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Abstract

The adaptive learning approach has been fruitfully employed to model the formation of
aggregate expectations at the macroeconomic level, as an alternative to rational expectations.
This paper uses adaptive learning to understand, instead, the formation of expectations at the
micro-level, by focusing on individual expectations and, in particular, trying to account for their
heterogeneity.

We exploit survey data on output and inflation expectations by individual professional fore-
casters. We link micro and macro by endowing forecasters with the same information set that
they would have as economic agents in a benchmark New Keynesian model. Forecasters are,
however, allowed to differ in the constant gain values that they use to update their beliefs.

We estimate the best-fitting constant gain for each forecaster. We also extract individual
measures of sentiment, defined as the degrees of excess optimism and pessimism that cannot be
justified by the near-rational learning model, given the state of the economy and the updated
beliefs.

Our results highlight the heterogeneity in the gain coefficients adopted by forecasters, which
is particularly pronounced at the beginning of the sample. The median values are consistent
with those typically estimated using aggregate data, and display some moderate time variation:
they occasionally jump to higher values in the 1970-80s, and stabilize in the 1990s and 2000s.
Individual sentiment is persistent and heterogeneous. Differences in sentiment, however, don’t
simply cancel out in the aggregate: the majority of forecasters exhibit excess optimism, or excess
pessimism, at the same time.
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1 Introduction

Since the introduction of the rational expectations hypothesis in the 1970s, a number of macroe-

conomists have raised questions about its empirical validity, and have offered potential replace-

ments. The approach that has emerged as the main alternative to rational expectations is probably

provided by the literature on adaptive learning (Evans and Honkapohja, 2001, Sargent, 1993, 1999).

Under rational expectations, economic agents are endowed with substantial knowledge about the

economy: they know the structure of the model, the values of the parameters representing prefer-

ences, technology, and policy, and the processes for the exogenous disturbances. Learning relaxes

these strict informational assumptions to introduce some limitations to agents’ understanding. For

instance, agents within the model are no longer assumed to know the magnitudes of all economic

relationships; instead, they have to learn about them based on past experiences and historical data.

Various papers have already provided evidence that adaptive learning matters at the macroe-

conomic level. Learning drives persistence in macroeconomic variables (Orphanides and Williams,

2005, Milani, 2007, 2017), it provides an endogenous source of the observed shifts in postwar volatil-

ity (Branch and Evans, 2007, Milani, 2014, Dave and Malik, 2017), and it amplifies business cycle

fluctuations (Eusepi and Preston, 2011, Milani, 2011, 2017). Models with learning typically out-

perform models with rational expectations in their ability to fit macroeconomic time series (Milani,

2007, Slobodyan and Wouters, 2012).

The study of aggregate survey data on expectations has provided additional empirical evidence

in favor of learning. Branch and Evans (2006) show that constant-gain learning fits median survey

expectations about inflation and output better than learning with decreasing and Kalman-filter

gains. Markiewicz and Pick (2014) similarly find that models based on constant gain learning

provide a better fit of professional forecaster’s expectations concerning a wider range of macroeco-

nomic and financial variables. Malmendier and Nagel (2016) analyze inflation forecasts from the

University of Michigan Survey of Consumers; they also show that, at the aggregate level, mean

expectations are closely replicated by a constant-gain learning updating rule with a gain coefficient

of similar magnitude to that estimated in macroeconomics models (e.g., Milani, 2007).

The main scope of our paper is to contribute to the literature that studies learning and the

formation of individual-level expectations. In particular, we focus on the heterogeneity of expecta-

tions across individual forecasters. Other studies have revealed a significant degree of heterogeneity.
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Mankiw, Reis, and Wolfers (2004) document the extent and properties of disagreement related to

future inflation expectations. Coibion and Gorodnichenko (2012) show how disagreement in survey

data responds to economic shocks. Andrade et al. (2016) use Blue Chip forecasts at short and

long horizons to document new stylized facts about disagreement; these facts can be rationalized

using models with imperfect information. Branch (2004) examines the role of model uncertainty in

producing the heterogeneity observed in the data. Baranowski (2014) studies the type of adaptive

learning rule that best fits individual forecasts of inflation, unemployment, and real GDP growth,

using various combinations of regressors. In this paper, we aim to impose more structure on

the heterogeneity, by examining individual-level heterogeneity through the lenses of a benchmark

macroeconomic model with learning. We do so by treating individual forecasters as if they were

agents in a model, and we provide them with a similar information set.

We use data on individual forecaster expectations from the Survey of Professional Forecasters

(SPF). We use the same forecasts that would enter in a benchmark New Keynesian model: one-

quarter-ahead forecasts for output (growth) and inflation. To minimize composition effects coming

from the entry and exit of forecasters, we retain in the sample only observations for forecasters that

remain in the survey for at least ten (and, as robustness, twenty) periods.

We then investigate how these individual expectations are formed. As background, we assume

that the underlying economy is summarized by a canonical New Keynesian model. In a first step,

we estimate the aggregate model by matching expectations in the model to the mean from our panel

of forecasts, and assuming that aggregate expectations are formed under constant-gain learning.

From the estimated aggregate model, we obtain the filtered structural disturbances, which are

typically part of the information set for agents in the model, and that we assume to be part of the

individual forecasters’ information set as well.

In the second step, we then turn to the analysis of individual expectations. We assume that those

expectations are formed from a perceived linear model of the economy (PLM). Our assumption is

that forecasters are given the same model and the same information set that they would have as

economic agents in a benchmark New Keynesian model. Therefore, they use a PLM that is equal

to the Minimum State Variable (MSV) solution of the corresponding macro model under rational

expectations, and they are assumed to observe the disturbances (for robustness, we will also relax

this assumption, endowing agents with knowledge of the lagged endogenous variables, but not of

disturbances). For each forecaster, we minimize the distance between their observed forecasts and
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the expectations formed from the learning PLM. As a result, we obtain the best-fitting constant gain

for each individual forecaster. The gain governs their speed of learning for the sample during which

they are in the survey: it can be interpreted as their perceived probability that the variable they

are forecasting will be subject to a structural break, as well as their memory of past observations.

For each forecaster, expectations are well explained by the learning model. But we denote the

difference between observed expectations and the portion that is explained by the learning model

as ‘excess optimism and pessimism’, or ‘sentiment’. Those optimism and pessimism terms may be

serially correlated and represent an individual-level version of the aggregate sentiment analyzed in

Milani (2011, 2017), which show that sentiment shocks are responsible for about half of business

cycle fluctuations.

The heterogeneity in individual expectations in our environment, therefore, stems from two

sources: different constant gains and different degrees of optimism/pessimism. We can evaluate

how gains change across the cross-section of forecasters at each point in time, and how they change

over time. Also, we can track sentiment at the individual level and evaluate whether optimism and

pessimism shocks average out across forecasters or are, instead, cross-sectionally correlated.

