure closely follows De Pooter

et al. (2008) and Fleming et al. (2003). This technique is based on the work of Foster & Nelson (1996) and

Andreou & Ghysels (2002). The daily conditional covariance matrix based on high-frequency data is:

Σt = exp(−α)Σt−1 + αexp(−α)Vt−1.

Smaller values for the decay parameter α point to a less informative innovation process Vt−1, i.e. the

estimator is too noisy from a portfolio construction perspective, while a large value for α points to more

informative innovations (Bannouh et al. (2009)). Fleming et al. (2003) and De Pooter et al. (2008) point out

that statistically optimal parameters do not lead to optimal financial performances. Indeed, estimating α

via maximum likelihood does not provide the portfolio with the best risk-return trade-off. This is why

Boudt et al. (2012) consider two optimality criteria: maximum likelihood and minimum volatility of the

investment. Yet, to be fair with the other two models, we use maximum likelihood.

The second model with high frequency data is the HEAVY of Noureldin et al. (2012). Their model is

specified as the BEKK of Engle & Kroner (1995) but lagged values of the cross products of returns are

replaced by lagged values of the realized covariances:

Σt = Ω + BΣt−1B′ + AVt−1A′

Realized covariances are modeled as E[Vt|AHF
t−1] = Mt that is again specified as a BEKK:

Mt = ΩM + DMt−1D′ + GVt−1G′.

Various specifications can be adopted to limit the amount of parameters. We study the scalar-BEKK

specification whose properties are illustrated in the empirical study of Noureldin et al. (2012). The Wishart

distribution is assumed and estimation is done by maximum likelihood.

6.2 Results

Results of the unconstrained minimum variance portfolio are in Table 6 and Figure 3. Results for the

constrained version are very similar, suggesting that the constraints are not reached frequently. More

details are available in Table 8 of the Appendix. Table 6 summarizes the performance for portfolios

constructed on basis of the rolling window model, the HEAVY model and the DCC. Results for the

DCC are reported under the results of the HEAVY model (at the bottom right corner). Mean returns

(denoted Mean) and standard deviations (denoted Std. dev.) are annualized, while turnover (denoted

TO) is daily. The fifth performance measure is displayed in the figure, which shows the cumulated

Return On Investment of one monetary unit invested in October 2006 for the different estimators. All the

performances based on realized measures are located in the shaded area (delimited by the minimum and

the maximum daily performances). Other lines illustrate performances on the same period for the strategy

16”Rolling window” is the name of the model, which is different to rolling unconditional estimation by moving a window of

observations.
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Table 6: Unconstrained minimum variance portfolio – Performance measures.
Rolling Window HEAVY

Model Mean Sdt dev. Sharp TO α Mean Sdt dev. Sharp TO

RC 9.76% 12.51% 0.780 0.15 0.048 12.61% 12.25% 1.029 0.97

BPC 8.27% 12.90% 0.641 0.14 0.043 13.45% 12.57% 1.071 0.84

TC 8.35% 12.84% 0.651 0.10 0.038 12.50% 12.30% 1.016 1.02

OWC 9.69% 12.94% 0.749 0.11 0.036 12.24% 12.31% 0.995 0.30

RK 8.42% 12.76% 0.659 0.14 0.046 10.84% 12.53% 0.865 0.96

SpearS 7.00% 13.41% 0.522 0.08 0.029 13.57% 12.42% 1.093 0.49

GaussS 6.47% 13.39% 0.483 0.08 0.029 13.87% 12.44% 1.115 0.51

SpearP 7.63% 13.19% 0.579 0.10 0.036 11.64% 12.46% 0.934 0.20

GaussP 7.20% 13.16% 0.547 0.10 0.038 11.76% 12.43% 0.947 1.09

DCC - - - - - 6.52% 13.39% 0.487 0.54

Table 6 summarizes the performance for portfolios constructed on basis of the rolling window model, the HEAVY model and

the DCC. Results for the DCC are reported under the results of the HEAVY model. Mean returns and standard deviations are

annualized while turnover is on daily basis.

based on the DDC (solid line), and the Spider S&P500 ETF (SPY; dashed). The solid black line, denoted

DRC-GR, represents the performance of the portfolio based on the disentangled realized covariances

with Gaussian ranks.

The strategy based on the HEAVY model is more profitable (mean returns) than based on the rolling

window model. It is also less risky (of the order of 12.4%). Compared with the average S&P500 VIX

over the sample period (24.66%), the volatility of the portfolio using the HEAVY model is quite low.

Moreover, on average, the Sharp ratios are higher than for the rolling window model. These results are

not surprising since the HEAVY model has a richer specification than the rolling window. Nevertheless,

the portfolios constructed on basis of the HEAVY model are less stable as the turnover is higher. The

DCC behaves worse that the other models. The average return is lower while the annualized volatility

remains similar to other strategies. This performance may be due to the fact that the DCC is based on a

weaker information set.

The return on investment (see figure) confirms that investing on basis of the HEAVY model is

preferable to the rolling window and the DCC, while investing in the market portfolio through the S&P

500 ETF did not generate any gain. The return using our preferred estimator and HEAVY reaches 100%,

which beats the alternatives.

