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ABSTRACT 

APOBEC3s (A3s) are a family of human cytidine deaminases that play important 

roles in both innate immunity and cancer. A3s protect host cells against retroviruses and 

retrotransposons by deaminating cytosine to uracil on foreign pathogenic genomes. 

However, when mis-regulated, A3s can cause heterogeneities in host genome and thus 

promote cancer and the development of therapeutic resistance. The family consists of 

seven members with either one (A3A, A3C and A3H) or two zinc-binding domains (A3B, 

A3D, A3D and A3G). Despite overall similarity, A3 proteins have distinct deamination 

activity and substrate specificity. Over the past years, several crystal and NMR 

structures of apo A3s and DNA/RNA-bound A3s have been determined. These 

structures have suggested the importance of the loops around the active site for 

nucleotide specificity and binding. However, the structural mechanism underlying A3 

activity and substrate specificity requires further examination. 

Using a combination of computational molecular modeling and parallel molecular 

dynamics (pMD) simulations followed by experimental verifications, I investigated the 

roles of active site residues and surrounding loops in determining the substrate 

specificity and RNA versus DNA binding among A3s. Starting with A3B, I revealed the 

structural basis and gatekeeper residue for DNA binding. I also identified a unique auto-

inhibited conformation in A3B that restricts access to the active site and may underlie 

lower catalytic activity compared to the highly similar A3A. Besides, I investigated the 

structural mechanism of substrate specificity and ssDNA binding conformation in A3s. I 

found an interdependence between substrate conformation and specificity. Specifically, 

the linear DNA conformation helps accommodate CC dinucleotide motif while the U-



 viii 

shaped conformation prefers TC. I also identified the molecular mechanisms of 

substrate sequence specificity at -1’ and -2’ positions. Characterization of substrate 

binding to A3A revealed that intra-DNA interactions may be responsible for the 

specificity in A3A. Finally, I investigated the structural mechanism for exclusion of RNA 

from A3G catalytic activity using similar methods. 

 Overall, the comprehensive analysis of A3s in this thesis shed light into the 

structural mechanism of substrate specificity and broaden the understanding of 

molecular interactions underlying the biological function of these enzymes. These 

results have implications for designing specific A3 inhibitors as well as base editing 

systems for gene therapy. 
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1 CHAPTER I INTRODUCTION 

1.1 APOBEC3s 

1.1.1 The human cytidine deaminase family APOBEC3 

APOBEC3s (A3s, apolipoprotein B mRNA editing enzyme, catalytic polypeptide-

like 3) is a family of human cytidine deaminases that catalyze the deamination of 

cytosine to uracil in the single stranded DNA(ssDNA) or ssRNA1-5. The A3 family 

consists of seven members (A3A, A3B, A3C, A3D, A3F, A3G and A3H): three of these 

enzymes (A3A, A3C, A3H) have a single zinc-binding (Z) domain while the other four 

(A3B, A3D, A3F, A3G) have two Z domains. The two-domain A3s have a catalytically 

active C terminal domain (CTD) and a pseudo-catalytic N terminal domain (NTD) that 

binds to nucleic acids but does not have deaminase activity (Figure 1.1A) Although 

NTDs have no deamination activity, they appear to be important for regulating the 

catalytic activity through increasing ssDNA binding affinity and promoting 

oligomerization6. The Z domains of A3s can be separated into Z1, Z2, and Z3 

phylogenetic groups, which are defined by conserved amino acid differences (Figure 

1.1C). Specifically, Z1 group is comprised of A3A, A3B-CTD and A3G-CTD; Z2 has 

A3B-NTD, A3C, A3D-NTD, A3D-CTD, A3F-NTD, A3F-CTD, A3G-NTD and A3G-CTD; 

while Z3 has only A3H, which has seven different human haplotypes. 
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Figure 1.1: The APOBEC3 family of human cytidine deaminases. 
A) Domain organization of the seven human APOBEC3s. N-terminal and C-terminal 
domains are represented by ovals. Active domains are marked with a star. Z1 domains 
are in orange, Z2 domains are in blue, and Z3 domain is in gray. B) A schematic 
cartoon for the outcome of A3 catalytic activity. A3s deaminate C to U on ssDNA and 
thus cause G to A mutations on the complementary strand. C) Phylogenic tree of A3 Z 
domains.  
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1.1.2 The human APOBEC superfamily 

A3 family belongs to the APOBEC superfamily, which consists of 11 members, including 

activation-induced cytidine deaminase (AID), APOBEC1, APOBEC2, APOBEC3 and 

APOBEC42, 4, 7. All these enzymes have a conserved zinc-binding motif (Cys/His)-Xaa-

Glu-Xaa23∼28-Pro-Cys-Xaa2∼4-Cys, where X represents any amino acid. The active site 

zinc is tetrahedrally coordinated with the His and Cys residues and an additional water. 

The catalytic activity of the family is the deamination of cytosine to uracil in single strand 

polynucleotides (DNA/RNA)2.  

1.1.3 The conserved deamination reaction mechanism 

The APOBEC superfamily shares a conserved deamination reaction mechanism 

(Figure 1.2). The reaction mechanism was proposed by studies of bacterial1, 8 and 

yeast9-11 cytidine deaminase. First, an active site water molecule is deprotonated by the 

catalytic glutamate carboxylic acid side chain, which acts as a general acid/base (Figure 

1.2: step 1 to 2). The generated negatively charged hydroxide ion is stabilized by the 

positively charged zinc ion and attacks the C4 carbon on the pyrimidine ring of cytosine, 

yielding an unstable tetrahedral intermediate (Figure 1.2: step 3 to 4). A proton transfer 

reaction occurs from the protonated Glu carboxylic acid to the negatively charged N3 

atom of the pyrimidine ring while in the tetrahedral intermediate state (Figure 1.2: step 4 

to 5). The tetrahedral intermediate then collapses to give an uracil-nucleobase and an 

ammonia molecule (Figure 1.2: step 5 to 6). The catalytic glutamate is now 

deprotonated and ready to activate another water molecule to repeat the catalytic cycle 

(Figure 1.2: step 6 to 1).  
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Figure 1.2: The deamination reaction mechanism of APOBEC family. 
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1.1.4 Other members of the human APOBEC superfamily  

AID, which is encoded by the activation induced cytidine deaminase (AICDA) gene 

on human chromosome 12, plays an essential role in adaptive immune response. AID 

deaminates cytidines on ssDNA regions during the transcription of immunoglobulin 

genes. These deamination events regulate antibody diversification, specifically in the 

processes of class-switch recombination and somatic hypermutation12.  AID can 

deaminate 5-methylcytosine (5meC) in CpG dinucleotides, suggesting that AID may be 

involved in epigenetic reprogramming and cell plasticity.  

APOBEC1, which also lies on human chromosome 12, regulates lipid metabolism. 

APOBEC1 deaminates cytidine6666 in apolipoprotein B (apoB) mRNA transcript, which 

encodes a key player in lipid transport. This RNA editing creates a premature stop 

codon to produce a truncated apoB lipoprotein called apoB48 that is required for lipid 

transport from the intestines to other locations in the body13-15. In addition to editing the 

mRNA of apoB protein, APOBEC1 is also involved in DNA demethylation,16, 17 and 

retrovirus restriction similar to A3s18-20. APOBEC2 (encoded by gene locus on 

chromosome 6) and APOBEC4 (encoded by gene locus on chromosome 1) have not 

been reported to have any deamination activity and their physiological function has 

remained elusive7, 21.  

1.2 The biological functions and applications of APOBEC3 family 

1.2.1 A3s are critical for innate immunity against viral infections 

A3s were first discovered through the identification of viral gene products that 

interfere with their function. For instance, A3G was first identified because of its role in 

restricting Vif (virion infectivity factor)-deficient HIV22, 23. Of the seven human A3s, A3D, 
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A3F, A3G and A3H can potently inhibit HIV-1 replication through hypermutation of the 

viral genome by deamination activity24, 25. Specifically, A3s deaminate cytosines to 

uracils on the single stranded (-) DNA synthesized during reverse transcription. The 

resulting uracils in the (-) DNA serve as a template for the reverse transcriptase during 

(+) DNA synthesis, leading to G to A mutations in (+) DNA (Figure 1.1B). The resulting 

hyper-mutated genome causes the virus to be defective for further replication. Inhibition 

of viral replication by the A3s has also been shown to occur through deamination-

independent mechanisms. Specifically, A3s can directly bind viral genomic RNA or 

oligomerize on the template DNA during reverse transcription, resulting in a roadblock 

for the reverse transcriptase26-29. However, in the presence of Vif, A3s are targeted for 

proteasome degradation, which prevents A3s from restricting HIV replication. In addition 

to activity against retroviruses (including HIV), A3s are involved in the restriction of 

endogenous retrotransposons, especially LINE-1 elements. A3s also restrict DNA 

viruses including nuclear replicating ssDNA viruses such as adeno-associated virus30 

and dsDNA viruses such as hepatitis B virus, herpes viruses and HPV31-34.  

1.2.2 Consequences of mis-regulated cytidine deamination activity  

A3 activity can be a double-edged sword. In addition to inducing mutations on 

single-stranded viral genomes, A3s can cause mutations in host genomes when 

localization and/or activity of A3s is mis-regulated. Although there is no known function 

of A3s that necessitates targeting genomic DNA, A3s are likely able to deaminate 

cytosines in single-stranded region of genomic DNA, such as the lagging strand of 

replication forks35-38, the resected ends of double strand breaks39-42, and non-

transcribed strand during gene transcription. The A3 mutational signature, which is C to 
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T transition in TC context, has been observed in multiple cancer genomes43-45. These 

mutations may help promote tumor evolution and the development of therapeutic 

resistance46. Overexpressed A3s, especially A3A, A3B and A3H, have been shown to 

be a major endogenous source for mutations in various types of human cancer, such as 

breast, bladder, head and neck, cervical, and lung cancer44, 45, 47, 48. The A3s involved in 

cancer usually are able to localize to the nucleus: A3B and A3H haplotype I appear to 

localize to the nucleus, A3A and A3C are found throughout the cell while the other A3s 

remain in the cytoplasm47, 49, 50. Considering A3s’ roles in cancer, discovering inhibitors 

that target A3s may benefit cancer therapeutics. The design and screening of first-in-

class A3 inhibitors will be discussed in Appendix II. 

1.2.3 Using APOBEC3s as base editors to treat genetic diseases 

The techniques to precisely and efficiently edit a specific DNA sequence have 

potential for use to correct disease-causing mutations in the genome of a living 

organism. Recently, CRISPR/Cas9, which plays a crucial role in bacterial defense 

against DNA viruses, has been modified as a powerful tool for genetic editing through 

the ability to create a dsDNA break (DSB) at a precise target location51-58. Cas9, a DNA 

endonuclease, binds single-guide RNA (sgRNA), forming CRISPR/Cas9 protein–RNA 

complexes. The CRISPR/Cas9 protein–RNA complexes generate a DSB at the locus 

specified by sgRNA. In response to DSB, cellular DNA repair processes, including non-

homologous end joining (NHEJ) and microhomology-mediated end joining (MMEJ), can 

lead to gene disruption by introducing insertions, deletions, translocations and other 

DNA rearrangements at the DSB site51, 59-61. In the presence of a homology donor DNA 

template at the DSB site, the DNA surrounding the cleavage site can be replaced by 
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homology-directed repair (HDR), which can generate precise insertions, deletions, or 

any point mutation of interest62, 63. However, HDR is very inefficient (~0.5–5 %)56, 64, and 

can lead to off-target mutations or unwanted changes such as indels, translocation, and 

rearrangements65, 66.  

To address these limitations, base-editors that can directly modify genomic DNA at 

single-base resolution without creating DSBs have been developed. These combine a 

modified Cas9 (catalytically inactive Cas9 (dCas9)/ nickase Cas9 (nCas9)) with a DNA-

modifying enzyme. There are two classes of such base editors: cytosine base editors 

(CBEs)67, 68 that alter a C•G base pair to a T•A base pair, and adenine base editors 

(ABEs)69 that alter an A•T base pair to a G•C base pair. The first class of base-editors, 

CBEs have been constructed by linking a cytidine deaminase (AID, APOBEC1 or A3A) 

to dCas9/nCas9, together with a uracil DNA glycosylase inhibitor (UGI)70 to disrupt the 

cellular uracil base excision repair pathway. Unlike CBEs, adenine base editors (ABEs) 

could not be developed by simply fusing an adenosine deaminase with dCas9/nCas9, 

because there is no known enzyme to deaminate adenine in DNA. Instead, an enzyme 

(TadA*), which can effectively deaminate adenine in ssDNA, has been engineered from 

E. coli tRNA adenosine deaminase (wtTadA) by performing extensive directed protein 

evolution. Heterodimeric TadA (wtTadA–TadA*) variants optimized to have high editing 

efficiency in human cells were fused with nCas9, creating ABEs. When these base 

editors are bound to their target DNA, dCas9(or nCas9) denatures the DNA duplex and 

generates an R-loop52, 71 in which the DNA strand unpaired with the sgRNA exists as 

disordered single-stranded bubbles. The resulting ssDNA is targeted by the deaminase. 

Each deaminase causes a mutation (CBEs: a C•G to T•A mutation, ABEs: a A•T to G•C 
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mutation) in an ~5-bp window of ssDNA (positions ~4–8, counting the protospacer 

adjacent motif (PAM) as positions 21–23) generated by dCas9/nCas9.  

Although both CBEs and ABEs have significantly improved editing efficiency and 

reduced indel formation compared to HDR, several studies have reported significant off-

target effects of CBEs. In addition, CBEs have still problems in product purity and 

editing window length51. To overcome these problems, several versions of CBEs with 

the various scope and effectiveness of genome editing have been engineered by adding 

one more UGI for increasing product purity72, generating high fidelity Cas9 for reducing 

off-target effects73, or using different Cas nucleases74-78 for narrower activity windows. 

However, product impurity and off-targeting by CBEs are mainly caused by unregulated 

activity (or overexpression) of cytidine deaminases. Therefore, additional studies to 

incorporate A3s with different specificities or to engineer A3s with desired specificity 

may allow to substantially reduce off-target effects and increase base editing efficiency.  

 

  



 10 

 

Figure 1.3: Generation of Cas9 fused cytosine base editors (CBE). 
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one C within the activity window when multiple Cs were present, in 
six of these seven targets in vitro, with an average apparent editing 
efficiency of 44% (Extended Data Fig. 2).

Although the preferred sequence context for APOBEC1 substrates 
is TC or CC14, we anticipated that the increased effective molarity of 
the tethered deaminase and its ssDNA substrate upon dCas9 binding 
might relax this preference. To illuminate the context dependence of 
BE1, we assayed its ability to edit a dsDNA 60-mer containing a single 
fixed C at position 7 within the protospacer, as well as all 36 single- 
mutant variants in which protospacer bases 1–6 and 8–13 were indi-
vidually varied to each of the other three bases. High-throughput DNA 
sequencing revealed 50–80% C to U conversion of substrate strands 
(25–40% of sequence reads from both DNA strands, one of which is 
not a substrate for BE1) (Fig. 2a). Editing efficiency was independ-
ent of sequence context, unless the base immediately 5′ of the target 
C was a G, in which case editing efficiency was substantially lower  
(Fig. 2a). Next we assessed BE1 activity in vitro on all four NC motifs 
at positions 1 through 8 within the protospacer (Fig. 2b). BE1 activity  
followed the order TC ≥ CC ≥ AC > GC (the second nucleotide (C) 
is the target nucleotide), with maximum editing efficiency achieved 
when the target C is at or near position 7 (see Supplementary 

Information). In addition, we observed that the base editor is proces-
sive, and will efficiently convert most or all Cs to Us on the same DNA 
strand within the five-base activity window (Extended Data Fig. 3).

While BE1 efficiently processes substrates in a test tube, in cells, a 
variety of possible DNA repair outcomes determines the fate of the 
initial U:G product of base editing (Fig. 3a). We tested the ability of 
BE1 to convert C→T in human cells on 14 Cs in six well-studied tar-
get sites in the human genome (see Supplementary Information and 
Extended Data Fig. 4a)15. Although C→T editing in cells was observed 
for all cases, the efficiency of base editing was 0.8% to 7.7% of total 
DNA sequences, a large 5- to 36-fold decrease in efficiency compared 
to that of in vitro base editing (Fig. 3b and Extended Data Fig. 4).

We hypothesized that the cellular DNA repair response to U:G  
heteroduplex DNA was responsible for the large decrease in base edit-
ing efficiency in cells (Fig. 3a). Uracil DNA glycosylase (UDG) cataly-
ses removal of U from DNA in cells and initiates base-excision repair 
(BER), with reversion of the U:G pair to a C:G pair as the most common  
outcome (Fig. 3a)16. Uracil DNA glycosylase inhibitor (UGI), an 
83-residue protein from Bacillus subtilis bacteriophage PBS1, potently 
blocks human UDG activity (IC50 = 12 pM)17. In an effort to subvert 
BER at the site of base editing, we fused UGI to the C terminus of BE1 
to create a second-generation base editor (BE2, APOBEC–XTEN–
dCas9–UGI) and repeated editing assays on all six genomic loci. 
Editing efficiencies in human cells were on average threefold higher 
with BE2 than BE1, resulting in gene conversion efficiencies of up to 
20% of total DNA sequenced (Fig. 3b).

Importantly, BE1 and BE2 resulted in indel formation rates ≤ 0.1% 
(Fig. 3c and Extended Data Table 1), consistent with the known 
mechanistic dependence of NHEJ on DSBs (see Supplementary 
Information)18. We assessed BE2-mediated base editing efficiencies on 
the same genomic targets in U2OS cells, and observed results similar 
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Figure 1 | First-generation base editor (BE1) mediates specific, guide 
RNA-programmed C→U conversion in vitro. a, Base editing strategy. 
DNA with a target C (red) at a locus specified by a guide RNA (green) 
is bound by dCas9 (blue), which mediates local DNA strand separation. 
Cytidine deamination by a tethered APOBEC1 enzyme (red) converts 
the single-stranded target C→U. The resulting G:U heteroduplex can be 
permanently converted to an A:T base pair following DNA replication 
or DNA repair. b, Deamination assay showing a BE1 activity window of 
approximately five nucleotides. Samples were prepared as described in 
the Methods. Each lane is labelled according to the position of the target 
C within the protospace, or with ‘–’ if no target C is present, counting the 
base distal from the PAM as position 1. c, Deamination assay showing the 
sequence specificity and sgRNA-dependence of BE1. The DNA substrate 
with C at position 7 in b was incubated with BE1 and the correct sgRNA, 
a mismatched sgRNA or no sgRNA. The positive control sample used a 
synthetic DNA substrate with a U at position 7. For uncropped gel data, 
see Supplementary Figure 1.

Figure 2 | Effects of sequence context and target C position on base 
editing efficiency in vitro. a, Effect of changing the sequence surrounding 
the target C on editing efficiency in vitro. The deamination yield of 80% 
of targeted strands (40% of total sequencing reads from both strands) for 
C7 in the protospacer sequence 5′-TTATTT(C7)GTGGATTTATTTA-3′ 
was defined as 1.0, and the relative deamination efficiencies of substrates 
containing all possible single-base mutations at positions 1–6 and 8–13  
are shown. b, Positional effect of each NC motif on editing efficiency  
in vitro. Each NC target motif was varied from positions 1 to 8 within the 
protospacer as indicated in the sequences shown on the right. The PAM is 
shown in blue. The graph shows the percentage of total DNA sequencing 
reads containing T at each of the numbered target C positions following 
incubation with BE1. Note that the maximum possible deamination yield 
in vitro is 50% of total sequencing reads (100% of targeted strands). Values 
and error bars reflect the mean and standard deviation of three (a) or  
two (b) independent biological replicates performed on different days.
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1.3 The structures of APOBEC3 family members 

1.3.1 The apo structures 

Over the past several years, crystal and NMR structures of human or primate A3 

single domains (A3A, A3C, A3H; CTDs of A3B, A3F, A3G; NTDs of A3B, A3G) in the 

apo state have been determined by our group 79-85 and others 86-102. In general, A3 

proteins are structurally similar, including pseudo-catalytic NTDs. The overall A3 domain 

structure consists of six alpha-helices and five beta-strands with the zinc-binding region 

in the middle (Figure 1.4). The active site residues, for instance the catalytic glutamic 

acid and zinc coordinating residues, are highly identical among all A3 domains. 

Although the overall fold is conserved, subtle sequence differences among A3s have 

resulted in variations in loops length, structure, and flexibility as well as variations in 

surface charge, active site interactions, and oligomeric tendency. These variations 

underlie the functional characteristics of each A3 protein. Particularly, sequence 

differences in active site loops (loop 1, loop 3, loop 5 and loop 7) that surround the 

active site pocket of catalytically active domains mainly contribute to the differential 

substrate specificity, binding affinity and deamination activity for ssDNA, as well as the 

distinct physiological functions in A3s103. 

1.3.2 The nucleotide-bound A3 structures 

Recently, our laboratory 104, 105, along with other groups, have determined the 

crystal structures of several A3–DNA complexes (A3A-DNA, chimeric A3B-CTD-DNA, 

A3G-CTD-DNA, A3F-DNA and rA3G-NTD-DNA) 99, 106-108. Besides, three RNA-bound 

A3H structures109-111 were solved. Among these structures, A3A-DNA (PDB: 5KEG; 

5SWW), chimeric A3B-CTD-DNA (PDB: 5TD5), A3G-CTD-DNA (PDB: 6BUX) and 
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rA3G-NTD-DNA have ssDNA bound at the active site (Figure 1.5). These structures 

identified the substrate-binding conformation for deamination in the active site, revealed 

the critical residues for binding (e.g. gate-keeper residue His29 in A3A), and provided 

insights for substrate specificity at -1’ position (e.g. the hydrogen bond interactions 

between Asp131 and -1’ base in A3A). Active site loops (loop 1, 3, 5 and 7), which have 

direct contacts with ssDNA, have shown the most conformational changes compared to 

apo structures. The dynamics of these loops might be the key for defining the substrate 

specificities and functional variation among A3s. 

In addition, these structures revealed differences in the conformation of bound 

ssDNA (U-shape in A3A and chimeric A3B; linear in A3G). Hence, the differences in the 

secondary structure of substrate DNA may provide fundamental insights into the 

mechanisms by which A3s recognize their specific substrates. 

1.3.3 The structures of full-length double-domain A3 structures 

Due to intrinsic tendency for oligomerization and poor solubility, the determination 

of full-length double-domain A3s structures is extreme challenging. Luckily, through 

engineering mutations guided by soluble CTDs and primate A3s, our group and another 

lab112 have recently solved the structure of full-length A3G. Our group revealed the 

structure of human full-length A3G by mutating approximately 16% of residues to 

solubilize the full-length protein while the other group reported the structure of full-length 

A3G from rhesus monkey by mutating 4 amino acids to improve solubility. Combined 

with molecular modeling, these structures shed light on the role of pseudo-catalytic NTD 

and potential oligomerization in functions and mechanisms of wild type double-domain 

A3s. The detailed structural analysis of full-length A3G will be discussed in Appendix I.  
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Figure 1.4: Apo APOBEC3 structures. 
Currently determined apo structures of APOBEC3 proteins. A3A (PDB: 4XXO), A3B-
CTD (PDB: 5CHI), A3B-NTD (PDB: 5TKM), A3C (3VOW), A3F-CTD (PDB: 4IOU), A3G-
CTD (PDB: 3IR2), A3G-sNTD (PDB: 2MZZ) and A3H (5W45). The protein structures 
are shown in cartoon representation. The catalytic zinc is represented as a grey sphere. 
The zinc coordinating residues, Glu (inactive form has Ala for crystallization), His and 
two cysteines are shown as sticks. The three A3 proteins that are mainly discussed in 
this thesis are colored green (A3A), pink (A3B) and yellow (A3G). 
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Figure 1.5: DNA-bound APOBEC3 structures. 
Currently solved DNA-bound APOBEC3 structures. A3A (PDB: 5KEG), chimeric A3B-
CTD-DNA (PDB: 5TD5), A3G-CTD-DNA (PDB: 6BUX), A3F-CTD-DNA (PDBs: 5W2M 
and 5ZVA) and rA3G-NTD-DNA (PDB: 5K83). A3 proteins are shown as cartoon 
representation while DNAs are depicted as orange sticks. Catalytic zinc is shown as 
grey sphere. Notice that for A3F-CTD DNA-bound structures, zinc and DNA are outside 
of the active site. 
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1.3.4 Substrate specificities of A3s 

Although A3 domains share similar structure and overall fold, they have different 

catalytic activities, substrate preferences, and sequences specificities. First of all, not all 

A3 domains can deaminate cytidine. The NTDs alone have no catalytic activity despite 

having the conserved zinc binding motif as in CTDs. Besides, active A3s have different 

levels of deamination activity. The activity of A3A, which is the highest in A3 family, 

could be up to 5000-fold higher compared to the least active A3D113.  

In addition to cytidine, only certain A3s can deaminate methylated cytidines and 

thus may be involved in epigenetic regulation, particularly A3A, A3B and A3H113. 

Besides, similar to APOBEC1 which uses mRNAs as substrate, A3A and A3G of A3s 

have the ability and function to deaminate RNAs. A3A has been reported to bind114 and 

deaminate ribo-cytidine with relatively lower activity compared to deoxyl-cytidine115. The 

deamination of RNA by A3G was observed in natural killer cells, lymphoma cell lines 

and CD8-positive T cells under specific conditions, such as cellular crowding and 

hypoxia, but not in cells under normal conditions116. However, the other A3s cannot 

deaminate RNA. 

 In general, A3s prefer to deaminate cytidine in a TC motif, except A3G which 

prefers CC. The preferred sequence motifs for different A3s including the flanking 

nucleotides next to the substrate cytidine according to currently published references 

are shown in Table 1.1113, 117-120. These substrate specificities may contribute to the 

differences in physiological functions among A3s and provide a mechanism for the 

evolution of the functionally overlapping but distinct APOBEC family. 
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Table 1.1: The preferred substrate sequence for deamination activity of human 
AID and APOBEC proteins. 

 PREFERRED SUBSTRATE 
SEQUENCE 

AID  (A/T)(A/G)CAA 
APOBEC1           TCAA 

APOBEC3A      (T/C)TC(A/G) 
APOBEC3B          ATC(A/G) 
APOBEC3C  (A/T)(C/T)C(A/G) 
APOBEC3D           TC 
APOBEC3F          TTC(A/T) 
APOBEC3G          CCC(A/C/T) 
APOBEC3H           TC 

 

  



 17 

According to amino acid sequence alignment, active site loops (loop 1, 3, 5, and 7) 

have the most variation (Figure 1.6). These loops have not only different residues, but 

also different lengths. Swapping these loops among A3s has effects on both activity and 

specificity. For instance, exchanging loop 1 of A3A into A3B-CTD resulted in an order of 

magnitude increase in deamination activity; exchanging loop 7 of A3A into A3G-CTD 

altered substrate sequence preference from CC to more A3A-like TC. Therefore, 

comprehensive studies of the active site loops in A3s may reveal the structural 

mechanism of substrate specificities and activity. 
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Figure 1.6: Sequence alignment and structural representation of active site loops 
in APOBEC3 family. 
  



 19 

1.4 Protein modeling and dynamics in molecular recognition  

1.4.1 Molecular modeling  

The structure of proteins is the basis for understanding the molecular mechanism 

and interactions at the atomic level. There are multiple experimental methods to 

determine protein structures. The most common ones are X-ray crystallography, nuclear 

magnetic resonance (NMR) spectroscopy, and recently revolutionized cryogenic 

electron microscopy (cryo-EM). Using these methods, over 160 thousand structures 

(according to Protein Data Bank) have been solved and enabled breakthroughs in 

research and education. However, there are drawbacks of each of these methods: X-

ray crystallography requires the formation of stable protein crystals; NMR spectroscopy 

requires high concentration/solubility and is largely limited to small proteins; cryo-EM is 

primarily suited for proteins with over 100 kilodalton of molecular weight. Improvements 

have been developed to overcome these problems. However, determining structures of 

proteins with poor solubility or of all mutants could still be very challenging and time 

consuming.  

Molecular modeling or homology modeling, which is complementary to 

experimental methods discussed above, is a powerful tool to construct an atomic 

resolution model of a protein. According to amino acid sequence alignments, the 

method builds a protein structural model based on a related homolog that has 

experimentally determined three-dimensional structure121, 122. The quality or accuracy of 

the structural model is highly dependent on the quality of the sequence alignment and 

template structure123. Errors usually increase with decreasing sequence identity. The 
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regions without a template reference, for instance loop regions, are generally less 

accurate compared to the rest of the model124, 125.  

Molecular modeling provides valuable insights for studying the molecular 

properties of protein molecules and their interactions with binding partners (substrates, 

peptides, inhibitors and proteins). The findings or hypothesis derived from molecular 

models could be later verified through experimental studies. Molecular modeling in 

addition to experimental structural determination has significantly minimized the 

“structure knowledge gap” between the number of protein sequences and number of 

known structures121. The growing number of three-dimensional structures or models 

enables rational structure-based approaches in a broad range of applications in life 

science research, such as drug or antibody design, engineering protein specificities or 

protein-protein interactions126.  For example, homology models help accelerate the high 

throughput virtual screening process in structure-based drug design. Virtual screening 

using homology models can provide insights to drug discovery before crystal structures 

are available or experimental high-throughput screening. In addition, molecular models 

may help guide the optimization of lead compounds in pharmaceutical development.  

1.4.2 Molecular dynamics simulations 

Proteins undergo conformational changes to perform their biological function. 

Hence, understanding protein dynamics is critical for understanding function, including 

molecular recognition. Molecular dynamics (MD) simulation is a computational method 

that enables studying protein dynamics by following conformational changes through a 

period of time. Proteins are typically simulated at the atomic level. The simplest 

simulation system usually consists of a single protein molecule solvated in water or with 



 21 

other relevant molecules such as ligands or nucleotides. The potential energy of the 

system of atoms in MD simulations is calculated in terms of interatomic bonded (bond, 

angle, dihedral) and nonbonded potentials (van der Waals, electrostatics), which 

constitute the so-called force field.  

𝐸!"!#$ = 𝐸%"&'(' + 𝐸&"&%"&'(' 

𝐸%"&'(' = 𝐸%"&' + 𝐸#&)$( +	𝐸'*+(',#$ 

𝐸&"&%"&'(' = 𝐸($(-!,".!#!*- +	𝐸/#&	'(,	1##$. 

There are many classic force fields that have been developed for studying 

biomolecules, for instance, CHARMM127, 128, AMBER129, 130, OPLS131, 132. These force 

fields assign parameters to each atom type and are usually paired with a particular 

solvent (e.g. water) model and simulation protocol133.  

MD simulations are most effective when coupled with cross-validations from 

experiments134. Besides, energy minimization in MD simulations allow the initial 

structural coordinates to adjust to minimize the energy of the protein133, which is very 

helpful for assessing and optimizing models generated from molecular modeling. MD 

simulations have a broad range of applications in life science research, such as protein 

folding, substrate/inhibitor binding.   

Nowadays, the speed by which MD simulations can be performed has been 

greatly increased thanks to the availability of supercomputing clusters and increased 

parallelization of calculations using powerful graphics processing unit (GPU) 

technology. Therefore, MD simulations can be not only run on much longer time scales, 

but also in replicates and for similar systems in parallel. Our lab has developed parallel 

MD simulations (pMD) as a method to characterize a series of related systems to inform 
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inhibitor design and understand resistance mechanisms in viral proteases135-138, which 

we more recently applied to A3s115, 139.  Specifically, pMD involves a series of parallel 

MD simulations on highly related systems (e.g. same enzyme with different substrates; 

same inhibitor with different protein variants, etc.) and thus allows detailed systemic 

comparisons among these systems. The trajectories generated in pMD are then 

analyzed to characterize and compare using metrics including root-mean-squared 

fluctuations (RMSFs), intermolecular interactions (hydrogen bonds, vdW contacts), 

electrostatics surface analysis. Examples of these analyses are shown in Figure 1.7. 

Detailed comparisons among pMDs enable generating novel hypotheses and proposing 

mechanisms, which can be supported or verified with experimental results. Thus, MD 

simulation is a valuable method in revealing the underlying molecular details of 

experimental observations in protein biology. 
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Figure 1.7: Examples of the types of analyses that can be performed with pMD. 
Example A. (Figure from Chapter II) RMSFs of ssDNA in A3B R211 or R212 models 
compared to A3A crystal structure. The results suggest that A3B uses R211 to 
coordinate ssDNA binding. Example B. (Figure from Chapter V) Hydrogen bond 
analyses between substrate deoxycytidine or non-substrate ribocytidine and A3G 
protein. Example C. (Figure from Chapter III) vdW and electrostatics surface analysis 
comparing A3A, A3B and A3G.  
  



 24 

 

1.4.3 Molecular modeling and dynamics in understanding A3 specificity 

Molecular dynamics simulations have been used for studying the biological 

functions and substrate binding in APOBEC superfamily (APOBEC1140, A3B141, A3G142 

and AID143). For instance, molecular modeling and simulations combined with 

experimental assays have helped reveal the possible DNA-bound conformations143 as 

well as key loop for substrate recognition144 in AID. The low solubility, tendency for 

oligomerization and low DNA affinity of certain A3 proteins have required introducing 

mutations to be able to structurally and biochemically characterize these proteins in vitro 

79-81, 83-85, 92, 96, 99, 104, 106, or prevented such characterization especially for NTDs and full-

length A3s. Hence, combining experimental structures with computational molecular 

modeling, verified by simulations and experimental analysis, can provide insights into 

DNA binding and specificity of A3s. 

