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Abstract

Apart from being an interesting and exciting area in combinatorics with
beautiful results, finite projective spaces or Galois geometries have many ap-
plications to coding theory, algebraic geometry, design theory, graph theory,
cryptology and group theory. As an example, the theory of linear maximum
distance separable codes (MDS codes) is equivalent to the theory of arcs in
PG(n,q); so all results of Section 2 can be expressed in terms of linear MDS
codes. In this paper we survey interesting results from the theory of arcs and
caps in Galois geometries.
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1 Introduction

A non-singular conic of the projective plane PG(2,q) over the finite field Fq con-
sists of q + 1 points no three of which are collinear. It is natural to ask if this
non-collinearity condition for q + 1 points is sufficient for them to be a conic. In
other words, does this combinatorial property characterize non-singular conics?
For q odd, this question was affirmatively answered by Segre [47, 48]. General-
izing, Segre considers sets of k points in PG(2,q), k ≥ 3, no three of which are
collinear, and also sets of k points in the n-dimensional projective space PG(n,q)
over Fq, k ≥ n+ 1, no n+ 1 of which lie in a hyperplane; these objects are k-arcs.
There is a close relationship between k-arcs and certain algebraic curves and
hypersurfaces of PG(n,q). Later on, it appeared that arcs and linear maximum
distance separable (MDS) codes of dimension at least 3 are equivalent objects,
yielding many new results about these codes.

The concept of a k-arc in PG(2,q) was generalized to that of a k-cap in PG(n,q);
a k-cap of PG(n,q), n ≥ 3, is a set of k points no three of which are collinear. An
elliptic quadric of PG(3,q) is a cap of size q2 +1. In 1955, Barlotti [3] and Panella
[44] independently showed that, for q odd, the converse is true. Also, q2 + 1 is
the maximum size of a k-cap in PG(3,q) for q , 2. This leads to the definition of
an ovoid of PG(3,q) as a cap of size q2 + 1 for q > 2 and, for q = 2, a cap of size 5
with no 4 points in a plane. Ovoids of particular interest were discovered by Tits
[61]. Ovoids are important objects in the theories of circle geometries, projective
planes, designs, generalized polygons and finite simple groups.

Most of this paper is taken from "Open problems in finite projective spaces"
by J.W.P. Hirschfeld and J.A. Thas [38].

2 k-arcs

2.1 Definitions

A k-arc in PG(n,q) is a set of k points, with k ≥ n+ 1 ≥ 3, such that no n+ 1 of its
points lie in a hyperplane. An arc K is complete if it is not properly contained in
a larger arc. Otherwise, if K ∪{P } is an arc for some point P of PG(n,q), the point
P extends K .

A normal rational curve (NRC) of PG(n,q), n ≥ 2, is any set of points of
PG(n,q) which is projectively equivalent to{

(tn, tn−1, . . . , t,1)|t ∈ Fq
}
∪

{
(1,0, . . . ,0)

}
.

A NRC contains q+1 points. A NRC is a (q+1)-arc. For n = 2, it is a non-singular
conic. For n = 3, it is a twisted cubic. Any (n+ 3)-arc in PG(n,q) is contained in a
unique NRC of this space; see [30, Chapter 21].

2.2 k-arcs and linear MDS codes

Let C be a linear code over Fq of length k and dimension m, that is, C is an
m-dimensional subspace of the k-dimensional vector space V (k,q) over Fq. If
x = (x1,x2, . . . ,xk) and y = (y1, y2, . . . , yk) are distinct code words in C, that is,
distinct elements of C, then the distance d(x,y) between x and y is the number
of indices i for which xi , yi , i = 1,2, . . . , k. The minimum distance d = d(C) of C
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is the minimum of the distances d(x,y), with x,y ∈ C and x , y. It can be shown
that d ≤ k −m + 1; see, for example, [27, Chapter 2]. If d = k −m + 1, then C is
maximum distance separable (MDS).

Let G be anm×k generator matrix for C, that is, the rows of G form a basis for
C. It can be shown that C is MDS if and only if any m columns of G are linearly
independent; this property is preserved under multiplication of the columns by
non-zero scalars. So consider the columns of G as points P1, P2, . . . , Pk of PG(m−
1,q). It follows that, for m ≥ 3, C is MDS if and only if

{
P1, P2, . . . , Pk

}
is a k-arc of

PG(m−1,q). Hence, for m ≥ 3, linear MDS codes and arcs are equivalent objects;
see, for example, [32, Chapter 13].

