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Text simplification (TS) aims to reduce the lexical and structural complexity of a text, 
while still retaining the semantic meaning. Current automatic TS techniques are limited 
to either lexical-level applications or manually defining a large amount of rules. In this 
paper, we propose to simplify text from both level of lexicons and sentences. We conduct 
preliminary experiments to find that our approach shows promising results. 
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1.   Introduction 

Approximately 10% of the world’s population has an intellectual disability. 
Many people with ID face challenges while understanding text passages. Most 
have reading levels below their own mental age. However, by adolescence, 
people with mild intellectual impairment, who comprise the vast majority of 
people with ID, can often achieve up to the sixth-grade reading level. 
Regardless, limitations in literacy and reading comprehension present significant 
challenges for this population; and can thwart opportunities for decision-making 
and many aspects of independent living. 

Information and communication technologies (ICT), in particular the World 
Wide Web, are increasingly a primary vehicle by which people obtain 
employment, interact with community agencies, make purchases, and conduct 
many other essential tasks of daily living. Examples where simplified text in 
ICT will have a positive impact on people with ID include: 

•  80% of Fortune 500 companies require online job applications 

•  Banking 

• Socializing 

For those who have limited literacy, the complex text found on the vast majority 
of websites renders the web inaccessible and, by extension, contributes to the 
disparities often experienced by people with ID. 

Text Simplification (TS) aims to simplify the lexical, grammatical, or structural 
complexity of text while retaining its semantic meaning. It can help various 
groups of people, including children, non-native speakers, the functionally 
illiterate, and people with cognitive disabilities, to understand text better [23]. 

Automatic TS is a complicated natural language processing (NLP) task, it 
consists of lexical, syntactic, or discourse simplification levels [8]. Usually 
hand- crafted, supervised and unsupervised methods based on resources like 
English Wikipedia (EW) and Simple English Wikipedia (SEW)  [2] [10] [6] [25] 
[26] are utilized for extracting simplification rules, where EW and SEW are 
widely used for collecting aligned sentence pairs from paired articles. 

It is very easy to mix up automatic text simplification task and automatic 
summarization task. TS is different to text summarization as the focus of text 
summarization is to reduce the length and the redundancy content. However, 
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text simplification usually keeps all content, and the outputs are not necessarily 
shorter.  TS is also strongly related to but distinct from Machine Translation 
(MT).  Since we can regard the original English and the simplified English as 
two different languages. 

Automatic TS research has been developed for decades. In the early works, TS 
is considered as a preprocessor for other NLP tasks such as machine translation, 
parsing, summarization [4]. Then in [3], a TS system for language impaired 
readers is developed. The system consists of lexical tagger, morphological 
analyzer, parser, syntactic simplifier, lexical simplifier, etc, which is similar to 
the most state-of-the-art text simplification system. Semantic evaluation task 
also motivated the research for text simplification, such as in SemEval-2007 
Task 10: English Lexical Substitution Task and SemEval-2012 Task 1: English 
Lexical Simplification [11] [20].  TS is a largely unsolved task, while this field 
is fast moving and research into this area is regularly produced [17]. In this 
survey, we will study the state-of-the-art automatic text simplification research 
for lexical and sentence simplification. 

2.   Lexical Simplification 

Lexical simplification (LS) simplifies text mainly by substituting infrequently- 
used and difficult words with frequently-used and easier words.  In order to 
generate substituting rules, most LS systems refer to lexical semantic resources 
like WordNet [13] [2] [3] by selecting synonyms based word frequency, or 
utilize English Wikipedia (EW) and Simple English Wikipedia (SEW). 

The general process for lexical simplification includes: identification of complex 
words; finding synonyms or similar words by various similarity measures; 
ranking and selecting the best candidate word based on criteria such as language 
model; and keeping the grammar and syntax of a sentence correct [23]. To 
consider the candidates for substitution, word that shares a common lemma, is a 
prefix or suffix of another, has same part of speech, and the part of speech is 
labelled as proper noun must be removing [10]. 

