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Results are given for the synthesis and co-existence of phases formed from components of complex or-

ganic-inorganic antioxidant formed during modification of phenol-formaldehyde resin (PFR) and graphite

with silica alkoxide and inorganic or organic nickel precursors. Thermodynamic analysis is given for the

Mg–Al–C and Mg–O–Ni–C systems. It is shown that the periclase and carbon can coexist with aluminum and

nickel, and also that oxidized antioxidants Al
2
O

3
and NiO can interact respectively with the periclase and with

the synthesized SiC formed during modification of PFR with silica. In considering the

NiO–MgO–Al
2
O

3
–SiO

2
system it is established that during service noble spinel will be synthesized from the

complex antioxidant components, facilitating an increase in PC-refractory durability in service.

Keywords: periclase-carbon (PC) refractories, phenol formaldehyde resin (PFR), organic-inorganic complex,

complex antioxidant, thermodynamic analysis, Mg–Al–O–C, Mg–Ni–O–C and Ni–Mg–Al–Si systems.

It is normal to use Al as an antioxidant for MgO–C-

refractories [1 – 3], whose greatest effect develops at above

1100°C; Metallic Si behaves similarly [4], although its use in

the composition of PC-refractories is undesirable due to a

significant reduction in refractoriness. During service alumi-

num metal is not only oxidized but it reacts with carbon with

formation of aluminum carbide Al4C3 [5, 6]. Since Al and

Al4C3 exhibit considerable affinity for oxygen, they are

readily oxidized with oxygen and slag iron oxides, which re-

duces carbon oxidation rate [7].

Oxidation products of aluminum metal in PC-refractories

enter into chemical reaction fine periclase refractory binder

and from spinel MgO·Al2O3whose synthesis explains the in-

crease in refractory corrosion resistance. However, with an

Al concentration > 3% object disintegration is observed,

connected with volumetric changes during MgO·Al2O3 syn-

thesis not compensated by refractory porous structure [7]

that limits the Al content in PC-refractory charges (used in

charges up to 2%).

As antioxidants in producing PC-objects materials are

used having high oxygen affinity underservice conditions

compared with carbon [8, 9]; these are Al, Mg, and other

metals, including Ni. The role of additive comes down not

only to participation in processes reducing oxygen partial

pressure, but also to participation in phase formation at a ma-

terial surface, providing conditions for forming new struc-
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tures with improved strength and corrosion characteristics.

This method of stabilizing carbon is effective for the surface

of objects in contact with molten metal or slag.

Currently another method is used for improving the oxi-

dation resistance of carbon-containing magnesia refractories

that includes a reduction in binder coking temperature

(<1273 K) with formation of a crystalline graphite phase by

adding a catalyst [10]. Catalysts are added in an amount of

0.1 to 10 wt.% of the weight of carbon binder. The catalysts

used are readily reduced compounds of transition metals

(Cu, Cr, Ni, Fe), and also metal catalysts of the type Ni, Pt,

and Rh.

Considering this and also the high reaction activity of

nickel ions with other compounds it is possible to consider

use of nickel promising in preparing PC-materials, including

nickel salts and a precursor of this antioxidant. In the pres-

ence of urotropine in PC-refractory charges during operation

it is possible to reduce nickel salt [30]:

NiSO
4
+ C

6
H

2
N

4
= Ni + 6C + 2H

2
+ H

2
SO

4
(1)

and nickel oxide formed already from precursor salt:

2NiO � 2Ni + O
2
. (2)

Presence of graphite in MgO–C-refractories facilitates an

increase in their resistance to slag corrosion, to thermal

shock, and a reduction in wettability and thermal expansion

[11]. Undesirable changes in refractory properties occur with

oxidation of graphite above 873 K. In order to protect graph-

ite from oxidation within a refractory composition it is nor-

mal to add powder form antioxidants; in PC-refractories

there is often use of aluminum proceeding from the condition

that the metal exhibiting and greater tendency towards oxida-

tion facilitates retention of a carbon phase [12]. However,

from results of numerous researches in the range

973 – 1873 K apart from Al2O3 formation of new phases is

noted, such as Al4C3 and MgO·Al2O3. The strength of PC-

refractories with development of Al4C3 within their structure

may increase, since its elasticity modulus by analogy with

other metal carbides comprises 230 – 250 GPa [12].