2.3 Segre’s three problems

I. For given n and q, what is the maximum value of k such that a k-arc exists
in PG(n,q) ?

II. For what values of n and q, with q > n + 1, is every (q + 1)-arc of PG(n,q) a
normal rational curve?

III. For given n and q, with q > n + 1, what are the values of k such that each
k-arc of PG(n,q) is contained in a (q+ 1)-arc of PG(n,q)?

For a survey of solutions to problems I, II, III, see [34], [32, Chapter 13], [1],
[2]. Many of the bounds obtained come from relating k-arcs to both algebraic
curves and algebraic hypersurfaces; see [27], [36, 37], [54], [9].

2.4 k-arcs in PG(2,q)

Theorem 1. (See[27, Chapter 8]) Let K be a k-arc of PG(2,q). Then

1. k ≤ q+ 2;
2. for q odd, k ≤ q+ 1;
3. any non-singular conic is a (q+ 1)-arc;
4. for q even, a (q+ 1)-arc extends to a (q+ 2)-arc.

(q+1)-arcs of PG(2,q) are called ovals; (q+2)-arcs of PG(2,q), q even, are called
complete ovals or hyperovals.

Theorem 2. (See [47, 48], [27, Chapter 8]) In PG(2,q), q odd, every oval is a non-
singular conic.

Remark 3. For q even many ovals are known which are not conics.

Theorem 4. (See [51], [57], [27, Chapter 8])

1. For q even, every k-arc with k > q −√q+ 1 extends to a hyperoval.

2. For q odd, every k-arc with k > q − 1
4
√
q+ 25

16 extends to a conic.

Remark 5. 1. For many particular values of q, the bounds in Theorem 4 can
be considerably improved; see [32, Chapter 13].

2. For q square and q > 4, there exist complete (q−√q+1)-arcs in PG(2,q), see
[27, Chapter 10]. In PG(2,9) there exists a complete 8-arc; see [27, Chapter
10].
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In PG(2,q), the size of the largest complete arc is denoted by m(2,q), the sec-
ond largest by m′(2,q). For m′(2,q) see [27, Chapter 10], [29, 31], [32, Chapter
13].

Progress on the value of m′(2,q) is as follows :

m′(2,q), with q = ph, p prime
≤ q − 1 q ≥ 7 Segre 1955, Tallini 1957
≤ q − 1

4
√
q+ 7

4 q odd Segre 1967
= q −√q+ 1 q even Segre 1967, Fisher et al. 1986
< q − 1

4
√
q+ 25

16 q odd Thas 1987
≤ 44

45q+ 8
9 q prime Voloch 1990

≤ q −
√

2q+ 2 q = 22e+1 Voloch 1991
≤ q − 1

4
√
pq+ 29

16 + 1 q = p2e+1 Voloch 1991
≤ q − 1

2
√
q+ 5 p ≥ 5 Hirschfeld-Korchmáros 1996

≤ q − 1
2
√
q+ 3 q ≥ 232,p ≥ 3,q , 36,55 Hirschfeld-Korchmáros 1998

2.5 k-arcs in PG(3,q)

Theorem 6. (See [47, 48], [11])
1. For any k-arc of PG(3,q), q odd and q > 3, we have k ≤ q + 1; any k-arc of
PG(3,3) has at most 5 points.

2. For any k-arc of PG(3,q), q even and q > 2, we have k ≤ q + 1; any k-arc of
PG(3,2) has at most 5 points.

Theorem 7. (See [49], [12], [25, 26, 30])
1. Any (q + 1)-arc of PG(3,q), q odd, is a twisted cubic; that is, is projectively

equivalent to {
(t3, t2, t,1)|t ∈ Fq

}
∪

{
(1,0,0,0)

}
.

2. Every (q+ 1)-arc of PG(3,q), q = 2h, is projectively equivalent to{
(te+1, te, t,1)|t ∈ Fq

}
∪

{
(1,0,0,0)

}
,

where e = 2m and (m,h) = 1.