Main Results. We document a substantial heterogeneity in the learning approach of individual

forecasters. Their gain coefficients are heterogeneous: in many periods, forecasters who are largely

unresponsive to new information coexist with forecasters who employ gains around 0.1 or higher.

The gains vary over time: they are often higher in the 1970s and 1980s, with averages that rise

to values of 0.03-0.05, and they decline in the second part of the sample, stabilizing around 0.015,

and with a lower dispersion. The micro evidence is, therefore, consistent with switches in the gain

as identified in Milani (2014), who also proposed time variation in the gain as a potential driver of

stochastic volatility in output and inflation.

Beliefs about macroeconomic relationships estimated at the individual level also reveal sub-

stantial heterogeneity across forecasters and changes over time. On average, perceptions about the

persistence of inflation increase over the sample, before reverting back later on. Forecasters also

significantly revise their beliefs about the effectiveness of monetary policy: the perceived sensitivity

of output to interest rates fall to values between -1.3 and -2 for most of the 1970s, and it moves

upward with Volcker’s disinflation. At the end of the sample, the perceived sensitivity has been

reduced to a coefficient of -0.5. Individual beliefs can also affect the dynamics of the aggregate

model: impulse responses and the role played by different shocks can be very different depending
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on which beliefs prevail in the population.

Moreover, we provide estimates of sentiment series at the individual level. Excesses of optimism

and pessimism by single forecasters do not cancel out in the aggregate, rather they typically move

in herd. The evolution of mean sentiment mirrors the series that is estimated at the aggregate

level. Sentiment is persistent, and it has a volatility that is comparable to that of other structural

disturbances.

Related literature. The paper aims to add to the literature on adaptive learning in macroeco-

nomics, which has historically been more focused on the formation of expectations at the aggregate

level. Evans and Honkapohja (2001) and Sargent (1993, 1999) review the foundations of the adap-

tive learning approach. Adaptive learning has important implications for which monetary policy

strategies are desirable (as described, for example, by Orphanides and Williams, 2005, Preston,

2006, Gaspar, Smets, and Vestin, 2006, Eusepi and Preston, 2010), fiscal policy (Evans, Honkapo-

hja, and Mitra, 2009), and for the effects of ‘forward guidance’ (Cole, 2020a,b). In addition, previous

research has examined how learning behavior can explain fluctuations in the macroeconomy. Mi-

lani (2007, 2014) shows that learning is successful in capturing the persistence and volatility of

macroeconomic data. Eusepi and Preston (2011) find that learning helps explain the propagation

of shocks over the business cycle. Prior literature also provides evidence that learning accurately

captures the formation of aggregate survey expectations (Orphanides and Williams, 2005, Branch

and Evans, 2006, Markiewicz and Pick, 2014, Bräuning and van der Cruijsen, 2019).

Fewer papers delve, instead, into the the formation of individual expectations, which is the main

objective of this paper. In particular, we provide evidence on the importance of heterogeneity

at the microeconomic level by exploiting individual survey expectations. Therefore, our work is

more closely connected to Branch (2004), Pfajfar and Santoro (2010), and Malmendier and Nagel

(2016). Branch (2004) describes how the forecasting models used by agents are not necessarily

constant, but they can shift over time. Different shares of agents may switch between models in

forming expectations, generating heterogeneity. Pfajfar and Santoro (2010) study heterogeneity by

examining the time series of different percentiles from the cross-sectional distribution of inflation

forecasts. Malmendier and Nagel (2016) use an adaptive learning model to argue that consumers

discount the past differently based on their age. We provide a link between micro and macro

approaches, instead, by treating forecasters in the same way as we would treat them as agents in

a benchmark New Keynesian model, with the same perceived model and the same information set.
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We document substantial levels of heterogeneity, while maintaining a parsimonious model for the

source of such heterogeneity: in our case, it derives from the dispersion of constant gain values

across forecasters, and from different degrees of excess optimism and pessimism.

A number of papers provide theoretical foundations and interpretation for learning gain co-

efficients. Evans and Honkapohja (2001) examine and discuss the gain coefficient in terms of

convergence of the learning model to its rational expectations counterpart. Barucci (1999) and

Honkapohja and Mitra (2006) describe that gain coefficients can also be interpreted as the de-

gree of memory forecasters attach to past observations. Berardi and Galimberti (2017) document

appropriate approaches for calibrating and interpreting gain coefficients. Berardi (2019) offers a

Bayesian framework for interpreting the gain coefficient as the probability of estimated parameters

changing every period. Our paper adds to this literature by shedding light on realistic values for

gains at the individual level, and it reveals both heterogeneity in the cross-section of forecasters

and time-variation over the sample.

Our results regarding the importance of sentiment in individual expectations also provide an

important rationale at the microeconomic level for the type of aggregate sentiment that has been

recently introduced in a variety of macroeconomic models. Milani (2011, 2017) utilizes adaptive

learning and aggregate survey expectations from the SPF and finds that sentiment shocks explain

a significant portion of business cycle fluctuations.1 Angeletos, Collard, and Dellas (2018) also

describe the importance of sentiment (or “confidence”) shocks for explaining the business cycle.

When firms are faced with a signal extraction problem for their goods, Benhabib et al. (2015)

show that sentiment can lead to equilibria away from a standard rational expectations solution.

Moreover, our results add to the previous research by providing compelling evidence of sentiment

shocks as an additional source of heterogeneity at the microeconomic level.

In the next Section, we present the individual expectations data from the SPF. Section 3 lays

out the New Keynesian model, which is assumed as a benchmark model for the underlying economy.

The model is estimated using Bayesian methods and aggregate expectations matched to the mean

survey expectations. Section 4 investigates the expectation formation at the individual forecaster

level to extract best-fitting gains and micro-level optimism and pessimism. The results are discussed

in Section 5, and their sensitivity is assessed in Section 6. Section 7 presents the conclusions.

1The papers by Charalampidis and Milani (2020), Chatterjee and Milani (2019), and Cole and Milani (2019) also
highlight the empirical importance of sentiment in different frameworks.
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2 Individual Survey Expectations Data

We use individual expectations data from the SPF, hosted by the Federal Reserve Bank of Philadel-

phia. We focus on forecasts about future real GDP growth and the future inflation rate calculated

from the GDP Implicit Price Deflator. The series of reference are ‘RGDP’ and ‘PGDP’, and specif-

ically we use ‘RGDP2’, ‘RGDP3’, ‘PGDP2’, and ‘PGDP3’ : they refer to expectations formed by

forecasters at time t, while being able to observe the published values of the same variables up to

t−1, about the value of the variables at the end of the current period t and of the next period t+1.

Expectations about t+ 1, hence, have the same horizon as those that would enter in a benchmark

New Keynesian model.

Mansky (2011) has highlighted the potential composition effects that can arise due to the entry

and exit of forecasters. Therefore, we keep in the panel only those forecasters that remain in the

survey and submit forecasts for at least ten periods (in the robustness section, we consider a sample

with those that remain twenty periods), and for which we have both output and inflation forecasts.