More than a twofold increase in high-temperature ulti-

mate strength in bending for PC-materials with use of Al an-

tioxidant has been noted [13 – 15], which has been achieved

due to forming Al2O3 and Al4O3 at high temperature (as in-

termediate phases) and Al4O4C and Al2OC according to

known reactions of interaction of aluminum metal with CO,

and also due to a reduction in open porosity of decarburized

later as a result of the distribution of reaction products in

pores with subsequent formation in objects of MgO·Al2O3.

In the Al–O–C system stable phases are Al, Al4C3, Al2O3, C,

and also Al4O4C and Al2OC [16]. In the n Al–O–C system
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Fig. 1. MgO–C–Al system triangulation.

TABLE 1. Substance Thermodynamic Constants

Substance –�H
f298

, kJ/mole �S
298

, J/(mole·K)

C
p
= a + bT + c�T–2

C
p298

0
,

J/(mole·K)

Published

source
a, J/(mole·K) b � 103, J/(mole·K) c � 10–5, J/(mole·K)

MgO 601.53 27.42 42.62 7.28 –6.2 37.18 [20]

Cgr — 5.69 17.17 4.27 –8.79 — [20]

Alc — 28.365 20.68 12.39 — 24.37 [20]

MgAl2O4 2314.9 80.68 154.07 26.79 –40.95 116.27 [20]

CO 110.51 198.0 28.43 4.10 –0.46 29.132 [20, 31]

CO2 393.69 213.82 44.17 9.04 –8.54 37.14 [20, 31]

Mgc — 32.53 22.32 10.26 –0.431 — [20, 27]

Al4C3 206.9 88.95 158.6 39.57 –28.64 116.779 [23]

�-Al2O3
1676.8 50.95 114.84 12.81 –35.46 79.09 [21]

Al4O4C 2249.826 186.2 215.2 20.2 –64.0 — [24]

Al2OC 665.515 26.9 100.4 9.2 –29.7 — [24]

Al3O4 2145.042 59.5 153.8 22.0 — — [24]



apart from oxycarbides presence has also been established by

experiment of sub-oxides Al2O and AlO [17], which in the

presence of free carbon in a system form Al4O4C and Al2OC

[18].

During operation of PC-refractories there is a reaction of

carbothermal reduction of MgO [12, 25]. The reaction

reaches equilibrium at 2123 K and with a reduction in pres-

sure (for example with use MgO–C-refractories in ladles in

which there is metal for degassing) gaseous products of reac-

tion of Mg and CO diffuse, and therefore the reaction contin-

uous at lower temperature. In the Mg–C system formation

has been established of MgC2 and Mg2C3 carbides, although

both carbides exist in a form of metastable phases, and a

change in Gibbs energy with formation of these carbides

from their components under standard conditions is favor-

able [19].

The aim of this research is to determine thermodynamic

probability of forming phases from a mixture of periclase

and organo-inorganic complexes in the range 1000 – 2000 K

by studying the systems Mg–O–C–Al, Mg–O–C–Ni, and

also reaction of phases formed during PC-refractory opera-

tion by studying the system MgO–Al2O3–NiO–SiO2. First

the authors considered the system MgO–C–Al. In view of the

fact that this system contains one binary compound, i.e.,

Al4C3, triangulation of the system MgO–C–Al has the form

shown in Fig. 1. By predicting the possibility of formation

(as a result of service to 1923 K) in materials of the system

MgO–C–Al compounds MgO·Al2O3, Al4O4C, Al2OC, and

Al3O4, the authors decided to move too studying a four-com-

ponent system Mg–O–C–Al. For a detailed study of this

system three-component systems Mg–O–C, Al–O–C,

Mg–O–Al, and Mg–C–Al were considered.

In order to establish the thermodynamic probability of

coexistence of phase (for subsequent breakdown of the

MgO–O–C–Al system into elementary tetrahedra) Gibbs en-

ergy was calculated by means of thermodynamic data (Ta-

ble 1) for reactions provided in Table 2. Results of calcula-

tions are shown in Fig. 2. From data shown in Fig. 2 is it was

established that in the range 1000 – 2000 K coexistence of

the following phases is thermodynamically possible [20]:

1. For the systemMgO–O–C in the range 1000 – 2000 K:

MgO–CO2, MgO–CO, MgO–C (Fig. 3a ).
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Fig. 2. Dependence of Gibbs energy �G
T

0
on temperature T for re-

actions (3) – (18) (see Table 2).