The active site loops of A3, which are critical for substrate binding and specificity, 

are very flexible. These loops undergo conformational changes to accommodate 

substrate binding, as shown in both A3A and A3G ssDNA-bound structures compared 

to apo structures. Therefore, studying the motion of these loops using molecular 

dynamics simulations may help reveal the underlying molecular mechanisms for 

substrate recognition as well as varying specificities. 

1.5 SCOPE OF THE THESIS 

The deamination activity of A3s contributes to restriction of viruses including HIV, 

but causes somatic mutation in many cancers. Due to the roles of A3s in viral infection 

and cancer, a better understanding of the mechanism by which A3s recognize target 
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nucleic acids and regulate their catalytic activity is critical for developing more effective 

antivirals and cancer therapeutics. The sequence and structural analysis of A3s have 

revealed that substrate specificity and binding affinity, and catalytic rate of A3s depend 

on differences in active site loops. However, the mechanism by which active site 

residues and loops regulate nucleotide specificity and catalytic activity remains still 

elusive. This thesis attempts to understand the structural mechanism of substrate 

specificity among A3s using molecular modeling of the available A3 structures, 

experimental mutational analysis, and parallel molecular dynamics (pMD). Specifically, 

the aims are to investigate the role of active site residues and surrounding loops that 

determine substrate specificity and RNA versus DNA binding, and to provide guidelines 

for developing specific inhibitors against A3s or engineering A3s with different 

specificities. Chapter I provides the current comprehension of the functional, 

biochemical, and structural mechanism for A3s.  

Chapter II: Structural Analysis of the Active Site and DNA Binding of Human 

Cytidine Deaminase APOBEC3B: Using molecular modeling and simulations, further 

verified by experimental binding assays, this chapter elucidates the molecular 

mechanism of DNA recognition by A3B and how A3B-CTD structurally regulates its 

catalytic activity compared to the highly similar A3A. 

Chapter III: Structural Mechanism of Substrate Specificity Among A3s: Using 

computational modeling and structural analysis of DNA-bound A3 complexes, this 

chapter reveals the structural mechanism of substrate specificities for A3A, A3B and 

A3G. 
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Chapter IV: Substrate Sequence Selectivity of APOBEC3A Implicates Intra-DNA 

Interactions: Using systematic studies of A3A binding with different substrate sequences 

with experimental binding assays, this chapter discusses the substrate sequence 

specificity and underlying molecular mechanism in A3A. 

Chapter V: Mechanism for APOBEC3G Catalytic Exclusion of RNA and Non-

substrate DNA: Using NMR and molecular dynamics simulations in combination with 

deamination assays, this chapter identifies the molecular mechanism for the exclusion 

of non-substrate ribo-cytidine compared to deoxy-cytidine in A3G-CTD.  
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2 CHAPTER II: Structural Analysis of the Active Site and DNA Binding of Human 

Cytidine Deaminase APOBEC3B 

 

Chapter II is a collaborative study that has been previously published as:  

 

Hou S, Silvas TV, Leidner F, Nalivaika EA, Matsuo H, Kurt Yilmaz N, Schiffer CA. 

"Structural analysis of the active site and DNA binding of human cytidine deaminase 

APOBEC3B." Journal of Chemical Theory and Computation 15.1 (2018): 637-647. 
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2.1 ABSTRACT  

APOBEC3s proteins (A3s), a family of human cytidine deaminases, protect the 

host from endogenous retro-elements and exogenous viral infections by introducing 

hypermutations. However, overexpressed A3s can modify genomic DNA to promote 

tumorigenesis, especially A3B. Despite overall similarity, A3 proteins have distinct 

deamination activity. Recently determined A3 structures have revealed the molecular 

determinants of nucleotide specificity and DNA binding. However, for A3B, the structural 

basis for regulation of deamination activity and the role of active site loops in 

coordinating DNA had remained unknown. Using advanced molecular modeling 

followed by experimental mutational analysis and dynamics simulations, we investigated 

molecular mechanism of DNA binding by A3B-CTD. We modeled fully native A3B-DNA 

structure, identified Arg211 in loop 1 as the gatekeeper coordinating DNA and critical 

residues for nucleotide specificity. We also identified a unique auto-inhibited 

conformation in A3B-CTD that restricts access and binding of DNA to the active site. 

Our results reveal the structural basis for DNA binding and relatively lower catalytic 

activity of A3B and provide opportunities for rational design of specific inhibitors to 

benefit cancer therapeutics.  

 

2.2 INTRODUCTION 

APOBEC3s (A3s) are a family of cytidine deaminases that catalyze a zinc-

dependent cytidine to uridine reaction on single strand DNA (ssDNA) or single strand 

RNA (ssRNA) 1-4. The family comprises of seven members that have either one (A3A, 

A3C, A3H) or two (A3B, A3D, A3F, A3G) zinc-binding domain 5. The two-domain A3s 
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have a pseudo-catalytic N-terminal domain (NTD) and a catalytically active C-terminal 

domain (CTD). A3s play a key role in innate immunity by protecting the host cell from 

exogenous viral infections and endogenous retro-elements through introducing G to A 

hypermutations 22, 145-149. However, when overexpressed, their mutagenic activity can 

also cause modification of genomic DNA and thus promote tumorigenesis 41, 47, 150. A3B 

has been identified as a significant enzymatic source of mutagenesis in a variety of 

cancers 44. Endogenous A3B is involved in the restriction of retro-element LINE-1 151 

and HBV 152, 153. However, when overexpressed, A3B can mutate the host genome to 

trigger cancer phenotypes 150. The up-regulation of A3B in tumors is correlated with 

both dispersed and clustered high occurrence of cytidine mutations, p53 (tumor protein 

53) inactivation, and poor patient outcome in cancer treatment 45, 150, 154-156. In addition, 

the genomic mutations preferentially occur at 5’ -TCA, 5’ -TCG, and 5’ -TCT 

trinucleotide motifs, which resemble the substrate preference of A3B in biochemical 

assays 45, 154, 157. Unlike other cancer sources, A3B can actively create genomic 

mutations, which means that a growing number of DNA mutations will be created in 

cancer cells. This will further benefit cancer evolution, for instance, to help escape 

immune monitoring, outgrow, metastasize, and potentially acquire resistance to 

therapeutic treatments 158. Hence, in addition to its non-essential nature 159, A3B 

represents a promising target for novel anti-cancer drug development.  

Over the past several years, crystal and NMR structures of human A3s (A3A, A3C; 

CTDs of A3B, A3F, A3G) in the apo state have been determined by our group 79-85 and 

others 86-99. In general, A3 proteins are structurally highly similar despite their distinct 

deamination activities. Even though full-length A3B has 5-6 fold higher activity 
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compared to A3B-CTD, A3B-CTD alone can deaminate cytidine in ssDNA but A3B-NTD 

is catalytically inactive 98, 160, 161. Among all human A3s, A3B-CTD and A3A share the 

highest sequence identity (Figure 2.1A); however, A3A is about 15-fold more active 

compared to A3B-CTD 98. The overall A3 domain structure consists of six alpha-helices 

and five beta-strands with the zinc-binding region in the middle. In fact, based on the 

amino acid sequence or even the available structures, it is not apparent what molecular 

mechanisms are responsible for varied ssDNA binding affinity and deamination activity 

among A3 domains, including the catalytically inactive NTDs. Recently, our laboratory 

104, along with two other groups, have determined the crystal structures of three A3–

DNA complexes (A3A-DNA, chimeric A3B-DNA and rA3G-DNA) 99, 106. When A3A binds 

to DNA, two major changes occur at the active site involving the side chain of Tyr132, 

which stacks against the DNA, and the gatekeeper His29, which locks the DNA in the 

active site. To facilitate crystallization of DNA-bound A3B, loop 1 of A3A was swapped 

into A3B to determine the structure. However, differences in loop 1 between the two 

A3s are mainly responsible for the difference in catalytic activity, as swapping loop 1 of 

A3B-CTD by that of A3A increases A3B-CTD activity by 10-fold 98. Loop 1 also exhibits 

the largest amino acid sequence difference between A3A and A3B-CTD (Figure 2.1A) 

and is longer in A3B with a three-residue insertion 206PLV208. In addition, the DNA 

gatekeeper residue His29 in A3A104 is missing in A3B and is likely replaced by one of 

the arginines within the unique triple arginine patch 210RRR212. However, the role of loop 

1, and identifying whether Arg211 or Arg212 might be the gatekeeper residue, in 

coordinating DNA and in regulating A3B’s catalytic activity could not be revealed by 

crystal structures determined to date.  
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Figure 2.1: Protein sequence alignment and structure comparison between A3B-
CTD and A3A. 
A) Amino acid sequence alignment of A3A and the catalytic domain of A3B (A3B-CTD). 
B) A3B has a closed active site conformation while A3A has an open active site in 
crystal structures. C) Extra PLV residues alter the conformation of the conserved 
Arg311 in A3B through extensive hydrogen bond interactions. A3B-CTD (pdb: 5CQH) 
and A3A (pdb: 4XXO) are shown in cartoon representation (A3B in green; A3A in slate 
blue). The catalytic zinc is shown as red sphere. Loop 1 and loop 7 are colored salmon. 
210RRR212 and 206PLV208 in A3B and 28RH29 in A3A are colored red. The conserved 
arginine is colored cyan. All the labelled residues are shown in stick representation. 
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To elucidate the molecular mechanism of A3B-DNA recognition and how A3B-

CTD structurally regulates its catalytic activity compared to A3A, we used a combination 

of molecular modeling with molecular dynamics (MD) simulations and experimental 

mutational analysis followed by fluorescence-anisotropy based DNA binding assays. 

We identified the key role of loop 1 in A3B binding to DNA and down regulating its 

activity. We present a structural model of the A3B–DNA complex that elucidates the 

molecular mechanism and determinants of DNA binding to A3B-CTD. The model and 

mutational verification identified Arg211 as the gatekeeper for locking DNA into the 

active site, which is further stabilized by Arg212. We also identified an auto-inhibited 

conformation in A3B-CTD that is unique among human A3s, resulting from differences 

in loop 1 length and sequence, which explains the relatively low catalytic activity of A3B. 

Overall, our results shed light into the structural regulation of A3 activity and differences 

in loop 1 coordination around the bound DNA, which may potentially lead to discovering 

anti-cancer drugs to benefit cancer therapeutics. 

 

2.3 RESULTS AND DISCUSSION 

Despite overall similarities, the length and sequence differences of loop 1 between 

A3B-CTD and A3A (Figure 2.1) are responsible for alterations in the active site and 

likely the differences in DNA binding and deamination activity. To elucidate the 

mechanism of DNA binding by A3B-CTD, multiple MD simulations were performed of 

both apo and DNA-bound structures of fully wild-type (WT) A3B-CTD, and compared 

with A3A (Table 2.1). These mechanisms were further validated by a series of 
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experimental fluorescence anisotropy-based DNA binding assays of A3B-CTD variants 

(Table 2.2).  

2.3.1 Molecular mechanism of A3B-DNA recognition 

The role of loop 1 and molecular mechanism of DNA binding had remained 

unknown for A3B, as recently determined A3B-CTD DNA co-crystal structure is a 

chimera with the crucial loop 1 swapped from A3A 106. Here careful molecular modeling 

was used using available crystal structures to answer for A3B: 1. How does DNA bind to 

A3B? 2. Which residue is the gatekeeper for latching DNA in the active site? 3. How 

does A3B define its substrate specificity for thymidine over cytidine at -1 position? To 

address these questions, WT A3B-CTD bound to substrate DNA containing a TCG 

trinucleotide motif was modelled based on the crystal structures of apo A3B-CTD and 

A3A–DNA complex (see Methods for details). The quality of the complex models was 

further examined through both computational analysis of 100 ns MD simulations (Table 

2.1), and experimental DNA binding assays of inactive A3B-CTD variants (Table 2.2). 

All the MD simulations of DNA-bound structures converged and were stable over the 

100 ns trajectory time. 
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Table 2.1: List of the molecular dynamics simulations that were performed in this 
study. 
White shade represents the simulations of apo proteins while grey represents the 
simulations of the DNA bound proteins. 
 

Construct Simulation Time (ns) Replicates 

WT A3A 1000 1 

WT A3B-CTD 1000 1 

A3B-CTD ΔPLV 1000 1 

A3B-CTD Y315F 1000 1 

A3B-CTD P206G 1000 1 

WT A3A – ssDNA TCG 100 3 

WT A3B-CTD R211 – ssDNA TCG 100 3 

WT A3B-CTD R212 – ssDNA TCG 100 3 

WT A3B-CTD R211 – ssDNA CCG 100 1 

A3B-CTD R212H – ssDNA TCG 100 1 
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Table 2.2: DNA binding affinity of A3B-CTD inactive (E255A) variants. 
The binding affinities, represented as Kd, of linear DNA and hairpin DNA with TCG motif 
in the loop to A3B and variants, determined by fluorescence anisotropy-based assays. 
All A3B variants contain the E255A mutation to catalytically inactivate the enzyme and 
prevent substrate deamination. Kd >10 μM indicates weak binding but binding is 
detectable. NB indicates no detectable binding over the range of concentrations tested 
(up to 20 μM of A3B-CTD). Representative binding curves for binding (WT), weak 
binding (R210K) and no binding (P206G) are shown in Figure S2. Activity (fold) 
indicates catalytic activity relative to wild type A3B-CTD. 

 

A3B-CTD 

variant 

poly A_TCG 

(µM) 

DNA hairpin 

(µM) 

Activity 

(fold) 
WT 5.4 ± 2.6 2.0 ± 0.5 1 

Y315F 7.3 ± 4.6 1.8 ± 0.4 1a 

R212H NB 1.2 ± 0.3 2.5b 

R212A NB 1.4 ± 0.4 - 

R211A NB NB 0.05a 

R211H NB NB - 

R210A > 10 > 10 - 

R210K > 10 > 10 - 

P206G NB NB - 

 
Footnote:  
a Shi K et al. (2015). J. Biol. Chem. 
b Shi K et al. (2017). Sci. Rep. (fold change was estimated from gel band intensities 
using ImageJ on Figure 6B) 



 36 

 

Figure 2.2: Comparison of A3B-DNA model structures with either R211 or R212 
latching the DNA in the active site. 
A) The root-mean-squared-fluctuations (RMSF) of individual bases of DNA molecule 
during MD simulations in A3A, A3B-CTD R211 and R212 models. B) The contact 
frequency of the intermolecular interactions between catalytic residue Glu255 and 
substrate cytidine base over the simulation time in A3A, A3B-CTD R211 and R212 
models. 
  



 37 

 

2.3.2 Arg211 is the gatekeeper residue sequestering DNA in the active site 

As A3B-CTD has a unique 210RRR212 patch in loop 1 instead of 28RH29 compared 

to A3A (Figure 2.1A), either Arg211 or Arg212 could be the gatekeeper for DNA 

binding. To identify the critical residue, DNA-bound models were generated with either 

Arg211 or Arg212 latching DNA in the active site and performed and analyzed triplicate 

100 ns MD simulations. The Arg212 model DNA complex was much less stable during 

the MD simulations compared to either A3A or Arg211 model as indicated by the 

considerably larger root-mean-square fluctuations (RMSFs) of bound DNA, especially at 

the two termini (Figure 2.2A). In both A3A structure and Arg211 model, Glu255 

consistently interacted with substrate cytidine 98.94% and 96.29% of the simulation 

time, respectively (Figure 2.2B). However, in the Arg212 model, the contact frequency 

was decreased to only 60.21%, which suggests poor quality of the model. Thus, the 

stability over MD simulations indicated that Arg211 rather than Arg212 is the gatekeeper 

for DNA binding in A3B-CTD. 

To further verify our results from computational analysis, we experimentally 

generated A3B-CTD R210A, R210K, R211A, R211H, R212A and R212H inactive 

variants and measured DNA binding using fluorescence anisotropy-based assay (Table 

2.2). The low binding affinity and catalytic activity of WT A3B-CTD poses challenges in 

assessing changes in deamination rates and DNA binding. Hence, based on previous 

studies 84, 114, both TAMRA-labeled linear (in poly A background) and hairpin DNA with 

A3B preferred sequence TCG in the stem loop were tested in order to minimize 

background non-specific binding and promote binding affinity. Despite low affinity, the 
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A3B-CTD inactive variant could bind to both linear and hairpin DNA. Both R210A and 

R210K variants were able to bind DNA but with decreased binding affinity, which is in 

agreement with Arg210’s role in stabilizing overall structure through the conserved 

hydrogen bond network in apo crystal structure (Figure 2.3). R212A variant bound to 

DNA with same affinity as wild type A3B, which confirmed that Arg212 is not the 

gatekeeper for DNA binding. In contrast, R211A mutant lost binding completely to both 

ssDNA and hairpin DNA. In agreement with DNA binding assay results, which we have 

shown to correlate with catalytic activity 114, recent A3B catalytic activity studies have 

also shown that R211A mutant lost deamination activity (Table 2.2). Thus, experimental 

DNA binding assay data were in agreement with our model and that Arg211 is the 

critical residue for DNA binding.  
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Figure 2.3: Hydrogen bond network of Arg210 in A3B-CTD apo crystal structure 
(PDB: 5CQH). 
The catalytic zinc is shown as red sphere. Loop 1 and loop7 are colored salmon. 
210RRR212 and 206PLV208 in A3B and 28RH29 in A3A are colored red. The conserved 
arginine is colored cyan. All the labelled residues are shown in stick representation. 
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In A3A, His29 is the gatekeeper for DNA binding through both hydrogen bond 

interactions to DNA backbone and stacking interactions to +1 base 104. A3B-CTD 

R211H variant, however, showed no binding to DNA. Rather the two types of 

interactions His29 makes with bound DNA in A3A can be assigned separately to Arg211 

and Arg212 in A3B, as Arg211 hydrogen bonds to DNA in the active site while Arg212 

stabilizes DNA binding through either stacking or hydrogen bond interactions with the 

+1 DNA base. In agreement with this mode of binding, in contrast to R211H, the R212H 

variant was able to bind DNA with comparable affinity as WT A3B-CTD (Table 2.2). 

During the MD simulation for R212H in complex with DNA, residue R212H formed pi 

stacking and hydrogen bond interactions with +1 G base 49% and 47% of the time, 

respectively, which is actually slightly higher than Arg212 (43% and 44%, respectively). 

The cyclic histidine side chain may facilitate better stacking interactions, leading to the 

slightly improved binding and catalytic activity (Table 2.2). Therefore, our computational 

model of fully native DNA-bound A3B-CTD structure was verified by both MD 

simulations and experimental mutational analysis. 

2.3.3 ssDNA binding to A3B-CTD 

The DNA-bound model of A3B-CTD revealed the molecular mechanism as well as 

the role of loop 1 for DNA binding to A3B-CTD. Overall, ssDNA bound to A3B-CTD in a 

U-shape similar to A3A (Figure 2.4A). Compared to the apo crystal structure, loop 1 

underwent major conformational changes to open up the active site for DNA binding 

(Figure 2.4B), especially at Arg211 which stacks against Tyr315 to close the active site 

in apo structure (Figure 2.1B). In addition, the side chain of Tyr315 rotated from a 

dihedral angle 𝜒1 of ~180° to ~60° as in A3A to accommodate DNA binding (Figure 
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2.4B). In general, our model overlaid well with chimeric A3B-CTD DNA co-crystal 

structure but provided critical information on loop 1 conformation in DNA-bound form 

(Figure 2.4C), and conformational changes needed to open up the active site to allow 

DNA binding. The critical DNA binding residues were also examined in terms of 

intermolecular van der Waals (vdW) interactions (Figure 2.4D, E) and hydrogen bonds 

(Figure 2.5). The total vdW contacts between A3B-CTD and ssDNA is about -84.3 

kcal/mol, which is predominantly contributed from the loops around the active site, loop 

1 (-37.8 kcal/mol), loop 3 (-15.9 kcal/mol) and loop 7 (-15.9 kcal/mol). Significantly, loop 

1, which is missing in the chimeric A3B-CTD DNA crystal structure, contributed 45% of 

the total vdW contacts. The most critical intermolecular interaction between A3B-CTD 

and ssDNA involved the gatekeeper Arg211. Arg211 coordinated DNA binding through 

both hydrogen bond interactions with the phosphate backbone of -1 T, 0 C and +1 G 

bases and hydrophobic interactions with DNA backbone (Figure 2.5A, C). Arg212 

instead stabilized DNA binding through either stacking (Figure 2.5A, B) or hydrogen 

bond interactions with the +1 G base.  

A3B should be able to bind pre-bent or hairpin DNA based on our model as 

observed for A3A 114 and likely with higher affinity as the entropic cost of bending the 

DNA would be decreased. Accordingly, we observed higher binding affinity to hairpin 

DNA (Kd = 2.0 µM) compared to linear DNA (Kd = 5.4 µM) for A3B (Table 2.2). 

Interestingly, unlike A3A 114, 162, A3B-CTD showed no binding to RNA hairpin (data not 

shown). These structural and functional differences between A3A and A3B-CTD despite 

their high sequence similarity might have implications for their biological function as well 

as cellular localization.  
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Figure 2.4: Structural model of A3B-CTD in complex with ssDNA.  
A) Overall structure of DNA bound A3B-CTD model. B) Conformational changes of 
residues R210, R211, R212 and Y315 upon DNA binding, with side chains displayed in 
stick representation. Loop 1 and loop 7 are colored salmon and the conformational 
changes upon DNA binding are indicated by arrows. C) Structural comparison between 
the modeled fully native A3B-CTD and the chimeric A3B-CTD DNA crystal structure 
(PDB: 5TD5). D,E) Mean vdW contacts between protein and ssDNA calculated from 
triplicate MD simulations. The residues are colored on a rainbow scale from blue to red 
for increasing contacts; hence warmer colors indicate residues with the most 
contribution to the intermolecular contacts. The cut-off for the scale is -0.5 kcal/mol. 
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Figure 2.5: Intermolecular interactions between A3B-CTD and ssDNA. 
A) Overview of key residues in binding to DNA. B) R212 can stack with downstream 
DNA bases. C) R211 forms extensive hydrogen bond interactions with DNA backbone. 
D) D314 makes extensive hydrogen bonds with -1 base that defines substrate 
specificity. The final frame of representative MD simulation is displayed. The protein is 
displayed as a pink-colored ribbon diagram and the bound DNA is in orange stick 
representation. The zinc ion at the active site is depicted as a red-colored sphere. The 
side chains of R210, R211, R212, D314 and Y315 are shown as sticks. The hydrogen 
bond interactions are indicated with grey dashed lines. 
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2.3.4 D314 defines substrate specificity for thymidine over cytidine at -1 position 

In A3A, the substrate specificity for thymidine over cytidine at -1 position is 

determined through hydrogen bond interactions with Asp132 104. In our A3B–DNA 

model, the same hydrogen-bonding pattern between -1 T base and Asp314 as in A3A 

(Figure 2.5A,D; Figure 2.6A) was observed. Specifically, O2 atom of -1 T formed a 

direct hydrogen bond with Asp314 backbone, while OD1 and OD2 atoms of Asp314 had 

both direct and water-mediated hydrogen bonding with N3 and O4 of -1 T base. All 

these hydrogen bond interactions were stable during MD simulations (Figure 2.6B). In 

contrast, when thymidine was changed to a cytidine, the side chain hydrogen bond 

interactions between the -1 C and Asp314 were disrupted and the DNA was 

destabilized as indicated by increased dynamics in the active site (Figure 2.6C,D). 

Similarly, in the Arg212 model, which we deduced to be poor based on dynamics 

above, the hydrogen bonds of Asp314 with -1 T were destabilized and not reproducible 

among the replicate simulations (Figure 2.7). These findings suggest that A3B likely 

uses the same molecular mechanism to determine the substrate specificity as A3A at -1 

position since Asp314 is conserved and the DNA interactions maintained between the 

two A3s. 
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Figure 2.6: Comparison of TC versus CC binding by A3B-CTD. 
A) D314 makes extensive hydrogen bond interactions with -1 T, stabilizing this base 
and contributing to TC specificity. B) The hydrogen bond interactions between D314 
and -1 T are stable throughout the whole MD simulations. C) In contrast to T, -1 C has 
alternative conformations during the MD trajectory. D) The histogram of the distance 
between atom N3 of -1 C and CG atom of Asp314. The two peak conformations are 
shown in panel C. 
  

B)
conformation 1 conformation 2

D314

0 C

-1 C
0 C

-1 C

Y315

R210
P206

R311

D314
Y315

R210

P206

R311

D314

0 C

-1 T

1

0
1

0
1

0
1

0
1

0
0 250 500 750 1000

Time ns

-1: O2 :: 314: N-H

-1: O4 :: 314: OD1

-1: N3-H :: 314: OD1

-1: O4 :: 314: OD2

-1: N3-H :: 314: OD2

A) C)

D)

conformation 1

conformation 2



 46 

 

Figure 2.7: The hydrogen bond interactions between A3B-CTD protein and atom 
N3 and O4 of -1 thymidine in R212 model. 
A) The schematic representation of cytidine, thymidine and pyrimidine. The main 
differences between cytidine and thymidine are at position 3 and 4. B) The hydrogen 
bond interactions of atom N3 and O4 of -1 thymidine in R212 model during the MDs. No 
direct hydrogen bonds found. Green represents water-mediated hydrogen bond 
interactions. 
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2.3.5 Structural mechanism of auto-inhibited conformation of apo A3B-CTD 

The crystal structure of apo A3B-CTD has a closed active site conformation that 

results from the stacking interactions between Arg211 or Arg212 of loop 1 and Tyr315 

of loop 7, in contrast to A3A 96, 100 (Figure 2.1B). Therefore, the active site of A3B-CTD 

has to open up from the closed conformation to accommodate DNA binding (Figure 

2.4B). To elucidate the structural basis of the closed active site conformation in A3B-

CTD, which can modulate DNA binding and thus deamination, we performed detailed 

structural analysis on the apo forms of A3B-CTD and A3A. 

2.3.6 Closed active site conformation correlates with lower DNA affinity 

A structural inspection of A3B-CTD in comparison to the closely related A3A and 

other A3 domains revealed that 206PLV208 insertion in loop 1 forms a unique hydrogen 

bond network with Arg311 and Asp205 (Figure 2.1C). Specifically, the backbone 

carbonyl oxygen of Pro206 makes a hydrogen bond with NH2 atom of Arg311; Val208 

forms two backbone hydrogen bonds with the backbone of Asp205 and NH1 atom of 

Arg311. The backbone carbonyl oxygen of Asp205 also has a hydrogen bond with NH1 

atom of Arg311. Arg311 is conserved among all A3 domains (Figure 2.8A).  However, 

when we superimposed all the available active apo A3 structures (A3A, A3B-CTD, A3C, 

A3F-CTD and A3G-CTD), the side chain of this conserved Arg was locked in a 

hydrogen bond network that was distinct from the conformation of Arg311 observed in 

A3B. (Figure 2.1C; Figure 2.8B, C). This network involves primarily the backbone 

atoms of conserved Ser97, Ser99, Asn21 (Gln in A3C and His in A3F-CTD and A3G-

CTD) and Asn23 (Lys in A3C, A3F-CTD and A3G-CTD). In A3A, the side chain of Ser97 

forms an additional hydrogen bond with this conserved Arg. Rather than with Arg311 in 
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A3B-CTD, these residues form an analogous hydrogen bond network with Arg210 in 

loop 1 (Figure 2.3). The distinct conformation of Arg311 in A3B-CTD and hydrogen 

bonding with the 206PLV208 in loop 1 may contribute to the closed active site 

conformation of A3B-CTD as well as A3B’s lower activity. 
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Figure 2.8: Amino acid sequence and structural differences between A3B-CTD 
and catalytically active A3 domains. 
A) Protein sequence alignment of all catalytic active A3 domains. B) The conformation 
of the conserved Arg (Arg311) in A3B-CTD. C) The conserved arginine is locked in the 
same hydrogen bond network in crystal structures of catalytically active A3 domains 
except A3B-CTD. A3A (PDB: 4XXO) is in slate blue; A3C (PDB: 3VOW) is in white; 
A3F-CTD (PDB: 4IOU) is in cyan green; A3G-CTD (PDB: 3IR2) is in pink. 
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To investigate 206PLV208’s role in regulating activity, 1 µs MD simulations were 

performed on WT A3A and A3B-CTD as well a variant where the 206PLV208 sequence 

was deleted (A3B-CTD-ΔPLV). From the MD simulation trajectories, the stability of the 

closed active site conformation (Figure 2.9) was monitored. The closed active site 

conformation in WT A3B-CTD was stable during the MD simulations, as the distance 

between the side chain of Arg211 in loop 1 and Tyr315 in loop 7 varied around 6 Å, 

which is within the range of stacking interactions that close the active site. In contrast, 

the equivalent residues in wild type A3A, Arg28 and Tyr132 had a distance distribution 

around 15 Å, which indicates the active site is in the open conformation (Figure 

2.9A,C). Interestingly, in A3B-CTD-ΔPLV, Arg211 lost the stacking interactions with 

Tyr315. The distance between the side chains of Arg211 and Tyr315 was more than 12 

Å during the MD simulations. As a result, the active site conformation was altered into 

the open conformation, analogous to that observed in A3A. The more open active site 

correlates with higher activity in A3A and A3B-CTD-ΔPLV compared to WT A3B. 
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Figure 2.9: Dynamics of the active site in A3A, A3B-CTD and A3B-CTD mutants. 
A) The histogram of the distance between CZ atom of Arg311 (Arg28 in A3A) and 
center of benzene ring of Tyr315 (Tyr132 in A3A) in wild type A3B-CTD, A3A, A3B-
CTD-ΔPLV and A3B-CTD Y315F variants during 1 µs MD simulations. B) The dihedral 
angle of the side chain (C, CA, CB and CG) of Tyr315 (Tyr132 in A3A) over 1 µs MD 
simulations in wild type A3B, A3A, A3B ΔPLV and Y315F mutants. C) The time series of 
the side chain conformations of Arg211 (Arg28 in A3A) and Tyr315 (Tyr132 in A3A) 
(shown as stick; colored based on the simulation time, start as red and end with blue) 
during 1 µs MD trajectory of wild type A3B-CTD (green), A3A (slate blue), A3B-CTD-
ΔPLV (grey) and A3B-CTD Y315F (cyan) variants. Different conformations of Tyr315 
are indicated with arrows. 
  

A3A WT ΔPLV A3B WT Y315F 

R211 
Y315 

R28 

Y132 

R211 
Y315 

R211 

Y315F 

A) 

B) 

C) 

A3A WT ΔPLV A3B WT Y315F 

A3A WT ΔPLV A3B WT Y315F 



 52 

The side chain conformation of Tyr315, which is analogous to Tyr132 in A3A, was 

also monitored during the MD simulations as an indicator for the compatibility to bind 

DNA (Figure 2.9B, C). The Tyr side chain has to undergo a conformer change to 

accommodate binding of DNA at the active site 104, 106 (Figure 2.4B). In WT A3B, the 

side chain dihedral angle 𝜒1 of Tyr315 remained around 180° in 99.8% of the time 

during the MD simulations, in agreement with our finding that the closed active site 

conformation in A3B is not compatible for DNA binding. The same dihedral angle 𝜒1 of 

Tyr132 in A3A changed from about 180° to 60° upon DNA binding in the crystal 

structure 104. In the MD simulation, the side chain of Tyr132 in A3A sampled between 

the apo and DNA-compatible conformations (68% of the time in DNA-compatible 

conformation). In A3B-CTD-ΔPLV, the side chain of Tyr315 sampled two conformations 

(73% of time in DNA-compatible conformation) as in A3A. Thus, the high sampling 

frequency of DNA-compatible side chain conformation of Tyr315 in A3B-CTD-ΔPLV and 

A3A correlates with the higher DNA affinity and activity compared to WT A3B. 

We also observed auto-inhibited conformation of WT A3B-CTD in the 1 µs MD 

simulation, which involved the 206PLV208 hydrogen bond network with Tyr315 (Figure 

2.10A). Specifically, the OH atom of Tyr315 interacted with both NH2 atom of Arg311 

and backbone carbonyl oxygen of Pro206 through direct and water-mediated hydrogen 

bonds. As a result, the side chain of Tyr315 was locked in the DNA incompatible 

conformation (Figure 2.9B, C). These hydrogen bonds were stable throughout the MD 

simulations (Figure 2.10B). To verify the role of this auto-inhibited conformation in 

down-regulating A3B’s activity, the Y315F variant was modeled and subjected to the 

same 1 µs MD simulations. Phe315 in the Y315F variant lost the ability to interact with 



 53 

206PLV208 hydrogen bond network, as the hydroxyl group was lost, and was released 

from the auto-inhibited conformation. As a result, the side chain dihedral angle 𝜒1 of 

Phe315 sampled the DNA-compatible conformation with 46.4% frequency in MD 

simulation (Figure 2.9B). The active site of Y315F variant somewhat opened up as the 

stacking interactions between Arg211 and Phe315 was disrupted during the MD 

simulation (Figure 2.9A, C). However, the extent of active site opening was less 

compared to A3B-CTD-ΔPLV and A3A. The distance between Arg211 and Phe315 (~10 

Å) was smaller than that in A3B-CTD-ΔPLV (~18 Å) and A3A (~15 Å) (Figure 2.9A, C).  