After constructing this data set, our sample includes 204 individual forecasters that participate in

the survey at different points, and for a number of periods above the threshold, between the last

quarter of 1968 and the third quarter of 2016.

Given our interest in inferring the learning process and any excess optimism/pessimism in real-

time, it is crucial that we try to capture the actual information set that was available to forecasters

at the time the forecasts were produced. We do so by exploiting the real-time data series that the

SPF provides in correspondence of each forecast (obtained through the Real-Time Data Set for

Macroeconomists, also hosted by the Federal Reserve Bank of Philadelphia). Therefore, we use the

corresponding real-time data for output and inflation (the series with acronym ROUTPUTQvQd

and PQvQd) as our observables for the realized variables. For each series, we use the first-vintage

observation.

Figure 1 shows the evolution of individual expectations over the sample, along with the implied

mean and the actual realized series.2 Figure 2 plots the disagreement across forecasters, measured

as the cross-sectional standard deviation.

We will assume that individual expectations are formed in a way that is consistent with a

typical Perceived Law of Motion (PLM) from a canonical macroeconomic model. We turn to the

2We find that difference between the mean and median are trivial (with a correlation above 0.99), once we have
cleaned the sample to include only ‘long’-term participants to the survey.
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presentation of the model and the expectation formation assumptions next.

3 New Keynesian Model

We assume that our individual forecasters are endowed with the same information set that economic

agents would have in a benchmark New Keynesian model. Therefore, in forming their macroeco-

nomic forecasts, they use information from past realizations of the endogenous variables (output

gap, inflation, and interest rates), as well as information about structural disturbances to demand

and supply (autoregressive natural-rate and cost-push shocks). The set of variables that they use

in their forecasting models, therefore, corresponds to the same variables that appear in the MSV

solution of the model under rational expectations.

We assume that the underlying aggregate economy is characterized by a canonical New Keyne-

sian model (e.g., Woodford, 2003), extended to include endogenous sources of persistence as habit

formation and inflation indexation. The model is summarized by the following equations:

ỹt = Êtỹt+1 − ψ(it − Êtπt+1 − rnt ) (1)

π̃t = βÊtπ̃t+1 + κ
(
ωyt + ψ−1ỹt

)
+ ut (2)

it = ρtit−1 + (1 − ρt) [χπt πt + χyt yt] + σε,tεt (3)

where ỹt ≡ yt− ηyt−1, π̃t ≡ πt− γπt−1, ψ ≡ σ(1− η), κ ≡ (1−αβ)(1−α)/α, and where yt denotes

the output gap, πt denotes inflation, and it denotes the short-term nominal interest rate, which

serves as the monetary policy instrument. The coefficient σ denotes the elasticity of intertemporal

substitution, ω the inverse of the Frisch elasticity of labor supply, β the household’s discount factor,

α the Calvo price stickiness parameter, and ρt, χ
π
t , and χyt are Taylor rule coefficients that denote

the inertia of interest rate decisions, and the monetary policy reaction to inflation and the output

gap. The degree of (external) habit formation in consumption is measured by η and the extent of

indexation to past inflation in price setting by γ.

The model includes three exogenous disturbances: the demand (real natural rate) disturbance

rnt , the supply (cost-push or price markup) disturbance ut, which are assumed to evolve as AR(1)

processes with autoregressive coefficients ρjt and standard deviations σjt , with j = r, u, and the
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monetary policy shock, which, following the convention in the literature, is assumed to be i.i.d.:

rnt = ρrt r
n
t−1 + σrt ε

r
t (4)

ut = ρut ut−1 + σut ε
u
t . (5)

To improve the fit of the model to postwar data, we allow some of the coefficients to vary over time

(and they are denoted with a t subscript). The Taylor rule coefficients, including the volatility

of monetary policy shocks, are allowed to assume different values in the pre-1979 sample, in the

non-borrowed-reserve targeting experiment years between 1979 and 1982, and in the post-1982

period: 

[
ρpre79, χ

π
pre79, χ

y
pre79, σε,pre79

]
t ≤ 1979 : 3

[
ρ79−82, χ

π
79−82, χ

y
79−82, σε,79−82

]
1979 : 4 ≤ t ≤ 1982 : 4[

ρpost82, χ
π
post82, χ

y
post82, σε,post82

]
t ≥ 1983 : 1

Moreover, substantial evidence points toward a break in the volatility of the macroeconomic shocks

around 1984 (e.g., McConnell and Perez-Quiros, 2000). Hence, we allow the remaining disturbance

parameters (both the autoregressive coefficients and standard deviations) to potentially switch

between the pre-1984 and post-1984 samples:
[
ρjpre84, σ

j
pre84

]
t < 1984 : 1

[
ρjpost84, σ

j
post84

]
t ≥ 1984 : 1

for j = r, u. Expectations in the model are denoted by Êt and they are measured by the mean of

expectations from our sample of individual forecasters: Êt =
∫
j Êt,jdj.

3.1 Near-Rational Expectations

Following the literature on adaptive learning in macroeconomics (Evans and Honkapohja, 2001,

2013, Sargent, 1999), we assume that agents in our model follow the ‘cognitive consistency’ prin-

ciple: they don’t enjoy a knowledge advantage compared with the modeler, and they try to infer

relationships among variables by analyzing historical data, as econometricians would. To produce

forecasts about future variables (e.g., output or inflation), they employ a linear perceived model,

estimated using standard techniques (e.g., OLS or WLS). As new information arrives every period,

they update forecasts accordingly, thus continuously learning about the economy.
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Therefore, aggregate expectations in the model are assumed to be formed as in Milani (2011,

2017), i.e., from the following Perceived Law of Motion (PLM):

Yt = at + btYt−1 + ctεt + νt (6)

where Yt = [yt, πt, it]
′, εt = [rnt , ut]

′, and at, bt, and ct, are vectors and matrices of coefficients

of appropriate dimensions. The term νt denotes an econometric error term. As common in the

adaptive learning literature, economic agents are assumed to use a correctly-specified model to

generate their forecasts: the model corresponds to the Minimum State Variable (MSV) solution of

the system under rational expectations. Agents, hence, use the correct set of endogenous variables

in their perceived model, for which they observe data up to t− 1, and they are assumed to observe

the contemporaneous disturbances. The model contrasts with rational expectations, since agents

are assumed to lack knowledge about the reduced-form coefficients in the PLM: therefore, they

do not know the magnitude of the relationships among variables. For example, they do not know

how sensitive output and inflation are to interest rate changes or to demand and supply shocks,

or the persistence of output and inflation, or the slope of the Phillips curve. This approach is still

typically interpreted as a minimal deviation from rational expectations.