In the work of [2], they proposed an unsupervised method for learning pairs of 
complex and simpler synonyms, and a context aware method for substituting 
one for the other, without requiring aligned simplex and complex sentence pairs 
on EW and SEW. The definition of the complexity of a word is based on two 
measures: the corpus complexity (word frequency) and the lexical complexity 
(word length). The final complexity is given by the product of the two. 
Similarity measures are used to decide if transformations should be applied. On 
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the other hand,  [10] leveraged a data set of 137K aligned sentence pairs 
between EW and SEW to learn lexical simplification rules, and used feature- 
based approaches  (candidate probability,  frequency, language model, context 
frequency) [20] to learn a ranking function in SVM to make decision for trans- 
formation.   For training and evaluation of the model, they collected human 
labeling of 500 lexical simplification examples from Amazon Mechanical Turk. 
Since all of the aforementioned methods is the dependence on simplified 
corpora and WordNet, in contrast,  [9] proposed a LS system which only 
requires large corpus of regular text to obtain word embedding [12] [14] to get 
similar words of the complex word. 

However, three main challenges exist for lexical simplification approach. First, a 
great number of transformation rules are required for a reasonable coverage; 
second, even for the same word, different transformation rules should be applied 
based on the specific context; third, the syntax and semantic meaning of the 
sentence must be retained. 

3.   Sentence Simplification 

At sentence level, reading difficulty stems from lexical or syntactic complexity. 
Therefore, sentence simplification usually has two steps: lexical simplification 
and syntactic simplification.  Splitting, dropping, reordering, and substitution are 
widely accepted as the significant simplification operations [26]. [15] de- 
scribed a corpus of original and simplified news articles, and analyzed the 
syntactic features for decisions about sentence splitting, and for which position 
and redundancy information to keep or drop. 

In [26], they proposed a sentence simplification model by tree transformation 
based on Statistical Machine Translation (SMT), and provide a probabilistic 
model for each of the operation rules: splitting, dropping, reordering and 
substitution.  TF-IDF similarity measure is used for align sentences from SEW 
and EW. [22] proposed a general  method for learning how to iteratively  
simplify a sentence,  thus decomposing complicated syntax into small, easy-to-
process pieces based on the parsing tree, the method applies hand-written 
transformation rules corresponding to basic syntactic patterns. In [18], they 
formalized the interactions that take place between syntax and discourse during 
the simplification process, and described how various generation issues like 
sentence ordering, cue-word selection, referring-expression generation, 
determiner choice and pronominal use can be resolved. [19] described a text 
simplification system that uses a synchronous grammar defined over typed 
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dependencies. [24] presented a data-driven model based on quasi-synchronous 
grammar, a formalism that can naturally  capture structural mismatches and 
complex rewrite operations. [25] explored text simplification rules based on the 
edit histories in SEW. 

The limitation of aforementioned methods requires syntax parser or hand- 
crafted rules to simplify sentence. [23] proposed to use RNN (Recurrent Neural 
Network) Encoder-Decoder for text simplification. RNN Encoder-Decoder is a 
very popular deep neural network model that obtains great success in machine 
translation task [5] [21] [1]. However, it is difficult to train the model due to the 
lack of paired simple and complex sentences. 

  
Fig. 1.  Our prototype text simplification system 

4.   Experiment 

Most of the work just utilized the annotated data for evaluation.  It is still an 
open problem of how to measure simplicity automatically.  Typical measures 
take into account surface text factors such as sentence length, syllable count, 
word frequency [17] [2].  They can give a good estimation, but are far from 
accurate.  Two other important terms are readability and understandability, 
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readability defines how easy to read a text, and understandability is the amount 
of information people can gain from the text [17]. Unfortunately, there is no 
existing automatic way to use readability or understandability to evaluate TS. 
Eye tracking has been used successfully as a technique for cognitive load in 
reading, language acquisition, etc. Therefore, some works apply eye tracking to 
evaluate machine translation and text simplification [16] [7]. 

In this project, we have preliminarily implemented some techniques discussed 
above into a real-world system available at: http:// 
http://158.121.178.171/contribute/. A screen shot of our system is shown in Fig 
1. 

Conclusion 

Text simplification is a challenging task in Natural Language Processing. This is 
a preliminary study in solving the text simplification problem for people with 
intellectual disabilities. Unlike the machine translation task, there are very few 
text simplification training corpora online. So our future work includes 
collecting complex and simple sentence pairs from online resources such as 
English Wikipedia and Simple English Wikipedia, and training our model using 
these large parallel corpora. 
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