Overall, this result suggests that the hydrogen-bonding network involving Tyr315 helps 

stabilize the closed active site conformation. In agreement with the MD results, the 

Y315F variant slightly gained DNA affinity in experimental binding assay relative to WT 

protein, especially for DNA hairpin (Table 2.2). Hence, disrupting the hydrogen-bonding 

network between residue 315 and 206PLV208 destabilizes the closed active site 

conformation but is not enough to shift to a fully open active site, as the longer loop 1 

with the PLV insertion is critical for the closed active site conformation and thus down-

regulating A3B-CTD’s activity. Recent studies have shown that removing PLV from loop 

1 in A3B increases the enzyme’s activity, similarly to the chimeric A3B-CTD with the 

whole loop 1 swapped from A3A (estimated from gel band intensities from reference 

100); this is in agreement with the more open active site conformation that we observed 

for A3B-CTD-ΔPLV. Thus, the closed active site conformation observed in modeling 

and simulations were in complete agreement with experimental binding and catalytic 

activity. Together these findings strongly suggest that the PLV insertion in loop 1 is the 

key for restricting and regulating A3B’s deamination activity. 
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Figure 2.10: PLV hydrogen bond network locks Tyr315 in DNA-binding 
incompatible conformation. 
A) A3B-CTD has an auto-inhibited mode that results from the hydrogen bond 
interactions of Tyr315 with PLV residues in loop 1. Loop 1 and loop7 are colored 
salmon. The catalytic zinc, PLV, RRR patch in A3B are shown in red. Conserved 
arginine is colored in cyan. Hydrogen bond interactions are shown as gray dashed lines. 
B) The hydrogen bond interactions during 1 µs MD simulation of apo A3B-CTD. Direct 
hydrogen bond interactions are colored red. Water-mediated hydrogen bond 
interactions are shown in green. 
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2.3.7 Proline stabilizes the conformation of the longer loop 1 in A3B-CTD for 

DNA binding 

Among all A3s, A3A, A3B-CTD and A3G-CTD share the highest sequence 

similarity and belong to the Z1 group. Both A3B-CTD and A3G-CTD have a longer loop 

1 that includes a proline residue, compared to A3A. Considering proline’s unique 

geometry and rigidity compared to other amino acids, this extra residue may help 

stabilize the conformation of a longer loop 1. To test this hypothesis, we modeled A3B-

CTD P206G variant and examined the RMSF of loop 1 as a measure of dynamics 

(Figure 2.11). Despite the differences in activity, WT A3B-CTD and A3A have similar 

levels of loop 1 dynamics with RMSF values varying around 4 Å, as well as WT A3G-

CTD. The RMSF of loop 1 in A3B-CTD Y315F mutant and A3B-CTD-ΔPLV were also 

within 4 Å during the MD simulations. Loop 1 in A3B-CTD P206G variant, however, is 

highly dynamic with RMSF varying from 1 up to 8 Å indicating that loop 1 bearing the 

P206G mutation may not be able to stably coordinate DNA. Experimentally, the P206G 

variant lost the ability to bind both linear and hairpin DNA (Table 2.2). These results 

indicate the importance of proline in a longer loop1 and consistency of loop 1 dynamics 

in DNA binding. 
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Figure 2.11: The dynamics of loop 1 during 1 µs MD simulations. 
A) The root-mean-squared-fluctuations (RMSF) of individual residues of loop 1 in wild 
type A3B-CTD and A3B-CTD variants. B) The RMSF of all residues in loop 1 of wild 
type A3A. C). The RMSF of all residues in loop 1 of wild type A3G-CTD. 
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2.3.8 Conclusions and implications for DNA binding to other A3s 

There are still several A3 domains whose structures are unknown, and no full-

length two-domain A3 structure has been determined. The low solubility and DNA 

affinity of certain A3 proteins have required introducing mutations to be able to 

structurally and biochemically characterize these proteins in vitro 79-81, 83-85, 92, 96, 99, 104, 

106, or altogether prevented such characterization especially for NTDs. For instance, WT 

A3B-CTD has poor solubility and low binding affinity towards DNA, which makes 

crystalizing native A3B-DNA complex extremely challenging. The available DNA-bound 

structure was that of an A3B chimera engineered to increase affinity and promote 

crystallization. While this structure did not inform on the role of loop 1 in DNA binding, 

the apo structure of A3B with the native loop1 and A3A–DNA structures enabled 

computational modeling of WT A3B bound to substrate DNA. Future studies focusing on 

the active site loops may elucidate differences between A3 family members, including 

the catalytically active and pseudo-catalytic A3 domains. Similarly, combining 

experimental structures with computational modeling, verified by simulations and 

experimental mutational analysis as in this study, can provide insights into the function 

and DNA binding of other A3s. 

A3 proteins have the same overall fold, with highly conserved active sites and yet 

neither the available structures nor the amino acid sequences offer obvious insights into 

why they have highly varying catalytic activity, from totally inactive pseudo-catalytic 

NTDs to the highly active A3A. Instead the seemingly minor diversity in the loops 1, 3 

and 7 around the active site may be responsible for regulating A3 activity, which could 

have implications in regulating the biological function in innate immunity and cancer 
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development. Our results suggest that the length and sequence differences in loop 1, 

which were missing in the DNA-bound A3B crystal structure 106, are key in regulating 

activity of Z1 A3 domains (Figure 2.12). A short loop 1, as in A3A or A3B-CTD-ΔPLV, 

results in high catalytic activity. A longer loop 1 as in A3G-CTD, which includes a proline 

to stabilize the overall conformation, can form molecular interactions with loop 7 to close 

the active site, and results in medium activity. Finally, having the auto-inhibited 

conformation due to the 206PLV208 hydrogen bond network with Arg311 in addition to a 

longer loop 1 in A3B-CTD further restricts deamination activity. Thus, the detailed 

analysis of A3B-CTD structure here revealed insights into how amino acid differences in 

loops around the active site can structurally regulate the relative catalytic activity of A3s 

despite highly similar overall structure and conserved active site. 

To date, design and development of inhibitors or activators for A3s has proven to 

be extremely challenging. Our results provide opportunities for drug design to 

specifically target A3B and thus benefit cancer therapeutics. Small molecules that 

stabilize the unique auto-inhibited mode of A3B might be able to allosterically inhibit 

A3B without cross-reacting with other A3s. Besides, the residue-specific information on 

regulation of auto-inhibition and closed active site conformation provides the starting 

point for engineering A3 domains to achieve varying catalytic efficiencies or distinct 

substrate specificity.  
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Figure 2.12: A schematic representation of the mechanism by which A3B-CTD 
regulates activity. 
The structural features at the active site of A3A, A3B-CTD and PLV deletion variant that 
regulate catalytic activity. Loop 1 and loop 7 are shown as lines, and the catalytic zinc is 
represented as a grey sphere. The side chain of R28, Y132 in A3A and R211, Y315, 
R311 in A3B-CTD are shown as rectangles. PLV in A3B-CTD is represented as a 
wedge. 
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2.4 MATERIALS AND METHODS 

2.4.1 Molecular modeling 

A3B-CTD wild type apo structure was modeled based on human A3B-CTD isoform 

A sequence and A3B-CTD crystal structure (PDB: 5CQH) through program Modeller 

9.15 using basic modeling. All DNA-bound structures were modeled based on both the 

apo crystal structure (PDB: 5CQH for A3B; PDB: 4XXO for A3A) and A3A–DNA co-

crystal structure (PDB: 5KEG) through program Modeller 9.15 using advanced 

modeling. 5’-TCG motif was used in both modeling and fluorescence anisotropy-based 

binding assay as A3B-CTD shows highest deamination activity against this 

sequence.163 The DNA molecule of the bound models and A3A–DNA co-crystal 

structures were modified through program Coot to the oligo sequence (AATCGAA) that 

was used in the fluorescence anisotropy-based binding assay. The phosphate groups of 

5’ A base were removed to prevent strong electronegative environment. AACCGAA was 

modeled similarly to test the molecular mechanism of substrate preference at -1 

position. All DNA-bound structure models were then energy minimized through Protein 

Preparation Wizard from Schrodinger using default settings.  

2.4.2 Molecular dynamics simulations 

All molecular dynamics simulations were performed using Desmond164 from 

Schrodinger. The models were first optimized using Protein Preparation Wizard. The 

simulation systems were then built through Desmond System Setup using OPLS3 force 

field 131. We used SPC solvation model and cubic boundary conditions with 12 Å buffer 

box size. The final system was neutral and had 0.15 M sodium chloride. A multi-stage 

MD simulation protocol was used, which was previously described165. Briefly, the 
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system was initially relaxed for 100 ps/stage using Brownian Dynamics NVT (10 K) with 

gradually reduced restraints (500, 250, 50 force constant) on backbone heavy atoms to 

solute heavy atoms. This step was followed by simulations using NPT ensemble with 

gradually increased simulation time (24, 50 and 500 ps) and decreased restraints on the 

solute heavy atoms to no restraints. The final production stage was performed at 300 K 

and 1 bar with no restraints using NPT ensemble. 1 µs MD simulations were performed 

for all the apo structures to ensure final system convergence. The DNA-bound models 

(A3A/A3B-CTD R211/A3B-CTD R212) were simulated as triplicates to ensure 

reproducibility for 100 ns each. One round of 100 ns MD simulation was performed for 

other A3-DNA structures (A3B-CTD with CCG motif and A3B-CTD R212H with TCG 

motif) to compare with the final A3B-CTD DNA-bound model (Table 2.1). 

2.4.3 Analysis of molecular dynamics simulations 

The analysis of MD simulations was performed separately for each trajectory as 

well as the MD simulation triplicates, which help ensure reproducibility and conservation 

of the results among separate trajectories. The RMSD and RMSF of protein and DNA 

molecule as well as the protein-ligand contacts diagram were calculated using 

Simulation Interactions Diagram from Schrodinger. Hydrogen bonds occupancies over 

the trajectories were calculated using in-house modified Schrodinger trajectory analysis 

python scripts. Hydrogen bonds were determined for pairs of eligible donor/acceptor 

atoms using criteria set by Schrodinger: For a pair of heavy atoms to form a hydrogen 

bond, the distance between donor-hydrogen and acceptor had to be less than 2.8 

Angstrom, the angle between donor, hydrogen and acceptor had to be at most 120 

degrees and the angle between hydrogen, acceptor and the next atom had to be at 



 62 

least 90 degrees. The residue vdW potential between A3B and DNA during the MD 

simulations was extracted from the simulation energies using Desmond. For both 

hydrogen bonds and vdW potential, errors were calculated using block averaging 166. 

The distance histograms display the distance between the CZ atom of Arg211 (28 in 

A3A) and the benzene ring center of the side chain of Tyr315 (132 in A3A). CG, CA, CB 

and C of Tyr315 or Phe315 were used to determine the side chain dihedral angle. The 

time series representation of side chain conformations of Arg211 (28 in A3A) and 

Tyr315 (132 in A3A) in Figure 4C were generated with program VMD using 50 frames 

as time step (total 2000 frames).  

2.4.4 Cloning and mutagenesis of inactive A3B constructs 

Human A3B E255A gene was codon-optimized and synthesized by GenScript. 

This gene was then cloned into pGEX-6p-1 vector using BamHI and EcoRI restriction 

sites. The pGEX-6p-1 A3B E255A catalytically inactive overexpression construct was 

used for all experiments in this study. All the mutations were introduced using the Q5 

site-directed mutagenesis kit (NEB), and the plasmids were sequenced to verify the 

mutation by Genewiz. 

2.4.5 Protein expressions and purification 

The pGEX-6p-1 A3B inactive mutant constructs were transformed into BL21 DE3 

STAR E. coli strain for overexpression. Expression of GST-tagged A3B-CTD 

recombinant protein was performed at 17 °C for 22 hours in LB medium containing 0.5 

mM IPTG and 100 μg/mL ampicillin. Cells were then pelleted, re-suspended in 

purification buffer (50 mM Tris HCl pH 7.4; 250 mM NaCl; 0.01% Tween 20 and 1 mM 

DTT) and lysed with the cell disruptor. The lysate was collected and the recombinant 
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protein was separated using a GST column. The GST tag was cleaved by the 

PreSecission Protease on the column at room temperature overnight. The flowthrough 

was then collected and further purified through size-exclusion chromatography using a 

HiLoad 16/60 Superdex 75 column (GE Healthcare).  

2.4.6 Fluorescence anisotropy-based DNA binding assay 

Fluorescence anisotropy-based DNA binding assays were performed as described 

(28) with minor modifications. We used 5’-TAMRA labeled oligonucleotides as the 

binding substrate. The linear oligonuclotide sequences used were 5’-AAA-AAA-AAA-

AAA-AAA-3’ (polyA) and 5’-AAA-AAA-AAT-CGA-AAA-3’ (polyA TCG). The hairpin 

sequences used were 5’-GCC-ATC-ATT-CGA-TGG-G-3’ (DNA hairpin) and 5’-rGrCrC-

rArUrC-rUrArU-rCrGrA-rUrGrG-3’ (RNA hairpin). The reaction buffer was 50 mM Tris 

buffer (pH 7.4), 100 mM NaCl, 0.5 mM TCEP. The concentration of APOBEC3 was 

varied from 0 to 20 µM in triplicate wells containing constant amount (10 nM) of 

substrate. Plates were incubated for an hour on ice before reading the plates. For all 

experiments, fluorescence anisotropy was measured using an EnVision plate reader 

(PerkinElmer), with excitation at 531 nm and detecting polarized emission at 579 nm 

wavelength.  

Data analysis was performed using Prism 7 with least-square fitting of the 

measured fluorescence anisotropy values (Y) at different protein concentrations (X) with 

a single-site binding curve with Hill slope and constant background using the equation Y 

= (Bmax × Xh)/ (Kdh + Xh) + Background, where Kd is the equilibrium dissociation 

constant, h is the Hill coefficient, and Bmax is the extrapolated maximum anisotropy at 
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complete binding. The standard deviation was calculated for each measurement point 

from three independent repeats. 
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3 Chapter III: Structural mechanism of substrate specificity in Z1 A3 domains 

 

Chapter III is a collaborative study that is in preparation: 

 

Hou S, Lee JM, Kurt Yilmaz N, Schiffer CA. “Structural mechanism of substrate 

specificity in human cytidine deaminase family APOBEC3s Z1 domains.” In preparation 

for submission to The Journal of Biological Chemistry. 
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3.1 INTRODUCTION 

APOBEC3s (A3s) are a family of cytidine deaminases that have seven members 

in human 1-5 with functions in innate immunity and roles in cancer. All A3 domains share 

a conserved structural fold with an active site zinc tetrahedrally coordinated with 

catalytic His and Cys residues and an additional water. The human A3s have either one 

(A3A, A3C and A3H) or two zinc-binding domains (A3B, A3D, A3F and A3G). The two-

domain A3s consist of a catalytically active C-terminal domain (CTD) and a pseudo-

catalytic N-terminal domain (NTD) which binds to substrate but has no deamination 

activity. A3s deaminate cytosine to uracil on single strand DNA (ssDNA) and certain 

RNAs 114, 115 thus creating mutations.  

Through deamination, A3s play crucial roles in innate immunity by mutating foreign 

pathogenic genomes and thus protecting host cells against retroviruses and 

retrotransposons 22, 23, 145-149. Specifically, A3s deaminate cytosines to uracils on ssDNA 

during reverse transcription and thus create G to A hypermutations on the 

complementary strand. However, mis-regulated A3 deamination activity may promote 

cancer and the development of therapeutic resistance. Overexpressed A3s, especially 

A3A, A3B and A3H, have been shown to cause heterogeneities in multiple cancers, 

including breast, bladder, head and neck, cervical, and lung cancer44, 45, 47, 48. The A3 

mutational signature, which is C to T transition in TC context, has been observed in 

multiple cancer genomes43-45. Moreover, study of human cancer cell lines has 

suggested A3s may be involved in the origination of cancer in human167. Recently, 

coupled with CRIPSR/Cas9, A3s are explored as novel base editors to treat genetic 

diseases67, 68.  
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The structures of A3s provide the basis for understanding the underlying molecular 

mechanisms in A3 biology. Several crystal and NMR structures of human or primate A3 

single domains (A3A, A3C, A3H; CTDs of A3B, A3F, A3G; NTDs of A3B, A3G) in the 

apo state have been determined by our group 79-85 and others 86-102. The A3 domain fold 

consists of six alpha-helices and five beta-strands. The catalytic active site, which is 

also the zinc binding domain is in the middle (Figure 1A). Recently, our laboratory 104, 

105, along with other groups, have solved the crystal structures of several A3–ssDNA 

complexes (A3A-DNA, chimeric A3B-CTD–DNA, A3G-CTD–DNA, A3F–DNA and rA3G-

NTD–DNA) 99, 106-108. These structures identified the binding conformation of DNA, 

revealed the critical residues for binding and provided insights into substrate specificity, 

especially at -1’ position. Of these structures, three (A3A, A3B and A3G) has substrate 

DNA bound at the active site, with the target cytidine to be deaminated in essentially the 

same conformation.  However, the rest of ssDNA can bind to A3 in different 

conformations; either in a U-shape as seen in A3A (PDB: 5KEG; 5SWW) or chimeric 

A3B-CTD (PDB: 5TD5) or a more extended linear (L) shape as seen in A3G-CTD (PDB: 

6BUX). As these complex structures were determined with varying ssDNA sequences, 

the conformation of the bound DNA might be enzyme or substrate specific. 

Although A3s share highly similar structural folds, they have varying levels of 

deamination activity and substrate specificity. For instance, the activity of A3A, which is 

the highest in A3 family, could be up to 5,000-fold higher compared to the least active 

A3D113. All A3 proteins deaminate deoxy-cytidines in ssDNA, but vary in their preferred 

hotspot sequences, 5’- (T/C)TC(A/G) for A3A, 5’-ATC(A/G) for A3B and 5’-CCC(A/C/T) 

for A3G113, 117-120.  However, based on the amino acid sequence or even the available 
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structures, it is not apparent which molecular mechanisms are responsible for varied 

ssDNA binding affinity and deamination activity as well as substrate specificities among 

A3 domains. According to amino acid sequence alignment (Figure 3.1B), the loops 

(loop 1, 3, 5 and 7) surrounding the active site pocket of catalytically active domains are 

the most diverse. In addition, these active site loops undergo substantial conformational 

changes compared to apo structures upon ssDNA binding (Figure 3.1A). Therefore, 

detailed examination of the active site loops may help reveal the molecular mechanisms 

for the different substrate specificity, binding affinity and deamination activity for ssDNA, 

as well as the distinct physiological functions in A3s.  
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Figure 3.1:Structure and active site loops of A3s. 
A. Cartoon representation of A3A bound to ssDNA (orange sticks) where the active site 
loops 1, 3, 5 and 7 are highlighted (PDB ID: 5KEG). B. Amino acid sequence 
comparison of active site loops in A3A, A3B-CTD and A3G-CTD. 
 
  



 70 

In this study, we investigate the structural mechanism of substrate specificity and 

ssDNA binding conformation in A3s using a combination of molecular modeling, 

structural analysis, and parallel molecular dynamics (pMD) simulations. Three members 

of the human A3 family, namely A3A, A3B-CTD and A3G-CTD, were chosen for 

analysis as they have available structures and experimental characterization of 

substrate binding, in addition to high sequence similarity but varied substrate 

preference. These A3 domains were modeled with bound ssDNA of varying nucleotide 

sequences, and U or L-shape conformation, The results show an interdependence 

between substrate specificity and ssDNA conformation. Although the ssDNA was 

crystallized in a U-shape with A3A and (chimeric) A3B-CTD, we find that the wild-type 

enzymes can bind both U and L-shape to accommodate different substrates. Detailed 

analysis of inter-molecular interactions with the active site loops identified the molecular 

mechanisms of substrate sequence specificity at -1’ and -2’ positions. These results 

shed light into the structural mechanism of substrate specificity in A3s, which has 

implications for designing specific A3 inhibitors as well as base editing systems for gene 

therapy. 

 

3.2 RESULTS 

The three human A3s investigated, A3A, A3B-CTD and A3G-CTD, were modeled 

with substrate ssDNA bound either in a U or linear (L) shape (Table 3.1), with the DNA 

conformation based on that in the cocrystal structures with A3A and A3G-CTD, 

respectively. The preferred dinucleotide deamination motif is TC for A3A and A3B-CTD, 

and CC for A3G-CTD. Substrate DNA with either TC or CC motif, and either in U or L 
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shape was modeled bound to each of the three A3 proteins. The resulting models of 

A3–DNA pairs were subjected to energy minimization followed by fully solvated 

molecular dynamics simulations to analyze the stability of modeled complexes with a 

focus on inter-molecular interactions. 

 

3.2.1 Substrate specificity and conformation correlate with overall dynamics in 

the simulations 

The wilt type A3A–TC (U) model, which represents the complex in the cocrystal 

structure of A3A–DNA with the preferred substrate sequence, was stable during the MD 

simulations as expected. The bound DNA had relatively small root-mean-square 

fluctuations (RMSFs), less than 1.8 Angstroms (Å) for the central five nucleotides 

(Figure 3.2A). In addition, the key molecular interactions between the target cytidine 

and A3A observed in crystal structures were all well maintained: hydrogen bond 

interactions with His29, Thr31, Asn57, Ala71, Glu72, Ser99, Tyr130 and stacking 

interactions with Tyr130 and His70 (Figure 3.3A; Figure 3.4). Next, we examined 

whether A3A can bind ssDNA in a conformation similar to that bound in the A3G-CTD 

crystal structure. With the identical substrate ssDNA sequence, we modeled A3A-TC (L) 

with the DNA in a more linear conformation. This complex, had much higher ssDNA 

fluctuations compared to TC (U) according the RMSFs of each nucleotide (Figure 3.2A) 

Overall the RMSFs were about 2 folds higher compared A3A-TC (U) (2.9 Å compared to 

1.6 Å at -3’, 1.6 Å compared to 1.1 Å at -2’, 1.1 Å compared to 0.7 Å at -1’, 0.5 Å 

compared to 0.6 Å at 0’, 1.8 Å compared at 0.9 Å at +1’ and 2.8 Å compared to 1.8 Å at 

+2’). Besides, the gate-keeper residue His29, which is critical for stabilizing ssDNA 
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binding in the U-shape seen in the crystal structure, flipped back to apo conformation 

(Figure 3.3A; Figure 3.4). As a result, the stacking interactions with downstream 

nucleotides (+1, +2, +3) and hydrogen bonds with DNA backbone were lost. Together 

these results suggested that A3A prefers binding ssDNA with a TC motif in U-shape 

rather than L-shape. Then, we studied the dynamics of bound DNA with a CC sequence 

motif, which is ~3 fold less preferred compared to TC in A3A114. Interestingly, DNA with 

a CC motif in L-shape, A3A–CC (L) was stable similar to the A3A–TC (U) model, as 

indicated by both the RMSFs of bound DNA and stabilities of critical substrate 

interactions with A3A (Figure 3.2A, 3.3A; Figure 3.4).  In the A3A-CC (U) model, zinc 

coordinating residue His70 lost stacking interactions with the target cytidine, which may 

result in destabilized active site coordination and lower activity. Nevertheless, A3A was 

able to stably bind ssDNA with both TC and CC motifs, in agreement with experimental 

data 114, but with the DNA in different binding conformations: U-shape helps stabilize TC 

while L-shape enables binding to CC motif. 
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Table 3.1: List of A3–DNA complexes for which MD simulations and analysis were 
performed in this study. 
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Figure 3.2: The dynamics of ssDNA in MD simulations. 
The root-mean-squared fluctuations of each nucleotide are shown in the left column. 
Snapshots of ssDNA conformation from the simulations are superimposed and colored 
red to blue along the trajectory for examples of stable or dynamic complexes for A. A3A 
B. A3B-CTD C. A3G-CTD. The target (0’ C) and -1’ position nucleotide in the active site 
is labeled. 
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Figure 3.3: The interactions between target cytidine and active site residues in 
MD simulations of linear and U-shaped ssDNA. 
A. A3A B. A3B-CTD C. A3G-CTD. 
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Figure 3.4: The comparison of the first and final frame from A3A simulations. 
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Similar to the case with A3A, the A3B-ATC (U) model, which is based on the 

crystal structure of chimeric A3B–DNA complex 106 and corresponds to our previously 

presented wild-type model 168, was stable during the MD simulations. However, unlike 

A3A which preferred U or L-shaped ssDNA depending on the target dinucleotide motif, 

A3B showed strong preference for TC over CC in MD simulations regardless of the 

DNA conformation. The RMSFs of bound DNA in A3B–ATC models, especially -1’ and 

0’ nucleotides (less than 1 Å and 0.6 Å), were relatively small compared to others 

(Figure 3.2B; Figure 3.5). The molecular interactions between target cytidine and A3B 

were maintained in ATC models but not others (Figure 3.3B; Figure 3.5). For instance, 

in the A3B-ACC (U) model, the target cytidine was unstable in the active site. The 

conformation of side chain of active site residue Asn244 changed, similar to what was 

previously observed for A3G non-substrate (rC) simulations115, which suggests that 

cytidine was not poised for deamination. In conclusion, A3B may accommodate both 

DNA binding conformations but not cytidine at -1’ position. 
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Figure 3.5: The comparison of the first and final frame from A3B simulations. 
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Overall, the MD simulations of A3G–DNA complexes were considerably more 

dynamic compared to A3A and A3B, which corelates with lower binding affinity 

(Supplementary Table 2). The wild type A3G–CC (L) model, which represents the 

crystal structure, was the most stable A3G complex during the MD simulations as 

indicated by relatively low fluctuations of bound DNA (especially the central 5 

nucleotides: RMSF < 2.4 Å  compared to 2.8 Å for TC (U), 4.3 Å for CC (U) and 2.5 Å 

for TC (L)) and the most stable interactions between target cytidine and protein (Figure 

3.2C; Figure 3.3C; Figure 3.6). More specifically, the hydrogen bond interactions 

between His216 and ssDNA were lost in TC (U) and CC (U) models while the stacking 

interactions between His216 and downstream bases were lost in TC (L) and CC (U) 

models.  

Overall out of the 12 models, 5 corresponded to stable A3–DNA complexes which 

were further analyzed and compared. These are A3A-TC (U), A3A-CC (L), A3B-ATC 

(U), A3B-ATC (L) and A3G-CC (L) models. 
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Figure 3.6: The comparison of the first and final frame from A3G simulations. 
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3.2.2 Loop 1 is important for defining the ssDNA binding conformation 

Among all the active site loops, loop 1 made the most extensive molecular 

contacts with ssDNA. ssDNA either wrapped around (as seen in U-shape models) or 

extended along loop 1 (as seen in L-shape models) (Figure 3.7A). As a result, loop 1 

contributed the most van der Waals (vdW) interactions with ssDNA to stabilize binding 

(Figure 3.7B).  

The shorter loop 1 with a three-residue deletion in A3A may allow ssDNA to bind 

in both conformations. In A3A–TC (U) model, ssDNA wrapped around the gate keeper 

residue His29 in loop 1. Arg28 in loop 1 stacked with upstream bases (-2; -3) and thus 

stabilized the U conformation. As a result, His29 and Arg28 had the most vdW contacts 

with ssDNA. In A3A–CC (L) model, the three-residue deletion in loop 1 allowed ssDNA 

to reach out and make interactions with His182 in alpha-helix 6. Besides, Ile26 in loop 1 

packed with upstream bases and thus had the second highest vdW interactions with 

ssDNA.  
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Figure 3.7: Active site loops and electrostatics of ssDNA–A3 complexes 
displayed for representative frames from MD simulations. 
Proteins are shown as surface representation, and ssDNA is shown as orange sticks. A. 
Active site loops are colored blue and shown on protein surface. B. The residues that 
interact with ssDNA are colored blue to red for increasing vdW interactions. C. The 
electrostatics of protein surfaces, where red is negative and blue is positive charge.   
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Both A3B and A3G has a longer loop 1 compared to A3A. The Trp211 in the PWV 

insertion in A3G stacks with -3’ base in the A3G–DNA co-crystal structure and thus 

stretches ssDNA binding into a more extended L-shape. Similarly, Pro206 in loop 1 

packed with -3 nucleotide in A3B–ATC (L) model thus stabilizing the overall extended L-

shape. The U-shape binding conformation of A3B may be defined by Arg210 in loop 1. 

Arg210 in A3B has a unique side chain conformation compared to other A3s96, 168: 

Arg210 instead of Arg313, which is conserved among A3s, stabilizes overall structure 

through the conserved hydrogen bond network as shown in the apo crystal structure. As 

a result, the side chain of Arg210 is oriented toward the core of the protein and thus 

results in a cavity next to the gate-keeper residue Arg211. This cavity may allow ssDNA 

to wrap around Arg211 and bind in U conformation as seen in A3B–ATC (U) model.  

For A3G-CTD, Trp211 in loop 1 is critical for the L binding conformation of ssDNA. 

Trp211 formed strong stacking interactions with upstream nucleotides in both A3G L 

model and crystal structure and thus had the most vdW contacts. Interestingly, the 

active site of A3G-CTD is also less positively charged compared to A3A and A3B-CTD 

(Figure 3.7C). Less positively charged active site may decrease the binding affinity in 

A3G-CTD considering the strong negatively charged DNA backbone, correlating with 

the lower binding affinity (Table 3.2). 
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Table 3.2: Binding affinity (Kd) for linear and hairpin ssDNA with preferred 
sequence by A3s. 

 

1 Silvas et al, Scientific Reports 8.1 (2018): 7511. 
2 Hou et al, JCTC 15.1 (2018): 637-647. 
3 Maiti  et al, Nat Commun 9.1 (2018): 2460.  
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3.2.3 Substrate specificity at -1’ position 

As explained above, A3A can bind to both TC and CC dinucleotide motifs through 

accommodating different DNA binding conformations. According to previous reports (114, 

A3A can bind either thymidine or cytidine at -1’ position with slight preference of T over 

C (Kd ~85 nM versus ~250 nM). Our MD simulations showed similar results: thymidine 

in A3A–TC (U) model had stable hydrogen bonds with the side chain of Asp131 and the 

backbone of Tyr132 (Figure 3.8A left). The same hydrogen bonds were also observed 

in A3A–DNA co-crystal structure 104, 106. Cytidine in A3A–CC (U) model, however, 

showed more fluctuations compared to -1’ T in the A3A–TC (U) model. The RMSF of 

cytidine in CC (U) model was about 2-fold higher compared to thymidine (Figure 3.1A; 

Figure 3.2). In addition, -1’ C lost the hydrogen bond interactions with the backbone of 

Tyr132. Interestingly, -1’ C in A3A–CC (L) model revealed stable interactions with A3A 

protein. The RMSF of -1’ C in CC (L) model was about the same as -1’ T in TC (U) 

model. Moreover, -1’C formed stable hydrogen bonds with the backbone of Tyr132 and 

side chain of Asp131 though different side chain conformation (Figure 3.8A right). 

Together these results suggested that A3A may use alternative DNA binding 

conformations to adapt different substrate sequences.  
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Figure 3.8: The molecular interactions between ssDNA and A3 active site at -1’ 
position. 
 (A) A3A (B) A3B-CTD (C) A3G-CTD. 
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A3B exhibited a preference for TC rather than CC at -1’ position. In A3B–ATC (U) 

model, -1’ T formed stable hydrogen bonds with the backbone of Tyr315 and the side 

chain of Asp314, which was similar to A3A and consistent with our previous results 168 

(Figure 3.8B left; Table 3.2). Interestingly, in the A3B–ATC (L) model, unlike A3A–CC 

(L), Asp314 maintained the same side chain conformation as in U-shape model and 

thus formed hydrogen bond that promoted T over C (Figure 3.8B right). When having 

cytidine at -2 position, A3B may bind cytidine at -1’ position with ssDNA binding in L 

conformation. In the A3B–CC (L) model, Asp314 and Tyr315 maintained the same 

hydrogen bonds to -1’ C as in A3A (hydrogen bond occupancy: 71%, 54%; 83%). These 

results suggest that the substrate specificity at -2’ position may affect the specificity at -

1’ position in A3B; A3B prefers thymidine at -1’ position but could bind ssDNA in 

different conformations for different substrates.  

A3G binds ssDNA in L shape and thus prefers CC rather than TC at -1’ position. 

A3G is the only A3 that prefers cytidine over thymidine at -1’ position. From our MD 

simulations, the side chain of Asp316 and the backbone of Asp317 made stable 

hydrogen bonds with cytidine (Figure 3.8C left) in A3G-CC (L) model. These direct 

hydrogen bonds were lost in A3G–CC (U) model (Figure 3.8C right). All together our 

results suggest that there might be interdependent interactions between ssDNA binding 

conformation and substrate sequence specificities.  

 

3.2.4 Substrate specificity at -2’ position 

Previously, we revealed that intra-DNA interactions in A3A may underlie the 

substrate specificity of T/C at -2’ position114. However, how A3B or A3G defines its 



 88 

substrate specificity had remained elusive. To address the mechanism of specificity at -

2’ position in A3B, we created additional models of A3B with CTC sequence to compare 

with the ATC described above, which is the preferred sequence for A3B 119. In A3B–

ATC (L) model, -2’ A formed stable hydrogen bonds with the side chain of Arg311 

(occupancy 38% during the simulations), Ile312 (occupancy 90%), Asp314 (occupancy 

98%) and stacking interactions with Trp281 (occupancy 32%) (Figure 3.9A left). 