Given their imperfect knowledge, agents attempt to learn the magnitudes of the relationships

over time, based on the realizations of macroeconomic data that they observe. They update their

beliefs at each t according to the constant-gain learning formula:

φ̂t = φ̂t−1 + gR−1
t Xt(Yt − φ̂ ′

t−1Xt)
′ (7)

Rt = Rt−1 + g(XtX
′
t −Rt−1) (8)

where Xt ≡ [1, Yt−1, εt]
′, and φ̂t = [at, bt, ct]

′. The key coefficient of interest is g, the constant-

gain coefficient. The gain governs the speed at which agents learn and adjust their beliefs to new

information. The gain can also be interpreted as the degree of memory that agents have, given

that they discount past information more heavily than recent observations (at the rate (1 − g)j

for observations falling j periods in the past). Given the PLM and the updated beliefs φ̂t, the

aggregate expectations entering in equations (1)-(3) are formed as

ÊtYt+1 =
(
I + b̂t

)
ât + b̂2tYt−1 + (ĉtρ+ b̂tĉt)εt + dst. (9)

The expectation formation mechanism includes two components: one endogenous and due to learn-

ing about the economy and responding to observed conditions, and the second (dst, where d is
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simply a selection matrix), exogenous. The latter represents the components of expectations that

cannot be justified by the near-rational learning model. These terms, denoted by st define, as in

Milani (2011, 2017), “sentiment”, or waves of excess optimism and pessimism, in the model.

Sentiments about output and inflation are assumed to evolve as

st = ρstst−1 + Σs
tζt,

where st = [syt , s
π
t ]′, ρst = [ρrt , 0; 0, ρπt ], and Σs

t = [σr,t, 0; 0, σπ,t], with autoregressive coefficients and

standard deviations allowed to switch before and after 1984, as for the other disturbances.

3.2 Bayesian Estimation of New Keynesian Model

The previous model, with aggregate expectations formed as in (9), can be expressed in state-space

form as:

OBSt = H0 +HYt (10)

Yt = At + FtYt−1 +Gε̃t (11)

where OBSt collects the observable variables to be matched in the estimation, Yt collects the en-

dogenous variables, the expectations, and the exogenous disturbances, and ε̃t collects the exogenous

innovations.

We use real-time data (first-vintage) in the estimation of the DSGE model and in trying to

match the individual forecasters’ expectations. The real-time series are obtained from the Real-

Time data set for Macroeconomists, hosted on the Federal Reserve Bank of Philadelphia’s website.

As explained there, quarterly vintages correspond to the real time data available to forecasters in

February, May, August, November of each year. For this reason, when downloading the Federal

Funds Rate, we also use the corresponding values in the same months.

Inflation is obtained as log first difference of the GDP Implicit Price Deflator; we use the log

first difference of Real GDP for output growth. Expectations are given by the mean across our

set of forecasters of one-period-ahead output growth and inflation expectations, using the series

described in the previous section. In the estimation, we assume a piecewise-linear trend for output,

following the evidence in Perron and Wada (2009). They find that when changes in the slope of the

trend function are accounted for, there is no longer evidence of stochastic trends, and the resulting

cyclical component aligns well with NBER recession dates. We allow for changing slopes between

10



the 1954:III-1973:III, 1973:IV-1994:IV, 1995:I-2007:I, and 2007:II-2016:III subperiods, based on the

growth facts presented in Jones (2016).

A potential issue in the estimation regards the existence of a binding zero-lower bound (ZLB)

starting in 2009, which could introduce a nonlinearity into our model. We solve this issue, as others

have done, by using data on the ‘shadow’ short rate. Unlike the short-term US nominal interest rate,

the shadow short rate is allowed to have negative values to capture a more accommodating stance

of monetary policy at the ZLB (for example, due to unconventional monetary policy interventions).

We utilize the shadow short rate made available by Krippner (2013) in place of the FFR from

2009:Q1 to 2016.

The last choice before estimating the New Keynesian model with adaptive learning concerns

initial beliefs φ̂t=0 and Rt=0. To obtain values for these coefficients, we utilize a presample esti-

mation. We start from uninformative initial beliefs at the beginning of the pre-sample period, i.e.

1954:Q3, which is the first quarter of availability of Federal Funds rate data. We next run the

estimation from 1954:Q3 to 1968:Q3 without expectations data to give us initial beliefs for our

main estimation, which includes the expectations series starting in 1968:Q4. The likelihood is then

computed for the 1968:Q4-2016:Q3 sample.

The model is estimated using Bayesian methods as in Milani (2007, 2011). Table 1 shows

the chosen prior distributions, along with the posterior estimates for our vector of structural,

disturbance, and learning, parameters. With survey expectations and learning, we estimate lower

degrees of habit formation and inflation indexation (η = 0.366, γ = 0.088) than in corresponding

models under rational expectations. The estimated response of monetary policy to inflation, as well

as the degree of interest rate inertia, are higher during the 1979-1982 experiment, than in other

periods. Cost-push shocks are close to iid, while natural rate shocks display significant persistence.

Sentiment shocks, both related to output and inflation, are also persistent and they have comparable

volatility to that of fundamental disturbances. In line with the Great Moderation literature, the

standard deviations of most shocks fall in the second part of the sample. Finally, we provide an

estimate of the best-fitting constant gain coefficient in a macroeconomic model with expectations

matched to aggregate survey expectations. The posterior mean for the gain equals 0.015.
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4 Individual Expectations

4.1 Perceived Model and Constant-Gain Learning

The previous section estimated the New Keynesian model at the aggregate level, which allowed us

to obtain mean estimates of the model parameters and the filtered structural disturbances. We now

turn to examining expectations at the individual level. We impose structure on our forecasters’

expectation formation process by assuming that they form expectations from a near-rational model

that allows for learning. Agents have a correctly-specified PLM, which has the same endogenous

variables as the solution under rational expectations, and the same aggregate disturbances.

Hence, the PLM is the same as (6) for each individual forecaster j:

Yt = ajt + bjtYt−1 + cjtεt + νjt (12)

where Yt = [yt, πt, it]
′, εt = [εrt , ε

u
t ]′, and at, bt, and ct are vectors and matrices of coefficients; νt

is the usual regression error term. The estimation of the New Keynesian macroeconomic model

allows us to include the filtered structural disturbances in the individual agents’ information sets.3

While forecasters are assumed to base their expectations on a correctly-specified model, they

may differ in their beliefs. Each forecaster j updates beliefs through constant-gain learning:

φ̂jt = φ̂jt−1 + gj(Rjt )
−1Xt(Yt − φ̂j ′t−1Xt)

′ (13)

Rjt = Rjt−1 + gj(XtX
′
t −Rjt−1) (14)

where Xt ≡ [1, Yt−1, εt]
′, and φ̂jt =

[
ajt , b

j
t , c

j
t

]′
. Expectations for each individual forecaster are,

therefore, assumed to be formed as

Êjt Yt+1 =
(
I + b̂jt

)
âjt + (̂bjt )

2Yt−1 + (ĉjtρ+ b̂jt ĉ
j
t )εt + d̂sjt , (15)

where εt collects the structural AR(1) disturbances and st denotes sentiment, or unjustified opti-

mism and pessimism (that is, unjustified based on the state of the economy and the updated beliefs).