TABLE 2. Reactions and Equations Studied for Calculating Gibbs Energy � � � � �G H T S C dT T C TdT
T

T

p

T

p

0

298

0

298

0

298 298

� � � �	 	 /

Reaction �G
T

2
, J/mole

(3) 2Al2O3 + 4CO = + 3CO2

(4) 4Al4O4C + Al = 4Al2OC + 3Al3O4

(5) Al4O4C + 4Al2O3 = 4Al3O4 + C

(6) 7Al2O3 + Al4O4C = 6Al3O4 + CO

(7) 3Al2O3 + C = 2Al3O4 + CO

(8) 2Al2O3 + 3C = + 2CO

(9) Al2O3 + 3C = Al2OC + 2CO

(10) Al4O4C + 3C = 2Al2OC + 2CO

(11) 4Al3O4 + 7C = 3Al4O4C + 4CO

(12) Al + 3Al4O4C = Al4C3 + 3Al3O4

(13) Al + 12Al2OC = 4Al4C3 + 3Al3O4

(14) 4Al2OC = Al4O4C + l4C3

(15) 3Mg + Al2O3 = 2Al + 3MgO

(16) 2MgO + C = 2Mg + CO2

(17) MgO + CO = Mg + CO2

(18) MgO + C = Mg + CO

357566.5713 – 4.31TlnT + 106.1766886T – 0.00265T 2 + 843000/T

–46761.39476 + 18.48TlnT + 288.9177198T – 0.004805T – 6860000/T

454629.8874 + 42.19TlnT – 240.9796132T – 0.010415T 2 – 9852500/T

1130336.085 + 67.85TlnT – 634.2638868T – 0.013115T 2 – 15588000/T

675706.1978 + 25.66TlnT – 393.2842736T – 0.027T 2 – 5735500/T

–896773.5682 – 9.171nT – 545.3880211T – 0.005015T 2 + 1618500/T

803811.9588 + 9.09TlnT – 435.7785464T + 0.00411T – 1560500/T

710841.4094 + 9.05TlnT – 325.968159T + 0.003205T – 1502500/T

1338935.129 – 23.93TlnT – 898.0582547T + 0.020445T 2 + 6615500/T

174615.6148 + 46.28TlnT – 72.69548544T – 0.01629T 2 – 818000/T

838748.4195 + 129.68TlnT – 1157.535101T – 0.050745T 2 – 12092000/T

221377.0096 + 27.8TlnT – 361.6132052T – 0.011485T 2 – 1308000/T

–118084.0873 + 12.58TlnT – 84.01731945T – 0.001515T – 907650/T

816902.0712 + 13.6TlnT – 312.8700198T – 0.005365T 2 – 589400/T

317358.7128 + 4.56TlnT – 47.80740617T – 0.00396T + 115550/T

498320.3584 + 9.04TlnT – 265.0626137T – 0.001405T 2 + 704950/T



2. For the systemMgO–O–Al in the range 1000 – 2000 K:

MgO–Al, MgO·Al2O3–Al, MgO·Al2O3–MgO, MgO·Al2O3–Al2O3,

MgO·Al2O3–O, MgO·Al2O3–Al3O4 (Fig. 3b ).

3. For the system MgO–C–Al in the range 1000 – 2000 K:

Mg–Al4C3 (Fig. 3c ).

4. For the Al–O–C system in the range 1000 – 2000 K

additional study was conducted in view of the possible con-

jugation of a whole series of reactions (Fig. 4) graphical

dependences are shown in Fig. 4 for thermodynamically

probable reactions obtained by a mirror image with respect

to the temperature axis and positive values of function

�G = f(T) of reactions considered previously (see Fig. 2).

Actually the possibility is considered of occurrence of reac-

tions (3) – (13) (see Table 2), and in both forward and reverse

directions.

The tie-line Al2O3–Al4O4C is stable over the whole

range to 2000 K (see Fig. 4), the tie-line Al2O3–C is stable to

1005 K, and tie-line Al4O4C–C is stable up to 1045 K. Other

reactions are less dominant for low-temperature triangula-

tion: tie-lines Al2OC–C and Al2O3–CO2 are without alterna-

tives from geometric topological principles. In the concentra-

tion range in the concentration ranges Al–Al3O4–Al2O3–

Al4O4C–Al2OC–Al4C3 to tie-lines are stable, Al–Al4O4C and

Al–Al2OC, which without variation determine subsequent

triangulation of this region from geometric topological prin-

ciples.