2.6 k-arcs in PG(4,q) and PG(5,q)

Theorem 8. (See [49], [11], [13], [39], [21])
1. For q odd and q ≥ 5, a k-arc in PG(4,q) has k ≤ q+1; a k-arc in PG(4,3) has at

most 6 points.
2. In PG(4,9), up to projective equivalence there are precisely two 10-arcs, the

normal rational curve and the Glynn 10-arc{
(t4, t3, t2 + σt6, t,1)|t ∈ F9

}
∪

{
(1,0,0,0,0)

}
,

where σ is a primitive element of F9 with σ2 = σ + 1.
3. For q even and q > 4, a k-arc in PG(4,q) has k ≤ q + 1; a k-arc in PG(4,2) or
PG(4,4) has at most 6 points.

4. For q even, a (q+ 1)-arc K in PG(4,q) is a normal rational curve.
5. For q even and q ≥ 8, a k-arc in PG(5,q) has k ≤ q+ 1.
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2.7 k-arcs in PG(n,q), n ≥ 3

Theorem 9. (See [54, 57], [39]) For q odd and n ≥ 3, let K be a k-arc in PG(n,q).

1. If k > q− 1
4
√
q+n− 7

16 , thenK lies on a unique normal rational curve of PG(n,q).

2. If k = q+ 1 and q >
(
4n− 23

4

)2
, then K is a normal rational curve of PG(n,q).

3. If q >
(
4n− 39

4

)2
, then k ≤ q+ 1 for any k-arc in PG(n,q).

Theorem 10. (See [9], [6], [52])

1. For q even, q , 2, n ≥ 3, if K is a k-arc in PG(n,q) with k > q − 1
2
√
q + n − 3

4 ,
then K lies on a unique (q+ 1)-arc of PG(n,q).

2. A (q + 1)-arc in PG(n,q), q even and n ≥ 4, with q >
(
2n− 7

2

)2
, is a normal

rational curve.

3. If K is a k-arc in PG(n,q), q even and n ≥ 4, with q >
(
2n− 11

2

)2
, then k ≤ q+1.

Several interesting theorems were proved for particular values of q. In partic-
ular, the following result holds for q a prime.

Theorem 11. (See[1]) For a k-arc in PG(n,q), q > n+1 and q a prime, the cardinality
k satisfies k ≤ q+ 1.

Theorem 12. (See[55]) A k-arc exists in PG(n,q), n ≥ 2, if and only if a k-arc exists
in PG(k −n− 2,q).

2.8 Conjectures

Conjecture 13. (I) If K is a k-arc in PG(n,q), q odd and q > n+ 1, then k ≤ q+ 1.

(II) For any k-arc K of PG(n,q), q even, q > n+1 and n < {2,q−2}, we have k ≤ q+1.

Remark 14. From Theorem 1 and Theorem 12 it follows that for any q even, q ≥ 4,
there exists a (q+ 2)-arc in PG(q − 2,q).

2.9 Open problems

1. Classify all ovals and hyperovals of PG(2,q), q even.

2. Is every k-arc of PG(2,q), q odd, q > 9 and k > q −√q+ 1 extendable?

3. What is the size of the second largest complete k-arc in PG(2,q) for q odd
and for q an even non-square?

4. Is every 6-arc of PG(3,q), q = 2h, h > 2, contained in exactly one (q + 1)-arc
projectively equivalent to{

(te+1, te, t,1)|t ∈ Fq
}
∪

{
(1,0,0,0)

}
,

where e = 2m and (m,h) = 1?
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5. In PG(2,q) a (q − 1)-arc is incomplete for q > 13, except possibly for the 14
values of q consisting of 49,81 and the twelve primes 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83; see [32, Chapter 13]. For q ∈ {4,5,8} a (q − 1)-arc
is incomplete, but for q ∈ {7,9,11,13} there exists a complete (q − 1)-arc in
PG(2,q); see [27, Chapter 13]. What about the fourteen remaining cases?
Note that every q-arc of PG(2,q) is incomplete; see Theorem 4 and [27,
Chapter 10].

6. Are conjectures (I) and (II) true?
7. Find more solutions for Segre’s problems I, II and III.
8. In PG(n,q), q odd and q ≥ n, are there (q + 1)-arcs other than the 10-arc of

Glynn which are not normal rational curves?
9. Is a rational curve of PG(n,q), 2 < n < q − 2, always complete?