Therefore, equation (15) provides a way to study and extract excess optimism and pessimism at

the micro level.

Initial beliefs for each forecaster also need to be specified. Instead of fixing them at ad hoc

values, we proceed in the following way. In the SPF dataset, forecasters may enter at different

3In the robustness Section 6.1, we will address the sensitivity of the results to the exclusion of information about
disturbances: in that case, agents only use a VAR(1) plus constant in the observable variables as their PLM.
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time periods, and thus, each individual may happen to utilize a different length of histories when

producing an initial forecast. Therefore, we jointly estimate the initial beliefs, using the relevant

pre-sample data for each forecaster, which would have been obtained by the forecaster using the

same constant gain learning approach as

φ̂jτ =

[
τ∑
i=1

(
1 − gj

)(i−1)
Xτ−iX

′
τ−i

]−1 [ τ∑
i=1

(
1 − gj

)(i−1)
Xτ−iY

′
τ−i+1

]
(16)

where Xt ≡ [1, Yt−1, εt]
′ denotes the regressors in forecaster j’s PLM and gj is the constant gain

parameter specific to individual j. We assume Rτ = c ∗ I, a scaled identity matrix, with c = 0.1

to allow for a larger degree of uncertainty characterizing the initial beliefs. As described above,

the estimation of the macroeconomic model allows us to obtain filtered series of the structural

disturbances.

The following example will help to clarify how forecasters form initial beliefs. If an individual

enters the survey in 1979:Q4 and stays for twenty periods, we would assume that she can observe

the presample data from 1954:Q3 to 1979:Q3, discount them (we obtain the best-fitting gain in the

estimation, which governs this discounting) and then update beliefs and form expectations for the

subsequent years. In this way, the forecasters’ learning speed and initial beliefs are both estimated,

but in a parsimonious way.

Overall, forecasters are assumed to have both similarities and differences. Each individual j

produces expectations using an adaptive learning model with the same set of variables, based on

the correctly-specified solution under rational expectations. They all have access to the same set

of presample data. However, forecasters expectations can vary based on the endogenous learning

component influenced by g, and the exogenous sentiment shocks st displayed in (15).

4.2 Estimation

For each individual forecaster, we compare observations on their one-period ahead forecasts for

output growth and inflation to their counterparts implied by the adaptive learning model. We find

the best-fitting gain coefficient by minimizing the loss function implied by the mean squared errors

for these series

argmin
ḡj

[
Ej,obst Zt+1 − ÊjtZt+1

]′ [
Ej,obst Zt+1 − ÊjtZt+1

]
(17)
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where Ej,obst Zt+1 denotes the observed survey forecast from the SPF for forecaster j, with Z =

[∆y, π]
′

and ÊjtZt+1 denotes the implied expectations obtained from the learning model. Thus, the

best-fitting gain is the one that minimizes the mean squared forecast error for each forecaster. The

unexplained component of each expectations series, that is the part that is not explained by the

learning model with the best-fitting gain, is denoted as sentiment: forecasters are either more or

less pessimistic than their near-rational learning model implies.

The heterogeneity across forecasters, therefore, can stem from two sources: different learning

speeds, as measured by different constant gains (motivated by different agent’s perceptions about

incoming structural change or by different memories), and different sentiment.

5 Empirical Results

We now examine the two potential sources of heterogeneity in individual forecasters’ expectations,

as well as the implications these differences have for the economy.

5.1 Best-Fitting Constant Gain Parameter

The source of heterogeneity in individual respondents’ forecasts can stem, first, from their constant

gain parameters gj . As explained above, this parameter can have two interpretations. First, it

governs the speed at which agents adjust their beliefs to new information about the economy,

possibly because they are concerned about future structural breaks of unknown form. It can also

be interpreted as the degree of memory agents have about past data (Malmendier and Nagel,

2016, provide a behavioral explanation for differences in discounting, showing that older agents

assign more weight to observations in the more distant past). To understand how the best-fitting

constant gain parameter can be a source of heterogeneity in SPF respondents, we examine the gj

that minimizes equation (17) for each forecaster j.

Figure 3 displays the value of the estimated best-fitting constant gain for each forecaster for each

period she submits a response. The vertical axis denotes the value of the constant gain parameter

from 0.0001 to 0.2. The horizontal axis indicates the date. In each time period, we represent the

distribution of the best-fitting gain of forecasters with a boxplot. The target signifies the median,

the edges of the box the 25th and 75th percentiles, the whiskers the extreme values not considered

outliers, and the ‘+’ symbol outliers.

The results show that heterogeneity in individual expectations can stem from different values of
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the best-fitting constant gain across SPF forecasters. Before the beginnings of the Great Moderation

(i.e., prior to the mid to late 1980s), there exists larger dispersion in the value of g. For instance,

the interquartile range is much larger during this period relative to after the Great Moderation.

The median gains during these decades often fluctuate and occasionally rise to values around 0.05.

Several forecasters place a large degree of weight on new information about incoming structural

change in the economy and they substantially discount the past. As the sample period moves into

the 1990s and concludes in 2016, the distribution of constant gains tightens and steadily coalesces

around smaller values of g. The upper limits of the outliers and extreme values tend to take on

smaller numbers; the interquartile range is also generally decreasing over this time period. The

median value of the constant gain also centers around lower numbers (0.01-0.02) of g, with a value

of 0.0146 in the final period of our sample (i.e., 2016:Q3). Forecasters do not perceive a high

prospect of structural change in the economy implying lower values of the best-fitting g.

5.1.1 Beliefs

The previous subsection showed that the heterogeneity in forecasts can stem from different best-

fitting constant gain values across forecasters. These differences then affect agents’ beliefs, that is,

the elements of φ̂t = [at, bt, ct]
′
. Thus, a natural question regards the implications for the economy

when there exists heterogeneity in forecasters’ estimates of a, b, and c. To attempt to answer this

question, we analyze selected beliefs of SPF respondents.

Figures 4 – 6 display the results. In each figure, we represent the distribution of the belief

coefficient each period with a boxplot as before. Figure 4 shows the slope of the Phillips Curve

parameter, that is, b2,1. The inflation persistence parameter (i.e, b2,2) is displayed in Figure 5.

Figure 6 presents the policy parameter b1,3, which governs the sensitivity of the output gap to

changes in the interest rate. In addition, the belief coefficients correspond to the best-fitting gain

of each forecaster.

Three important takeaways emerge after examining Figures 4 – 6. First, looking at the evolution

of the slope of the Phillips Curve b2,1, there exists notable shifts in the values of the coefficients

during recessions: the curve appears to steepen during recessions. Second, the median value of the

perceived inflation persistence parameter (i.e., b2,2) increases in the middle of the sample and then

declines again at the end. Finally, forecasters perceive the influence of policy on output gap (i.e.,

b1,3) to be less effective as time elapses. Figure 6 shows that the median value of b1,3 stays negative
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the entire period, but moves in an upward trajectory towards zero. The median coefficients are

close to -2 in the 1970s, but they are revised closer to -0.5 after the Great Recession. This result is

consistent with the VAR evidence from (Boivin and Giannoni, 2006) on the reduced effectiveness

of monetary policy over the sample.