7 Conclusion

We study the class of disentangled estimators of the integrated covariance matrix of Itō semimartingales

with an extensive Monte Carlo study. We cover different scenarios when efficient prices are observable or

contaminated by noise, with and without jumps, and with synchronous or non-synchronous trading. We

show that if one selects the right combinations of estimators and robustification techniques, disentangled
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Figure 3: Cumulated performance for the different estimators in terms of return on investment of 100 monetary unit invested in

October 2006. All the performances are located in the shaded area delimited by the minimum and the maximum daily performance.

Other lines illustrate performances on the same period for the strategy based on the DCC and the performance of a S&P500 ETF.

The solid black line represents the performance of the portfolio based on the Gaussian ranks disentangled realized covariances with

subsampling and pre-averaging.

realized covariances prove to be precise, jump robust, simple, robust to noise, positive definite, and

computationally efficient. Our main conclusion is that if observations are non-synchronous and noisy (as

it is the case of multivariate high frequency data), the pre-averaged version of disentangled estimators

based on Gaussian ranks (for the correlations) and median deviations (for the volatilities) is the most

appropriate metrics in terms of root mean square error. This result dovetails with Boudt et al. (2012).

Moreover, this finding is confirmed by an empirical analysis based on a cross-section of stocks traded on
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the NYSE. The best estimator in the Monte Carlo study also performs the best on a minimum variance

portfolio strategy. It provides the highest mean return, lower volatility, highest Sharp ratio, and highest

return on investment.
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Appendix: supplementary Monte Carlo results

Table 7: Monte Carlo study – Synchronous trading.

Model 1 Model 2 Model 3 Model 4

no jumps jumps no jumps jumps no jumps jumps no jumps jumps

Panel A: 30-seconds returns

IQR-Ken 0.109 0.117 0.981 1.038 0.087 0.092 0.094 0.099

IQR-Spear 0.109 0.116 0.982 1.039 0.087 0.092 0.094 0.100

IQR-Quad 0.135 0.140 0.982 1.039 0.090 0.095 0.104 0.107

IQR-Gauss 0.106 0.136 0.980 1.038 0.086 0.090 0.091 0.098

Panel B: 1-minute returns

IQR-Ken 0.159 0.181 1.028 1.114 0.127 0.144 0.136 0.153

IQR-Spear 0.160 0.179 1.030 1.118 0.127 0.145 0.137 0.156

IQR-Quad 0.194 0.208 1.031 1.116 0.131 0.148 0.149 0.166

IQR-Gauss 0.154 0.211 1.025 1.114 0.125 0.141 0.133 0.152

Panel C: 5-minute returns

IQR-Ken 0.451 1.394 1.382 1.936 0.367 0.585 0.387 0.641

IQR-Spear 0.464 1.396 1.392 1.962 0.374 0.597 0.396 0.660

IQR-Quad 0.522 1.389 1.391 1.941 0.373 0.590 0.411 0.650

IQR-Gauss 0.440 1.426 1.374 1.930 0.362 0.578 0.381 0.634

Panel D: 15-minute returns

IQR-Ken 0.648 2.518 1.418 3.022 0.501 0.961 0.534 1.152

IQR-Spear 0.659 2.540 1.424 3.066 0.503 0.974 0.539 1.177

IQR-Quad 0.771 2.395 1.455 3.038 0.518 0.986 0.583 1.193

IQR-Gauss 0.634 2.653 1.406 3.024 0.495 0.952 0.523 1.148

Table 7 reports Monte Carlo estimation results for 4 quantile-based volatility estimators of the integrated covariance matrix under

four different models, specified with and without jumps. The columns report the root mean square errors (RMSE) as computed in

(17) for 4000 draws of 23400 observations each corresponding to a situation of one day of 6.5 hours of trading and prices recorded

simultaneously each seconds.
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Table 8: Constrained minimum variance portfolio – Performance measures.
Rolling Window HEAVY

Model Mean Sdt dev. Sharp TO α Mean Sdt dev. Sharp TO

RC 9.76% 12.51% 0.780 0.15 0.048 12.60% 12.25% 1.029 0.97

BPC 8.27% 12.90% 0.641 0.14 0.043 13.43% 12.57% 1.068 0.84

TC 8.35% 12.84% 0.651 0.10 0.038 12.55% 12.30% 1.020 1.02

OWC 9.69% 12.94% 0.749 0.11 0.036 12.22% 12.30% 0.993 0.30

RK 8.42% 12.76% 0.659 0.14 0.046 10.83% 12.53% 0.864 0.96

SpearS 7.00% 13.41% 0.522 0.08 0.029 13.40% 12.41% 1.080 0.47

GaussS 6.46% 13.39% 0.483 0.08 0.029 13.33% 12.40% 1.075 0.46

SpearP 7.63% 13.19% 0.579 0.10 0.036 11.64% 12.47% 0.934 0.20

GaussP 7.20% 13.16% 0.547 0.10 0.038 11.66% 12.41% 0.940 1.09

DCC - - - - - 6.69% 13.31% 0.503 0.53

Table 8 reports the performance for portfolios constructed on basis of the rolling window model, the HEAVY model and the

DCC. Results for the DCC are reported under the results of the HEAVY model. Mean returns and standard deviations have been

annualized while turnover is on daily basis.
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