However, all these interactions were lost in the A3B–CTC (L) model (Figure 3.9A right). 

The vdW interactions between Trp281 and -2’ nucleotide was also decreased from -9.2 

kcal/mol in ATC model to -7.9 kcal/mol in the CTC model. Moreover, the side chain of 

the gate-keeper residue for DNA binding, Arg211, lost interactions with DNA backbone, 

which may impair the binding of target cytidine in the active site (Figure 3.5).  

To study the specificity of -2’ position, A3G was modeled with ACC sequence to 

compare with CCC, which is the preferred motif for A3G 86, 169-171. In A3G–CC (L) model, 

-2’ C was locked in an extensive hydrogen bonding network with residues Pro210 

(water-mediated; occupancy 37%), Arg374 (water-mediated; occupancy 31%, 41%), 

Ile314 (water-mediated; occupancy 41%), Val212 (water-mediated; occupancy 34%) 

and Asp316 (occupancy 43%) (Figure 3.9B left). Interestingly, the larger base of A in 

ACC (L) model did not occupy the space where water-mediated hydrogen bonds were; 

instead -2’ A had only one hydrogen bond with Asp316 (occupancy 42%) (Figure 3.9B 

right). Thus, A3G preferred to accommodate the smaller C at the -2 position through an 

extensive water-mediated hydrogen bonding network. 
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Figure 3.9: The molecular interactions between ssDNA and A3 active site at -2’ 
position. 
A. A3B-CTD, B. A3G-CTD.  
  

-1’ C

0’ C

R313-2’ C

P210

I314

R374

D316

-1’ C

0’ C

R313
-2’ A

W285

I314

R374D316

-1’ T

0’ C
D314

R311
-2’ A

I312 -1’ T

0’ C D314

R311
-2’ C

I312

R372 R372

W281

A BA3B ATC (L) A3B CTC (L)

C DA3G CCC (L) A3G ACC (L)



 90 

3.2.5 Interdependent interactions between substrate specificities at nucleotide 

positions 

Analysis of pMD performed on the A3 enzymes suggested interdependence 

between substrate specificities various nucleotide positions. First of all, the specificity at 

-1’ position may affect the binding of the target nucleotide in the active site (0’ position). 

Having a disfavored nucleotide at the -1’ position destabilized the target nucleotide. 

Second, the specificity at -2’ position may influence the specificity at -1’ position. In A3B, 

the interactions between -2’ A and Asp314 locked the side chain of Asp314 in the 

conformation that promotes thymidine over cytidine at -1’ position (Figure 6A left). 

Similar interdependent interactions were also observed in A3G (Figure 6B). Finally, the 

ssDNA binding conformation (U or L shape) also impacted the substrate sequence 

specificity. 

 

3.3 DISCUSSION 

In this study, we investigated the structural mechanism for substrate specificities in 

A3s. Interestingly, we found an interdependence between substrate conformation and 

specificity. In addition to the U-shape binding conformation of substrate DNA observed 

in crystal structures, we found that A3A and A3B can bind DNA in a more linear 

conformation. Specifically, the linear conformation helps accommodate CC dinucleotide 

motif while the U-shape prefers TC. The active site loops play important roles in defining 

the overall binding surface and conformation for DNA binding to A3s. For A3A, A3B and 

A3G, loop 1 is critical with extensive interactions with DNA. The gate-keeper residues 

(His29 in A3A, Arg211 in A3B and His216 in A3G), which locks DNA in the active site, 
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are all in loop 1. Besides, the three-residue insertion in loop 1 of A3B and A3G 

compared to A3A seems to be important for defining the more extended L-shape 

through stacking interactions. Previous studies have shown that swapping loop 7 from 

A3G into A3B altered the substrate specificity in A3B from TC to CC96. Additionally, 

changing Asp317 of A3G into the corresponding residue of A3A (Tyr132) caused A3G 

to adopt a more A3A-like 5’-TC preference172. These results suggested the 

Tyr132/Tyr315/Asp316 in loop 7 might be important for substrate specificity at -1’ 

position. However, in our analysis there is no stable side chain interactions between this 

residue and -1’ base during the MD simulations. Instead the tyrosine might be important 

for stabilizing the U-shape of DNA, which is supported by the considerably higher vdW 

contacts with DNA compared to aspartic acid, and which may switch the preference to 

TC. Finally, we observed interdependence between various nucleotide binding sites. 

Unlike human CDAs, A3s require at least five nucleotides for stable binding of DNA. 

The interdependence between binding interactions around the active site suggests the 

sequence of nucleotides flanking the target cytidine is also critical for stable substrate 

binding. 

Considering the roles of A3s in viral infections and cancer, a better understanding 

of the mechanism by which A3s recognize different oligonucleotides will be critical for 

developing therapeutics. Currently, combined with catalytically inactive Cas9 (dCas9), 

A3s are investigated as novel base editors for direct modification of genomic DNA at 

single-base resolution 67, 68. As cytosine base editors (CBE), A3s can create mutations 

to potentially correct genetic diseases but still require improvements. Several studies 

have reported significant off-target effects of CBEs. In addition, CBEs have problems 
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with product purity and editing window length51. To overcome these problems, several 

versions of CBEs have been engineered, UGI added to increase product purity72 and 

generate high fidelity Cas9 with reduced off-target effects73, or different Cas 

nucleases74-78 were used for narrower activity windows. However, modifications that 

have been implemented to improve the efficiency and fidelity of CBEs have not focused 

on the deaminase. Another major problem in applying CBEs to treat genetic diseases is 

that the target site must naturally exist in the preferred DNA sequence context for 

cytidine deaminase, which may not be the case for the desired modification. Therefore, 

having a library of A3s with different substrate specificities as context-dependent base 

editors would expand the toolkit available for base editing. Our results revealing the 

molecular mechanisms underlying A3 specificities may help guide engineering of A3s, 

especially with modifications to the active site loops, to rationally design A3s to adapt 

the desired sequence specificity. 

 

3.4 EXPERIMENTAL PROCEDURES 

3.4.1 Protein sequence alignment 

Protein sequence alignment was generated by program Geneious 9.0.5 using 

default Multiple alignment. 

 

3.4.2 Molecular modeling 

All structure models in this study were first generated from program 

MODELLER9.23; then optimized using Protein Preparation Wizard in Maestro from 

Schrodinger suite. The optimization was performed at pH 7.0; H-bond assignment panel 



 93 

with minimize hydrogens of alter species function; minimized using restrained 

minimization panel. The ssDNA-bound crystal structures of A3A (PDB: 5KEG as protein 

template; 5SWW as ssDNA template) and A3G-CTD2 (PDB: 6BUX) were used as 

templated for molecular modeling of wild type A3-ssDNA complexes. Different ssDNA 

sequences were mutated through program Coot. ssDNA-bound A3B-CTD structures 

were modeled using the crystal structures of both apo A3B-CTD (PDB: 5CQH) and 

A3A-ssDNA complex.  

 

3.4.3 Molecular dynamics simulations 

All molecular dynamics simulations were performed for 100 ns using program 

Desmond from Schrodinger suite. The simulation systems were built using SPC 

solvation model and cubic boundary conditions of 12 Å buffer box size with OPLS3 

force field through system builder in Maestro. The final systems were neutral and had 

0.15 M sodium chloride. A multi-stage MD simulation protocol was used, which was 

previously described.  

 

3.4.4 Analysis of molecular dynamics simulations 

The RMSD and molecular interactions (hydrogen bond; stacking interaction) 

occupancies over trajectories were calculated using Simulation Interaction Diagram in 

Maestro from Schrodinger. The per base RMSFs of ssDNA were calculated using 

Schrodinger python API. The residue vdW potential between A3s and ssDNA during the 

MD simulations was extracted from the simulation energies using Desmond.  
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The frame that closet to average RMSD was used as representative structure for 

each MD simulation. The electrostatic distributions were calculated using PDB2PQR 

server and Pymol with the APBS plugin; and visualized with contour levels positive (+3) 

and negative (-3). The time series representations of ssDNA were generated with 

program VMD using 2000 frames as time step (total 20000 frames for each MDs). All 

other structural graphics were made using program PyMol. 
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4 Chapter VI: Substrate Sequence Selectivity of APOBEC3A Implicates Intra-

DNA Interactions 

 

Chapter IV is a collaborative study that has been previously published as:  

 

Silvas TV, Hou S, Myint W, Nalivaika EA, Somasundaran M, Kelch BA, Matsuo H, Kurt 

Yilmaz N, Schiffer CA. "Substrate sequence selectivity of APOBEC3A implicates intra-

DNA interactions." Scientific Reports 8.1 (2018): 7511. 
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4.1 ABSTRACT 

The APOBEC3 (A3) family of human cytidine deaminases is renowned for 

providing a first line of defense against many exogenous and endogenous retroviruses. 

However, the ability of these proteins to deaminate deoxycytidines in ssDNA makes A3s 

a double-edged sword. When overexpressed, A3s can mutate endogenous genomic 

DNA resulting in a variety of cancers. Although the sequence context for mutating DNA 

varies among A3s, the mechanism for substrate sequence specificity is not well 

understood. To characterize substrate specificity of A3A, a systematic approach was 

used to quantify the affinity for substrate as a function of sequence context, length, 

secondary structure, and solution pH. We identified the A3A ssDNA binding motif as 

(T/C)TC(A/G), which correlated with enzymatic activity. We also validated that A3A 

binds RNA in a sequence specific manner. A3A bound tighter to substrate binding motif 

within a hairpin loop compared to linear oligonucleotide, suggesting A3A affinity is 

modulated by substrate structure. Based on these findings and previously published 

A3A–ssDNA co-crystal structures, we propose a new model with intra-DNA interactions 

for the molecular mechanism underlying A3A sequence preference. Overall, the 

sequence and structural preferences identified for A3A leads to a new paradigm for 

identifying A3A’s involvement in mutation of endogenous or exogenous DNA. 

 

4.2 INTRODUCTION 

The APOBEC3 (short for “apolipoprotein B mRNA editing enzyme, catalytic 

polypeptide-like”) family of human cytidine deaminases provides a first line of defense 

against many exogenous and endogenous retroviruses such as HIV-1 and the retro-
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element LINE-1 22, 145-149. APOBEC3 (A3) proteins restrict replication of retroviruses by 

inducing hypermutations in the viral genome 23. A3s deaminate deoxycytidines in 

ssDNA into uridines during reverse transcription. This results in G to A hypermutations, 

as adenosines are transcribed across from uridines during second strand DNA 

synthesis. While all A3 enzymes deaminate deoxycytidines in ssDNA, they have 

differential substrate specificities that are context dependent, resulting in altered 

frequencies of mutation for the deoxycytidines. Some A3s deaminate the second 

deoxycytidine in a sequence containing CC while others deaminate deoxycytidine in a 

TC context 24, 150, 173. However, not every cognate dinucleotide motif (CC or TC) in the 

ssDNA of the HIV genome is deaminated 174. Nevertheless, hypermutation in a viral 

genome results in defective proteins and proviruses, thus decreasing the probability of 

further viral replication 175. 

Beyond restricting viral replication, the ability of A3s to deaminate deoxycytidines 

in ssDNA have made A3s a double-edged sword. When overexpressed, A3s can 

mutate the host genome resulting in a variety of cancers. The identities and patterns of 

the mutations observed in cancer genomes can define the source of these mutations. 

Recently, the search for the deaminase(s) responsible for kataegic mutations found in 

breast cancer was narrowed down to APOBEC3B, through the comparison of all known 

APOBEC mutational signatures and eliminating APOBEC3G and other deaminases 

from potential mutational contributors 41, 150. Soon after, APOBEC3B was found to be 

correlated with a variety of other cancers such as ovarian, cervical, bladder lung, head 

and neck; signature sequence analysis was also a contributing factor that led to these 

conclusions 44, 154. Most recently APOBEC3H, which has a different sequence 
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preference than APOBEC3B, has been identified to also play a role in breast and lung 

cancer 47. Thus, defining A3 sequence specificity can be helpful in identifying A3’s role 

in viral restriction and in cancer.  

A3 signature sequences proposed for deaminating deoxycytidines range between 

di-nucleotide to quad-nucleotide motifs 24, 47, 94, 98, 106, 150, 173, 174, 176, 177. Although A3s are 

known to have varied sequence preference, quantitative and systematic studies of 

sequence specificity are incomplete. Recently, crystal structures of APOBEC3A (A3A) 

and APOBEC3B-CTD (an active site A3A chimera) with ssDNA have been solved 104, 

106. However, despite these breakthrough structures, the molecular mechanism 

underlying substrate sequence specificity flanking the TC dinucleotide sequence 

remains unclear.  

A3A is a single-domain enzyme with the highest catalytic activity among human 

APOBEC3 proteins 178 and a known restriction factor for the retroelement LINE-1 and 

HPV 179, 180. A3A can also contribute to carcinogenesis with increased expression or 

defective regulation 181. A3A is the only A3 where both the intact apo and substrate 

bound structures have been determined 84, 93, 94, 104, 106. Initial substrate specificity 

studies have shown a preference for DNA over RNA, suggested by NMR chemical shift 

perturbation 94. Since A3A is the best biochemically characterized A3 human cytidine 

deaminase and thus a critical benchmark within the family, we chose A3A to elucidate 

the extended characteristics of ssDNA specificity.  

To determine the substrate specificity of A3A, we systematically quantified the 

affinity of A3A for nucleic acid substrates as a function of substrate sequence, length, 

secondary structure, and solution pH. We identified the A3A preferred ssDNA binding 
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motif, (T/C)TC(A/G) and found this sequence correlated with enzymatic activity.  Also, 

we determined that A3A can bind RNA in a sequence specific manner. Surprisingly, 

A3A’s signature sequence was necessary but not sufficient to account for A3A’s high 

affinity for ssDNA. Significantly, A3A bound more tightly to the motif in longer 

oligonucleotides, and in the context of a hairpin loop. Using recently published 

structures of A3As complexed with ssDNA from our lab and others, we propose a 

structural model for the molecular mechanism for this enhanced affinity where inter-

DNA interactions contribute to A3A recognition of the cognate sequence. This model 

provides insights into how the nucleotides flanking the canonical TC sequence may 

contribute to substrate sequence preference of A3A.  

 

4.3 RESULTS 

4.3.1 A3A binding to ssDNA is context dependent 

To interrogate the substrate sequence preference of A3A, we systematically 

quantified the changes in binding affinity of catalytically inactive A3A bearing the 

mutation E72A to a library of labeled ssDNA sequences using a fluorescence 

anisotropy-based DNA binding assay 84. First, to ensure that the affinity for substrate 

was due entirely to the sequence of interest and not due to nonspecific binding or 

undesired secondary structure effects, an appropriate control background sequence 

was identified. The dissociation constants (Kd’s) for homo-12-mer ssDNA sequences, 

Poly A, Poly T, Poly C, were determined (Figure 4.1A). Poly G was not tested due its 

propensity to form secondary structure elements. Poly T (750 ± 44 nM), which had 

previously been used in background sequences 84, bound to A3A with 2-fold higher 
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affinity than Poly C (1,600 ± 117 nM). Thus without a greater context for A3A to target, 

Poly C was only weakly bound. A3A had the lowest affinity for Poly A with a Kd 

of >11,00 nM (Table 4.1). For all subsequent assays, Poly A was used as the 

background, as there is no detectible binding affinity of A3A to Poly A.  

The specificity of A3A for substrate versus product was measured by binding to 

Poly A with a single C versus Poly A with a single U (Figure 4.1B). Surprisingly, the 

presence of a single deoxycytidine in a Poly A background was not sufficient for binding 

with appreciable affinity. The affinity of A3A for the Poly A-C (5A-1C-6A) (>5,000 nM) is 

similar to the affinity for Poly A-U (5A-1U-6A) (>6,500 nM) and even the background 

Poly A. This is in contrast to A3A’s specificity for binding a single C over U in a Poly T 

background, which is more than ten-fold (35 ± 2 nM and 500 ± 23 nM respectively) 

(Figure 4.1C), as we previously measured 84. This strong context dependence 

differentiating substrate C versus product U within the background of Poly A versus Poly 

T indicates that A3A heavily relies on the identity of the surrounding nucleotide 

sequence to recognize and bind substrate deoxycytidine.  
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Figure 4.1: A3A specificity to ssDNA background and substrate. 
Fluorescence anisotropy of TAMRA-labeled ssDNA sequences binding to A3A(E72A).  
A) Binding of A3A to poly nucleotide (12 mers): Poly A (blue), Poly T (red) and Poly C 
(green), B) Binding to Poly A (blue), 5A-C-6A (red), 5A-U-6A (green), C) Binding to Poly 
T (blue), 5T-C-6T (red), 5T-U-6T (green). 
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Table 4.1: A3A affinity for DNA sequences used in this analysis. 
 

 

  

Table 1 A3A affinity for DNA sequences used in this analysis
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4.3.2 A3A affinity for ssDNA is pH dependent 

A systematic measurement of A3A affinity in a broad range of pH values was 

performed to verify and quantify the pH dependence of A3A to substrate ssDNA 98, 181, 

and set a reference pH for subsequent experiments. The Kd of A3A for TTC in a Poly A 

background was determined at pH ranging from 4.0 to 9.0 in 0.5 pH increments (Figure 

4.2 and Table 4.2). A3A had the highest affinity for Poly A-TTC at pH 5.5 with a Kd of 

68 ± 3 nM. The isotherms for A3A binding ssDNA at pHs below 6.0 show some 

secondary binding event that may be due to non-specific binding or aggregation (Figure 

4.2A). A steady decrease was also observed for the affinity of A3A for ssDNA when pH 

was increased above 6 (Figure 4.2B), in agreement with decreased deamination 

activity at higher pH 181. A3A affinity also overall correlated with reported deamination 

activity determined using a different assay at pH 7.5 182. Interestingly, A3A had no 

appreciable affinity for Poly A-TTC above pH 8.0. Since A3A is stable at these higher 

pH values, the lower affinity for ssDNA with increased pH is likely not due to 

aggregation but due to the protonation of His 29, as previously described 181 and 

reported to be responsible for coordinating ssDNA 183. Therefore, all of the subsequent 

binding experiments were performed at pH 6.0 to avoid any potential for secondary 

binding events or aggregation of the protein.  
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Figure 4.2: A3A affinity to ssDNA at different pHs. 
Fluorescence anisotropy of TAMRA-labeled ssDNA 4A-TTC-6A binding to A3A(E72A).  
A) Binding of A3A to ssDNA at pH 6.0 (blue), 6.5 (red), 7.0 (green), 7.5 (orange), 8.0 
(purple), 8.5 (black), 9.0 (brown). B) Binding of A3A to ssDNA at pH 4.0 (blue), 4.5 
(red), 5.0 (green), 5.5 (orange), and 6.0 (purple). 
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Table 4.2: A3A affinity for ssDNA Poly A -TTC in a range of pHs. 
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4.3.3 Substrate recognition is dependent on thymidine directly upstream of 

target deoxycytidine, with preference for pyrimidines over purines  

 To study the effect of the nucleotide identity at position -1 relative to target 

deoxycytidine (NC) on A3A affinity for substrate (Figure 4.3A), the Kd values of A3A for 

(4A)-TC-(6A), AC, CC, GC in a Poly A background were determined. A preference for 

TC (143 ± 4 nM), followed by CC (250 ± 14 nM) was identified. Interestingly, AC and 

GC had similarly very weak binding affinities for A3A (>5,000 and >6,500 nM 

respectively), validating a preference for pyrimidines (T or C) over purines (A or G) at -1 

position with T as the strongest binder.  

The effects of the sequence identity around the cognate dinucleotide deamination 

motif (TC) on affinity of A3A for ssDNA was determined by first testing the change in 

affinity for all nucleotide substitutions at -2 position (3A)-NTC-(6A). A3A has a 

preference for pyrimidine over purine at -2 position (Figure 4.3B) with TTC and CTC 

having similar affinities (90 ± 1 nM and 85 ± 1 nM respectively) compared to that of 

purines ATC and GTC (145 ± 2 nM and 150 ± 3 nM respectively). While not as strong 

as for -1 position, there is a preference for the smaller pyrimidines at position -2. Next, 

the effect of +1 position on affinity of A3A to TC was determined (Figure 4.3C). A3A did 

not demonstrate a strong preference for any particular nucleotide, although disfavoring 

T, at the +1 position (145 ± 2 nM for background versus 209 ± 5 nM).  
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Figure 4.3: A3A specificity for nucleotides flanking substrate cytidine. 
Fluorescence anisotropy of TAMRA-labeled ssDNA sequences to A3A(E72A).  
A) Binding of A3A to ssDNA with changes at -1 position of substrate C and TU (purple) 
in a poly A background (12 mers): 4A-AC-6A (blue), 4A-TC-6A (red), 4A-CC-6A (green), 
and 4A-GC-6A (orange). B) Binding of A3A to ssDNA with changes at -2 position in a 
TC context in a Poly A background (12 mers): 4A-ATC-6A (blue), 4A-TTC-6A (red), 4A-
CTC-6A (green), and 4A-GTC-6A (orange). C) Binding of A3A to ssDNA with changes 
at +1 position in a TC context in a Poly A background (12 mers): 4A-TCA-6A (blue), 4A-
TCT-6A (red), 4A-TCC-6A (green), and 4A-TCG-6A (orange). D)Three substrate 
sequences, TTCA (green), ATCG (red) and ATCA (blue), in closed circles with the 
corresponding 3 product sequences TTUA, ATUG and ATUA in open circles.   
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Figure 4.4: A3A specificity for poly A xTCx. 
Binding affinity of A3A(E72A) to TAMRA-labeled ssDNA sequences in a Poly A 
background. Gray boxes bin sequences by -2 nucleotide identity. Colors represent +1 
nucleotide identity: A (blue), T (red), C (green), G (orange). Consensus sequence 
derived from these Kd values is shown above the graph. 
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Finally, to identify if there was any interdependency between nucleotide identity at 

-2 and +1 positions, the affinity of A3A for (3A)-NTCN-(5A) was determined (Figure 4.4, 

Table 4.1). A3A displayed preference for pyrimidines at -2 position regardless of the 

nucleotide at +1. A3A also disfavored T at +1 position regardless of the nucleotide 

identity at -2. Most interestingly, A3A preferred a pyrimidine at -2 when there was a 

purine at +1 position. However, the reverse was not true; purine at -2 position with 

pyrimidine at +1 position did not result in comparable affinities. In fact, the worst binders 

(ATCT and GTCT) were those that contained purines at -2 with pyrimidines at +1 

position. Thus, we have broadly have three classes of substrate binders high affinity 

(80-130 nM), medium affinity (150-165nM), and weak affinity (210-220 nM) and have 

identified (T/C)TC(A/G) as the preferred sequence for ssDNA recognition by A3A. 

4.3.4 A3A preference for binding to substrate over product is context dependent 

A3A’s affinity for substrate C was compared to product U in the context of 

variations of the signature A3A substrate sequence (T/C)TC(A/G). The affinity of three 

substrate sequences, TTCA, ATCG and ATCA, were compared to the corresponding 

product sequences (Figure 4.3D). For all three sequences, a substantial loss of binding 

affinity was observed for the corresponding TTUA, ATUG and ATUA, with the most 

substantial loss with ATUA. Thus, the decrease in affinity for product over substrate was 

context dependent. 

4.3.5 Positive correlation between sequence preference of binding and 

enzymatic activity 

Although enzymatic activity and binding affinity are not expected to be directly 

correlated, the trends for specificity would likely be similar. Thus A3A’s deamination 
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activity was determined in the context of variations of the signature sequence 

(T/C)TC(A/G) using a 1H NMR based A3 deaminase activity assay. High (TTCA and 

TTCG), medium (ATCA, ATCG, GTCA, GTCG, TTCT) and low (ATCT and GTCT) 

affinity sequences were tested (Table 4.3) to determine the correlation between binding 

and activity. Overall, activity by NMR has the same trend as affinity from the binding 

assay (Figure 4.5). This indicates that in general those substrates sequences with 

varying binding affinity (high, medium and weak) are also processed in a similar order.  
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Table 4.3: A3A enzyme activity for DNA sequences. 
 

 

  

Table 2 A3A enzyme activity for DNA sequences
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Figure 4.5: Binding affinity versus enzyme activity. 
The enzyme activity of active A3A measured by NMR based deamination assay versus 
the free energy of binding calculated (∆G =-RTln (Kd) from the binding affinity for nine 
12-mers.  These nine represent, 2 high binding (green), 5 medium binding (orange) and 
2 weak binding (red) sequences. 
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4.3.6 Structural basis for A3A specificity for binding to preferred recognition 

sequence 

To determine the structural basis for the A3A consensus sequence (T/C)TC(A/G), 

crystal structures of A3A bound to ssDNA recently determined by our group and others 

(PDB ID: 5KEG and 5SWW) were analyzed 104, 106. The target deoxycytidine is well 

coordinated and buried within the active site of A3A (Figure 4.6A) in these structures. 

The thymidine at position -1 has extensive contacts with loop 7 (Y130, D131 and Y132), 

and van der Waals contacts with loop 5 (W98) (Figure 4.6B). The Watson-Crick edge of 

the thymidine base faces the loop 7 residues, and makes three hydrogen bonds: one 

with the backbone nitrogen of Y132 and the other two, one is water mediated, are with 

the D131 sidechain. The D131 side chain further forms a salt bridge to the R189, which 

stabilizes the overall hydrogen-bonding configuration of loop 7 to the thymine base. This 

coordination appears critical, as residue 189 is conserved as a basic residue (Arg/Lys) 

in catalytically active A3 domains. This coordination also explains why -1 must be the 

thymidine base.  If the -1 position is modeled as a cytidine the N3 atom lacks the proton 

to hydrogen bond with D131 (Figure 4.6C) and wouldn’t be as well coordinated thus 

would be less preferential. Residues Y130 and D131, in loop 7, physically would 

preclude a larger purine base from fitting in this position (as modelled Figure 4.6D). 

Thus, the T specificity at the -1 position is consistent with the crystal structures.  
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Figure 4.6: A3A recognition of substrate cytidine and pyrimidines at -1. 
Crystal structure of A3A(E72A/C171A) shown in surface view (gray) bound to Poly T-1C 
ssDNA sequence represented as sticks (PDB ID: 5KEG). A) Substrate cytidine (orange 
sticks) is buried in active site of A3A. Residues interacting with cytidine are shown in 
green sticks. B) -1 nucleotide thymidine (orange sticks) surrounded by Y130, D131 and 
Y132 of loop 7 (light blue sticks), W98 of loop 5 (pink sticks), and R189 (green sticks). 
C) Cytidine modeled into -1 position (orange sticks). N3 atom lacks proton to hydrogen 
bond with D131 indicate with a red X. D) Adenosine modeled into -1 position (orange 
sticks) shows severe van der Waal clashes if occupying the same site as the 
pyrimidines. Other nucleotides are shown as orange sticks. Hydrogen bond and a salt 
bridges shown in dashes black lines. Water shown as red spheres. Nitrogen and 
oxygen of residues and nucleic acids are in blue and red respectively. 
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Although A3A has prefers (T/C)TC(A/G), neither of the co-crystal structures has 

the optimal nucleotide identity at the -2 and +1 positions 104, 106. Specificity for purine at 

the -2 position was not evident in the available A3A–ssDNA structures, presumably as 

neither structure contains an optimal ssDNA sequence. For instance, even though the 

5KEG structure contains a preferred pyrimidine in the -2 position, the thymidine is 

disordered in this complex. However, in both structures 104, 106, the base at +1 

(pyrimidine T in 5KEG and a purine G in 5SWW) stacks with the critical histidine 29 

(Figure 4.7A,B) 104, 106. This type of histidine π-π stacking can occur with either a purine 

or a pyrimidine. However, protonated histidine prefers to stack with a purine base over 

pyrimidine, with thymidine stacking being the least preferred 184 at pH 6. Thus the base 

stacking potential with protonated histidine 29 provides strong rationale for the 

specificity for purines and the disfavoring of thymidine at the +1 position relative to 

substrate deoxycytidine observed in our biochemical assays (Figure 4.4). 
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Figure 4.7: ssDNA is bent within the complex with A3A. 
Crystal structure of A3A shown in surface and cartoon representation (gray) bound to 
ssDNA displayed as orange sticks; A) +1 thymidine (light blue) is interacting with His 29 
(light green sticks) through aromatic stacking (PDB ID: 5KEG). B) +1 guanine (light 
blue) also interacting with His 29 through aromatic stacking (light green sticks) (PDB ID: 
5SWW). C) A3A(E72A/C171A) with TTTTTTTTCTTTTTT (PDB ID: 5KEG) D) 
A3A(E72A) with AAAAAAATCGGGAAA (PDB ID: 5SWW). Other nucleotides are shown 
as orange sticks, while water (red), zinc (blue), and chloride (gray) in the active site are 
shown as spheres. Nitrogen and oxygen of residues and nucleic acids are in blue and 
red respectively. E) A schematic of hydrogen bonding between pyrimidine (pink) at -2 
and purine (light blue) at +1 position via bending of the DNA by A3A upon binding. F) 
Model of inter-DNA base interactions through binding of A3A to ssDNA. A3A(E72A)–
ssDNA complex (PDB ID: 5SWW) was used to model A3A signature sequence CTCG 
bound at the active site. A3A is shown as gray surface and cartoon, His29 as light green 
sticks, original ssDNA as orange sticks with +1G in light blue. Adenosine at -1 position 
was switched to cytosine (pink) with hydrogen bonds to +1G displayed as yellow 
dashes. 
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4.3.7 A3A bends ssDNA to potentially allow for intra-DNA interaction between -2 

and +1 nucleotides 

A common feature between the two A3A–ssDNA complex structures is that the 

ssDNA forms a “U” shape in the active site (Figure 4.7 C,D) 104, 106. This U shape of the 

bound polynucleotide may be conserved among deaminases, including adenosine 

deaminases 106, 185. In both A3A-ssDNA structures, the U shape of the ssDNA orients 

the -2 and +1 bases in close proximity to each other. Thus, we hypothesized that the 

observed sequence preference (Figure 4.4) for the -2 position is a result of intra-DNA 

interactions rather than specific interactions with the protein.  

To determine the potential for intra-DNA interactions when A3A is bound to a 

(T/C)TC(A/G) signature sequence, molecular models were developed based on the 

crystal structures of A3A bound to ssDNA (PDB ID: 5KEG and 5SWW) 104, 106. These 

models orient the bases of the -2 and +1 nucleotides so that they form hydrogen bonds, 

with the larger purine at +1 position stacking on His 29 and the smaller -2 pyrimidine 

coordinating the +1 base (Figure 4.7 E,F). The reversal of the nucleotides at +1 and -2 

positions would not result in a fit nearly as well, which could explain the lower affinity of 

purine-TC-pyrimidine. Thus the structural model explains the preference for 

(T/C)TC(A/G) and suggests stabilizing the inter-DNA interactions may further increase 

the affinity. 

4.3.8 Length of ssDNA affects affinity of A3A for substrate sequence 

If the bending of the ssDNA is important for substrate recognition, dependence of 

binding affinity on substrate length may be expected. To determine if the DNA beyond 

the four-nucleotide signature sequence contributed to the binding, the length of the 
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ssDNA that contained the recognition sequence was varied in Poly A-TTC (AAA TTCA 

AAA AAA). A competition assay with different length oligonucleotides was performed to 

test the effect of ssDNA length on affinity for substrate (Figure 4.8). Length was varied 

from 1 nucleotide flanking each end of TTCA (TTCAA and ATTCA) to 3 nucleotides 

flanking each end, increasing by one nucleotide addition on either end. Surprisingly, a 

single nucleotide flanking TTCA signature sequence was not enough to permit binding 

(Figure 4.8A), and even three nucleotides on either side still did not bring A3A binding 

to original binding affinity as Poly A-TTC (AAA TTCA AAA AAA) (Figure 4.8B). Thus, 

binding affinity is impacted beyond the recognition motif to prefer longer sequences, 

although the additional nucleotides not expected to have any direct contacts with A3A, 

consistent with the model that intra-DNA interactions modulate A3A affinity. 
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Figure 4.8: A3A affinity to ssDNA of varied lengths. 
Fluorescence anisotropy of TAMRA-labeled ssDNA 3A-TTCA-6A to A3A(E72A) 
competing with unlabeled ssDNA of different lengths. A) Binding of A3A to labeled 
ssDNA preincubated with unlabeled 3A-TTCA-6A (red), 1A-TTCA (blue), and TTCA-1A 
(green). B) Binding of A3A to labeled ssDNA preincubated with unlabeled 3A-TTCA-6A 
(red), 2A-TTCA-3A (blue), 3A-TTCA-2A (green), 2A-TTCA-2A (blue), 1A-TTCA-2A 
(purple), 2A-TTCA-1A (black), and 1A-TTCA-1A (gray). 
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4.3.9 A3A prefers binding to target sequence in the loop of structured hairpins 

Another implication of this model would be that pre-bent DNA could be a better 

substrate for A3A binding, as A3A would not have to pay the entropic cost of bending 

the DNA. This bending of DNA could be achieved either by the inter-DNA interactions 

modeled in (Figure 4.7F), or when within a loop of a hairpin. To determine the 

significance of the bent U shape DNA structure in the mechanism of A3 binding, we 

tested A3A affinity to a target deoxycytidine in the loop region of a DNA hairpin. The 

hairpin sequence was based on a previously identified potential RNA substrate for A3A, 

from succinate dehydrogenase complex iron sulfur subunit B (SDHB)162. The affinity for 

TTC in the loop region of hairpin DNA was higher than that in linear DNA (26 nM vs 90–

127 nM respectively). As expected, A3A had a higher affinity for the DNA hairpin with 

loop region containing TTC compared to one with AAA (26 nM vs ~676 nM respectively) 

(Figure 4.9A). Interestingly, the Kd value for the hairpin (26 nM) is comparable to that 

for a single C in a polyT background (35 nM) 84. This may imply that the polyT DNA 

adopts a hairpin structure in solution, as has been reported 186. 