5.1.2 Evolving Beliefs, Heterogeneity, and Responses to Shocks

The response of the economy to shocks will be substantially different depending on the state of

private-sector beliefs. In Figure 7, we show the responses of output, inflation, and interest rates,

to the structural shocks (natural rate, cost-push, and monetary policy), which would exist if the

aggregate beliefs in the New Keynesian model were assumed to be equal to those held by each

forecaster j. We show the responses in the early part of the sample (1971:Q1) and in the late part,

before the Great Recession (2006:Q1).

As the figure shows, the heterogeneity is more pronounced in 1971, as the ranges of responses

are usually wider. For example, a portion of forecasters believes that positive cost-push shocks

have only mild (and possibly even positive) effects on the economy, while others believe that cost-

push shocks have extremely large recessionary effects on output. The majority of forecasters lay

in between these two extremes. In a self-referential system, individual forecasters’ beliefs can be

partially self-fulfilling: if agents perceive supply, or any other, shocks to be particularly effective,

they will indeed play a larger role than in an economy in which their effects are perceived as trivial

in the formation of expectations. The responses for 2006 indicate that significant dispersion still

exists regarding the magnitude of the effects, but without major disagreement on the sign and

overall shape of the responses.

Figure 8 shows, instead, the contribution of each shock to the forecast error variance of output,

when, as before, the aggregate beliefs are assumed to be fixed, in turn, to exactly match the beliefs

of each single forecaster j. It is apparent from the figure that the state of beliefs plays a central role

for the transmission and importance of shocks: the natural rate shock can explain anywhere from

close to zero to almost all output fluctuations. Depending on forecasters’ perceptions, monetary

policy shocks can end up explaining between few percentage points and 60% of business cycle

movements.
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5.2 Sentiment

Individual forecasters have been assumed to construct forecasts using the same adaptive learning

model in equation (12), but with potentially different constant gains across forecasters. However, a

natural question regards other origins that may contribute to the heterogeneity in expectations. In

this section, we examine a potential second source of differences: sentiment shocks. These shocks

are defined as the difference between observed expectations and model-implied expectations for

one-period ahead output and inflation:

sj,yt = Ej,obst yt+1 − Êjt yt+1 (18)

sj,πt = Ej,obst πt+1 − Êjt πt+1. (19)

As stated in Milani (2011, 2017), these shocks can be defined as waves of excess optimism and

pessimism by agents about the economy in a particular time period.

The sentiment shocks of each individual forecasters over time corresponding to the best-fitting

gain are displayed in Figures 9 and 10. As in the previous section, we represent the distribution each

period with a boxplot. Figure 9 corresponds to the sentiment shock for expectations of one-period

ahead output. Figure 10 shows the sentiment shock for expectations of one-period ahead inflation.

Figures 9 and 10 show that an additional source of heterogeneity in forecasts can stem from

different waves of optimism and pessimism for each individual forecaster. These disparities are

apparent when examining pre- and post-Great Moderation periods in the U.S. In the former, the

distribution of sentiment shocks is very wide reflecting the higher volatility of macroeconomic

variables during this time period. After mid-1980s, forecasters’ sentiment shocks are still different,

but not as volatile and much tighter. They tend to cluster together during the Great Moderation

era. In addition, the output sentiment shock tends to align with downturns in the U.S. economy.

For instance, during the 2001 and 2007 - 2009 recessions in the U.S., the median value for the

output shock turns negative. This result is not surprising as agents are becoming more pessimistic

about the economy and matches well with Milani (2011, 2017) who shows these sentiment shocks

can explain greater than 40% of business cycle fluctuations in the U.S.

An important question relates to the process of sentiment for individual forecasters. To answer

this question, we fit the sentiment shocks to two types of models: an AR(1) plus constant and a

VAR(1) plus constant. For the first, we specify each type of sentiment shock as an AR(1) plus
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constant model:

sj,yt = aj,y + bj,ysj,yt−1 + εj,yt (20)

sj,πt = aj,π + bj,πsj,πt−1 + εj,πt (21)

where εj,yt and εj,πt are the usual (scalar) white noise error term assumed not correlated with each

other. In addition, the VAR(1) plus constant model allows for the possibility of correlation across

output and inflation sentiment shocks and is defined as

sjt = Φj
0 + Φj

1s
j
t−1 + εj,Φt (22)

where sjt = [sj,yt , sj,πt ]
′
, εj,Φt is a 2x1 vector of usual white noise error terms and the coefficient

matrices are given by

Φ0 =

[
φj0,1
φj0,2

]
(23)

Φ1 =

[
φj1,1 φj1,2
φj2,1 φj2,2

]
(24)

For each forecaster and model, we estimate the coefficients using OLS (line-by-line OLS in the

VAR(1) plus constant case). The results are presented in Figures 11 – 13. Figures 11 and 12 display

histograms of the coefficients across forecasters in AR(1) plus constant specifications. Figure 13

denotes the histograms of the coefficients across SPF respondents in the VAR(1) plus constant

model.

Three important takeaways emerge after examining Figures 11 – 13. First, the sentiment shocks

seem to be (slightly) biased across both types of models. The histogram of the estimated constants

in the AR(1) plus constant and the VAR(1) plus constant models are skewed right towards positive

values. In addition, the sentiment shocks of SPF forecasters seem to exhibit persistence. Across

both AR(1) plus constant and VAR(1) plus constant specifications, the histogram of the estimated

values of the autoregressive terms are centered over positive values. Finally, the shocks do not

seem to be highly (if at all) correlated across output and inflation sentiment shocks. This result is

seen with the VAR(1) plus constant model, which allows for the possibility of this correlation with

estimation of the off-diagonal coefficients (i.e., φ1,2 and φ2,1). In Figure 13, the histogram of these

estimated coefficients is slightly skewed left. However, it is centered over zero suggesting minimal

to no correlation across sentiment shocks.
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Overall, the heterogeneity across forecasters can stem from two sources: (1) different learning

speeds, as measured by different constant gains (motivated by different agent’s perceptions about

incoming structural change or by different memories); and (2) different degrees of excess optimism

and pessimism. The distribution of gj across forecasters tends to be more dispersed pre-Great

Moderation and tightens up around lower values towards the end of the sample. In addition,

the individual sentiment shocks track the U.S. business cycle fairly well. These shocks also seem

to be biased upwards and exhibit persistence across time. In many periods, particularly at the

beginning of the sample, forecasters who display excess optimism for either output or inflation

coexist with others who display excess pessimism. But this is mostly due to forecasters in the tails

of the distribution. Overall, sentiments don’t cancel out: the 25-75% interquantile ranges show that

many forecasters move in herd, tending to be overly optimistic or pessimistic at the same time.