3 k-caps

3.1 Definitions

A k-cap in PG(n,q), n ≥ 3, is a set of k points no three of which are collinear. A
k-cap is complete if it is not contained in a (k + 1)-cap. A line of PG(n,q) is a
secant, tangent or external line as it meets K in 2, 1 or 0 points.

The maximum size of a k-cap in PG(n,q) is denoted m2(n,q).

3.2 k-caps in PG(3,q)

Theorem 15. (See [30], [7], [46])
1. For a k-cap in PG(3,q) with q , 2, k ≤ q2 + 1.

2. Each elliptic quadric of PG(3,q) is a (q2 + 1)-cap.
3. m2(3,2) = 8 and any 8-cap of PG(3,2) is the complement of a plane.

(q2 + 1)-caps of PG(3,q), q , 2, are called ovoids; the ovoids of PG(3,2) are its
elliptic quadrics.

Remark 16. Tits [62] defines an ovoid of PG(3,K), for any field K, as a cap such
that, for any of its points P , the lines containing P and intersecting the cap just
in P form a plane. For K finite, the two definitions are equivalent, but not for K
infinite.

Theorem 17. (See [30]) In PG(3,q),
1. an elliptic quadric is an ovoid;
2. at each point P of an ovoid O, there is a unique tangent plane π such that
π∩O = {P };

3. every non-tangent plane meets O in a (q+ 1)-arc;

4. for q even, the (q2 + 1)(q + 1) tangent lines of O are the self-polar lines of a
sympletic polarity η, that is, the lines l for which lη = l.

Remark 18. A correlation of PG(3,q) is a bijection η of the point set of PG(3,q)
onto the plane set of PG(3,q), such that the q+ 1 points of any line l are mapped
onto the q+1 planes containing a line l′ . The line l′ is the image of l under η, and
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denoted by lη . The point set of any plane π of PG(3,q) is mapped onto the set of
all planes containing a point P . The point P is the image of π under η, denoted

πη . If η2 = 1, then η is a polarity. If l is a line for which lη = l, with η a polarity,
then l is self-polar. A symplectic polarity is a polarity such that P ∈ P η for each
point P of PG(3,q).

Theorem 19. (See [30], [3], [44]) In PG(3,q), q odd, every ovoid is an elliptic
quadric.

Theorem 20. (See [8]) In PG(3,q), q even, an ovoid containing at least one conic is
an elliptic quadric.

Let W (q) be the point-line geometry formed by all points of PG(3,q) and all
self-polar lines with respect to a symplectic polarity η of PG(3,q). The number
of points of PG(3,q) is (q2 + 1)(q + 1) and so is the number of self-polar lines of
η. Let P be the point set of PG(3,q) and let B be the set of all self-polar lines. A
polarity ofW (q) is a bijection α of P∪B onto itself such that Pα = B, Bα = P, P ∈ l
if and only if lα ∈ P α for P ∈ P and l ∈ B, and α2 = 1.

Theorem 21. (See [61]) The geometry W (q) admits a polarity α if and only if q =
22e+1. In such a case the absolute points of α, that are the points which lie on their
images for α, form an ovoid O of PG(3,q). These ovoids are called Tits ovoids. A Tits
ovoid is an elliptic quadric if and only if q = 2.

Theorem 22. (See [61])
1. With q = 22e+1, the canonical form of a Tits ovoid O is the following :

O =
{
(1, z,y,x)|z = xy + xσ+2 + yσ

}
∪

{
(0,1,0,0)

}
,

where σ is the automorphism t 7→ t2
e+1

of Fq.

2. The group of all projectivities of PG(3,q) fixing O is the Suzuki group Sz(q),
which acts doubly transitively on O.

Remark 23. 1. For q even, no other ovoids than the elliptic quadrics and the
Tits ovoids are known.

2. For q = 8, the Tits ovoid was first discovered by Segre; see [50], [20].
Remark 24. 1. Each ovoid of PG(3,4) is an elliptic quadric; see [3], [30].

2. For q = 8, the elliptic quadric and the Tits ovoid are the only ovoids; see
[20].

3. For q = 16, every ovoid is an elliptic quadric; see [41, 42].
4. For q = 32, the elliptic quadric and the Tits ovoid are the only ovoids; see

[43].