In the low temperature region of the Al–O–C system the

following phase coexist (Fig. 5): Al2O3–CO2, Al2O3–CO,

Al2O3–C, Al2O3–Al4O4C, Al4O4C–Al2OC, Al2OC–Al4C3,

Al3O4–Al4O4C, Al–Al4O4C, Al–Al2OC, Al4O4C–C, and

Al2OC–C. In view of disproportionation of Al2OC up to

1983 K [22] as a result of calculation [22] this temperature

comprises 1239 K (see Fig. 4), which is explained by the

sensitivity of Al2OC decomposition temperature to the value

of the original formation enthalpy for calculations. Conse-

quently, elementary triangles with participation of Al2OC are

degenerate.

According to Figs. 4 and 5a all possible conjugations are

considered, and a region of stability is established shown in

the form a conjugation (imaginary or not) and ratio to trian-

gulation. According to this calculation it has been established

that in the Al–O–C system in the range 1239 – 2000 K the

following phases coexist: Al2O3–CO2, Al2O3–CO, Al2O3–C,

Al2O3–Al4O4C, Al4O4C–Al4C3, Al3O4–Al4O4C, Al–Al4O4C,

Al4O4C–C. Triangulation of this system is shown in Fig. 5b.

Tetrahedral treatment of the four-component system

Mg–O–C–Al in the range 1238 – 2000 K is shown in Fig. 6.

It has been confirmed that in the PC-refractory operating

temperature range (1239 – 2000 K) resistant and stable com-

pounds are composite phase of refractory MgO, C, and

MgAl2O4, Al4O4C, Al2OC, Al3O4, and Al2O3 formed, which

considerably reduce carbon gasification, i.e., they protect

carbon component from oxidation. Taking account of the fact
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Fig. 3. Systems Mg–O–C (a ), Mg–O–Al (b ), and Mg–C–Al (c).

Fig. 4. Dependence of Gibbs energy �G
T

0
on temperature T for re-

actions (3) – (13) (see Table 2).



that operation of PC-materials proceeds in an oxidizing at-

mosphere and the more resistant phase according to thermo-

dynamic calculation results is MgAl2O4, with use of a small

amount of Al antioxidant compositions are promising for

process development located in the MgO–MgAl2O4–C–CO

tetrahedron. With use of antioxidant in the form of Ni pow-

der within the composition of PC-refractory it is necessary to

consider phase formation and coexistence of phases in the

Mg–O–C–Ni system. A study of the composition diagram for

Mg–O–C–Ni was preceded by consideration of the compo-

nents of its sub-systems, and also those that include its sim-

ple and complex compositions.

In the Mg–C system there is formation of metastable car-

bides MgC2 and Mg2C3, that decompose by a scheme

2MgC
2


 Mg
2
C
3
+ C 
 2Mg + 4C. (19)

These reactions proceed at 843 – 883 and 973 K respec-

tively, i.e., at temperatures below the

PC-refractory service temperature. This makes it possi-

ble not to consider their thermodynamic properties in com-

posing solid phase chemical reactions with participation of

magnesium carbides.

Nickel has good corrosion resistance in air, in water, in

alkali, and some acids. Its melting temperature is 1728 K. At

200°C there is polymorphic transformation of �-Ni (hexago-

nal form) into �-Ni, which at 1073 K reacts with oxygen

with formation of nickel oxide (NiO), but reaction com-

mences from 773 K. A generalized composition diagram for

Mg-Ni system is shown in Fig. 7. Valency of Mg and Ni

equals 2, their ionic radii are similar, due to which metallic

compounds MgNi2 and Mg2Ni exist. From the composition

diagram for the Mg–Ni system we establish that the com-

pound Mg2Ni forms by a peritectic reaction at 1033 K, which

is also below the PC-refractory service temperature. The

compound MgNi2 has a narrow homogeneity range and

melts at 1420 K. The solubility of nickel in magnesium at

773 K reaches 0.04%. The solubility of magnesium in

MgNi2 at a temperature of about 773 K is less than 0,24%,

which is shown in Fig. 7 by a dotted line separating solid so-

lution regions.
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Fig. 5. Triangulation of the Al–O–C system up to 1239 K (a) and in the range 1239 – 2000 K (b ).

Fig. 6. Tetrahedron of the system Mg–O–C–Al in the range

1239 – 2000 K.

Fig. 7. Composition diagram of the Mg–Ni system [26].



Considering the melting temperature for magnesium

dinickelide it is rational to consider the effect of this com-

pound during thermodynamic analysis of the Mg–Ni–O–C

system. Corresponding composition diagrams are shown in

Figs. 8 and 9 for the Ni–O2 and Ni–C systems. As is seen

from Fig. 8, nickel and oxygen have a eutectic at 1713 K.