6 Robustness

6.1 Alternative Forecasting Model

Our benchmark results showed that the heterogeneity in forecasters can be explained by different

constant gains and sentiment shocks under the assumption that survey forecasters use an adaptive

learning rule to construct expectations. Their adaptive learning PLM included a constant, lagged

endogenous variables, and knowledge of structural disturbances, that is, equation (12). However,

a natural question regards the structure of this forecasting model. Specifically, how would the

heterogeneity across forecasters change if their forecasting model assumed less knowledge about

the economy? In other words, how would the results change if the PLM of SPF respondents was

based on a misspecified, but realistic, model?

We attempt to answer the previous question by comparing the benchmark results to a PLM that

consists of a VAR(1) plus constant. In other words, equation (12) is modified to be the following:

Yt = aj + bjYt−1 + εjt . (25)

We repeat the benchmark exercise of Section 5.1 and display the outcomes of the best-fitting gain

in Figure 14. As before, we represent the distribution of individual forecasts with a boxplot.

With a misspecified forecasting model, the best-fitting gj across SPF respondents tend to cluster

over smaller values as compared to the benchmark case in Figure 3. The extent of time variation

is also more modest.
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6.2 SPF Respondents Submit Forecasts for at Least 20 Periods

A potential issue with using a survey dataset such as the SPF is the entry and exit of respondents

as described by Mansky (2011). To remedy this issue, our baseline exercise included only those

respondents that submit forecasts for at least ten periods. We chose this number partly so that

we had a sufficient number of data points per respondent. However, given that this observation

requirement is somewhat arbitrary, we analyze the benchmark results for those respondents that

submit forecasts for at least twenty periods.

The results of this sensitivity analysis show that the baseline outcomes are largely unchanged.

Figure 15 reports the best-fitting constant gains for each forecasters with a boxplot representing the

distribution of forecasters as in Section 5.1. As in the baseline case, there exists larger dispersion

in the value of g before the Great Moderation relative to after this time period. Thus, the results

of this section indicate that our benchmark requirement of ten observations for a respondent to

remain in our dataset allows sufficient information about the distribution of best-fitting constant

gains.

6.3 Alternative Initialization of Rτ

Our benchmark results of Section 5 were obtained under the assumption that the initial R matrix

(i.e., Rτ ) of each individual forecaster was equal to c∗I, a scaled identity matrix, with c = 0.1. This

specification allowed for a larger degree of uncertainty characterizing the initial beliefs of individual

forecasters. However, it is natural to investigate the results under an alternative parameterization

of Rτ for each forecaster.

We proceed by estimating the initial beliefs of R for each forecaster as an additional extension

exercise. Similar to the assumption for the initial φ̂t, each forecaster is assumed to use their relevant

pre-sample data using the same constant-gain learning approach to estimate Rτ :

Rτ = gj
τ∑
i=1

(
1 − gj

)(i−1)
Xτ−iX

′
τ−i. (26)

To be consistent with Section 5, each forecaster is assumed to scale this initial matrix R by c = 0.1,

hence making our prior knowledge about φ̂t more diffuse. Moreover, we perform the benchmark

best-fitting constant gain exercise of Section 5.1 and display the results in Figure 16.

The distributions of the best-fitting constant gains still highlight significant heterogeneity over

the whole sample. The median values have similar magnitudes as before, but without the spikes
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at 0.05. They also converge to values around 0.02 at the end of the period, as in our benchmark

analysis in Figure 3 and aggregate results in Table 1.

7 Conclusions

We analyze the formation of expectations at the individual forecaster level. We treat forecasters in

the same way as we would treat agents in a benchmark New Keynesian model. They are assumed

to dispose of a perceived model of the economy that resembles the MSV solution under rational

expectations, and they have the same information sets: therefore, they have a correctly-specified

model, and they observe the same endogenous variables and disturbances that they would in the

RE solution.

Their expectations can, however, be heterogeneous since different forecasters are allowed to

have different gain coefficients. The best-fitting gain coefficient for each individual forecaster in the

sample is estimated by minimizing the mean squared errors between the actual forecast and the

forecast implied by the corresponding PLM. Moreover, each forecaster may be subject to sentiment,

i.e., waves of excess optimism and pessimism, identified as in Milani (2011, 2017).

Our results reveal gain coefficients at the micro level that are, on average, of similar values to

those estimated on aggregate data for macro models. The gains are, however, heterogeneous, with

a dispersion that is higher in the 1970s and 1980s and much smaller by the end of the sample.

The median gains are occasionally higher in the 1970s and 1980s. As a consequence, beliefs about

key economic magnitudes are also heterogeneous and vary over time: for example, perceptions are

consistent with a declining effectiveness of monetary policy over time.

Finally, we provide evidence at the micro level of the kind of sentiment shocks that have been

shown in the recent literature to be important determinants of business cycles. Individual excesses

of optimism and pessimism do not cancel out in the aggregate, but they are instead consistent with

aggregate contagion or herd behavior.

In future research, it will be important to start from the evidence of heterogeneity at the micro

level and investigate more thoroughly the implications of heterogeneous beliefs and sentiment for

the macroeconomy.
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Prior Distribution Posterior Mean 95% Posterior Interval

IES σ ∼ Γ(1, 0.75) 0.694 [0.454,1.040]
Calvo ξp ∼ B(0.6, 0.05) 0.889 [0.864,0.911]
Habits η ∼ B(0.5, 0.2) 0.366 [0.229,0.531]
Indexation γ ∼ B(0.5, 0.2) 0.088 [0.016,0.212]
IRS ρpre79 ∼ B(0.7, 0.2) 0.807 [0.679,0.916]

ρ79−82 ∼ B(0.7, 0.2) 0.929 [0.887,0.969]
ρpost82 ∼ B(0.7, 0.2) 0.613 [0.411, 0.961]

Resp. Infl. (χπ,pre79 − 1) ∼ Γ(0.5, 0.25) 1.350 [1.099,1.741]
(χπ,79−82 − 1) ∼ Γ(0.5, 0.25) 1.644 [ 1.146,2.425]
(χπ,post82 − 1) ∼ Γ(0.5, 0.25) 1.457 [ 1.111,1.904]

Resp. Output χy,pre79 ∼ Γ(0.25, 0.15) 0.237 [0.118,0.372]
χy,79−82 ∼ Γ(0.25, 0.15) 0.200 [0.076,0.348]
χy,post82 ∼ Γ(0.25, 0.15) 0.209 [0.110,0.289]

AR Nat. Rate ρr,pre84 ∼ B(0.5, 0.2) 0.727 [0.546,0.890]
ρr,post84 ∼ B(0.5, 0.2) 0.841 [0.730,0.923]

AR Cost-push ρu,pre84 ∼ B(0.5, 0.2) 0.066 [0.011,0.177]
ρu,post84 ∼ B(0.5, 0.2) 0.016 [ 0.003,0.040]

AR Out. Sent. ρsy ,pre84 ∼ B(0.5, 0.2) 0.559 [0.336,0.761]
ρsy ,post84 ∼ B(0.5, 0.2) 0.694 [0.576,0.819]