A3A affinity to a target cytidine in the loop region of an RNA hairpin was also 

tested. The exact SDHB hairpin RNA sequence including UC in the loop of this hairpin 

versus a modified SDHB hairpin RNA replacing the AUC with AAA was compared. A3A 

had specific affinity for the hairpin RNA containing UC compared to AA (37 nM vs 202 

nM respectively) (Figure 4.9B). In contrast to what has been previously proposed 94, we 

found that A3A has high affinity and specificity for RNA. Furthermore, A3A has a higher 

affinity for AUC in the loop region of a hairpin compared to UUC in a linear sequence 

(Figure 4.10). The potential UUC substrate sequence in linear RNA has no measurable 
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affinity, comparable to linear RNA without a potential substrate sequence. Overall, A3A 

has higher affinity for target sequence in the context of a pre-ordered loop region rather 

than linear DNA, and specific affinity for RNA hairpins with a substrate site.  
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Figure 4.9: A3A specificity for substrate in loop region of stem-loop nucleic acids. 
Fluorescence anisotropy of TAMRA-labeled hairpin DNA and RNA to A3A(E72A). A) 
Binding of A3A to a DNA version of the hairpin SDHB RNA containing TTC (dark blue) 
and AAA (light blue) in the loop region. B) Binding of A3A to hairpin SDHB RNA (dark 
orange) and the same RNA sequence replacing the UC with AA in the loop region of the 
hairpin (light orange). 
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Figure 4.10: A3A affinity to ssRNA. 
Fluorescence anisotropy of TAMRA-labeled ssRNA sequences to A3A(E72A).  Binding 
of A3A to ssRNA with PolyA UUCA (blue) and ssRNA Poly A (red). 
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4.4 DISCUSSION 

A3A is a single-domain enzyme with the highest catalytic activity among the 

human APOBEC3 proteins 178, a known restriction factor 179, 180, and also likely 

contributes to carcinogenesis 181. In this study we quantified the ssDNA specificity of 

A3A, and identified the consensus signature sequence as (T/C)TC(A/G). The 

dinucleotide sequence preference for A3A, TC, which was previously found through 

activity assays 98, 106, 173 was confirmed and expanded to a preference for pyrimidine-

TC-purine. Surprisingly context matters, in that the background nucleotide sequence 

impacts binding affinity, with essentially no binding observed for Poly A 1C (Figure 

4.1B), while Poly T 1C binds with 35 ± 2 nM affinity 84. Furthermore, the length of the 

ssDNA in which (T/C)TC(A/G) is imbedded within also modulates affinity (Figure 4.8). 

Structural analysis of the two A3A-ssDNA complexes containing two distinct, but 

suboptimal ssDNA sequences have led us to develop a model with intra-DNA 

interactions for the molecular mechanism for A3A’s specificity to ssDNA. In contrast to 

previous results 93, which implicate the -2 position as defining specificity, the base at this 

position observed in both A3A–ssDNA co-crystal structures do not make any specific 

interactions with the protein. Rather, the hydrogen bonding edge of the -2 base is in 

close proximity to corresponding edge of +1 base, suggesting possible intra-DNA 

interactions as being determinants of preference. Our molecular modeling confirmed 

such interactions could stabilize the U-shaped DNA conformation within the A3A active 

site, explaining the -2 position specificity. 

We found that A3A binds to RNA in a highly specific and structural context-

dependent manner. Previous reports 94 suggested that A3A bound only weakly and did 



 126 

not deaminate RNA. However, the potential substrate sequence was designed to lack 

secondary structure, which in light of our results on hairpin versus linear RNAs, may 

have inadvertently precluded RNA deamination. Recently, A3G and A3A were 

implicated in deaminating RNA in proposed RNA hairpins in whole cell lysates but the 

specificity was not quantified 162, 187. Intriguingly, our data show that A3A binds RNA 

hairpins with similar affinity as for DNA hairpins, which suggests that RNA-editing 

activity of A3A might be more prevalent than previously anticipated. Future experiments 

will identify if A3A’s catalytic efficiency is similar for DNA and RNA hairpins. 

The comprehensive identification of A3A signature sequences and preference for 

loop structures will enable a more accurate evaluation of A3 activity based on sequence 

analysis. Previous studies used only a single identified A3 signature sequence to 

implicate A3’s role in viral restriction or cancer progression. In contrast, our study 

suggests a more accurate method for determining evidence of A3 activity would be to 

use a set of sequences. In the case of A3A, we have identified four almost equivalent 

substrate signature sequences, TTCA, TTCG, CTCA, and CTCG, which should be used 

for identifying A3A’s involvement in mutagenesis. We also found a positive correlation 

between A3A’s sequence preference of binding and enzymatic activity. Correlation not 

only legitimizes the use of a DNA binding assay with inactive enzyme as a reliable 

method for studying specificity of A3s, it also shows that affinity for substrate is a driving 

factor for catalysis. Thus, factors that could enhance or perturb binding, such as pH or 

nucleic acid structure, would result in modulation of deamination activity. 

In addition to using the full A3A signature sequences, the probability of 

mutagenesis should not be solely based on nucleotide sequence, but should also be 
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weighted by the propensity of the target sequence to be within a structured loop. 

Secondary structure prediction software could be used to identify the consensus 

sequence in loop regions of structured DNA or RNA. A3A signature sequences, 

(T/C)TC(A/G), that we identified, not only accounts for the discrepancies in the A3A 

target sequences reported in the literature such as TTCA versus CTCG 98 106, but also 

leads us to advocate a new paradigm for identifying A3A’s involvement in mutation of 

endogenous or exogenous DNA. 

Designing inhibitors or activators for A3s has been extremely challenging. Our 

results implicate a need to incorporate the structural context of the target deoxycytidine 

in the therapeutic design. Larger “U” shaped macrocycles may serve as more 

appropriate starting scaffolds in designing cancer therapies targeting A3s, which would 

mimic the “U” shape of the bound ssDNA. Macrocycles have recently been shown to 

have good drug-like properties and may be a strategy to target these critical 

enzymes188.  

4.5 METHODS 

4.5.1 Cloning of APOBEC3A E72A overexpression construct 

The pColdII His-6-SUMO-A3A(E72A) was constructed by first cloning the SUMO 

gene from pOPINS His-6-SUMO into pColdII His-6 vector (Takara Biosciences) using 

NdeI and KpnI restriction sites. Human APOBEC3A coding sequence from pColdIII 

GST-A3A(E72A, C171A) was then cloned into the pColdII His-6-SUMO vector with KpnI 

and HindIII. The C171A mutation in the A3A construct was reverted to wild type residue 

by site directed mutagenesis resulting in the pColdII His-6-SUMO-APOBEC3A(E72A) 

catalytically inactive over-expression construct used for all experiments in this study. 
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4.5.2 Expression and purification of APOBEC3A E72A  

Escherichia coli BL21 DE3 Star (Stratagene) cells were transformed with the 

pColdII His-6-SUMO-APOBEC3A(E72A) vector described above. The E72A mutation 

was chosen to render the protein inactive. Expression occurred at 16 °C for 22 hours in 

lysogeny broth medium containing 0.5 mM IPTG and 100 µg/mL ampicillin. Cells were 

pelleted, re-suspended in purification buffer (50 mM Tris-HCl [pH 7.4], 300 mM NaCl, 1 

mM DTT) and lysed with a cell disruptor. Cellular debris was separated by centrifugation 

(45,000 g, 30 min, 4C). The fusion protein was separated using HisPur Ni-NTA resin 

(Thermo Scientific). The His6-SUMO tag was removed by means of a Ulp1 protease 

digest overnight at 4 °C. Untagged A3A(E72A) was separated from tag and Ulp1 

protease using HisPur Ni-NTA resin. Size-exclusion chromatography using a HiLoad 

16/60 Superdex 75 column (GE Healthcare) was used as a final purification step. 

Purified recombinant A3A was determined to be free of nucleic acid prior to binding 

experiments by checking OD 260/280 ratios, which was at 0.54. 

4.5.3 Oligo source and preparation 

Labeled and unlabeled oligonucleotides used in this assay were obtained through 

Integrated DNA Technologies (IDT). Labeled oligonucleotides used in the fluorescence 

anisotropy based binding assay contain a 50-TAMRA flourophore at their 5’ end and 

were re-suspended in ultra-pure water at a concentration of 20 µM. Unlabeled 

oligonucleotides used for the competition assays were resuspended in ultra-pure water 

to a concentration of 4 mM.  
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4.5.4 Fluorescence anisotropy-based DNA binding assay 

Fluorescence anisotropy-based DNA binding assay was performed as described 84 

with minor alterations. A fixed concentration of 10 nM 50-TAMRA-labeled 

oligonucleotides was added to A3A-E72A in 50 mM MES buffer (pH 6.0), 100 mM NaCl, 

0.5 mM TCEP in a total reaction volume of 150 mL per well in nonbinding 96-well plates 

(Greiner). For the fluorescence anisotropy-based DNA binding assay with APOBEC3B-

CTD E255A was performed in 50 mM Tris buffer (pH 7.4), 100 mM NaCl, 0.5 mM 

TCEP. The concentration of APOBEC3 was varied in triplicate wells. Plates were 

incubated for overnight at room temperature.  

For the pH dependence experiments the buffer reagent used for testing was pH 

4.0–5.0 sodium acetate, pH 5.5-6.5 MES, pH 7.0-8.0 HEPES, pH 8.5-9.0 TRIS. Assay 

was performed as described above. For the competition assays, a fixed concentration of 

300 nM A3A(E72A) was used and unlabeled oligonucleotide of varied concentration 

was added from 0–6.1uM. A3A(E72A) was pre-incubated with unlabeled oligonucleotide 

for an hour in assay buffer, then labeled DNA was added and incubated overnight at 

room temperature.  

For all experiments, fluorescence anisotropy was measured using an EnVision 

plate reader (PerkinElmer), exciting at 531 nm and detecting polarized emission at 579 

nm wavelength. For analyzing data and determining Kd values, Prism (GraphPad) was 

used for least-square fitting of the measured fluorescence anisotropy values (Y) at 

different protein concentrations (X) with a single-site binding curve with Hill slope, a 

nonspecific linear term, and a constant background using the equation Y=(Bmax * X^h)/ 

(Kd^h + X^h) +NS*X + Background, where Kd is the equilibrium dissociation constant, h 
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is the Hill coefficient, and Bmax is the extrapolated maximum anisotropy at complete 

binding.  

4.5.5 1H NMR-based A3 deaminase activity assay 

Deaminase activity was determined for A3A protein by assaying active enzyme 

against linear DNA substrates and measuring the product formation using 1H NMR. 

Active A3A protein (50 nM) was assayed against linear DNA substrates (200 µM) in 

buffer with 50 mM MES pH 6.0, 100 mM NaCl, 0.5 mM TCEP, and 5% D2O. 

Experiments were performed on 9-mer substrates containing the target sequences 

AA(A/G/T)TC(A/G/T)AAA and at 40°C to prevent the DNA from oligomerizing due to 

high concentration. Experiments were performed using a Bruker Avance III NMR 

spectrometer operating at a 1H Larmor frequency of 600 MHz and equipped with a 

cryogenic probe. Product concentration was estimated from peak integrals with Topspin 

3.5 software (Bruker Biospin Corporation, Billerica, MA) using an external standard. 

Activity was determined from the initial rate of product formation via first-order 

exponential fitting of the progress curve. Rate errors were estimated by Monte Carlo 

simulation using 100 synthetic data sets and taking the residuals of the initial fit to the 

experimental data as the concentration error. 

4.5.6 Molecular Modeling 

The crystal structures of A3A bound to ssDNA (PDB ID: 5KEG and 5SWW) were 

used for molecular modeling 104, 106. The DNA sequence was first mutated using Coot 

189. The complex structure was then prepared and minimized by ProteinPrep Wizard in 

Maestro (Schrödinger) at pH6.0 with other settings as default. 
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5 Chapter V: Mechanism for APOBEC3G catalytic exclusion of RNA and non-

substrate DNA 

 

Chapter V is a collaborative study that has been previously published as:  
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H. "Mechanism for APOBEC3G catalytic exclusion of RNA and non-substrate DNA." 

Nucleic Acids Research 47.14 (2019): 7676-7689. 
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5.1 ABSTRACT 

The potent antiretroviral protein APOBEC3G (A3G) specifically targets and 

deaminates deoxycytidine nucleotides, generating deoxyuridine, in single stranded DNA 

(ssDNA) intermediates produced during HIV replication. A non-catalytic domain in A3G 

binds strongly to RNA, an interaction crucial for recruitment of A3G to the virion; yet, 

A3G displays no deamination activity for cytidines in viral RNA. Here, we report NMR 

and molecular dynamics (MD) simulation analysis for interactions between A3Gctd and 

multiple substrate or non-substrate DNA and RNA, in combination with deamination 

assays. NMR ssDNA-binding experiments revealed that the interaction with residues in 

helix1 and loop1 (T201-L220) distinguishes the binding mode of substrate ssDNA from 

non-substrate. Using 2’-deoxy-2’-fluorine substituted cytidines, we show that a 2’-endo 

sugar conformation of the target deoxycytidine is favored for substrate binding and 

deamination. Trajectories of the MD simulation indicate that a ribose 2’-hydroxyl group 

destabilizes the - stacking of the target cytosine and H257, resulting in dislocation of the 

target cytosine base from the catalytic position. Interestingly, APOBEC3A, which can 

deaminate ribocytidines, retains the ribocytidine in the catalytic position throughout the 

MD simulation. Our results indicate that A3Gctd catalytic selectivity against RNA is 

dictated by both the sugar conformation and 2’-hydroxyl group. 

 

5.2 INTRODUCTION 

Cytidine deaminases perform a variety of functions ranging from diversification of 

antibodies to defense against viral infection. Four members of the APOBEC3 (A3) 

family of cytidine deaminases (A3D, A3F, A3G and A3H) have varying degrees of 
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effectiveness in restricting HIV-1 infection4, 22, 190-193. Restrictive A3 proteins are 

encapsidated during viral replication by associating with viral and cellular RNAs, and 

transported in the budding virion to the target cell. During the course of viral reverse 

transcription, a transient singlestranded DNA (ssDNA) intermediate is formed. 

Restrictive A3 proteins bind to the ssDNA intermediate and deaminate cytosine bases 

to uracil in preferred polynucleotide contexts (5’-TC for A3D, A3F and A3H, and 5’-CC 

for A3G)194. Upon copying of the ssDNA intermediate to form the dsDNA required for 

successful integration of the HIV-1 genome into the host DNA, mutated uracils base pair 

with adenines resulting in G to A hypermutation and loss of coding integrity170. 

Interestingly, even though these restrictive A3 proteins bind tightly to RNA in the cell195, 

196, they do not catalyze cytosine deamination in the context of RNA197, 198. The 

mechanism by which these A3 proteins distinguish between relatively rare single 

stranded DNAs and the abundant single stranded RNA present in the cellular milieu has 

been a perplexing question. Without the ability to selectively exclude ribocytidines from 

deamination, mRNA would acquire lethal amounts of nonsense and missense 

mutations[e.g., 199], and without the ability to interact with RNA, A3 proteins would not 

be able to exert restrictive pressure during HIV infection since encapsidation is essential 

for deamination of the HIV-1 genome [e.g. 193]. Sharma and co-workers observed the 

deamination of RNA by A3G in natural killer cells, lymphoma cell lines and CD8- 

positive T cells under specific conditions, such as cellular crowding and hypoxia, but not 

in cells under normal conditions116. Since A3G strongly disfavors ribocytidine as a 

substrate in vitro197, 198, the physiological function of RNA deamination by A3G remains 

elusive. Structures of the catalytically active subunits of A3A, A3B, A3C, A3F, A3G and 
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A3H have been determined in the absence of ssDNA by us79-81, 83, 85 and others87, 89, 91-

93, 95, 96, 98, 99, 200. We104 and another group106 also determined structures of A3A bound to 

ssDNA, which provided insights of static interactions between substrate ssDNA and 

protein at the catalytic site. In the A3A–ssDNA co-crystal structures, the ssDNA exists in 

a tightly curved conformation with three nucleotides (the target deoxycytidine and 

flanking nucleotides) forming hydrogen bonds and π–π stacking interactions with A3A, 

and the sugar of the target deoxycytidine adopting the C2’-endo conformation typically 

found in DNA104, 106. Most recently, we determined the structure of the ssDNA-bound 

A3G catalytic domain using a variant of A3Gctd (A3G-CTD2) that has strong affinity for 

ssDNA containing a hotspot sequence, 5’-TCCCA105. In comparison to the A3A–ssDNA 

co-crystal structure, the ssDNA has a more extended conformation and larger contact 

surface with A3G-CTD2, by interacting with five nucleotides instead of only three. 

Although this cocrystal structure provided atomic details of static interactions between 

the hotspot nucleotides and the protein, the mechanism by which A3G strongly 

disfavored ribocytidine as a substrate was not revealed. In particular, a 2’-OH could fit 

within the spatial position of the 2’-H without significant steric hindrance105. Previously, 

Nabel et al. reported that the C2’-endo sugar conformation was important for the 

efficiency of deoxycytidine deamination catalyzed by human activation induced 

deaminase (AID) and mouse APOBEC1201. This finding may or may not be applicable 

for A3G because AID and mouse APOBEC1 are substantially different from A3G in 

regard to physiological targets; AID deaminates deoxycytidines in particular 5’-A/T-

2A/G-1C0 hotspots of the immunoglobulin genes undergoing transcription12, whereas 

APOBEC1 deaminates a specific cytidine in the apolipoprotein B (Apob) pre-mRNA13, 
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202. Importantly, APOBEC1 but not A3G, requires an additional factor for deamination 

site selection and activity in cells; an RNA-binding protein, namely the APOBEC1 

complementation factor or A1CF203, 204. For AID, different studies have found that 

various proteins interact with AID205, 206. In this study, we interrogate the differences in 

the interaction modes of A3Gctd for substrate or non-substrate ssDNAs, and the 

exclusion mechanisms for ribocytidine from deamination. We show that the mode of 

interaction including extent, intensity and time-scale, determined by NMR titration 

experiments, clearly distinguish the catalytically productive binding mode for substrate 

ssDNA from the inactive mode for non-substrate. In addition, we reveal the importance 

of 2’-endo sugar conformation for catalytically productive binding using 2’-deoxy-2’-

fluorine substituted cytidines as substrates. Furthermore, molecular dynamics (MD) 

simulations indicate that 2’-OH causes the target ribocytidine to dislocate from the 

catalytic position for A3Gctd but not for A3A, consistent with A3A’s ability to deaminate 

ribocytidine. 

 

5.3 RESULTS  

5.3.1 Assigning NMR signals of A3Gctd-2K3A-E259A at pH 6.0  

Wild-type A3Gctd has weak affinity for ssDNA at neutral pH, making detection 

difficult of significant NMR chemical shift perturbations upon ssDNA binding79, 89. 

Enzymatic kinetics analysis of A3Gctd at pH 6 suggested that A3Gctd bound ssDNA 

with a higher affinity183, but wildtype A3Gctd was not stable enough to conduct lengthy 

NMR experiments at that pH with high protein concentration. Therefore, we used a 

variant A3Gctd, termed A3Gctd2K3A that contained five amino acid substitutions 



 137 

(L234K, C243A, F310K, C321A and C356A) which enhance the solubility and stability of 

protein, without altering catalytic activity, structure, or HIV-1 restriction79, 81, 142. To 

observe interaction and compare differences between substrate and non-substrate 

ssDNAs without ongoing catalytic reaction, we produced a catalytically inactive variant 

of A3Gctd2K3A by introducing a single alanine point mutation at the catalytic glutamate 

(E259A), termed A3Gctd-2K3AE259A. We completed the assignment of backbone 

NMR signals of A3Gctd-2K3A-E259A by using standard triple resonance NMR 

experiments at pH 7.3, then transferred the assignments to the spectrum recorded at 

pH 6.0 by following peak shifts throughout pH titration from pH 7.3 to pH 6.0. We were 

able to assign most of the resolved NMR signals in the 15N-HSQC spectrum at pH 6.0 

(Figure 5.1). 
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Figure 5.1: NMR signal assignments of A3Gctd-2K3A-E259A at pH 6.0. 
1H-15N HSQC spectrum of A3Gctd-2K3A-E259A. Inset locations indicated with colored 
boxes correspond to expanded inset spectrum borders.   
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5.3.2 Identification of ssDNA-binding surfaces of A3Gctd  

A3Gctd deaminates the 3 C in the 5 -CCC motif 45 times more efficiently than the 

middle C, and does not deaminate the 5 C in vitro88, 183, 207, 208. In order to determine 

interactions that are responsible for this disparity, we mixed ssDNA to a sample 

containing catalytically inactive A3Gctd-2K3A-E259A and observed interaction between 

the protein and ssDNA. We mixed the substrate ssDNA (5’-AATCCCAAA), the 

intermediate product (5’-AATCCdeoxyUAAA), the final product (5’-

AATCdeoxyUdeoxyUAAA), or a ribocytidine substituted ssDNA (5’-AATCCrCAAA) to 

A3Gctd-2K3AE259A, and compared chemical shift perturbations (CSP) and signal 

intensity changes of their 15N-HSQC spectra. The 15N-HSQC spectrum of A3Gctd-

2K3A-E259A showed substantial perturbations upon adding 5’-AATCCCAAA (Figure 

5.2A). This data was quantified as described in Methods and plotted as CSP (red with 

right axis) and signal intensity changes (gray with left axis) in Figure 5.2C. Both 

analyses revealed three primary regions perturbed upon 5’-AATCCCAAA binding. 

These three regions, binding regions 1, 2 and 3 or BR1, BR2 and BR3, form a 

continuous surface in the 3D structure of ssDNAfree A3Gctd (PDB ID: 4ROV) (25) 

(Figure 5.2D). BR1 spans residues T201-L220, which includes residues located in 

helix1 (T201-N207) and loop1 (N208-T218). Especially, W211 and R215, both located 

in loop1, lost >70% of their signal intensity suggesting direct interactions with DNA. BR2 

spans residues R238-K270, and includes β-sheet2, loop3 and helix2. Residues 

sequentially close to N244 and H257, both located in loop3, showed substantial CSP 

and intensity changes (Figure 5.2C). These changes are likely caused by the direct 

interaction of N244 and H257 with the target deoxycytidine, as observed in the co-
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crystal structure of A3Gctd-ssDNA105. It is noteworthy that R238, located in the short 

loop between β-sheet2 and β-sheet2, showed substantial perturbation, although it is not 

located at the catalytic site. Furthermore, F262, L263, V265 and W269, all located in 

helix2 with their side chains directed toward the inside of the protein and forming a 

hydrophobic core, displayed DNA-bound as well as DNA-unbound NMR signals 

following substrate addition (Figure 5.2B), indicating slow exchange dynamics between 

bound and unbound states. BR3 included W285 and T311-E330, which contains loop7 

(T311-G319), previously suggested to be important for recognition of the hotspot 

sequence87, 172, 209. Especially, W285 located at the catalytic pocket79, 87 as well as loop7 

residues, A312, R313, Y315 and D316, displayed substantial CSP with slow exchange 

dynamics (Figure 5.2B). These perturbations were consistent with the co-crystal 

structure105 as R313, Y315 and D316 had direct interactions with ssDNA. The exchange 

of bound and unbound states of loop7 residues likely destabilized helix4 (E323–E330), 

since residues located in helix4 showed >60% reductions in signal intensity. 
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Figure 5.2: Chemical shift perturbation and signal intensity changes upon binding 
5′-AATCCCAAA. 
A) 1H-15N HSQC spectrum of 0.2 mM A3Gctd-2K3A-E259A mixed with 1 mM 5ʹ-
AATCCCAAA (red) overlaid onto 0.2 mM A3Gctd-2K3A-E259A (black). Significantly 
shifted peaks are labeled. B) NMR signals of residues in slow exchange regime upon 
titration of 5ʹ-AAT′AAA. DNA-unbound signals are labeled unbound, whereas DNA-
bound signals are labeled bound. Intensities of unbound signals decrease, while 
intensities of bound signals increase, upon increment of the ssDNA concentration. C) 
Quantification of peak intensity changes (gray bars, left axis) and chemical shifts 
changes (red bars, right axis).  Residues in BR1, BR2 and BR3 are colored blue, 
magenta and yellow, respectively. Secondary structures within the binding regions are 
shown under the residues. D) Three ssDNA binding regions are shown on the surface 
of the structure of ssDNA-free wild type A3Gctd (PDB ID# 4ROV). Binding region 1 
(BR1, cyan) spans residues 201-220, binding region 2 (BR2, magenta) spans residues 
238-270, and binding region 3 (BR3, yellow) spans the non-consecutive residues 285, 
311-330.  Secondary structures of binding regions are shown in cartoon models.  
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We next compared CSP and intensity changes for 5’-AATCCCAAA with the 

intermediate product, 5’-AATCCdeoxyUAAA, by subtracting the changes for 5’-

AATCCCAAA from the changes for 5’-AATCCdeoxyUAAA (‘delta – delta’ plot, Figure 

5.3A). We found that 5’-AATCCdeoxyUAAA engaged all three binding regions 

described above for 5’-AATCCCAAA, however, the key difference was that BR1 

residues displayed reduced chemical shift changes and signal intensity changes 

(appearing as negative red and gray bars in Figure 5.3A), indicating lesser interaction 

of BR1 with 5’-AATCCdeoxyUAAA. In addition, Figure 5.3A revealed that the exchange 

rate between bound and unbound states became faster with 5’-AATCCdeoxyUAAA than 

5’-AATCCCAAA, as residues in BR2 and BR3 indicated reduced chemical shift changes 

(negative red bars) but increased intensity reduction (positive gray bars) caused by line-

broadening due to exchange between bound and unbound states. The faster exchange 

rate with 5’-AATCCdeoxyUAAA was also evident in the spectrum (data not shown) 

since there was no residue showing two distinct bound and unbound signals, as had 

been displayed upon binding 5’-AATCCCAAA (Figure 5.2B). 5’-AATCCdeoxyUAAA 

contained a 5’-CC deamination motif, and the underlined C was presumably positioned 

at the catalytic site. The lesser interaction with 5’-CC compared to 5’-CCC was 

consistent with deamination efficiency since A3Gctd deaminates 5’-CCC 45-times more 

efficiently than 5 -CCdeoxyU183. 
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Figure 5.3: Comparison of chemical shift perturbations and intensity changes 
upon binding substrate and non-substrate ssDNAs. 
ssDNA oligomers were mixed with A3Gctd-2K3A-E259A at 1 mM: 0.2 mM concentration 
ratio, and 1H-15N HSQC spectra were acquired. Peak intensity changes and chemical 
shifts changes upon addition of ssDNA were quantified for each ssDNA, then “delta – 
delta” plots were made by subtracting the changes for 5′-AATCCCAAA from the 
changes for A) 5′-AATCCdeoxyUAAA, B) 5′-AATCdeoxyUdeoxyUAAA and C) 5′-
AATCCriboseCAAA. D) shows the “delta – delta” plot where the changes for 5′-
AATCC(2′-F-ANA)CAAA have been subtracted from the changes for 5′-AATCC(2′-F-
RNA)CAAA.  The differences of chemical shift changes and signal intensity changes are 
shown by red bars (right axis) and gray bars (left axis), respectively. 
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Figure 3. Comparison of chemical shift perturbations and intensity changes upon binding substrate and non-substrate ssDNAs. ssDNA oligomers were
mixed with A3Gctd-2K3A-E259A at 1 mM: 0.2 mM concentration ratio, and 1H–15N HSQC spectra were acquired (spectra are provided in Supplementary
Figure S1). Peak intensity changes and chemical shifts changes upon addition of ssDNA were quanti!ed for each ssDNA (provided in Supplementary
Figure S2), then ‘delta––delta’ plots were made by subtracting the changes for 5′-AATCCCAAA from the changes for (A) 5′-AATCCdeoxyUAAA, (B)
5′-AATCdeoxyUdeoxyUAAA and (C) 5′-AATCCriboseCAAA. (D) shows the ‘delta – delta’ plot where the changes for 5′-AATCC(2′-F-ANA)CAAA
have been subtracted from the changes for 5′-AATCC(2′-F-RNA)CAAA. The differences of chemical shift changes and signal intensity changes are shown
by red bars (right axis) and gray bars (left axis), respectively.

by using microscale thermophoresis (MST) (41). The
apparent dissociation constant, Kd, was determined
for 5′-AATCCCAAA, 5′-AATCCdeoxyUAAA, 5′-
AATCdeoxyUdeoxyUAAA and 5′-AATCCriboseCAAA
to be 1.57 ± 0.16, 2.17 ± 0.25, 2.76 ± 0.28 and 6.65 ± 0.86
mM, respectively (Table 1; binding curves are provided in
Supplementary Figure S3). Although the differences of
Kd values among the ssDNAs were small, the direction
of changes of Kd values supported deamination activity
of A3Gctd as it showed stronger af!nity for the substrate
(5′-AATCCCAAA) and weaker af!nity for the product (5′-
AATCdeoxyUdeoxyUAAA), and the intermediate product
(5′-AATCCdeoxyUAAA) showed a Kd value between
the substrate and the product. 5′-AATCCriboseCAAA
displayed an af!nity weaker than that of the product 5′-
AATCdeoxyUdeoxyUAAA, indicating that a ribocytidine
was disfavored more than deoxy-uridine for binding by
A3Gctd.

Collectively, NMR and MST experiments showed that
A3Gctd has multiple substrate and non-substrate ssDNA
binding modes with similar af!nities, but one conformation

Table 1. Apparent Kd values of A3Gctd-2K3A-E259A for binding sub-
strate and non-substrate ssDNAs.

ssDNA sequence Kd [mM]

5′-AATCCCAAA 1.57 ± 0.16
5′-AATCCdUAAA 2.17 ± 0.25
5′-AATCdUdUAAA 2.76 ± 0.28
5′-AATCCrCAAA 6.65 ± 0.86
5′-AATCC(2′-F-RNA)CAAA 3.76 ± 0.30
5′-AATCC(2′-F-ANA)CAAA 1.74 ± 0.49

involved interaction with BR1, slightly enhancing binding,
and presumably positioned the target cytosine base into the
active site for the deamination to occur.

Effects of sugar conformation on ssDNA binding and deami-
nation

Two potential mechanisms could exclude ribocytidines
from catalysis by A3Gctd: the presence of the hydroxyl moi-
ety at the sugar C2′ position of the ribocytidine or the con-
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Next, we compared a non-substrate ssDNA with the substrate by using ‘delta – 

delta’ plots, subtracting the changes for 5’-AATCCCAAA from the changes for 5’-

AATCdeoxyUdeoxyUAAA (Figure 5.3B). 5’-AATCdeoxyUdeoxyUAAA is the final 

product of the deamination of 5’-CCC as A3Gctd does not deaminate the 5’-TC motif in 

vitro88, 207, 210. All three binding regions, BR1, BR2 and BR3, demonstrated greatly 

reduced chemical shift changes and signal intensity changes compared with 5’-

AATCCCAAA (appearing as negative red and gray bars in Figure 5.3B), indicating 

interactions were lost. Although interactions with BR1 and BR3 were almost completely 

lost, W211NE (BR1), R215 (BR1) and D316 (BR3) retained significant reduction of 

signal intensities, suggesting that these residues still engage the DNA. We tested 

another non-substrate ssDNA containing a ribocytidine at the target position, 5’-

AATCCriboseCAAA, by using ‘delta–delta’ plots (Figure 5.3C). Figure 5.3C displayed 

very similar profile to Figure 5.3B as all three binding regions substantially reduced 

both chemical shift changes and signal intensity changes compared with 5’-

AATCCCAAA. Especially, BR1 residues lost interaction with the exception of W211NE 

and R215. BR3 was slightly more involved in the interaction with 5’-AATCCriboseCAAA 

than 5’-AATCdeoxyUdeoxyUAAA as BR3 residues showed smaller loss of signal 

intensity changes (shorter negative gray bars in Figure 5.3C). 

The affinities of A3Gctd-2K3A-E259A for above substrate and non-substrate 

ssDNAs were assayed directly by using microscale thermophoresis (MST) (41). The 

apparent dissociation constant, Kd , was determined for 5′ -AATCCCAAA, 5′ -

AATCCdeoxyUAAA, 5′ - AATCdeoxyUdeoxyUAAA and 5′-AATCCriboseCAAA to be 

1.57 ± 0.16, 2.17 ± 0.25, 2.76 ± 0.28 and 6.65 ± 0.86 mM, respectively (Table 5.1). 
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Although the differences of Kd values among the ssDNAs were small, the direction of 

changes of Kd values supported deamination activity of A3Gctd as it showed stronger 

affinity for the substrate (5′-AATCCCAAA) and weaker affinity for the product (5′- 

AATCdeoxyUdeoxyUAAA), and the intermediate product (5′ -AATCCdeoxyUAAA) 

showed a Kd value between the substrate and the product. 5′-AATCCriboseCAAA 

displayed an affinity weaker than that of the product 5′- AATCdeoxyUdeoxyUAAA, 

indicating that a ribocytidine was disfavored more than deoxy-uridine for binding by 

A3Gctd.  