The composition of the eutectic point, determined by extrap-

olation of the oxygen solubility curve in molten nickel with a

reduction in temperature, comprises 0.9 at.% oxygen. Re-

duced solubility of oxygen in nickel has been established

with a reduction in temperature, which corresponds to

0.44 at.% at 1473 K and 0.073 at.% at 873 K. In this case the

cubic lattice of NiO is retained to 473 K (a = 0.4172 nm),

and below 473 K it is converted into rhombohedral

(a = 0.19518 nm, c = 0.7228 nm). Thermally NiO above

1503 K becomes unstable; there is reverse dissociation

[28, 29]; existence of Ni2O3 and Ni3O4 oxides is possible

[29 – 31]. Possible dissociation is noted [29] to NiO2 and

Ni2O3 at 603 and 1143 K respectively. According to [32]

Ni3O4 possibly exists in the form of solid solutions of NiO

with Ni2O3. The most stable compound in the Ni–O2 system

is nickel (II) oxide [29, 32].

Carbon with nickel (see Fig. 9) forms a eutectic at

(1536 ± 2 K); information about the eutectic composition is

varied (from 0.22 to 10% carbon). Nickel hardly dissolves in

carbon, but carbon dissolves in nickel. In this case the maxi-

mum solubility of carbon in nickel reaches 2.7% at the

eutectic temperature, and with a reduction in temperature

carbon solubility decreases and becomes close to zero at

631 K. With a fast cooling rate (105 – 107 deg/min) and an

increase in pressure it is possible to form metastable phase

Ni3C (hexagonal lattice with a = 0.2632 nm and

c = 0.4323 nm). During melt cooling in similar conditions re-

alization of eutectic Ni and Ni3C is possible (at 1053°C,

composition with 23.2 at.% carbon); at this temperature

melting of metastable nickel carbide occurs at 1230 K. In-

creased pressure (up to 5 GPa) increases the nickel and car-

bon eutectic melting temperature to (1758 ± 5 K), and

eutectic of nickel and nickel carbide to 1570 K. In this case

there is an increase in carbon solubility in nickel. It should be

noted that nickel carbide stability at high pressure increases,

but it does not become thermodynamically stable.

In order to perform thermodynamic analysis of composi-

tion diagrams of the Mg–O–C–Ni system the following reac-

tions were considered:

MgO + C = Mg + CO, (20)

MgO + CO = Mg + CO
2
, (21)

NiO + CO = Ni + CO
2
, (22)

NiO + C = Ni + CO, (23)

Mg + NiO = MgO + Ni, (24)

MgNi
2
+ 2MgO = 3Mg + 2NiO. (25)

Gibbs energy equations were used in calculations with-

out considering the temperature dependence of heat content

and nickel polymorphic transformations since the tempera-

ture of these transformations is below the temperature for

possible operation of refractory objects. Starting data for

thermodynamic calculations are provided in Table 3. Calcu-

lation equations for the change in Gibbs energy for reaction

(20) – (25) and coexistent of phases are given in Table 4.

Proceeding from the calculated Gibbs energy equations

obtained it is may be concluded that there is a predominant

effect of absolute value of enthalpy, and correspondingly
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Fig. 8. Composition diagram of the Ni–O2 system [26].

Fig. 9. Composition diagram of the Ni–C system [26].



clear coexistence above 1073 K of these phases (see

Fig. 3a, b ): MgO and CO2, NiO and CO2, MgO and NiO,

and also MgNi2 and C. The results obtained made it possible

to accomplish triangulation of composition diagrams for the

Mg–O–C–Ni system (Fig. 10). As is seen from Fig. 10a, Ni

may coexist with carbon, CO, CO2, NiO, MgO, and MgNi2.

With a reduction in the amount of Ni due to NiO formation

its existence with carbon becomes impossible, i.e., reaction

of nickel with oxygen commences. In view of the impossibil-

ity of controlling the amount of oxygen under PC-material

service conditions it is necessary to accomplish synthesis of

compositions that are limited to phase MgO, Ni, NiO, and

also Ni, MgNi2, and MgO. In this case it will be effective to

use Ni or NiO as an antioxidant, and as a precursor it is pos-

sible to use inorganic and organic nickel salts. It is well

known that with respect to chemical activity nickel com-

pounds are in this sequence [28]: NiO·Al2O3 


NiO·Fe2O3 
 NiSO4 
 2NiO·SiO2 
 NiO. Reduction of

Ni ions is possible with use of chemical reducing agents so-

dium tetrahydraborate NaBN4 (Ferak, FRG) and potassium

hypophosphite KH2PO2·H2O (Vector, RF); NaBN4 is the

strongest reducing agent, but in view of the fact that

KH2PO2·H2O is used together with ammonia for reduction

the Ni yield in this case is higher by an order of magnitude.