AR Infl Sent. ρsπ ,pre84 ∼ B(0.5, 0.2) 0.854 [0.761,0.953]
ρsπ ,post84 ∼ B(0.5, 0.2) 0.561 [0.358,0.719 ]

Std. Nat. Rate σr,pre84 ∼ IG(0.3, 1) 1.011 [ 0.697,1.417]
σr,post84 ∼ IG(0.3, 1) 0.547 [ 0.383,0.754]

Std. Cost-push σu,pre84 ∼ IG(0.3, 1) 0.447 [0.366,0.550]
σu,post84 ∼ IG(0.3, 1) 0.241 [0.214,0.271]

Std. MP σε,pre79 ∼ IG(0.3, 1) 0.266 [0.215,0.324 ]
σε,79−82 ∼ IG(0.3, 1) 0.254 [0.226,0.287]
σε,post82 ∼ IG(0.3, 1) 0.280 [ 0.091,0.840]

Std. Out. Sent. σsy ,pre84 ∼ IG(0.3, 1) 0.984 [0.791,1.204]
σsy ,post84 ∼ IG(0.3, 1) 0.494 [ 0.419,0.573]

Std. Infl Sent. σsπ ,pre84 ∼ IG(0.3, 1) 0.331 [0.274,0.409 ]
σsπ ,post84 ∼ IG(0.3, 1) 0.183 [0.161,0.208]

Constant Gain ḡ ∼ B(0.025, 0.01) 0.015 [0.010,0.021]

Table 1: Prior and Posterior Distributions for estimated New Keynesian model coefficients.

Note: Γ refers to Gamma distribution, B to Beta, and IG to Inverse Gamma. The numbers in parenthesis refer
to the chosen means and standard deviations for each distribution.
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Figure 1: Evolution of Expected Output Growth and Inflation Over the Sample.

Note: ‘g’ denotes the growth rate of output. Blue Circles: Individual SPF Forecasters.
Black Line: Implied Mean of SPF Forecasters. Red Line: Actual Realized Series.
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Figure 2: Disagreement Across SPF Forecasters Each Time Period

Note: ‘g’ denotes the growth rate of output. The disagreement across forecasters each time
period is measured as the cross-sectional standard deviation.
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Figure 3: Distribution of the Best-Fitting Constant Gain of Individual Forecasters Each Time
Period

Note: The distribution of the best-fitting constant gain of forecasters each time period is
represented with a boxplot. The black circle signifies the median, the edges of the blue box the
25th and 75th percentiles, the black whiskers the extreme values not considered outliers, and the
grey ‘+’ symbol outliers.

29



Figure 4: Estimate of Slope of Phillips Curve of Individual Forecasters Each Time Period

Note: The distribution of b2,1 of forecasters each time period is represented with a boxplot.
The black circle signifies the median, the edges of the blue box the 25th and 75th percentiles, the
black whiskers the extreme values not considered outliers, and the grey ‘+’ symbol outliers.
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Figure 5: Estimate of Perceived Inflation Persistence Parameter of Individual Forecasters Each
Time Period

Note: The distribution of b2,2 of forecasters each time period is represented with a boxplot.
The black circle signifies the median, the edges of the blue box the 25th and 75th percentiles, the
black whiskers the extreme values not considered outliers, and the grey ‘+’ symbol outliers.
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Figure 6: Estimate of Policy Parameter of Individual Forecasters Each Time Period

Note: The distribution of b1,3 of forecasters each time period is represented with a boxplot.
The black circle signifies the median, the edges of the blue box the 25th and 75th percentiles, the
black whiskers the extreme values not considered outliers, and the grey ‘+’ symbol outliers.
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Figure 7: Impulse Response Functions of Output to Demand (Natural Rate), Supply (Cost-Push),
and Monetary Policy Shocks, Across Heterogeneous Beliefs.

Note: We fix aggregate beliefs to equal the beliefs of each forecaster j, j = 1, ..., N . The
range of impulse responses under heterogeneous beliefs are shown for 1971:Q1 and 2006:Q1.
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Figure 8: Forecast Error Variance Decomposition. Share of output forecast error variance explained
by demand, supply, and monetary policy shocks, across heterogeneous beliefs. Aggregate beliefs in
the model are fixed to match, in turn, the beliefs of each forecaster j, j = 1, ..., N . The left panels
show the variance shares corresponding to each set of beliefs for 1971:Q1, the right panels those
for 2006:Q1.
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Figure 9: Expected Output Sentiment Shock of Individual Forecasters Each Time Period

Note: The distribution of expected output growth sentiment shock of forecasters each time
period is represented with a boxplot. The black circle signifies the median, the edges of the blue
box the 25th and 75th percentiles, the black whiskers the extreme values not considered outliers,
and the grey ‘+’ symbol outliers.
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Figure 10: Expected Inflation Sentiment Shock of Individual Forecasters Each Time Period

Note: The distribution of expected inflation sentiment shock of forecasters each time pe-
riod is represented with a boxplot. The black circle signifies the median, the edges of the blue box
the 25th and 75th percentiles, the black whiskers the extreme values not considered outliers, and
the grey ‘+’ symbol outliers.

36



-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

10

20

30

40

50

60

70

80

90

100

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0

5

10

15

20

25

30

35

40

45

Figure 11: Histogram of Estimated Parameters Across Forecasters If Expected Output Sentiment
Shock Evolves as an AR(1) Plus Constant
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Figure 12: Histogram of Estimated Parameters Across Forecasters If Expected Inflation Sentiment
Shock Evolves as an AR(1) Plus Constant
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Figure 13: Histogram of Estimated Parameters Across Forecasters If Sentiment Shocks Evolve as
a VAR(1) Plus Constant
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Figure 14: Distribution of the Best-Fitting Constant Gain of Individual Forecasters Each Time
Period Under a VAR(1) Plus Constant PLM

Note: The distribution of the best-fitting constant gain of forecasters each time period is
represented with a boxplot. The black circle signifies the median, the edges of the blue box the
25th and 75th percentiles, the black whiskers the extreme values not considered outliers, and the
grey ‘+’ symbol outliers.
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Figure 15: Distribution of the Best-Fitting Constant Gain of Individual Forecasters Each Time
Period When SPF Respondents Submit Forecasts for at Least 20 Periods

Note: The distribution of the best-fitting constant gain of forecasters each time period is
represented with a boxplot. The black circle signifies the median, the edges of the blue box the
25th and 75th percentiles, the black whiskers the extreme values not considered outliers, and the
grey ‘+’ symbol outliers.
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Figure 16: Distribution of the Best-Fitting Constant Gain of Individual Forecasters Each Time
Period Under an Alternative Initialization of Rτ

Note: The distribution of the best-fitting constant gain of forecasters each time period is
represented with a boxplot. The black circle signifies the median, the edges of the blue box the
25th and 75th percentiles, the black whiskers the extreme values not considered outliers, and the
grey ‘+’ symbol outliers.
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