Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Направление подготовки/профиль 03.06.01- физика и астромия (профиль Физика					
кондесированного состояния)					
Школа	ШТРИ				
отделение_	Экспериментальной физики				

Научно-квалификационная работа

Тема научно-квалификационной работы

Формирование покрытий на основе нитрида титана из вакуумного дугового разряда для защиты конструкционных материалов от водородного охрупчивания

УДК 621.793.7: 661.88:620.19

Аспирант

_	1 Chipani				
	Группа	ФИО	Подпись	Дата	
	A6-08	Чжан Ле			

Руководителя профиля подготовки

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Профессор	Чернов И.П	Дктор фм.н.		

Руководитель отделения

Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Профессор	Лидер А.М.	Д.т.н.		

Научный руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Профессор	Никитенков Н. Н.	Дктор фм.н., с.н.с.	H. Meeur	

Аннотация

диссертации на соискание ученой степени кандидата физико-математических наук

«Формирование покрытий из вакуумного дугового разряда на основе нитрида титана для защиты конструкционных материалов от водородного охрупчивания

Актуальность темы исследования. Покрытия из нитрида титана применяется в качестве защитных покрытий, благодаря своей износостойкости, твердости и химической стабильности. Все чаще эти покрытия используются как защитный барьер от проникновения водорода и водородного охрупчивания. Циркониевые сплавы представляются себя широкие применения: насосы и трубозапорная арматура, работающая в условиях воздействия агрессивных сред, материалы ядерной энергетики (ТВЭЛ), биомедицинские имплантаты и т. д.

Цель настоящей работы: создание систем TiN/Ti/Zr-1%Nb методами $\Pi U U U Ti^{\dagger}$ и осаждения TiN из плазмы $B \angle P$ титана и исследование адгезии покрытия TiN при его эксплуатации в экстремальных условиях Арктики.

Поставленная цель предопределила решение следующих задач:

- 1. Определить оптимальные параметры ПИИИ Ti+ и нанесения покрытия TiN на поверхность сплава Э110, чтобы получить системы TiN/Ti/Zr-1Nb с минимальной скоростью сорбции водорода.
- 2. Изучить морфологию поверхности, кристаллический и фазовый состав покрытий, а также его защитные свойства от проникновения водорода.
- 3. Изучить влияние водородного насыщения и условий Арктики на адгезию покрытия.
- 4. Разработать функциональную модель покрытия.

Результаты диссертационной работы:

- 1. Экспериментальные результаты, свидетельствующие, что ПИИИ титана из плазмы дугового разряда происходит, преимущественно, в виде кластеров $\mathrm{Ti}^{+}_{\mathrm{n}}$, где n ~10-100, что приводит к созданию наноструктурированного приповерхностного слоя толщиной ~ 300нм после имплантации.
- 2. Эмпирическая модель процесса сорбции водорода слоями системы TiN/Ti/Zr-1%Nb.
- 3. Установлено, что адгезия покрытий TiN образцов системы TiN/Ti/Zr-1%Nb улучшается при замораживании в Морской воде при температуре -20°C на время 24 часа.

Результаты диссертационной работы изложены в 12 научных публикациях, из них 4 статьи в журналах, рекомендованных ВАК, 6 статей в журналах, входящих в базы данных SCOPUS и Web of Science.

Основными результатами, полученными при выполнении работы, являются следующие:

1. Выполнены систематические исследования влияния плазменноиммерсионной ионной имплантации и осаждения покрытий TiN из плазмы

- вакуумного дугового разряда на послойное распределение химических элементов, фазовый состав, структуру и морфологию приповерхностного слоя, механические свойства получаемых покрытий (систем TiN/Ti/Zr1%N).
- 2. Комплекса полученных результатов и известные теории, позволили предложить новые представления о формировании нано структурированной системы TiN/Ti/Zr1%N с позиций представлений о плазме дугового разряда, как преимущественно кластерной плазме.
- 3. С позиций формирования приповерхностного слоя системы TiN/Ti/Zr-1%Nb, как результата взаимодействия кластеров Ti^+_{n} , $(TiN)^+_{n}$ ($n\sim2-100$), объяснены все экспериментальные закономерности распределений элементного и фазового состава.
- 4. На основе данных о распределении водорода по глубине модифицированного слоя, а также распределений элементного и химического состава предложена феноменологическая (эмпирическая) модель механизмов взаимодействия водорода с модифицированным слоем.
- 5. Впервые обнаружено формирование слоя гидридов титана и циркония в переходной области «покрытие TiN-подложка Zr-1%Nb» при насыщении системы водородом.
- 6. Предложены схемы, собрана и использована установка для моделирования воздействия экстремальных условий Арктики на приповерхностные слои металлов и адгезию защитных покрытий конструкционных и функциональных материалов в условиях материковой лаборатории.
- 7. С помощью установки (п.6) проведены исследования воздействия экстремальных условий Арктики на металлический титан и на адгезию покрытий TiN.
- **8.** Обнаружено существенное улучшение адгезии покрытия TiN при вмораживании системы TiN/Ti/Zr-1%Nb в лёд морской воды при температуре –20 °C на срок 24 часа, вместе с тем, обнаружено ускоренное формирование гидрида титана в переходной области «покрытие TiN–подложка Zr-1%Nb» за время нахождения системы в замороженном состоянии.