By changing reduction conditions it is possible to control the

nickel content in specimens [29]. Also introduction of alka-

line reducing agents into the PC-refractory composition is

undesirable and a reducing agent nickel salt, which enters

into the composition of anti-oxidant, is urotpropine, which is

added to a charge of these refractories with use of PPR as a

binder [7].

In order to improve the production properties of PFR and

physicomechanical properties of PC-refractories based on

PFR it is suggested to use [34] silicon alkoxide and its deriv-

atives in the form of ethyl silicates and gels. As is well

known [35], during conversion of these organo-silicon modi-

fiers SiC forms as nanoparticles that strengthen carbon

binder. In spite of all the advantages, SiC in oxygen-contain-

ing atmospheres is oxidized. Reaction of SiC with oxygen

and gases, containing oxygen, commences above 800°C. At

the surface of SiC there is formation of a protective silica

film that prevents SiC from further oxidation at 1630°C.

Synthesis of SiO2 proceeds by reactions:

SiC + 2O
2


 SiO
2
+ CO

2
, (26)

SiC + 3CO
2


 SiO
2
+ 4CO, (27)

SiC + 3H
2
O 
 SiO

2
+ CO + 3H

2
. (28)

Therefore, considering the aforementioned transforma-

tion of PFR added during modification and graphite compo-
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TABLE 3. Thermodynamic properties of Mg–C–O–Ni System Pha-

ses

Substance

formula

–�H
298

0
,

kJ/mole

�S
298

0
,

J/(mole·K)
Source

MgO 601.53 27.42 [20, 31]

Mg — 32.53 [20, 31]

CO 110.51 198.0 [20]

CO2 393.69 213.82 [20]

C — 5.69 [20]

Ni 4.786 29.87 [32, 33]

NiO 6.736 37.89 [32, 33]

MgNi2 39.7746 88.76016 [32, 33]

TABLE 4. Formulae for Calculating Gibbs Energy of Reactions

(20) – (25) and Coexisting Phases

Reaction
Calculated equation for change

in Gibbs energy, J/mole
Coexistent phases

(20) 491020 – 197.42T MgO and C

(21) 318350 – 20.93T MgO and CO

(22) –281230 – 184.29T Ni and CO2

(23) –108560 – 184.29T Ni and CO

(24) –599580 + 13.13T MgO and Ni

(25) 1229362 – 29.769T MgNi2 and MgO

Fig. 10. Unfolded for of the structure of the composition diagram

for the systemMg–C–O–Ni (a) and sub-solidus structure of this dia-

gram (b ).



nents of an organo-inorganic complex in PC-refractories dur-

ing service, physicochemical processes are possible at high

temperature caused by features of phase formation in the

MgO – Al2O3 – NiO – SiO2 system.7

There is information in publications about the structure

of binary substances in the test four-component oxide system

[38]. Recently information has also been accumulated about

the structure of ternary sub-systems [37, 39, 40] that makes it

possible to analyze the sub-solidus N–M–A–S system not

studied previously. In studying the nature of the sub-solidus

N–M–A–S system presence is considered within it of six bi-

nary and for ternary sub-systems including four simple ox-

ides (N, M, A, S), six binary oxides (NA, N2S, MA, MS,

M2S, A3S2), and two ternary oxides (M2A2S5 and M4A4S2).

Thermodynamic analysis of solid phase reactions was used

in the study with calculation for reference temperatures T for

the change in Gibbs free energy �G for standard values of

the change in enthalpy �H
298

0
and entropy �S

298

0
for the cor-

responding compounds taking account of the temperature de-

pendence of their heat content Cp [36]. For nickel

orthosilicate coefficients in the equation for the temperature

dependence of heat content were calculated by the Wood and

Fraser procedure [41]. Starting data for thermodynamic cal-

culations ate provided in Table 5.