Collectively, NMR and MST experiments showed that A3Gctd has multiple 

substrate and non-substrate ssDNA binding modes with similar affinities, but one 

conformation involved interaction with BR1, slightly enhancing binding, and presumably 

positioned the target cytosine base into the active site for the deamination to occur.  
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Table 5.1: Apparent Kd values of A3Gctd-2K3A-E259A for binding substrate and 
non-substrate ssDNAs. 
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5.3.3 Effects of sugar conformation on ssDNA binding and deamination  

Two potential mechanisms could exclude ribocytidines from catalysis by A3Gctd: 

the presence of the hydroxyl moiety at the sugar C2′ position of the ribocytidine or the 

conformation of the sugar; ribose prefers the C3’-endo conformation whereas 

deoxyribose prefers the C2’-endo conformation (Figure 5.4). To discriminate between 

these two possible mechanisms, we tested two fluorinated cytidine substrates, the first 

containing a fluorine substituted for the C2’ hydroxyl of the ribose (2’-deoxy-2’-

fluororibonucleic acid, 2’-F-RNA) and the second containing an arabinose sugar with the 

C2 hydroxyl substituted for fluorine (2’-deoxy-2’- fluoroarabonucleic acid, 2’-F-ANA) 

(Figure 5.4). The 2’-FRNA cytidine presumably had the C3’-endo conformation of the 

un-substituted ribose base, while the 2’-F-ANA cytidine presumably preferred the C2’-

endo conformation typically seen in DNA211. Fluorine substitution retains an 

electronegative atom at the C2’ position to mimic the presence of an oxygen atom with 

significantly weaker capability to form a hydrogen bond. 
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Figure 5.4: Comparison of nucleotide sugar conformation. 
Varying functional group and stereochemistry at the C2′ position of the ribose ring 
significantly impacts the ribose ring conformation. A) Stereochemistry at the C2′ position 
of the nucleotides used in this study. B) Preferred conformations of the ribose ring 
containing specified substitutions in polynucleotide contexts. Exo-conformations 
indicated by vertical lines connecting functional groups at the indicated stereo-centers. 
Endo-conformations indicated by horizontal lines connecting functional groups.  
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We added 5’-ATTCC(2’-F-ANA)CAATT or 5’-ATTCC(2’-F-RNA)CAATT to a 

sample of A3Gctd2K3A-E259A. On the contrary, addition of 5’-ATTCC(2’-F-

RNA)CAATT showed limited CSP and moderate reduction of NMR signal intensities 

across the protein, but did not display the intensive BR1 interaction, suggesting that 5’-

ATTCC(2’- F-RNA)CAATT is not a substrate. Figure 5.3D shows the ‘delta-delta’ plot 

where the CSP and intensity changes for 5’-ATTCC(2’-F-ANA)CAATT are subtracted 

from the changes for 5’-ATTCC(2’-F-RNA)CAATT. 5’-ATTCC(2’-F-ANA)CAATT caused 

substantially increased reduction of NMR signal intensities compared with 5’-ATTCC(2’-

FRNA)CAATT (negative gray bars in Figure 5.3D) in BR1 and BR2, but less extent in 

BR3. 

To compare differences in affinity, apparent dissociation constant, Kd, values were 

determined using MST. Kd values were 1.73 ± 0.48 mM and 3.76 ± 0.30 mM for 5 -

ATTCC(2’-F-ANA)CAATT and 5’-ATTCC(2’-FRNA)CAATT, respectively (Table 5.1). 

The Kd value of 5’-ATTCC(2’-F-ANA)CAATT was similar to that of substrate ssDNAs, 

including 5’-AATCCCAAA (Kd = 1.57 ± 0.15 mM) and 5’-AATCCdeoxyUAAA (Kd = 2.17 

± 0.25 mM), whereas the Kd value of 5’-ATTCC(2 -FRNA)CAATT was between the Kd 

values of two nonsubstrate ssDNAs, 5’-AATCdeoxyUdeoxyUAAA and 5’- 

AATCCriboseCAAA. 

Since both NMR signal intensity changes and Kd values suggested that 5’-

ATTCC(2’-F-ANA)CAATT might be a substrate for the deamination catalyzed by 

A3Gctd, we conducted 1D 1H NMR deamination assays. Over the course of 8 hours, we 

observed the appearance of the H5 signal from the deaminated C2’-F-arabinose uracil 

product 5’-ATTCC(C2’-F-ANA)UAATT at 5.58 ppm, followed by the appearance of 
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another H5 signal at 5.68 ppm from the uracil from the product of deamination of the 

middle deoxycytidine, 5’-ATTCdeoxyU(C2’-F-ANA)UAATT (Figure 5.5C). The 

deamination speed for the 2’-F-ANA cyti dine was 0.06 ± 0.01 reactions/min. We also 

tested whether 5’-ATTCC(2’-F-RNA)CAATT could be deaminated by A3Gctd-2K3A, but 

over the course of 8 h, no uracil signal was observed, confirming that the 2’-F-RNA 

cytidine was not a substrate (Figure 5.5D). 
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Figure 5.5: Real-time NMR deamination assays. 
A) 1D 1H spectra series of 150 µM 5′-ATTCCCAATT mixed with 1.5 µM A3Gctd-2K3A.  
A 5′-CCdU product doublet appears at 5.64 ppm, 5′-CdUdU product doublet appears at 
5.73 ppm with concurrent shifting of the 3′ dU doublet to 5.66 ppm. B) 1D 1H spectral 
series of 150 µM 5′-ATTCCrCAATT mixed with 50 µM A3Gctd-2K3A. No deamination 
product was observed. C) 1D 1H spectra series of 150 µM 5′-ATTCC(2′-F-ANA)CAATT 
mixed with 30 µM A3Gctd-2K3A. A doublet signal for the (2′-F-ANA)U, which is the 
deamination product of (2′-F-ANA)C, was observed at 5.58 ppm. A doublet signal of the 
uracil resulted from deamination of the middle C, 5′-CU(2′-F-ANA)U, later appears at 
5.68 ppm with concurrent shifting of the 3′ (2′-F-ANA)U to 5.60 ppm. D) 1D 1H spectral 
series of 150 µM 5′-ATTCC(2′-F-RNA)CAATT mixed with 30 µM A3Gctd-2K3A. No 
deamination product was observed. 
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5.3.4 Molecular dynamics simulations of A3Gctd–ssDNA and A3A–ssDNA 

complexes 

To reveal the atomic-level mechanism for how A3Gctd strongly disfavors 

ribocytidine (rC) as a substrate, we investigated the stability of ssDNA in the active site 

through molecular modeling and molecular dynamics (MD) simulations. We modeled 5’-

TCCCAA and 5’-TCCrCAA with wild type A3Gctd based on the ssDNA-bound A3Gctd 

crystal structure (PDB ID: 6BUX) and performed MD simulations. Both MD simulations 

converged during the 100 ns simulation time. The deoxycytidine (dC) remained in the 

crystal structure conformation at the catalytic site during the simulations with 5’-

TCCCAA (Figures 5.6ABC, 5.7A, blue and B). However, in the simulations with 5’-

TCCrCAA, ssDNA still bound, but rC shifted ∼3 Å away relative to the starting position 

within 10 ns of the MD simulation (Figures 5.6DEF, 5.7A, red and C). The relocation of 

rC was due to conformational rearrangements induced by the hydroxyl group attached 

to 2’C (2’-OH) in rC. H257, which is in close proximity to rC, can form a hydrogen bond 

with 2’-OH (5 ns; Figure 5.6E), which in turn destabilized the stacking interaction 

between the H257 imidazole ring and rC nucleobase. As a result, the critical hydrogen 

bonds stabilizing co-crystal structure conformation of the target ribocytidine, between 

the N244 sidechain and sugar, and between A258 backbone and nucleobase, were 

disrupted. The side chain of N244 then flipped towards rC and formed a new hydrogen 

bond with the rC base (10 ns; Figure 5.6F), and thus dislocated the rC to a position that 

was incompatible with the deamination reaction. rC was stable at this relocated position 

as it did not go back to the original catalytic position during the rest of the MD simulation 

(Figure 5.7A, red). Thus, our computational results were in agreement with 
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experimental data that A3G could deaminate dC but not rC. Furthermore, we performed 

similar modeling and MD simulations for A3A as a comparison since we observed 

binding114 and deaminations of both dC and rC by A3A (Figure 5.8). The deamination 

rate for rC was two orders of magnitude slower than dC in an in vitro NMR-deamination 

assay (Figure 5.8). In agreement with experiments, the simulations showed that both 

dC and rC were stable in the catalytic site of A3A and maintained co-crystal structure 

conformation throughout the MD simulation (Figure 5.7DEF). 
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Figure 5.6: Snapshots from MD simulations with deoxy-cytidine and ribo-cytidine. 
All panels display the expanded view of the catalytic site of A3Gctd. Zn2+ is shown as a 
gray sphere, and yellow dashed lines indicate possible hydrogen bonding. DNAs are 
shown in orange stick model, and nitrogen and oxygen atoms are colored blue and red, 
respectively. A), B) and C) are snapshots of the 5′-TCCCAA and A3Gctd complex at 0 
ns, 5 ns and 10 ns time points, respectively, while D), E) and F) are snapshots of the 5′-
TCCrCAA and A3Gctd complex at 0 ns, 5 ns and 10 ns time points, respectively. 
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Figure 5.7: Comparison of A3Gctd and A3A in MD simulations with ssDNAs 
containing dC or rC. 
A) A3Gctd and B) A3A root-mean-square-deviation (RMSD) of the target cytidine during 
MD simulation. RMSD of all heavy atoms of the target cytidine are shown for 100 ns 
simulation time. Deoxy-ribose C (dC) or ribose C (rC) with A3Gctd is shown in blue and 
red respectively in A), whereas dC or rC with A3A is shown in orange and black 
respectively in D).   B.C) and E,F) Superposition of expanded views of the catalytic site 
of A3Gctd (B and C, and A3A E and F). Zn2+ molecules are shown as spheres. The 
snapshots at 0 ns are colored blue, whereas the snapshot at 100 ns is colored yellow. 
DNAs are shown in stick model, and nitrogen and oxygen atoms are colored blue and 
red, respectively. B) 5′-TCCCAA and A3Gctd complex, C) 5′-TCCrCAA and A3Gctd 
complex, E) 5′-AATCGAA and A3A complex, and F) 5′-AATrCGAA and A3A complex. 
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The 1H NMR signal of the deamination product was tracked with respect to reaction time 
for 200 µM of 5′-AATTCAAAA mixed with 50 nM A3A (black crosses) and 200 µM of 5′-
AATTrCAAAA mixed with 500 nM A3A (green circles). It should be noted that the 
concentration of A3A in the 5′-AATTrCAAAA reaction mixture was 10-fold higher than 
that of the 5′-AATTCAAAA reaction mixture. Spectra were measured on a Bruker 
Avance III 600 NMR Spectrometer at 37ºC in buffer containing 50 mM MES pH 6.0, 100 
mM NaCl, and 0.5 mM TCEP. The initial rates for the 5′-AATTCAAAA and 5′-
AATTrCAAAA deamination were 52 ± 2 reactions per minute and 0.3 ± 0.1 reactions 
per minute, respectively.  
  

Figure 5.8: Deamination of rC and dC by A3A. 
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5.4 DISCUSSION  

5.4.1 BR1 interaction distinguishes catalytic binding from noncatalytic binding  

Characterizing the mechanism of substrate selection and non-substrate exclusion 

by A3Gctd is important for the development of inhibitors that can selectively modulate 

A3G activity as well as other A3 enzymes, including those with possible links to 

carcinogenesis such as A3A and A3B150, 212. Using a combination of experimental and 

computational methods, we highlight protein-ligand interactions critical for substrate 

binding that are absent for nonsubstrates. Our NMR data show that ssDNA binding 

interfaces of A3Gctd-2K3A form a continuous surface of the protein engaging loops 1, 3 

and 7 (Figure 5.2D). Intense interactions with loop1 residues were observed only with 

substrate ssDNAs (Figure 5.2C). This finding supports the importance of loop1 residues 

for ssDNA binding that has been previously proposed based on the NMR and crystal 

structures of ssDNA-unbound A3Gctd79, 87, and further, Carpenter et al. provided 

experimental evidence by swapping loop1 regions between AID and A3Gctd209. Our 

data is also consistent with our recent co-crystal structure of A3GCTD2 and ssDNA in 

which W211, R213 and H216, all in loop1, form direct interactions with DNA through – 

stacking and hydrogen bonds105. Ziegler and co-workers recently reported an interesting 

co-crystal structure of Pot1- fused-A3Gctd and ssDNA108, and they suggested that 

loop1 and loop7 residues, including P210, W211, I314 and Y315, along with W285 

interact with ssDNA nonspecifically during the search of deamination hotspots. 

Consistent with their suggestion, we found that W211, R215, D316 and W285 were 

involved in the interactions with substrate as well as non-substrate ssDNAs. 
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Allosteric regulation may be an effective strategy to develop inhibitors of A3 

activity as competitive inhibitors have been elusive. The NMR signal perturbation data 

imply possible allosteric sites to target for A3Gctd. In particular, the slow exchange 

regime of helix 2 residues suggests that the reorientation of helix2 is an allosteric 

movement coupled with the target cytosine base positioning in Zn2+ containing active 

site, since helix 2 contains H257 and E259 which coordinate the Zn2+. Another possible 

allosteric site is 2 -strand (R238-L242) as the dynamic modulation of this strand is most 

likely helping N244 to stabilize the target deoxycytidine during catalysis1, 104-106, 213, 214. 

5.4.2 A3Gctd suppresses the catalytic efficiency of ribocytidine through sugar 

conformation and 2’-OH  

Two distinct attributes of RNA could be responsible for the lack of catalytic activity; 

the presence of the 2’-OH directly, via steric clashing or unfavorable interaction, or 

indirectly, via conformational impact on the structure of the ribose ring that may prevent 

cytosine base access to the catalytic site. ssDNAs containing a ribocytidine at the target 

position have been shown to be excluded from deamination by A3G in vitro197, 198. 

Consistently, binding of 5’-AATCCriboseCAAA to A3Gctd2K3A-E259A resulted in a 

pattern of perturbations similar to that seen in 5’-AATCdeoxyUdeoxyUAAA, a 

nonsubstrate ssDNA (Figure 5.3B and C). We observed a slightly more extensive 

interaction for 5’-AATCCriboseCAAA with BR3 (residues W285, T311-E330) than seen 

with 5’- AATCdeoxyUdeoxyUAAA. This effect is likely due to interactions between loop7 

and the 5’-CC motif present in 5’-AATCCriboseCAAA since loop7 recognizes the 

deoxycytidine flanking the 5 side of the target deoxycytidine in this motif. Nonetheless, 

5’-AATCCriboseCAAA binding completely lacked the characteristic BR1 interactions 
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seen in substrate ssDNAs, suggesting that the presence of the ribose sugar prevented 

both the ribocytidine and the middle deoxycytidine from catalytically productive binding. 

Consistently, the real-time NMR deamination assay did not detect any deamination 

product from 5’-AATCCriboseCAAA (Figure 5.5B). To determine structural factors 

involved in DNA versus RNA differentiation, we mixed A3Gctd-2K3A-E259A with 

ssDNAs containing 2’-F-ANA cytidine or 2’-F-RNA cytidine at the target position. Here, 

fluorine serves as an isopolar and isosteric mimic of the native hydroxyl moiety in 

ribonucleotides, retaining similar interbond distances and similar electrostatic properties, 

as Pauling electronegativities are 3.44 and 3.98 for O and F, respectively215. Based on 

their chemical structures, 2’-F-ANA cytidine and 2’-F-RNA cytidine are assumed to have 

the C2’-endo conformation and the C3’-endo conformation, respectively216(Figure 5.4). 

Addition of 5’-ATTCC(2’-F-RNA)CAATT resulted in moderate reduction of NMR signal 

intensities of A3Gctd-2K3A E259A for BR2 and BR3, yet lacked significant CSP and 

intensity change in BR1. Since 5’-ATTCC(2’-F-RNA)CAATT was not deaminated by 

A3Gctd-2K3A (Figure 5.5D), these results are consistent with 5’-AATCCriboseCAAA, 

suggesting the C3’-endo sugar conformation of the ribocytidine was disfavored for the 

catalytically productive binding. In contrast, the ssDNA containing a 2’-F-ANA cytidine 

exhibited interactions with BR1 (Figure 5.3D), and the 2’-FANA-cytidine was 

deaminated (Figure 5.5C), suggesting that the propensity for 2’-F-ANA to retain the 

C2’-endo sugar conformation of the native DNA allowed the catalytically productive 

binding. Furthermore, the subsequent deamination of the middle deoxycytidine in the 5’-

CC(2’-F-ANA)C sequence (Figure 5.5C) suggested that the 2’-endo sugar conformation 

was also preferred for the nucleotide flanking the 3 side of the target deoxycytidine 
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because A3Gctd2K3A did not deaminate the middle deoxycytidine of 5’- 

ATTCCriboseCAATT nor 5’-ATTCC(2’-F-RNA)CAATT (Figure 5.5B,D). The 

deamination rate for the 2’-F-ANA cytidine was 0.06 ± 0.01 reactions/minute, which was 

over five times slower than that for deoxycytidine, suggesting that fluorine at the 2’ 

position negatively affected the catalytic interaction with A3Gctd. Our results extended 

the finding of Nabel et al.201 to A3Gctd, and provided experimental evidence as we 

showed that the 2’-F-ANA (presumably 2’-endo conformation) allowed the catalytically 

productive binding, but 2’-F-RNA (presumably 3’-endo conformation) did not. Since 

RNA is capable of adopting the 2’-endo sugar conformation, the remaining question is 

why the ribocytidine assuming the 2’-endo sugar conformation is not efficiently 

deaminated by A3Gctd. To answer this question, we investigated whether 2’-OH 

destabilizes the ribocytidine in the 2’-endo sugar conformation at the catalytic site of 

A3Gctd. MD simulations showed that 2’-OH triggered structural changes causing 

dislocation of the target base from the catalytic position. Therefore, 2’-OH may be 

another structural feature that negatively affects the deamination of ribocytidine by 

A3Gctd. On the other hand, A3A held ribocytidine at the catalytic position in the MD 

simulation, consistent with A3A’s ability to deaminate ribocytidines albeit less efficiently 

compared with deoxycytidine (Figure 5.8). For A3A, the MD simulation showed that 2’-

OH neither forms a hydrogen bond with the Zn2+-binding histidine (H70 in A3A), nor 

triggered subsequent structural changes of residues interacting with the target 

ribocytidine. The RMSD data indicated that movements of residues interacting with the 

ribocytidine were more restricted in A3A than A3Gctd; therefore, the target ribocytidine 

was stable at the catalytic position in A3A. Since A3A also deaminates 5-methyl-cytidine 
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as a substrate217-219, studying A3A further by using NMR and MD simulations to 

understand binding modes for DNA and RNA substrates will be enlightening. 

 

5.5 MATERIALS AND METHODS 

5.5.1 Plasmid generation and protein purification  

The pGEX-6P-1 vector (GE Healthcare Life Science) containing the C-terminal 

catalytic domain of A3G (A3Gctd), residues 191–384, with the previously reported 2K3A 

mutations (L234K, C243A, F310K, C321A, C356A)79 was used as the template for 

Quikchange mutagenesis (Stratagene/Agilent Technologies) to introduce E259A 

substitution. Escherichia coli were transformed with the plasmid, grown to OD 0.5 at 

37°C followed by a reduction in temperature to 17°C for 30 min, and protein expression 

was induced using a 0.1 mM final concentration of isopropyl β-D-1-

thiogalactopyranoside (IPTG). The cells were lysed using sonication into buffer 

containing 50 mM sodium phosphate pH 7.3, 100 mM NaCl, 2 mM DTT, 0.002% Tween 

20. Following high-speed centrifugation, the super- natant was bound to glutathione 

sepharose resin (GenScript) and washed under high salt and high detergent conditions, 

400 mM NaCl and 0.06% Tween 20, followed by two washes in low salt and low 

detergent conditions, 30 mM NaCl and 0.002% Tween 20. The GST-tag was removed 

using PreScission protease (GE Healthcare Life Science) in 50 mM sodium phosphate 

buffer at pH 7.3 with 100 mM NaCl, 2 mM DTT and 0.002% Tween 20. Following 

cleavage, the protein was dialyzed into sample buffer containing 50 mM sodium 

phosphate pH 6.0, 100 mM NaCl, 2 mM DTT, 0.002% Tween 20 and 50 µM ZnCl2.  
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5.5.2 NMR spectroscopy 

All multi-dimensional NMR spectra were acquired on an 850 MHz Bruker Ascend 

spectrometer equipped with a 5 mm Z-gradient TCI cryoprobe. Samples contained a 

final volume of 300µL (97% H2O/3% D2O, v/v), and spectra were taken at 293 K. 

Backbone resonance assignments for the A3Gctd-2K3A-E259A mutant were derived 

using TROSY versions of a standard set of triple resonance spectra (HNCA, 

HN(CO)CA, HNCACB, HN(CO)CACB, HNCO, HN(CA)CO) on uniformly 15N/13C labeled 

protein with 85% random deuteration at pH 7.3. Assignments were transferred to pH 6.0 

HSQC spectrum by titrating pH to identify relevant peak shifts. 15N-HSQC with ssDNA 

titrations were collected on 0.2 mM 15N-labeled A3Gctd2K3A-E259A samples at pH 6.0 

with unlabeled ssDNA at ratios of 1:1, 1:2 and 1:5 (A3Gctd-2K3A-E259A:ssDNA). Each 

titration point was collected with 128 transients and 100 real data points in the indirect 

15N dimension. Chemical shift and intensity changes were monitored through a series of 

spectra at varying relative concentration ratios. Chemical shift changes were calculated 

using the equation:  

 

Intensity changes were calculated using the difference in peak height at the center 

of the 15N-HSQC peak between the unbound and bound spectra divided by the unbound 

peak height. Real-time 1D 1H NMR deaminase assays were performed on Bruker 

Avance III 600 MHz NMR spectrometer at 20°C in buffer containing 50mM sodium 

phosphate pH 6.0, 100 mM NaCl, 1 mM DTT, 10 µM ZnCl2 and 0.002% Tween-20. 

Oligonucleotide substrate concentrations of 150 µM were used in the assays with 
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enzyme concentrations ranging from 1.5 to 50 µM. Spectra were analyzed using 

Topspin 3.5 software package (Bruker Corporation, Billerica, MA, USA). 

5.5.3 DNA oligomers  

Oligonucleotides containing standard DNA and RNA bases were synthesized by 

Integrated DNA Technologies (IDT). Oligonucleotides containing 2’-deoxy-2’- 

fluororibonucleic acid (2’-F-RNA) and 2’-deoxy-2’-fluoroarabonucleic acid (2’-F-ANA) at 

the underlined cytosine position in the 5’-ATTCCCAATT oligonucleotide were 

synthesized by Boston Open Labs. 

5.5.4 Microscale Thermophoresis assay (MST)  

The binding affinity of purified A3Gctd-2K3A-E259A with 9nt ssDNAs (IDT), 

including 5’-AATCCCAAA, 5’-AATCCdeoxyUAAA, 5’-AATCdeoxyUdeoxyUAAA, 5’-

AATCCriboseCAAA, 5’-ATTCC(2’-F-ANA)CAATT and 5’-ATTCC(2’-F-RNA)CAATT, 

were measured using Monolith NT.115 (Nano Temper Technologies)220. RED-tris-NTA 

fluorescent dye solution was prepared at 100 nM in the MST buffer (50 mM phosphate 

pH 6.0, 100 mM NaCl, 1 mM DTT, 0.002% Tween-20, 20 µM ZnCl2). A3Gctd-2K3A-

E259A was mixed with dye at final concentration of 100 nM and incubated for 30 min at 

room temperature followed by centrifugation at 15 000 g for 10 min. The ssDNAs were 

prepared to stock concentration of 64 mM for AATCCCAAA, 5’-AATCCdeoxyUAAA, 5’-

AATCdeoxyUdeoxyUAAA, 5’-AATCCriboseCAAA, or 32 mM for 5’-ATTCC(2’-F-

ANA)CAATT and 5’- ATTCC(2’-F-RNA)CAATT) in the MST buffer. To determine the 

binding affinity, 10 µl of ssDNA solution at 16 different concentrations, ranging from 32 

mM to 0.24 µM, or 16 mM to 0.12 µM for 5’-ATTCC(2’-FANA)CAATT and 5’-ATTCC(2’-

F-RNA)CAATT, were prepared in LoBind centrifuge tubes (Fisher Scientific), then 10 µl 
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of fluorescent labelled A3Gctd-2K3A-E259A solution (100 nM) was added to each tube. 

The mixtures were incubated at 4°C to reach equilibrium. Each incubated solution was 

loaded into a Nano Temper MST premium coated capillary. The measurement was 

performed at room temperature using 40% LED power and 20% MST power. The 

experiment was repeated three times using freshly purified protein at each time, and 

data analysis was carried out using Nano Temper analysis software (MO affinity). 

5.5.5 Molecular dynamics simulations  

The structures of wild type A3Gctd with 5’-TCCCAA or 5’-TCCrCAA were modeled 

starting from ssDNA-bound A3Gctd crystal structure (PDB ID: 6BUX) through program 

Modeller 9.15 using basic modeling. The structures of wild type A3A with 5’-AATCGAA 

or 5’-AATrCGAA were modelled based on A3A DNA-bound crystal structure (PDB ID: 

5KEG) using the same method. The phosphate groups of 5 T base in all structures were 

removed to prevent strong electronegative environment. All molecular dynamics 

simulations were performed using Desmond164 from Schrodinger. The models were first 

optimized using Protein Preparation Wizard at pH 6.5. The simulation systems were 

then built through Desmond System Setup using OPLS3 force field131. Simple point 

charge (SPC) water model was used for solvation with cubic boundary conditions and 

12 A buffer box size. The final system was neutral and had ˚ 0.15 M sodium chloride. 

The simulation system was first energy minimized with gradually reduced restraints 

(1000, 5, 0 force constant) on backbone and solute heavy atoms. A multi-stage MD 

simulation protocol was used. Briefly, the system was simulated using NPT ensemble 

with gradually increased simulation time (24, 50 and 500 ps) and decreased restraints 

on the solute heavy atoms to no restraints. The final production stage was performed at 
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300 K and 1 bar with no restraints using NPT ensemble. 100 ns MD simulations were 

performed for all DNA-bound structures. The analysis of MD simulations was performed 

separately for each trajectory. The RMSD and RMSF of protein and DNA molecule were 

calculated using Simulation Interactions Diagram from Schrodinger. Hydrogen bond 

occupancies over the trajectories and the side chain dihedral angles were calculated 

using program VMD. A hydrogen bond was defined as having a donor-acceptor 

distance of 3.6 Å and involving polar atoms nitrogen, oxygen, sulfur and fluorine. The 

donor-hydrogen-acceptor angle was defined as being less than 30 degrees. The 

trajectories from MD simulations for RMSD, distance and dihedral analysis were aligned 

based on whole molecules. 
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6 Chapter VI: Discussion and future directions 
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6.1 Combining molecular modeling and pMD with experimental assays to study 

the biology of A3s 

APOBEC3s proteins (A3s), a family of cytidine deaminases, protect the host cell 

from endogenous retro-elements and exogenous viral infections by introducing 

hypermutations. However, the ability of these proteins to deaminate cytidines in ssDNA 

makes APOBECs a double-edged sword. When over-expressed, the resulting mis-

regulated deaminase activity of A3s can contribute to genomic instability and cause 

cancer, as has been reported for A3A, A3B and A3H. Over the past years, several 

crystal and NMR structures of apo A3s and DNA/RNA-bound A3s have been 

determined. These structures provide the basis for understanding how A3s structurally 

bind to ssDNA and regulate catalytic activity, and can guide inhibitor design to target the 

active site of A3s to find potential anti-cancer drugs. 

Why we have these functionally overlapping but distinct A3 enzymes still remains 

as a question. The enzymology and biological functions of A3s have been extensively 

studied. Despite overall structural similarity, A3 proteins have different binding 

affinity/deamination activity and substrate specificities. The ssDNA binding affinity of 

A3s could range from nM up to mM. In general, A3s prefer to deaminate the cytidine 

after thymidine (TC) except A3G which prefers CC. The A3 structures have suggested 

the importance of the loops around the active site for nucleotide specificity and binding. 

However, the structural mechanisms underlying A3 activity and substrate specificities 

require further examination. 

In my thesis research I used a combination of computational modeling and pMDs 

with experimental verifications as a powerful method to study the A3 family. First of all, 
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this combined approach overcomes the challenges in determining all apo and DNA-

bound A3 structures to study the structural mechanisms in A3s. The low solubility, 

tendency for oligomerization and low DNA affinity of certain A3 proteins have required 

introducing mutations to be able to structurally and biochemically characterize these 

proteins in vitro 79-81, 83-85, 92, 96, 99, 104, 106, or prevented such characterization especially 

for NTDs and full-length A3s. Molecular modeling with refinement from MD simulations 

enable generating reliable structures of A3 proteins (alone or with substrate 

oligonucleotides) and thus provide insights or propose hypothesis when crystal 

structures are not accessible. In addition, the parallel detailed analyses, including 

dynamics (RMSFs, RMSDs), intermolecular interactions (hydrogen bonds, vdW 

contacts) and electrostatics calculations from pMDs help reveal the underlying subtle 

but key differences among the highly similar A3s. 

Starting with A3B (as described in Chapter II), I applied pMD with experimental 

binding assays to understand the structural basis for ssDNA binding, relatively lower 

activity, and substrate specificity in A3B compared to the highly similar but distinct A3A. 

The crystal structure had the critical loop 1 of A3B replaced with that of A3A, resulting in 

a more active chimeric enzyme. I modeled the wild-type A3B–ssDNA complex structure. 

I identified Arg211 in loop 1 as the gatekeeper coordinating DNA, and residues that 

determine nucleotide specificity at -1’ position. I also found a unique auto-inhibited 

conformation in A3B that restricts access to the active site and may underlie lower 

catalytic activity. The cross-validation and agreement between computational structural 

analysis and experimental results in this work allowed me to apply the same method for 

studying other A3s as well as different specificities. 
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In Chapter III, I examined the structural mechanism of substrate specificities in 

A3s focusing on A3A, A3B and A3G as these family members have the most 

experimental characterization. The proposed mechanisms and observations from 

modeling and pMD were correlated with published experimental results. In this study, I 

identified an interplay between DNA binding conformation and substrate sequence 

specificity. I also found the potential molecular mechanisms of experimentally observed 

substrate specificity at -2’ position for these A3s. In addition, I revealed interdependence 

between substrate nucleotide binding sites as well as the active site loops. Previously, 

we had found potential intra-DNA interactions in A3A, which correlated with its substrate 

sequence specificity (Chapter IV). Finally, I investigated the structural mechanism for 

exclusion of RNA from A3G catalytic activity using similar methods (Chapter V). Overall, 

the comprehensive structural analysis of A3 domains in this thesis revealed the 

determinants of substrate specificity and shed light into the biological function of these 

enzymes. 

 

6.2 Implications of studying substrate specificities of A3 family 

6.2.1 Studying the substrate specificities broadens our understanding of A3s  

The A3 family is diverse with extensive polymorphisms among the family 

members. A3s are found only in primates. In human, A3 genes are clustered on 

chromosome 22. Interestingly, A3s seem to be under positive selection and thus 

constantly changing. For instance, A3H has at least 7 haplotypes in human. Another 

polymorphism in A3 is an A3B deletion allele159. Individuals with this deletion allele 

seem to be more susceptible to HIV221 and have increased risk for cancer222. Besides, 
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A3s have can have either one or two zinc-binding domains. The pseudo-catalytic NTDs 

in the two-domain A3s have the same overall structural fold compared to the 

catalytically active CTDs. NTDs also have the conserved active site residues. The 

biological implications of having different polymorphisms and NTDs in the A3 family still 

remain largely unknown.   

Having diverse A3s may help against novel retroelements. The A3 family is part of 

our innate immunity to protect host genome from retroviral infections and retro 

transportations. Considering the fast evolution of these retroelements in nature, having 

multiple A3s with different specificities may serve as a pool of weapons to effectively 

target viruses with a fast response time.  

Having diverse A3s may be required for the regulation of activity to prevent 

cancer. Over-expressed A3s have been shown to cause heterogeneity in multiple 

cancers and thus help cancer evolve to escape from immune system. Moreover, study 

of human cancer cell lines has suggested A3s may be involved in the origination of 

cancer in human167. Therefore, the expression, localization and activity of A3s have to 

be regulated. For instance, cytoplasm localized A3s lost ability to deaminate RNAs 

possibly to avoid interfering with translation. Thus multiple A3s with different specificities 

may be needed for proper cellular regulation. 