3.3 Ovoids and inversive planes

Definition 25. 1. An inversive plane of order n, n ≥ 2, is a set P of size n2 + 1
together with a set B of subsets of size n+1 of P, such that any three distinct
elements of P are contained in just one element of B. The elements of P are
called points and the elements of B are circles.



8

2. If O is an ovoid of PG(3,q), then O together with the intersections O ∩π,
where π is a non-tangent plane of O, is an inversive plane of order q. Such
an inversive plane is called egglike and is denoted I(O).

3. If O is an elliptic quadric, then the inversive plane I(O) is called classical
or Miquelian.

Remark 26. By Theorem 19, each egglike inversive plane of odd order is
Miquelian.

Theorem 27. (See [16, Chapter 6]) Every inversive plane of even order is egglike.

Consider an inversive plane I of order n with point set P and circle set B. Let
P be any point of P, let P′ = P \ {P }, and let B′ be the set of all circles containing
P with P removed. Then |P′ | = n2, any element of B′ contains n elements of P′ ,
and any two elements of P′ are contained in exactly one element of B′ . Hence
P′ together with B′ is an affine plane of order n. This plane is denoted IP and is
called the internal or derived plane of I at P .

Remark 28. For any egglike inversive plane of order q, each internal plane is
Desarguesian, that is, the affine plane AG(2,q) over Fq.

Theorem 29. (See [58]) Let I be an inversive plane of odd order n. If for at least one
point P of I , the internal plane IP is Desarguesian, then I is Miquelian.

Remark 30. Up to isomorphism, there is a unique inversive plane of order n
for n = 2,3,4,5,7; see [15], [17, 18], [63]. As a corollary to Theorem 29 and
the uniqueness of the projective planes of orders 3, 5, 7, the uniqueness of the
inversive planes of these orders follow.

3.4 k-caps in PG(n,q), n ≥ 3

The maximum size of a k-cap in PG(n,q) is denoted by m2(n,q).

Theorem 31. (See [36, Chapter 27], [37, Chapter 6], [34], [63], [7], [22, 23, 24],
[45], [19])

1. m2(n,2) = 2n; a 2n-cap of PG(n,2) is the complement of a hyperplane.

2. m2(4,3) = 20; there are nine projectively distinct 20-caps in PG(4,3).

3. m2(5,3) = 56; the 56-cap in PG(5,3) is projectively unique.

4. m2(4,4) = 41; there exist exactly two projectively distinct 41-caps in PG(4,4).

Remark 32. No other values m2(n,q), n > 3, are known.

Several bounds were obtained for the number k for which there exist complete
k-caps in PG(3,q) which are not ovoids; these bounds are used to determine
bounds for m2(n,q), with n > 3. See [36, Chapter 27], [37, Chapter 6], [28], [40],
[35], [53], [14], [59], [38]. Here we mention just three bounds.

Theorem 33. (See [36, Chapter 27], [37, Chapter 6], [28]) In PG(3,q), q odd and
q ≥ 67, if K is a complete k-cap which is not an elliptic quadric, then

k < q2 − 1
4
q

3
2 + 2q.
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Theorem 34. (See [40]) For n ≥ 4, q = ph and p an odd prime,

m2(n,q) ≤ nh+ 1
(nh)2

qn +m2(n− 1,q).

Theorem 35. (See [59]) In PG(3,q), q even and q ≥ 8, if K is a complete k-cap which
is not an ovoid, then

k < q2 − (
√

5− 1)q+ 5.

Remark 36. The bound of Theorem 35, which is not yet published, is better than
the bound k ≤ q2−q+5 (q even and q ≥ 8) of Chao [14]. In 2014, Cao and Ou [10]
published the bound k ≤ q2 − 2q + 8 (q even and q ≥ 128), which is better than
the one in Theorem 35. I did not understand some reasoning in their proof, so I
sent two mails to one of the authors explaining why I did not follow part of the
proof. I never received an answer.

3.5 Open problems

1. Improve the bounds of Theorems 33-35.
2. Classify all ovoids of PG(3,q) for q even.
3. Is every inversive plane of odd order Miquelian?
4. Determine m2(n,q) for n ≥ 4, q , 2.
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