The change in Gibbs energy for reaction (30) points (Ta-

ble 6) to a tendency for existence of N2S and M, which pre-

vents the higher thermodynamic preference for coexistence

of N and N2S by reaction (29). Results of calculations for re-

action (31) make it possible to triangulate the subsystem

N–M–A in which presence of tie-lines N–MA and NA–MA

are established. Triangulation of subsystem N–A–S [39] is

corrected by the authors of the present article in accordance

with the fact that coexistence of NA with S by reaction (33)

is less thermodynamically suitable than AS2 with N2S by re-

action (44), and stable tie-lines A3S2–N2S (also at variance

with coexistence of NA with S) are established from results

of calculating reaction (43). In subsequent formation of tetra-

hedra for the N–M–A–S system these situations were not

considered by the authors. Analysis of results of calculations

for the reverse reaction (38) points to apparent evidence of

coexistence of N and M2A2S5 up to about 1097 K, but this

contradicts the greater thermodynamic probability of reac-

tion of these phases by reaction (40), for which stability of

N2S–MA tie-lines is determined. Stability of the three-phase

composite NA, MS, S by reaction (39) is not confirmed since

coexistence of MA with N2S is more thermodynamically

probable (reaction (46), see Table 6). Results of calculating

the rest of the reactions of Table 6 is simple for analysis (in-

cluding with triangulation of the N–M–S subsystem), and in

clear form points to the direction of occurrence of coexisting

processes that made it possible to establish [42] stable

tie-lines for subsequent tetrahedral formation for the

N–M–A–S system.

Nickel orthosilicate (N2S) during its synthesis in PC-re-

fractory and reacting phases coexists with all phases in the

test N–M–A–S system above 1287 K, but at lower tempera-

ture it only reacts with M. Correspondingly, N2S is present in

elementary tetrahedral with the maximum total volume and

has the greatest probability of existence, which points to

good stability of N2S in the test system. The high probability

of existence is also noted in [42] for MA, M2S, and M in the

region up to 1287 K. At higher temperature the situation

changes and alongside N2S the is high probability of exis-

tence of a solid solution (M4A5) M, and cordierite solid solu-

tion (M4A5S10). The lowest probability for existence is noted

for NA. A3S2, and A in the whole temperature range. In the
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7
Here and subsequently abbreviations are adopted: N is NiO, M is

MgO, A is Al2O3, S is SiO2 (see Table 5).

TABLE 5. Thermodynamic Data for Compounds of the M–A–S–N System

Designation (compound)
��H

298

0
,

kJ/mole
Source

S
298

0
,

J/(mole·K)
Source

C
p
= a + b � 10–3 T – c·105T–2, J/(mole·K)

a b c Source

A (corundum) 1676.0577 [2] 50.92 [7] 115.02 11.8 35.06 [35]

S (�-quartz) 910.4383 [10] 41.46344 [10] 43.89016 1.00416 6.02496 [34]

MA (spinel) 2300.7816 [8] 80.58384 [10] 153.9712 26.7776 40.91952 [34]

MS (clinoenstatite) 1548.9 [7] 67.86 [7] 102.7172 19.83216 26.27552 [36]

M2S (forsterite) 2171.9144 [8] 95.14 [7] 149.83 27.36 35.65 [35]

A3S2 (mullite) 6816.9912 [9] 269.57512 [9] 454.29872 66.1072 125.3108 [21]

M2A2S5 (cordierite) 9158.3576 [8] 407.1032 [9] 601.78472 107.9472 161.5024 [21]

M4A4S2 (sapphirine) 11107.497 [2] 390.34172 [2] 654.23205 117.35512 175.57781 [37]

N (NiO) 239.74 [7] 37.99 [7] 46.78 8.46 0 [35]

NA (aluminum-nickel spinel) 1915.4 [7] 92.5 [7] 159.2012 23.34672 30.7524 [34]

N2S (nickel orthosilicate) 1429.7 [7] 111.3 [7] 119.589 20.935 0 —

M (MgO) 601.7 [7] 26.94 [7] 48.982 3.138 11.439 [35]



low temperature region the maximum volume is occupied by

elementary tetrahedral N–M–MA–M2S, represented by a

four-phase combination of refractory compounds.