Therefore, studying the substrate specificities of A3 family help us better 

understand the biological functions of each A3, the balance between host protection 

versus viral evasion, how gene mutators are regulated, and potentially the evolutionary 

pathways leading to cancer. 
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6.2.2 Applying insights from substrate specificities to design specific inhibitors 

to target A3s 

Common cytidine deaminase (CDA) inhibitors, which are usually cytidine mimics, 

fail to inhibit A3s despite the fact that CDA and A3s share high sequence identity and 

similar structure in the active site (Figure 6.1). Recent crystal structures and prior 

biochemical characterization suggest that unlike CDAs, which can bind a single 

nucleotide, A3s bind longer oligonucleotides (usually at least five nucleotides) and more 

extensive interactions may be needed for efficient binding. The underlying mechanisms 

for this disparity have remained unknown. My studies of substrate specificities may 

provide some insights into this difference. The interdependent interactions between 

upstream nucleotides and substrate target cytidine suggested that the binding event in 

A3s is not restricted to the active site; but instead is coordinated with loops around the 

active site. Loop regions are usually more susceptible to changes compared to other 

parts of a protein. Having binding event coordinated by these loops may allow A3s to 

quickly adapt to changes to accommodate different substrates and drive fast evolution 

to restrict novel retroelements.  

Accordingly, the design of high affinity A3 inhibitors should start from chemically 

modified oligonucleotides instead of a single nucleotide or small molecules. Recent 

studies incorporating non-native bases into ssDNA have shown potential inhibition of 

A3s223-225. However, these oligos have not been optimized based on structural 

interactions of the ssDNA within the enzyme complex, nor for drug-like properties. My 

thesis work provide multiple insights to guide the inhibitor design and find inhibitors that 

selectively target specific A3s: 1) Optimizing the nucleotides (sequences A/T/C/G or 
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ribose/deoxy-ribose) at each position. My studies of protein–substrate interactions at 

each nucleotide position have revealed critical residues as well as preferred substrate 

sequence. Choosing the optimal nucleotide would not only increase binding affinity, but 

also specificity. For instance, inhibitors with A at the -2’ position would increase affinity 

toward A3B but not A3A; inhibitors using ribose-based oligonucleotides may specifically 

target A3A but not A3G.  2) Leveraging different conformations of bound 

oligonucleotides. ssDNA binds A3s in different overall conformations because the 

variable active site loops define a unique binding groove in each A3. Hence designing 

oligonucleotide-based inhibitors with defined conformations would help increase 

specificity. For instance, designing macrocyclic or hairpin-based oligonucleotide 

inhibitors will specifically target A3A but not A3G. 3) Applying a similar method 

(modeling and pMD) for virtual screening. My studies using computational methods 

combined with experimental verifications have shown promising results for studying A3 

substrate recognition. Inhibitor candidates based on substrate DNA sequences can also 

be evaluated using a similar approach. Hence, virtual screening using molecular 

modeling followed by MD simulations will allow effectively evaluating potential inhibitors 

before spending extensive efforts for synthesis and experimental characterization.  
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Figure 6.1: Structural comparison of the active site in human CDA and A3A. 
The active site comparison between human CDA (PDB: 1CTU; left) and A3A (PDB: 
5KEG; right). Zinc coordinating residues, CDA inhibitor and ssDNA are shown in sticks 
representation. 
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6.2.3 Applying insights from substrate specificities to design better gene editors 

Most modifications that have been implemented for improving the efficiency and 

fidelity of gene editing using cytosine base editors (CBEs) are not on the deaminase. 

Deaminase however vastly affects the performance and application of CBEs. One major 

limitation in using CBEs to treat genetic diseases is that the target site must naturally 

exist in the preferred sequence context for cytidine deaminase, which may not always 

happen for the desired modification. In addition, current versions of CBEs can edit off-

target cytidines within the editing window due to poor substrate specificities of 

incorporated cytidine deaminase. CBEs incorporating APOBEC1 and A3A as the 

deaminase have been shown to induce transcriptome-wide off-target RNA editing226. 

One possible solution to these problems is to have libraries of context-dependent base 

editors as a toolkit to select from to specifically edit the desire site. My thesis studies of 

A3s provide additional suggestions: 1) Using A3s that lack RNA editing ability to 

minimize off-target RNA editing 2) Incorporating different A3s depending on the 

nucleotide sequence of the target sites. For instance, using A3G for 5’-CC while using 

A3B for 5’-TC. In addition, A3s can be used to specifically target sites with epigenetic 

modifications, namely A3A, A3B or A3H. 3) Engineering A3s to adapt diverse substrate 

sequences. In general, A3s prefer TC except A3G, which prefers CC. However, desired 

editing site may not always exist naturally after T or C. Hence, engineering A3s, 

especially introducing changes to the active site loops, may allow A3s to adapt novel 

sequence specificity. Besides, structural comparison between AID, which prefers A/G at 

-1 position, and A3s may help guide the engineering. 
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6.3 Applying molecular modeling and pMD to other systems 

6.3.1 ssDNA binding and substrate specificities of other A3s  

Many questions still remain about substrate recognition and specificities in the A3 

family: How does substrate DNA bind to other A3s besides A3A, A3B and A3G? How 

do the diverse active site loops determine the binding, activity and substrate specificities 

in A3s? How do full-length two-domain A3s bind to substrate DNA, and especially how 

is the NTD involved in ssDNA binding? Using molecular modeling, I have modeled the 

wild type full-length A3G structure and performed electrostatics surface analysis. From 

the model, I identified a positively charged patch through the active site of CTD toward 

loop 1 of NTD, which suggests how ssDNA might bind to NTD simultaneously with CTD. 

Mutations to this positive patch have caused defects in both deamination and anti-HIV 

activity, supporting the proposed binding mode (Detailed results are presented in 

Appendix I)    

In addition to substrate specificities, how A3s interact with many other proteins for 

different biological functions has remained unknown. Among these proteins, Vif 

represents the most well-known but yet experimentally challenging binding partner of 

A3s due to its intrinsically disordered structure. Vif binds to more than one A3 (A3G, 

A3F, A3D and A3H) with distinct binding surfaces. Recently, the very first Vif–A3F 

structure has been determined through cryo-EM. However, A3F in this structure has 

only CTD and multiple mutations. This A3F construct may not represent the biologically 

relevant interface. Using modeling and pMDs, we can generate models of wild type 

A3F–Vif complex and thus study the binding interface. What we learn from this 
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interaction may help guide the design of inhibitors that potentially disrupt Vif binding and 

restore innate immunity to restrict HIV. 

6.3.2 Applying modeling and pMD to other proteins beyond A3s 

Besides A3s, I have applied modeling and pMD to investigate multiple biological 

systems including influenza virus (hemagglutinin, neuraminidase and influenza 

antibodies), human renalase, HIV protease, and recently a neutralizing antibody against 

SARS-CoV-2 spike protein. The methods that I employ provide structural insights into 

diverse topics in biology. For example: 1. Drug design: modeling of human renalase 

protein revealed a potential inhibitor, which was verified in in vivo mouse studies; 2. 

Drug resistance: modeling and MD simulations of neuraminidase variants suggested the 

molecular mechanism for F10 antibody resistance; 3. Epitope identification: modeling of 

antibody binding to the viral protein identified the epitope, for influenza hemagglutinin 

broadly neutralizing antibody and SARS-CoV-2 spike protein antibody.  

In fact, molecular modeling and pMD can be an integral part of the standard 

pipeline for analyzing protein structures, functions and molecular mechanisms to gain 

insights into biological function. This powerful combination enables characterizing and 

comparing distinct but related systems, such as members of an enzyme family, or a 

series of inhibitor modifications. Besides, experiments would also benefit from these 

computational analyses, for instance, for generating hypothesis to be tested or 

narrowing down the list of inhibitors or protein variants to be experimentally evaluated.  
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7 APPENDIX: 

7.1 Appendix I: Crystal structure of full-length APOBEC3G bound to 

dinucleotide reveals domain orientation and a ssDNA-binding channel 

7.1.1 PREFACE 

Appendix I is a collaborative study that currently under peer review: 

Atanu Maiti, Wazo Myint, Krista A. Delviks-Frankenberry, Shurong Hou, Christina Sierra 

Rodriguez, Nese Kurt Yilmaz, Vinay K. Pathak, Celia A. Schiffer, Hiroshi Matsuo. 

“Crystal structure of full-length APOBEC3G with a dinucleotide bound reveals domain 

orientation and a likely ssDNA-binding channel.” 

 

Contribution from Shurong Hou: 

I performed the molecular modeling of wild type full-length A3G structure and 

electrostatics surface analysis of the wild type model. I made figure 4B. 

 

7.1.2 ABSTRACT 

APOBEC3G (A3G) is a single-stranded DNA (ssDNA) cytosine deaminase that 

can restrict HIV-1 infection by mutating the viral genome. A3G consists of a non-

catalytic N-terminal domain (NTD) and a catalytic C-terminal domain (CTD). A3G-NTD 

helps virion incorporation and A3G catalytic function by binding ssRNA and ssDNA, 

respectively. Structures of both A3G domains have been solved individually, however 

no full-length A3G structure is available. We determined the crystal structure of a 

soluble variant of full-length A3G (sA3G*) with a dinucleotide bound. Furthermore, our 

sA3G* structure demonstrated NTD to be rotated 90° against CTD along the major axis 
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of the molecule, an orientation that forms a positively charged channel, consisting of 

NTD loop-1 and CTD loop-3. This channel connects to the dinucleotide and we propose 

that it could act as a ssDNA binding pathway. Structure-based mutations, in 

vitro deamination assays, and hypermutation analyses of proviruses suggest that R24 

located in NTD loop-1 provides a key interaction with ssDNA that is required for efficient 

deamination of 5ʹ-CC motifs in virions. Furthermore, the dinucleotide binds near the 

catalytic site of CTD but distant from catalytic Zn2+. Hydrogen bonds and hydrophobic 

interactions formed between the dinucleotide and A3G differ significantly from those 

formed with substrate 5′-TCCCA, the latter revealed by our previous co-crystal structure 

of A3G-CTD with ssDNA. This new information on the non-catalytic interactions 

between A3G and DNA, including how nucleotides are positioned, provides a plausible 

mechanism by which A3G scans ssDNA for deamination target sequences. 

 

7.1.3 INTRODUCTION 

Human APOBEC3G (A3G) is a member of the seven human APOBEC3 (A3A, 

A3B, A3C, A3D, A3F, A3G and A3H) family of proteins which belong to the larger 

APOBEC super- family4, 190-193. All APOBEC (APOBEC1, APOBEC2, APOBEC3, 

APOBEC4 and activation- induced cytidine deaminase (AID)) proteins catalyze Zn-

dependent deamination of deoxy- cytidine in single-stranded DNA (ssDNA) converting 

deoxy-cytidine to deoxy-uridine194. With their deaminase activity, APOBEC proteins play 

crucial roles in a variety of biological processes ranging from antibody diversification to 

defense against viral infections12, 22, 170, 175. Accordingly, A3G (also A3D, A3F and A3H) 

is capable of restricting human immunodeficiency virus type-1 (HIV-1) and other 
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retroviruses with its deoxy-cytidine deaminase activity22, 145-147, 174, 175, 227, 228. However, 

HIV-1 has developed a mechanism to counteract APOBEC3 proteins by one of its 

accessory proteins, namely viral infectivity factor or Vif, which leads APOBEC3 proteins 

to proteasomal degradation228-234. Briefly, in the absence of Vif, A3G is encapsidated 

into newly forming virions in association with viral and host RNAs22, 229-231, 235-239. Within 

the virion, the viral RNA is reverse transcribed into negative strand (-) DNA which acts 

as a template for positive strand (+) DNA synthesis. Before positive strand (+) DNA 

synthesis, encapsidated A3G recognizes substrate deoxy-cytidines, including hotspot 

sequences (5ʹ-CCC and 5ʹ-CC) in newly formed negative strand (-) DNA, and catalyzes 

the deamination of deoxy-cytidine to deoxy-uridine. Subsequently, during positive strand 

(+) DNA synthesis deoxy-uridine is used as a template, which results in G-to-A 

hypermutation in the positive strand (+) DNA. Thus, mutations exerted in the proviral 

DNA make the virus inactive or non-functional23, 169, 240. It is noteworthy that in addition 

to lethal hypermutation, deaminase-independent mechanisms of HIV-1 restriction by 

APOBEC3 proteins have been reported29, 241-244. 

Among APOBEC3 proteins, A3B, A3D, A3F and A3G consist of two homologous 

Zn binding domains. A3G contains catalytically inactive N-terminal (A3G-NTD) and a 

catalytically active C-terminal (A3G-CTD) domain245, 246. A3G-NTD plays an essential 

role in encapsidation of A3G through association with viral and host RNA236, 247, 248. In 

addition, A3G- NTD binds to ssDNA and probably supports catalysis by stabilizing the 

A3G-substrate ssDNA complex. A3G-NTD is also involved in Vif-mediated degradation 

of A3G as Vif interacts with A3G-NTD and triggers the degradation of A3G through the 

ubiquitin-proteasome pathway229-232. A3G-CTD contains a Zn2+ binding motif HxE-X23–
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28-C-X2–4-C and catalyzes the deamination of deoxy-cytidine to deoxy-uridine. 

Mechanistically, a Zn2+ coordinated water molecule produces a hydroxide ion which 

attacks the C4 atom of cytosine, causing hydrogen to be transferred to the carboxylate 

group of a glutamic acid coordinated to Zn2+ through a water molecule and ultimately to 

the product ammonia1, 213, 214. Although all APOBEC3 proteins use a similar deamination 

mechanism, they show varying preferences for target nucleotide sequences; A3G 

prefers 5ʹ-CCC and 5ʹ-CC, whereas other A3s prefer 5ʹ-TC249. Nucleotides flanking the 

target motifs, and secondary structures of ssDNA can also modulate A3 binding 

affinity114. Furthermore, previous studies showed that A3G deaminates multiple target 

sequences processively from the 3ʹ-end to the 5ʹ-end of a ssDNA, although the 

mechanism that enables processivity remains elusive210. 

Three dimensional structures of individual domains (NTD and CTD) of A3G have 

been solved by us and other laboratories using NMR and X-ray crystallography 79-81, 85, 

87, 89, 95, 101. These structures are overall similar and share the same secondary 

structures, including six α-helices and five β-strands, and one HxE-X23–28-C-X2–4-C Zn2+ 

binding motif. Recently, structures of APOBEC3 domains complexed with ssDNA have 

emerged. Xiao et al. published a crystal structure of rhesus macaque A3G N-terminal 

domain complexed with poly-T ssDNA, revealing non-catalytic binding of a single 

thymine99. Co-crystal structures of A3A104, 106 and chimeric A3B-CTD106 with ssDNA 

bound have been informative with regard to the 5ʹ-TC target sequence preference for 

A3A/A3B. Our recent structure of A3G-CTD co-crystalized with substrate ssDNA 

provided extensive information on how A3G-CTD specifically recognizes its 5ʹ-CCC 

preferred target sequence105. Another structure of A3G-CTD with a non-preferred 
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adenine nucleotide bound near the catalytic pocket108 showed possible interactions for 

initial DNA scanning of target sequences. Most recently, we have revealed that DNA 

interaction with helix-1 and loop-1 (T201-L220) of A3G-CTD distinguishes the substrate 

binding mode from non-substrate binding modes, and that a 2ʹ-endo sugar conformation 

of the target deoxy-cytidine is important for stabilization of the substrate during 

catalysis115. 

Although the individual domain structures of APOBEC3 proteins are available 79-81, 

83, 85, 87, 89, 91-93, 95, 96, 98, 101, 200, resolving the structures of full-length APOBEC3 proteins 

containing both NTD and CTD has been challenging due to their poor solubility and 

aggregation tendency. Without a full-length A3G structure, several important questions 

remain unanswered, including how the two domains are organized or oriented with 

respect to each other, how they interact, if this orientation changes when Vif binds, and 

how the two domains contribute to the search for and binding to the deamination target 

sequences and to RNA binding and multimerization. 

To address these questions, here we present a crystal structure of double-domain 

A3G bound to dinucleotide at 3.0 Å resolution. To overcome the solubility and 

aggregation problems of wild-type full-length A3G, we generated a soluble A3G variant 

(soluble A3G or sA3G) amenable for structural studies. The crystal structure shows the 

relative positioning of the two A3G domains and suggests a channel involving both 

domains in ssDNA binding. In addition, the dinucleotide captured by sA3G indicates 

non-catalytic DNA interactions which could be used during the search for deamination 

target sequences. 
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7.1.4 MATERIALS AND METHODS 

7.1.4.1 Plasmid generation and protein purification 

sA3G was generated by combining a soluble NTD85 and a soluble CTD, namely 

CTD2(57) with additional substitutions. Catalytically inactive variant of sA3G (sA3G*) 

was made by substituting E259 with alanine. pGEX6P-1 expression vector carrying 

sA3G* gene were transformed in BL21 (DE3) cells (Invitrogen). Cells were grown in LB 

media at 37°C until reaching an optical density 0.5-0.6 at 600 nm. Then temperature 

was changed to 17°C and cells were induced by adding 0.2 mM IPTG at optical density 

0.6-0.8. Cells were further grown overnight at 17°C. All the steps for protein purification 

were performed at 4°C unless specified. E. coli cells were harvested by centrifugation 

and resuspended in lysis buffer (50 mM sodium phosphate, pH 7.3, 150 mM NaCl, 25 

μM ZnCl2, 2mM DTT and 0.002% Tween-20) and protease inhibitor (Roche, Basel, 

Switzerland). The suspended cells were disrupted by sonication and then cell debris 

was separated by centrifugation at 20,000 rpm for 30 min. Supernatant containing 

desired protein was applied to glutathione-Sepharose (GE Healthcare Life Science) 

beads, preequilibrated with lysis buffer and agitated for about 2 hours. The beads were 

washed with PreScission Protease cleavage buffer (50 mM sodium phosphate, pH 7.5, 

100 mM NaCl, 2mM DTT and 0.002% Tween-20) and incubated overnight with 

PreScission protease (GE Healthcare Life Science). GST-free proteins were separated 

from the beads by centrifugation. Supernatant having the GSTfree protein was further 

purified by Superdex-75 size exclusion column (GE Healthcare Life Science) in FPLC 

buffer (20 mM Bis-Tris, pH 6.5, 100 mM NaCl, 10 uM ZnCl2, 2mM DTT and 0.002% 
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Tween-20) using an AKTA FPLC system. Purity and concentration of the proteins were 

measured by gel electrophoresis and UV spectroscopy. 

7.1.4.2 Crystal Growth and Data Collection 

Purified sA3G* was concentrated to about 100 μM using Amicon Ultra-4 (Merck 

Millipore). Crystallization screening was performed using a commercially available 

crystallization screen by the sitting drop vapor-diffusion method at 4°C. Crystal drops 

were set up by mixing 0.3 μl sample and 0.3 μl reservoir solution in a sitting drop 2-well 

crystallization plate (Molecular Dimension) using a robot, Mosquito Crystal (ttp Labtech). 

Crystals appeared after two weeks in a condition having 0.1M Tris (pH 8.0) and 5.5% 

w/v PEG 4000 (MemGold B-12 screen from Molecular Dimensions). Crystals were 

cryoprotected using reservoir solution containing 15% v/v glycerol and flash frozen in 

liquid nitrogen. X-ray diffraction data were collected at the Southeast Regional 

Collaborative Access Team (SER-CAT) 22-ID beam line at the Advanced Photon 

Source, Argon National Laboratory. The collected diffraction data were indexed, 

integrated and scaled using the HKL2000 program250. The space-group of sA3G* 

crystals was C2. 

7.1.4.3 Structure Determination and analysis 

The structure was solved by molecular replacement using human A3G-CTD 

structure (PDB ID 6BUX, DNA was removed) and rhesus macaque A3G-NTD structure 

(PDB ID 5K81) as search model at 3.0 Å resolution. The molecular replacement and 

initial structure refinement were performed using Phaser251 and Refmec5252 of CCP4 

program suit respectively. Model building of the protein and bound DNA were manually 

performed using the program Coot189. The final model was refined by Phenix253, 254 to 
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Rwork/Rfree values of 0.26/0.28. Model was validated with PDB validation tool and 

Molprobity255. Pairwise rms deviation were calculated using Doli256. Structural models 

used for figures were generated using PyMOL. 

7.1.4.4 HIV-1 infection and hypermutation assay 

Plasmid construction: The plasmids in this study are designated with a “p” while 

the names of viruses and proviruses generated from these plasmids are not. pHCMV-G 

expresses the G glycoprotein of vesticular stomatitis virus (VSV-G)257, pHDV-EGFP is 

an HIV-1 derived vector that expresses HIV-1 Gag-Pol and enhanced green fluorescent 

protein (EGFP) but does not express Env, Vif, Vpr, Vpu, or Nef258. pVif-HA is a codon-

optimized HIV-1 Vif expressing a C-terminal HA epitope tag259. pFLAG-A3G expresses 

wild-type A3G with an Nterminal FLAG epitope tag260. pFLAG-A3G was subjected to 

site-directed mutagenesis to introduce R24A or K180A (Quick Change Lightning Site-

Directed Mutagenesis Kit, Agilent Technologies) to create pFLAG-A3G-R24A and 

pFLAG-A3G-K180A, respectively. The structures of all final plasmids were confirmed by 

sequencing (Macrogen).  

Tissue culture and cell lines: Human embryonic kidney 293T cells (American 

Type Culture Collection) and TZM-bl cells (obtained through the NIH AIDS Reagent 

Program [Cat. No. 8129], Division of AIDS, NIAID, NIH: TZM-bl from Dr. John C. 

Kappes, Dr. Xiaoyun Wu and Tranzyme Inc.261) were grown in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% fetal calf serum (HyClone) and 1% 

penicillin-streptomycin stock (penicillin 50 U/ml and streptomycin 50 μg/ml, final 

concentration; Gibco). TZM-bl cells contain a HIV-1 tat-inducible luciferase reporter 
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gene that is expressed upon HIV-1 infection and Tat expression. All cells were 

maintained in humidified 37º C incubators with 5% CO2. 

Transfection, virus production and single-cycle infection assays: 

Transfections were performed using LT1 reagent (Mirus Bio) according to 

manufacturer’s instructions. To generate virus for infection, 4 × 105 293T cells were 

transfected with pHDV-EGFP (1 μg), with or without pVif-HA (2.5 μg), pHCMV-G (0.25 

μg), and variable concentrations of pFLAG-A3G, pFLAGA3G-R24A or pFLAG-A3G-

K180A (21, 42, 84, 170 or 340 ng). Equivalent DNA amounts in the transfection mix 

were maintained by adding pcDNA3.1 empty vector as needed. Forty-eight hours post-

infection, virus was harvested, filtered with 0.45-μm filters, and stored at -80 °C. Capsid 

p24 amounts were determined using the HIV-1 p24 ELISA Kit (XpressBio) according to 

manufacturer’s instructions. Normalized p24 was used to infect 4000 TZM-bl cells in a 

96-well plate, and 48-h post-infection, luciferase activity was measured using a 96-well 

luminometer (LUMIstar Galaxy, BMG LABTECH). Data were plotted as the percent 

inhibition of luciferase activity compared to the “No APOBEC3G” control. For some 

experiments, portions of the viral supernatant were spun through a 20% sucrose 

cushion (15,000 rpm, 2 h, 4° C, in a Sorvall WX80+ ultracentrifuge), concentrated 50-

fold, and used in experiments to determine virion encapsidation of FLAG-A3G, pFLAG-

A3G-R24A and pFLAG-A3G-K180A by western blotting analysis. 

Western blot analysis: Cell lysates were prepared using CelLytic M (Sigma) 

solution containing Protease Inhibitor Cocktail (Roche), followed by a 10-min, 10,000 × 

g spin to remove cellular debris. The cell lysates were mixed with NuPAGE LDS sample 

buffer (Invitrogen) containing β-mercaptoethanol and heated for 5 min at 95 °C. 
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Samples were analyzed on 4 –20% Tris-Glycine Gels (Invitrogen) using standard 

western blotting techniques. Proteins were detected with primary antibodies as follows: 

FLAG-A3G (mouse anti-FLAG M2 monoclonal antibody, 1:5,000 dilution, Sigma catalog 

#F3165); Vif-HA (mouse anti-HA monoclonal antibody, 1:5,000 dilution, Sigma catalog 

#H3663); glyceraldehyde 3-phosphate dehydrogenase (GAPDH); rabbit anti-GAPDH 

antibody, 1:10,000 dilution, Abcam catalog #ab128915). Antibody against HIV-1 p24 

(monoclonal, 1:10,000 dilution) was obtained through the NIH AIDS Reagent Program, 

Division of AIDS, NIAID, NIH: HIV-1 p24 Gag Monoclonal (#24-3) from Dr. Michael 

Malim (catalog #6458)261. An IRDye 800CW-labeled goat anti-rabbit secondary antibody 

(LI-COR catalog #926-32211) was used at a 1:10,000 dilution to detect rabbit primary 

antibodies and an IRDye 680-labeled goat anti-mouse secondary antibody (LICOR 

catalog #926-68070) was used at a 1:10,000 dilution to detect mouse primary 

antibodies. Protein bands were visualized and quantified using an Odyssey Infrared 

Imaging System (LICOR). 

Hypermutation: Genomic DNA was isolated from infected 293T cells using the 

QIAamp DNA blood kit (Qiagen). An 896-nt region of reverse transcriptase from 

integrated proviruses was PCR-amplified with Forward primer (NL4-3 nucleotide 

position #3296) 5′-GGACAGCTGGACTGTCAATGACATAC-3′ and Reverse primer 

(NL4-3 nucleotide position #4191) 5′-CTTGTTCATTTCCTCCAATTCCTTTGTGTG-3′. 

The PCR products were resolved on a 1% agarose gel, the band was gel-eluted using 

the QIAquick Gel Extraction Kit (Qiagen), and used in the TOPO blunt cloning reaction 

(Invitrogen). The resulting white colonies after transformation were grown in Luria broth 

and plasmid DNA was extracted using the NucleoSpin 8 Plasmid Kit (Clontech). 
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Individual clones were sequenced (Macrogen) and analyzed for the presence of 

hypermutation using Hypermut 

(http://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermut.html). Sequenced 

clones containing single G-to-A changes were not considered hypermutated as single 

mutations may have resulted from reverse transcriptase or RNA polymerase II errors 

during viral replication or during PCR and sequencing. 

7.1.4.5 Real-time NMR deamination assay 

We determined initial rates of deamination reaction by using 1H nuclear magnetic 

resonance (NMR) spectra as previously reported89, 183. 20nt ssDNA substrates, 

including 5ʹ-AATCCCAATTTTTTTTTTTT (C is the primary target cytidine, 5ʹ- TCCC- 

polyT) and 5ʹ-AAATCCAATTTTTTTTTTTT (C is the target cytidine, 5ʹ- TCC-polyT) 

(Integrated DNA Technologies), were used to determine the reaction rates. NMR 

spectra were acquired at 25ºC on Bruker NMR spectrometers operating at 1H Larmor 

frequencies of 600 MHz. To test effects of the substitution in the wild-type NTD context, 

sA3G-NTD was replaced by wild-type A3G-NTD in the sA3G construct called A3G-

NTD-CTD2 hereafter. A3G-NTD-CTD2 was used as a template to generate substitution 

of R24 in NTD, called A3G-NTD-R24A-CTD2 hereafter. NMR samples contained 5% 

deuterium oxide with 50 nM protein, 200 μM ssDNA substrate, 100 mM NaCl, 0.002% 

Tween20, 1 mM DTT, 10 μM ZnCl2 and also included 50 mM sodium phosphate 

adjusted to pH 6.5. Concentration of deamination products were determined from 

integration of the H5 uracil proton peak as described previously183. H5 uracil proton 

peak was unambiguously assigned by taking 1H spectrum of expected product ssDNA 

which synthesized separately for each ssDNA substrate. A series of 1H spectra were 
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measured and the product concentrations as a function of the reaction times were used 

to determine the initial rate via linear regression. Reaction rates were normalized for the 

protein concentration and given as reactions per minute. Deamination assays were 

repeated 3 times independently, and errors in the initial reaction rates were taken as 

one standard deviation of 3 measurements. 

7.1.4.6 Generation of wild-type A3G model 

The structure of wild-type A3G was modelled primarily from sA3G* crystal 

structure (this study). The crystal structures of CTD2 with ssDNA (PDB ID 6BUX) and 

rhesus macaque A3G-NTD (PDB ID 5K81) were also used in modeling to provide 

additional structural information for CTD and NTD separately. The wild-type model was 

first generated through program Modeller 9.15 using basic modeling. The model was 

then further optimized using the Protein Preparation Wizard262 from Schrodinger at pH 

6.5 and energy minimized with gradually reduced restraints (1000, 5, 0 force constant) 

on backbone and solute heavy atoms using Desmond164. The electrostatic distribution 

of wild-type A3G was calculated using PDB2PQR263 server and Pymol with the APBS 

plugin, and visualized with contour levels positive (+3) and negative (-3). 

 

7.1.5 RESULTS 

7.1.5.1 Generation of soluble double-domain A3G variant: 

We have overcome relatively poor protein solubility of A3G by generating a soluble 

variant of A3G. Previously, we generated soluble variants of A3G-NTD and A3G-CTD 

by rational amino acid substitution, and we were able to determine their NMR and 

crystal structures79, 85, 105. Using these soluble domain variants as starting templates, we 
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generated a double-domain A3G variant that has improved solubility and homogeneity, 

which we named soluble A3G or sA3G. sA3G contains extensive substitutions of 

hydrophobic residues located in NTD loops that compromise encapsidation/HIV-1 

restriction, as we previously reported for the soluble A3G-NTD variant85. For 

crystallization, we used a catalytically inactive (E259A) variant, referred to as sA3G* 

hereafter.  

7.1.5.2 Co-crystal structure of sA3G* with a dinucleotide: 

We solved the sA3G* crystal structure at 3.0 Å resolution (Figure 7.1A) in the C2 

space group. We refined the final structure to Rwork/Rfree at 0.26/0.28 respectively 

(Table 7.1). A single sA3G* molecule occupied the asymmetric unit. Unexpectedly, we 

found a dinucleotide captured by the C-terminal domain of sA3G* (sA3G*-CTD), which 

we believe emanated from E. coli and remained bound to sA3G* during purification. The 

dinucleotide was well ordered, and a dideoxy-cytidine structure fit best to the electron 

density. As the full-length structure of any double-domain APOBEC3 family protein had 

not been available, to evaluate the sA3G* structure, we compared sA3G*-NTD and 

sA3G*-CTD separately with available closely related crystal structures of A3G-NTD and 

A3G-CTD, respectively. As expected, sA3G*-NTD has similar secondary structures (6 

helices and 5 strands) as seen in A3G NTD soluble variant85 (PDB ID: 2MZZ) and 

rhesus macaque A3G-NTD99 (PDB ID: 5K81). Figure 7.1B shows superimposition of 

the sA3G*-NTD structure (this study, yellow) and rhesus macaque A3G-NTD (PDB ID: 

5K81, green). It is noted that βstrand-2 and helix-2 have partial distortions which may be 

caused by the absence of Zn2+ ion in sA3G*-NTD probably due to the crystallization 

condition or amino acid substitutions. We were unable to model residues 55 to 58 of 
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NTD loop-2 due to poor electron density. The overall backbone structure of sA3G*-NTD 

is similar to that of rhesus macaque A3G-NTD (PDB ID: 5K81) as indicated by the 

pairwise root mean square deviation (rmsd), which is 2.2Å. Furthermore, the pairwise 

rmsd with A3B-NTD (PDB ID: 5TKM) is also 2.2Å indicating that individual domain 

structures are very well conserved among APOBEC3 proteins. We compared the 

sA3G*-CTD (Figure 7.1C, yellow) with the previously published wild-type A3G-CTD 

structure95 (PDB ID: 4ROV) (Figure 7.1C, raspberry). Pairwise RMSD is 0.8Å, 

indicating that the overall backbone structure of our sA3G*-CTD remains almost 

unchanged(Figure 7.1C). Overall, the NTD and CTD in sA3G* preserve secondary and 

tertiary structural folds of the domain structures of APOBEC3 proteins. 
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Table 7.1: Crystallographic data collection and refinement statistics. 