Second, with respect to occupied volume there is also an

elementary tetrahedron with refractory compounds at its tips

N–M–MA–M2S. In spite of the fact that the volume of ele-

mentary tetrahedron N–M–MA–M2S is at a maximum and

the degree of its asymmetry is low (i.e., there are apparent

prerequisites for exclusion of high precision of dispensing

original components during synthesis of materials with their

predicted phase composition in a concentration region of this

tetrahedron), it is necessary to consider the possibility of

chemical reaction of NiO with M2S [42, and correspondingly

unfavorable structural changes. Taking account of the Ni

content in complex antioxidant in an amount of 0.25 – 0.75%

(and SiC, which may oxidize to SiO2, only in an amount of

fractions of a percentage). This reaction is almost impossi-

ble. In the high temperature region the maximum volume in

the system is occupied by the aforementioned elementary tet-

rahedral that are represented by refractory phases and have

comparatively low asymmetry.

The characteristics established for the sub-solidus struc-

ture of the N–M–A–S system (Fig. 11) make it possible to

predict the phase composition of PC-materials within whose

composition complex antioxidant Al + SiC + Ni(NiO) is

used, a precursor of three successive compounds that are

modifications of PPR and graphite. Considering the fact that

complex antioxidant is introduced into PC-specimen compo-

sition in an amount of not more than 2%, during service

above 1287 K coexisting phases will be M, MA, N, and also
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TABLE 6. Thermodynamic Calculation Results

Reaction

Change in Gibbs energy, kJ/mole, at temperature, K

800 1000 1200 1300 1500

(29) 22N + M2S = N2S + 2M 15.723 10.436 3.476 –0.580 –9.771

(30) 2N + MS = N2S + M –5.483 –10.515 –17.110 –20.943 –29.590

(31) N + MA = M + NA 23.540 24.530 25.024 24.131 24.191

(32) 4N + A3S2 = 3A + 2N2S –90.427 –94.520 –101.739 –106.406 –117.684

(33) 3N + A3S2 = 3NA + 2S –19.518 –21.586 –25.522 –28.116 –34.588

(34) 7N + A3S2 = 3NA + 2N2S –96.639 –102.199 –110.773 –116.068 –128.483

(35) 4N + M4A4S2 = 4NA + 2M2S 70.309 85.446 104.211 114.755 137.873

(36) 4N + M4A4S2 + 2S = 4NA + 4MS 46.565 67.767 94.353 109.430 142.790

(37) 4N + M4A4S2 = 2N2S + 4MA 7.598 11.018 14.9518 17.074 21.575

(38) 2N + M2A2S5 = 2NA + 2MS + 4S 9.440 3.880 –5.460 –11.458 –25.969

(39) 2N + M2A2S5 = 2NA + 2MS + 3S –2.432 –4.959 –10.388 –14.121 –23.511

(40) 10N + M2A2S5 = 5N2S + 2MA –176.117 –194.559 –220.592 –236.159 –271.909

(41) 16N + 2M2A2S5 = 8N2S + M4A4S2 –359.914 –400.135 –456.136 –489.390 –565.392

(42) 2N2S + M4A4S2 = 4NA + 4MS 123.686 148.379 179.606 197.360 236.684

(43) A3S2 + 4NA = 7A + 2N2S –82.145 –84.282 –89.692 –93.523 –103.287

(44) 2A3S2 + 3NpS = 6NA + 7S 76.646 77.747 76.828 75.616 71.666

(45) 2N + 2MS = M2S + N2S –26.758 –31.576 –37.848 –41.474 –49.620

(46) 2NA + M2S = 2MA + N2S –31.356 –37.214 –41.630 –48.826 –58.149

Fig. 11. Sub-solidus structure of the M–A–S–N system up to

1287 K (a) and above 1287 K (b).



N2S (in the case of synthesis with a very low content of mod-

ifying addition of PPR in the form or tetraoxysilane).

CONCLUSION

With introduction of an organo-inorganic complex, in-

cluding silicon alkoxide and inorganic or organic nickel

salts, into the composition of PC-refractory with antioxidant

(Al) used normally, complex antioxidant Al + SiC + Ni(NiO)

is created whose components coexist with periclase and car-

bon and may be used in order to protect PC-refractory from

oxidation. In other words, PFR and graphite added as modifi-

ers together with Al additive will first converted to SiC and

Ni, which oxidize themselves, restraining graphite from oxi-

dation, being converted into SiO2 and NiO oxides. In the

four-components N–M–A–S system formed periclase coex-

ists with spinel and nickel oxide to 1287 K and above

1287 K with N2S. However, considering the predominant

amount of spinel formed over the very small amount of N2S

phase possibly synthesized (which may coexist with 11

phases in the system), during PC-refractory service with

complex antioxidant an improvement will be observed in

physicomechanical properties and increased resistance to

metal and slag due to spinel synthesis.
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