 

  

27 
 

TABLE AND FIGURES LEGENDS 
 
Table 1  Crystallographic data collection and refinement statistics 
 
Data Collection 
Space group C2 
Cell dimensions 
a, b, c (Å) 
D, E, J (q) 

 
197.42, 42.08, 60.23 
90.00, 101.90, 90.00  

Resolution (Å) 40.00 – 3.1 (3.21 – 3.10)* 
Rmerge (%) 18.3 (57.7) 
Rmeas (%) 22.4 (73.3) 
Rpim (%) 12.7 (44.5) 
I/VI 5.17 (1.18) 
CC1/2 0.942 (0.498) 
Completeness (%) 84.1 (79.2) 
Redundancy 2.7 (2.1) 
 
Refinement 
Resolution (Å) 35.23 – 3.01 (3.12 -3.01) 
No. of reflections 7726  
Rwork/Rfree (%) 26.24/28.82 
No. of atoms 2870 
Protein 2787 
DNA 37 
Ligand/ion 1 (Zn2+) 
Water 45 
B-factor 
Average B-factors (Å2) 72.4 
Protein/DNA 72.9 
Ligand/ion 89.8 
Water 41.7 
R.m.s deviations 
Bond lengths (Å) 0.002 
Bond angles (q) 0.44 
*Values in parentheses are for the highest-resolution shell. 
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FIGURE 1  
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Figure 7.1: Co-crystal structure of sA3G* with a dinucleotide. 
A) The asymmetric unit contains one protein (yellow) molecule comprising NTD (N-
terminal domain) and CTD (C-terminal domain) with a dinucleotide (dC, blue) interacting 
with CTD. A sphere represents the Zn2+ ion at the catalytic site. N and C indicate the N- 
and C- terminal ends of the protein. B) Superimposition of the sA3G*-NTD structure 
(yellow, this study) with rhesus macaque A3G-NTD structure (green, PDB ID: 5K81). C) 
Superimposition of the sA3G*-CTD (yellow, this study) and wild-type human A3G-CTD 
(raspberry, PDB ID: 4ROV) structures. D) Co-crystal structure of sA3G* bound to a 
dinucleotide highlighting the relative orientation of NTD and CTD. Helix-6 (h6) of CTD is 
oriented almost perpendicular to the h6 of NTD. The linker region between the two 
structural domains connecting NTD-h6 and CTD-h1is colored orange. Loop-1 of NTD is 
colored green and potential ssDNA interacting residues R24 of NTD loop-1 and K180E 
of NTD helix-6 are presented in stick representation and colored green and yellow, 
respectively. Loops (loop-1, -3 and -7) of CTD which are involved in binding the 
deamination target sequence 5′-TCCCA105 are colored light blue. 
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7.1.5.3 Relative orientation of NTD and CTD: 

The relationship between the relative orientation of each domain and A3G’s 

functions has been a remaining question. The crystal structure of sA3G* shows that 

NTD is rotated nearly 90° relative to CTD along the major axis of the molecule, which 

can be seen by examining the orientation of helix-6 from each domain (Figure 7.1D). 

Figure 7.1D illustrates the ssDNA binding regions of CTD including loops-1, -3 and -7 

(light blue) with bound dinucleotide (blue), which indicates that NTD loop-1 (green) and 

NTD helix-6 are positioned toward the 3ʹ end of the dinucleotide. Two positively charged 

residues in NTD, R24 in loop-1 and K180 in helix-6 (K180E in sA3G*) are in good 

positions to interact with the 3′ side of a substrate ssDNA bound to the catalytic site of 

CTD (Figure 7.1D). The linker region (orange) connecting NTD helix-6 and CTD helix-1 

is ordered, and the linker structure is well defined. The interface between NTD and CTD 

is 1200 Å2 with the linker (H195-D198) and 730 Å2 without the linker residues, which 

consists of interaction between NTD helix-6 and CTD helix-1 and between NTD loop-1 

and CTD loop-3. There is no strong hydrophobic interaction involving aromatic 

sidechains and/or methyl groups at the inter-domain interfaces. It is noteworthy that 

there is a hydrogen bond between M188R of NTD and Y219 of CTD. Since M188R is a 

substituted residue in sA3G, as it is M188 in the wild-type sequence, this hydrogen 

bonding would not occur in wild-type A3G, although hydrophobic contact between the 

methyl group of M188 and aromatic group of Y219 is possible. 

7.1.5.4 5′-CC dinucleotide captured by CTD: 

Unexpectedly, we found a dinucleotide captured by sA3G*-CTD in the crystal 

structure. Since we did not explicitly add any ssDNA to the crystallization sample, we 
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believe that the dinucleotide is derived from E. coli and remained throughout purification 

of the protein. Two deoxy-cytidines fit best to the electron, numbered as C1 and C2 

from the 5′ to 3′ direction. The dinucleotide is bound near the catalytic site, but the 

nucleobases are distant from Zn2+ (Figure 7.2A), not positioned for deamination. 

Therefore, the dinucleotide appears to be in a catalytically inactive position. The 

interactions between CTD and the dinucleotides are completely different from those 

observed in our previous co-crystal structure of a soluble A3G-CTD variant (A3G-CTD2) 

and ssDNA substrate (PDB ID: 6BUX) where the target deoxy-cytosine base was 

positioned deep in the catalytic pocket right next to Zn2+. Figure 7.2B superimposes 

the sA3G*-CTD:dinucleotide structure (this study, dinucleotide is colored blue) with the 

A3G-CTD2:ssDNA structure (6BUX, ssDNA is colored pink). Nucleobases of the 

dinucleotide are distant from Zn2+compared with the ssDNA substrate bound to A3G-

CTD2 as the backbone phosphate of C2 from the dinucleotide is 3.7 Å away from the 

backbone phosphate of C-1 of ssDNA substrate (black double-arrow-headed line in 

Figure 7.2B). C1 of the dinucleotide is positioned between the C-2 and C-1 position of 

the ssDNA substrate (Figure 7.2B). It is noteworthy that although C2 is not in the 

catalytically active position, the Watson-Crick face of C2 points toward Zn2+ (Figure 

7.2A). The Watson-Crick face of C1 from the dinucleotide interacts with sA3G*-CTD by 

two direct hydrogen bonds. The cytosine base carbonyl group makes a hydrogen bond 

with the mainchain amino proton of V212 from loop-1 and the cytosine base amino 

group makes a hydrogen bond with the mainchain amino proton of D316 of loop-7. We 

also observed hydrogen bonding interaction involving the C1 ribose ring O4 and NE1 

atom of W211. Additionally, the C1 pyrimidine ring is stabilized by a π–π stacking 



 197 

interaction with the indole ring of W211 (Figure 7.2C). The Watson-Crick face of C2 

from the dinucleotide also interacts with sA3G*-CTD by two direct hydrogen bonds 

formed by the main chain carbonyl of R215 with the N3 proton and amino group of the 

cytosine base (Figure 7.2C). The cytosine base amino group also forms a hydrogen 

bond with side chain hydroxy-oxygen of T218 through an ordered water molecule. 

Figure 7.2D superimposes ssDNA bound A3G-CTD2 (6BUX) and sA3G*-CTD without 

DNAs, revealing that amino acids with direct interactions to the target DNA sequence 

(6BUX, Figure 7.2D, light purple) maintain their positions in the dinucleotide bound 

sA3G*-CTD (this study, Figure 7.2D, yellow) but with different sidechain rotamers for 

some residues. 
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FIGURE 2 
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Figure 7.2: Non-catalytic interaction between the 5′-CC dinucleotide and sA3G*. 
A)The Watson-Crick faces of both cytosines (C1 and C2) position towards loop-7 and 
the catalytic Zn2+ ion. sA3G* is colored yellow and shows the side chains of key amino 
acid residues for ssDNA substrate binding as sticks. Atoms in the dinucleotide are 
colored blue, navy, red and orange for C, N, O and P respectively. B) Superimposition 
of the sA3G*:dinucleotide structure (this study, dinucleotide is colored blue) with the 
soluble variant A3G-CTD2:ssDNA structure (PDB ID: 6BUX, ssDNA is colored pink) 
comparing positions of nucleotides in the two structures. The double arrow-headed line 
points to the backbone phosphorous atoms of C2 of the dinucleotide and C-1 of the 
A3G-CTD2:ssDNA structure. C) Detailed interactions of the dinucleotide with amino 
acid residues of sA3G*-CTD. C, N, and O atoms are colored yellow, blue, and red, 
respectively, for amino acid residues of the protein. Water molecule is shown as red 
spheres, and Zn2+ is shown as a sand colored sphere. Dotted lines indicate hydrogen 
bonds. D)Superimposition of the sA3G*-dinucleotide structure (this study, sA3G* is 
colored yellow) with the A3GCTD2: ssDNA structure (PDB ID: 6BUX, A3G-CTD2* is 
colored light purple) highlighting sidechain conformational differences of key amino acid 
residues for ssDNA substrate binding. Side chains of the amino acid residues are 
shown as sticks. DNAs are not shown. E) Superimposition of the sA3G*-dinucleotide 
structure (this study, dinucleotide is colored blue) with the adenine bound A3G-CTD 
structure (PDB ID: 6BWY, adenine is colored magenta) showing overlap of the adenine 
base with the C1 base of dinucleotide. Dotted lines indicate hydrogen bonds between 
the adenine amino group and two mainchain carbonyls of A3G-CTD (colored gray). F) 
Superimposition of the sA3G*-dinucleotide structure (this study, sA3G* is colored 
yellow) with the adenine bound A3G-CTD structure (PDB ID: 6BWY, A3G-CTD is 
colored gray) highlighting sidechain conformational differences of amino acid residues 
that bind the dinucleotide and/or the adenine. Amino acid residues are shown as sticks. 
G) Summary of the interactions between sA3G* and the dinucleotide. 
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Ziegler et al. reported a crystal structure of A3G-CTD bound to a non-preferred 

adenine nucleotide near the catalytic site that provided insights into non-specific 

interactions between A3G-CTD and DNA108 (PDB ID 6BWY). Superimposition of this 

adenine bound A3G-CTD (6BWY, magenta) with dinucleotide-bound sA3G*-CTD (this 

study, blue) shows partial overlap of the adenine base with the C1 base of the 

dinucleotide (Figure 7.2E), revealing that these two nucleotides bind to a similar 

position of A3G-CTD. Nonetheless, interactions between C1 and sA3G*-CTD are 

significantly different from that of the adenine as the amino group of adenine forms a 

hydrogen bond to the backbone carbonyl of P210 and I314 (Figure 7.2E), whereas the 

C1 nucleobase of the dinucleotide forms hydrogen bonds with V212 and D316 (Figure 

7.2C). These differences in hydrogen bonding are likely a reflection of the nucleobase 

type difference, while both cytosine and adenine bases are stabilized by partial π–π 

stacking interaction with indole ring of W211 (Figure 7.2C,E). Figure 7.2F 

superimposes amino acid residues involved in either adenine (6BWY, gray) or 

dinucleotide (this study, yellow) interaction (DNAs are not shown), showing that A3G-

CTD adjusts for nucleobase type differences by changing the positions of R215 and 

T218 and rotating the sidechains of W211 and Y315. 

7.1.5.5 R24 of NTD is important for deamination of 5ʹ-CC motifs in virions: 

The sA3G*: dinucleotide co-crystal structure (this study) suggests that R24 and/or 

K180 may interact with DNAs located on the 3ʹ side of a substrate ssDNA (Figure 

7.1D). We sought to determine whether these structure-based hypotheses for A3G-NTD 

interaction with ssDNA are valid and influence cytidine deamination. We thus 

determined the influence of R24A and K180A substitutions in wild-type A3G, called 
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A3G-R24A and A3G-K180A hereafter, on inhibition of HIV-1 infectivity and 

hypermutation of provirus. To determine the effect of A3G-R24A and A3G-K180A on 

HIV-1 infectivity, VSVG-pseudotyped virions were prepared in the absence of A3G or in 

the presence of increasing amounts of wild-type A3G, A3G-R24A, or A3G-K180A 

expressing plasmids (Figure 7.3A). Western blotting analyses of the transfected cells 

(in the absence of Vif) indicated similar steady-state expression levels of the wild-type 

and mutant A3Gs. Infectivity of the virions produced from the transfected cells was 

determined by infection of TZM-bl cells (Figure 7.3B). The results indicated that 

expression of wild-type A3G and A3GK180A potently inhibited HIV-1 infectivity in a 

dose-dependent manner, but expression of A3GR24A severely reduced the A3G 

antiviral activity; transfection with 340 ng of wild-type A3G or A3G-R24A reduced virus 

infectivity to 0.5% or 47.6% of the “no A3G” control, respectively. Previous studies 

regarding RNA-binding of human A3G have reported that the A3G-R24A mutation 

reduces virion incorporation of A3G(86,87). We compared the virion incorporation of 

wild-type A3G in the presence of increasing amounts of A3G plasmid to the virion 

incorporation of A3G-R24A and A3G-K180A in the presence of 340 ng of the plasmids 

(Figure 7.3C). The results confirmed that the A3G-R24A mutant was highly defective in 

virion incorporation. The amount of A3G-R24A that was packaged into virions when 340 

ng of plasmid was transfected (5% of 340 ng of wild-type A3G) was similar to the 

amount packaged when 42 ng or 84 ng of wild-type A3G was transfected (2.6% and 

6.3% of 340 ng of wild-type A3G, respectively). In contrast, the amount of A3G-K180A 

mutant that was packaged into virions when 340 ng of plasmid was transfected was 

only reduced about two-fold (44% of 340 ng of wild-type A3G). It was noted that when 
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infectivity was compared in conditions where similar amounts of A3Gs were in virions 

(84 ng of wild-type A3G vs 340 ng of A3G-R24A, and 170 ng of wild-type A3G vs 340 

mg of A3G-K180A), A3G-R24A showed more infectivity than wild-type A3G (47.6% for 

A3G-R24A, and 9.2% for wild-type A3G), while A3G-180A showed similar or less 

infectivity (0.6% for A3G-K180A, and 2.5% for wild-type A3G). Therefore, these 

infectivity assays indicate that the R24A substitution compromises its restriction function 

against HIV-1 infection. The A3G-R24A and A3G-K180A mutants remained sensitive to 

Vif-mediated degradation (Figure 7.4A) and in the presence of Vif, virus infectivity was 

restored to wild-type levels (Figure 7.4B). 
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Figure 7.3: Antiviral activity and encapsidation of A3G-R24A and A3G-K180A. 
A) Representative western blot showing 293T cells co-transfected with increasing 
amounts of Nterminal FLAG-tagged wild-type A3G, A3G-R24A or A3G-K180A (21, 42, 
84, 170, 340 ng), HDV-EGFP, and VSV-G in the absence of Vif. Average A3G 
expression from 4 independent experiments relative to 340 ng A3G (set to 100%) is 
shown after adjusting for GAPDH band intensities. B) Single-cycle infectivity of 
normalized p24 capsid amounts harvested from transfected cells in part (a) were 
assayed in TZM-bl target cells. Infectivity is proportional to relative light units (RLU) 
produced by induction of luciferase expression (normalized to the no A3G control). Error 
bars represent the standard deviation from three independent experiments. C) 
Representative western blot of 293T cell lysates and virions produced from 293T cells 
cotransfected with increasing amounts of N-terminal FLAG-tagged wild-type A3G (21, 
42, 84, 170, 340 ng), A3G-R24A (340ng), or A3G-K180A (340 ng), HDV-EGFP, and 
VSV-G in the absence of Vif. Relative A3G expression was normalized to GAPDH 
levels in cell lysates and to capsid p24 levels in virions. The average packaging 
efficiency of A3G, A3G-R24A and A3GK180A was determined by dividing the amount of 
A3G encapsidated in the virions by the amount of A3G expressed in the lysates, and 
further normalized to A3G 340 ng (100%) from two independent experiments. 
  

FIGURE 3 
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Figure 7.4: Antiviral activity of A3G-R24A and A3G-K180A in the presence of Vif. 
A) Representative western blot showing 293T cells co-transfected with increasing 
amounts of N-terminal FLAG-tagged wild-type A3G or A3G-R24A or A3G-K180A (21, 
42, 84,170, 340 ng), HDV-EGFP, and VSV-G in the presence of Vif-HA. Absence of 
A3G signal (FLAG signal) in the Vif+ lanes indicates that mutants A3G-24A and A3G-
180A were efficiently degraded by Vif. B) Single-cycle infectivity of normalized p24 
capsid reflects the average relative light units (RLU) normalized to the no A3G control. 
Error bars represent the standard deviation from three independent experiments. 

 
 
Supplementary Figure 4.  Antiviral activity of A3G-R24A and A3G-K180A in the presence 
of Vif.  a  Representative western blot showing 293T cells co-transfected with increasing 

amounts of N-terminal FLAG-tagged wild-type A3G or A3G-R24A or A3G-K180A (21, 42, 84, 

170, 340ௗQJ���+'9-(*)3��DQG�969-G in the presence of 9LI-HA.  Absence of A3G signal 

(FLAG signal) LQ�WKH�9LI��ODQHV�LQGLFDWHV�WKDW�PXWDQWV�A3G-24A and A3G-180A were 

efficiently degrDGHG�E\�9LI�� b Single-cycle infectivity of normalized p24 capsid reflects the 

average relative light units (RLU) normalized to the no A3G control.  Error bars represent the 

standard deviation from three independent experiments.   
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Next, we compared the effects of the A3G-R24A and A3G-K180A mutations on 

selection of substrate 5′-CC sites in the minus strand of the viral DNA by quantifying the 

G-to-A mutations in the plus strand of the viral DNA at 5′-GG sites in an 896-nt 

sequence of HIV-1 reverse transcriptase. Hypermutated proviral DNA sequences were 

obtained from cells infected with virions produced in the presence of 42, 84 or 340 ng of 

A3G-WT, 340 ng of A3G-R24A, or 340 ng of A3G-K180A. A comparison of the 

frequency distribution of mutations at 5′-GGn sites in the plus strand of viral DNA (n can 

be any deoxy-nucleotide, GGn hereafter) in hypermutated clones obtained from virions 

produced in the presence of 42, 84, and 340 ng of A3G-WT indicated that the 

frequencies observed with 340 ng of A3G-WT were different from those observed with 

42 ng and 84 ng of A3G-WT (chi square P-values <0.00001), indicating that the 

mutation frequency distribution is highly dependent on the amount of A3G packaged 

into virions. We reasoned that virions that contained high levels of A3G would efficiently 

deaminate and deplete the preferred target sequences such as GGg and increase 

deamination of the less preferred target sites such as GGa and GGt. As a result, 

hypermutated clones with high levels of G-to-A mutations would display different 

frequencies of mutations relative to the +2 nucleotide (the “n” nucleotide in “GGn” sites 

within the positive strand of provirus). In order to avoid excessive deamination and 

depletion of a target sites, sequences with high levels of G-to-A mutations were 

removed from the sequence analysis of cells infected with 84 ng of A3G and 340 ng of 

A3G-R24A or A3G-K180A until the average number of G-to-A mutations per clone 

matched that observed for cells infected with 42 ng of A3G (12.5 mutations at GG 

sites/clone). A comparison of the proportion of G-to-A mutations at GGn positions in the 
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plus strand of viral DNA, when the virions were produced in the presence of 42 ng of 

A3G and 84 ng of A3G, showed that the frequencies of mutations at the GGn positions 

were not different (Table 7.2; chi-square analysis using 2 x 4 contingency table; P = 

0.8131). A3G-K180A showed increased proportion for GGg and decreased proportion 

for GGt, but overall differences in the frequencies of mutations at the GGn positions for 

A3G-K180A were statistically not significant as P value is 0.1055 (Table 7.2). However, 

the frequencies of mutations at the GGn positions were significantly different when the 

virions were produced in the presence of A3G-R24A (P = 0.0016). Specifically, the 

frequency of mutations were 18% lower at GGa sites ([0.28/0.34] x 100% = 82%) and 

13% higher at GGg sites ([0.65/0.57] x 100% = 113%) for virions produced in the 

presence of A3G-R24A compared to virions produced in the presence of 42 ng or 84 ng 

of A3G-WT (Fisher’s exact test; P < 0.001; Table 7.2). Thus, the R24A mutation in the 

N-terminal domain of A3G altered the efficiency of cytidine deamination in virions, by 

increasing the relative efficiency of mutations at the GGg sites and decreasing the 

relative efficiency of mutations at the GGa sites. 
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Table 7.2: Comparison of deamination frequencies at GG sites with different +2 
nucleotides. 

 

  

28 
 

Table 2.  Comparison of deamination frequencies at GG sites with different +2 nucleotides. 

A3G No. 
Hypermut. 

Seq. 
Selected/ 

Totala 

Avg. 
GG mut./ 

seq.b 

Total 
GG 

Mut.c 
 

GGa 
Mut. 

(freq.)d 

GGc 
Mut. 

(freq.) 

GGg 
Mut. 

(freq.) 

GGt 
Mut. 

(freq.) 

Chi 
Square 
P-valuee 
vs. WT 
(42 ng) 

WT 
(42 ng) 

121/121 12.5 1510 
 

511 
(0.34) 

11 
(0.01) 

867 
(0.57) 

121 
(0.08) 

 

WT 
(84 ng) 

101/154 12.5 1261 
 

431 
(0.34) 

13 
(0.01) 

722 
(0.57) 

95 
(0.08) 

0.8131 

R24A 
(340 ng) 

94/110 12.5 1171 
 

328 
(0.28) 

6 
(0.01) 

759 
(0.65) 

78 
(0.07) 

0.001631 

K180A 
(340 ng) 

23/92 12.6 289 92 
(0.32) 

2 
(0.01) 

182 
(0.63) 

13 
(0.04) 

0.1055 

 
a Number of hypermutated sequences that were selected from the total number of hypermutated 

sequences.   
b Average number of mutations at GG sites per clone; the sequence analyzed has 60 GG sites. 
c Total number of G-to-A mutations at GG sites. 
d Total number of G-to-A mutations at the indicated GGn sites and their frequency. 
e Chi square statistic and P-value was calculated using a 2 x 4 contingency table. 

 

Table 3. Comparison of deamination speeds. 'HDPLQDWLRQ�UDWHV�IRU�WKH��ƍ-cytidine of the �ƍ-

TCCC-polyT and �ƍ-TCC-polyT substrates are given as reactions/minute for A3G-NTD- CTD2 

(WT) and A3G-NTD-R24A-CTD2 (R24A).  

 

 �ƍ-TCCC-polyT �ƍ-TCC-polyT 

WT 4.6 ± 0.2 2.2 ± 0.2 

R24A 3.0 ± 0.2 1.1 ± 0.2 
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Since the A3G R24A substitution significantly changed the proportion of G-to-A 

mutations in different GGn contexts in our mutation assays, we further tested whether 

the R24A substitution affects the catalytic efficiency in vitro using an NMR based 

deamination assay. To test effects of the substitution in the wild-type NTD context, 

sA3G-NTD was replaced by wildtype A3G-NTD in the sA3G construct called A3G-NTD-

CTD2 hereafter as CTD was the soluble variant CTD2 that had been used for co-crystal 

structure with ssDNA substrate(57) and the sA3G* structure (this study). We used 20 nt 

ssDNA, including 5ʹ-AATCCCAATTTTTTTTTTTT (5ʹ-TCCC-polyT, C indicates the 

primary deamination site) and 5ʹ-AAATCCAATTTTTTTTTTTT (5ʹ- TCC-polyT) as 

substrates for the assay. Table 7.3 summarizes initial speed of reaction of A3G-NTD-

CTD2 and A3G-NTD-R24A-CTD2 for each substrate (deamination data is provided in 

Figure 7.5). The A3G R24A mutation reduced reaction speed by 35% for 5ʹ- TCCC-

polyT and 50% for 5ʹ- TCC-polyT, which supports our hypermutation results, as we 

observed greater reduction of mutation frequency for GGa in the plus strand of viral 

DNA (equivalent to 5ʹ-TCC in the minus strand of viral DNA that is the physical 

substrate for the deamination catalyzed by A3G) by A3G-R24A compared to wild-type 

A3G. Together, in vivo hypermutation assay and in vitro deamination assay suggested 

that R24 may play an important role in ssDNA substrate binding. 
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Table 7.3: Comparison of deamination speeds. 
Deamination rates for the 3′-cytidine of the 5′-TCCC-polyT and 5′-TCC-polyT substrates 
are given as reactions/minute for A3G-NTD- CTD2 (WT) and A3G-NTD-R24A-CTD2 
(R24A). 

 

  

28 
 

Table 2.  Comparison of deamination frequencies at GG sites with different +2 nucleotides. 

A3G No. 
Hypermut. 

Seq. 
Selected/ 

Totala 

Avg. 
GG mut./ 

seq.b 

Total 
GG 

Mut.c 
 

GGa 
Mut. 

(freq.)d 

GGc 
Mut. 

(freq.) 

GGg 
Mut. 

(freq.) 

GGt 
Mut. 

(freq.) 

Chi 
Square 
P-valuee 
vs. WT 
(42 ng) 

WT 
(42 ng) 

121/121 12.5 1510 
 

511 
(0.34) 

11 
(0.01) 

867 
(0.57) 

121 
(0.08) 

 

WT 
(84 ng) 

101/154 12.5 1261 
 

431 
(0.34) 

13 
(0.01) 

722 
(0.57) 

95 
(0.08) 

0.8131 

R24A 
(340 ng) 

94/110 12.5 1171 
 

328 
(0.28) 

6 
(0.01) 

759 
(0.65) 

78 
(0.07) 

0.001631 

K180A 
(340 ng) 

23/92 12.6 289 92 
(0.32) 

2 
(0.01) 

182 
(0.63) 

13 
(0.04) 

0.1055 

 
a Number of hypermutated sequences that were selected from the total number of hypermutated 

sequences.   
b Average number of mutations at GG sites per clone; the sequence analyzed has 60 GG sites. 
c Total number of G-to-A mutations at GG sites. 
d Total number of G-to-A mutations at the indicated GGn sites and their frequency. 
e Chi square statistic and P-value was calculated using a 2 x 4 contingency table. 

 

Table 3. Comparison of deamination speeds. 'HDPLQDWLRQ�UDWHV�IRU�WKH��ƍ-cytidine of the �ƍ-

TCCC-polyT and �ƍ-TCC-polyT substrates are given as reactions/minute for A3G-NTD- CTD2 

(WT) and A3G-NTD-R24A-CTD2 (R24A).  

 

 �ƍ-TCCC-polyT �ƍ-TCC-polyT 

WT 4.6 ± 0.2 2.2 ± 0.2 

R24A 3.0 ± 0.2 1.1 ± 0.2 

 

 

 

Page 28 of 41

For Peer Review

Nucleic Acids Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 210 

 

Figure 7.5: NMR based deamination assays. 
1H NMR detects the formation of the 3′-cytidine deamination products of 5′-TCCC-polyT 
(black) and 5′-TCC-polyT (red) as a function of time for a) A3G-NTD-CTD2 and b) A3G-
NTD-R24A-CTD2. 
  

 
 
Supplementary Figure 5. NMR based deamination assays. 1H NMR detects the formation of 

WKH��ƍ-cytidine deamination products of �ƍ-TCCC-polyT (black) and �ƍ-TCC-polyT (red) as a 

function of time for a) A3G-NTD-CTD2 and b) A3G-NTD-R24A-CTD2. 
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7.1.5.6 Wild-type A3G structural model 

To gain further structural insights in the wild-type A3G context, we generated a 

structural model of wild-type human A3G (wtA3G) based on the sA3G*-dinucleotide co-

crystal structure (this study). The wtA3G structure shows a possible ssDNA-binding 

channel formed by NTD loop-1 and CTD loop-3 (Figure 7.6A, orange dotted line). 

Using this channel, NTD would interacts with DNAs located on the 3ʹ side of a 

deamination target sequence, while CTD interacts with the target cytidine and adjacent 

nucleotides. A3G likely interacts with ssDNA in this orientation during the search for 

target sequences because this orientation of ssDNA is required for specific binding of 

the target sequence and catalysis105. Our deamination and hypermutation data (this 

study) suggest that ssDNA may interact with R24 located in the proposed ssDNA-

binding channel (Figure 7.6A, green stick). This channel is deep and positively charged 

as shown in Figure 7.6B, which may attract the negatively charged phosphate 

backbone of ssDNA. 
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Figure 7.6: Surface representation of wild-type full-length A3G with a binding 
pathway for ssDNA modeled. 

FIGURE 4 
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A) The dinucleotide bound to CTD is shown as sticks, and C, N, O, and P atoms are 
colored blue, dark blue, red, and orange, respectively. Loops (loop-1,-3 and -7) of CTD 
are colored light blue. NTD loop-1 is colored light green and potential ssDNA interacting 
residue R24 in loop-1 is presented in stick representation within a transparent surface 
and colored deep green. An orange dashed line indicates a possible ssDNA binding 
channel. B) Electrostatic surface distribution of the wild-type A3G structure to illustrate 
positive (+3, blue) and negative (-3, red) regions. The orientation of the molecule is the 
same as a, and an orange dashed line indicates the possible ssDNA binding channel. 
C) Potential HIV-1 Vif binding surface of A3G. The view of C is almost 90° rotated along 
the major axis of molecule from the view of A/B. Residues 124-YYFWDPD-130 of NTD 
are presented as sticks under a transparent surface and colored pink.  
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7.1.6 DISCUSSION  

Our crystal structure of double-domain A3G revealed insights into the domain 

arrangement and enabled us to propose a structural mechanism for the involvement of 

catalytically inactive NTD in A3G function. The dinucleotide bound to sA3G* also 

provided additional insights regarding non-catalytic DNA interaction by A3G. A 5′-CC 

dinucleotide is positioned near the catalytic Zn2+, but lacks specific interactions 

required for catalysis. Interestingly, this dinucleotide and the adenine found in the 

previously published co-crystal structure of A3G-CTD and ssDNA108 occupy a similar 

position in the A3G-CTD. As proposed by Ziegler et al., their adenine and our 

dinucleotide may be showing protein-DNA interactions when A3G is in search for 

deamination target sequences. During the search for target sequences, residues in 

loop-1 and loop-7 of A3G-CTD may interact with DNAs in variable ways, which enables 

identification of nucleobase types. This hypothesis is well supported by our most recent 

results using NMR115 that suggested loops-1, -3 and -7 of A3G-CTD to be dynamically 

involved in non-specific DNA interactions until a deamination target sequence is found, 

which then causes W211 and H216 of loop-1 to latch on tightly to the target sequence 

providing the target cytidine stability during catalysis. 

The crystal structure and wild-type structural model revealed a positively-charged 

channel that may be involved in ssDNA interactions. The hypermutation results of A3G 

R24 substitution provided an interesting observation that the proportion of mutations at 

GGa in the plus strand of viral DNA (equivalent to 5′-TCC in substrate ssDNA) was 

decreased while the proportion of mutations at GGg (equivalent to 5′-CCC in substrate 

ssDNA) was increased (Table7.1.2). Very few mutations occurred in GGt and GGc 
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motifs (equivalent to 5′-ACC and 5′-GCC in substrate ssDNA, respectively), and their 

proportions were not significantly different from wtA3G (Table7.1.2). It is plausible that 

the R24-DNA interaction becomes more significant for the 5′-TCC, 5′-ACC and 5′-GCC 

substrates because these substrates are missing specific hydrogen bonds involving the 

additional 5′ C existing in the 5′-CCC substrate105. R24 has lured attention since 

previous studies found that substitution of R24 reduces encapsidation of A3G 

suggesting its involvement in RNA interaction and oligomerization of A3G264-266, 

although Y124, F126 and W127 were found to play central roles for those events90, 248, 

267. Because these hydrophobic residues and oligomerization are not essential for the 

deamination activity of A3G90, 268, the RNA-binding region(s) of A3G appear to be 

different from the ssDNA-binding channel suggested by this study (Figure 7.1.6A). 

Indeed, Huthoff et al.264 and Xiao et al.99 have proposed A3G homodimer models in 

which a single-stranded RNA binds at dimer interfaces including R24, R30, Y124, W127 

and R136. 

Antiviral activity of human A3G can be neutralized by HIV-1 Vif, but not by Vif from 

Simian Immunodeficiency Virus which infects the African green monkey (SIVagm), 

generating a barrier for cross-species transmission269-273. D128, P129 and D130 have 

been identified as key residues for Vif-induced degradation of human A3G as 

substitutions of these residues resulted in abrogated degradation269-273. Our wtA3G 

structural model shows that loop 7 of NTD, including 124-YYFWDPD-130, is exposed 

on a surface rotated by nearly 90° from the ssDNA binding surface (compare Figure 

7.6A,C), and that these residues are accessible for Vif. Nevertheless, a structure of the 

A3G:Vif complex is required to reveal the domain orientation and atomic-level 
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interactions between A3G and Vif because A3G may or may not keep the same domain 

orientation found in our sA3G*:dinucleotide co-crystal structure when it interacts with 

Vif.  
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7.2 Appendix II: To find the first-in-class inhibitors against A3s  

7.2.1 PREFACE 

The following work was performed to find the first-in-class inhibitors against A3s to 

benefit anti-cancer therapeutics. I have performed virtual screening of small 

molecules/fragments libraries against A3s. I have optimized the novel fluorescence- 

based product release assay for measuring A3 deamination activity with the assistance 

of Ellen A. Nalivaika and Paul Thompson. I also performed initial crystallization trials for 

potential hits from virtual screening. However, as A3s requires a minimum of 5-mer 

DNA oligo for deamination183, 201, finding small molecules that inhibit A3 is extremely 

challenging. Hence recently, our lab started the design of oligonucleotide-based 

inhibitors (OBI) for A3s. I performed the molecular modeling and molecular dynamics 

simulations for OBI-bound A3 structures. 
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7.2.2 METHODS AND RESULTS 

 

Figure 7.7: Virtual screening of small molecules/fragments against A3A/B/G. 
NIH Molecular Libraries Small Molecule Repository (MLSMR), AnalytiCon The FRGx 
library and 2 Diversity sets of small molecules from UMass Small Molecule Screening 
Facility (SMSF) have been used as virtual screening libraries against A3A, A3B and 
A3G. The screenings were performed follow the pipeline in Figure7.2.2.1 using Glide 
from Schrodinger. 
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Figure 7.8: Molecular modeling for OBI-bound A3 structures. 
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7.3 Appendix III: Structure-based Vif fitness study 

 

Figure 7.9: The viral fitness date plotted on Vif structure. 
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Figure 7.10: The correlation plot between vdw interactions and fitness at Vif-
ELOB interface. 
There is correlation between vdw interactions and fitness data at Vif-ELOB interface. 
The interface residues are 119A, 120I, 141K, 142V, 143G, 144S, 145L, 146Q, 148L, 
149A, 150L, 152A and 153L.  
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