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The Introduction
The task of increasing the accuracy of identification of complex dynamic processes,
despite the significant development of these issues is still relevant: if the income Z+

(fig. 1) has a finite value even if the model is ideal (52 = 0), the costs (Z") to obtain

this model tends to infinity; so the net profit (A) Is positive in a limited range of model

complexity.
Improving the accuracy of identification, modeling
and prediction of complex dynamic processes
Relevance of the topic | Goal | ‘ Ticks:
‘ + 1. reveal of fundamental properties
+ Profit (%) —_— SR

of identification objects

~ Clear profit (a)

2. improve the object model and methods of
their identification based on claim 1

]

3. find ways to correct evaluation of the
structure and parameters of nonlinear objects
= on claim 1

3.1. geWevelop a method of 3.4. Develop a

approaches to the approaches to improve the | ndependent evaluation of simplified method of
convergence assessment shatace and dymemicy o construction of

confluent analysis R ——— ‘Hammerste_m model predictive models

v v v v

4. realize the GOAL through implementation of basic research results into practice

costs of identification (X))

Fig. 1. The models of processes

The task is in maximizing A. For this purpose we need to find that fundamental
property that is common to all the objects with the help of which you can achieve the goal
(maxA, fig. 1), and on using this property:

1) to improve models and methods of identification;



2) to find methods of correct evaluation of structure and parameters of complex
dynamic objects;

3) to get unbiased estimation methods for model parameters in terms of noisiness
measurements both output and input;

4) to develop a range of approaches in order to improve the conditioning of the
information matrix in terms of active and passive experiment;

5) to develop the method of independent evaluation of nonlinear statics and dynamics
of Hammerstein’s model in conditions of arbitrary object dynamics;

6) clearly differentiate between task of signal and parametric identification.

The properties of the real world objects are:

— non-autonomy and infinite dimensionality, and as a result there is no state of
rest, because all processes are dynamic;

—limited power and natural inertia do not allow immediate change of any coordinate
of the object, thus, all processes are smooth.

This fundamental property will be the basis of identification:

—there are not two or more identical objects, so averaging on the set gives not precise
information about the parameters of a specific object;

—analogously the natural non-stationary of process limits the averaging on time;

—interrelationship and infinite dimensionality of real objects make it impossible to
build a model which is isomorphic to object.

Depending on the purpose for which the model is built, infinite dimensional

functional space of all state’s variables of hypothetical base model (fig. 2) can be divided
by the frequency feature in low - (X ), middle - (X, ) and high - (X, ) frequency.
Then there is the only middle frequency component in the partial model (model (1), fig. 2),

(X ¢ ) is considered by quasi-stationary state of the vector B(t) of the parameter of this
model, (X ) is seen as a noise N (t). We get a finite dimensional model (model (3),

(4) fig. 2) for scalar i-th component f; from f and limited dimensions ( X ¢ ).
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Fig. 2. The hierarchy of models

The system of identification in all is considered as a subsystem of multi-level system,
where principles of decomposition, composition and optimization are used. The base
model of real processes and its derivative models, modeling and forecasting solutions in
the absence or presence of information about the studied process are under examination.

The issue of increasing the accuracy of identification of complex dynamic processes
remains relevant. It is therefore important to find a fundamental feature common to all
objects with which you can achieve this goal and on its basis to improve models and
methods of identification.

The approach to structural-parametric identification of nonlinear multidimensional
dependency is considered. It is based on the representation of the series (3), (4), fig. 2 as

(14), fig. 3 or (15), where o is (16) for local subregions (fig. 2), it is (17) for combination



of local neighboring regions; and enlarging the region further we have the model (18),
next — the model (19) etc.

For A=1+At-A, B=I+At-B, used the following autoregressive model

ARMA |, ARIMA‘ ARCG | |

Two approaches to correct composition of model

AR

GARCG ’

1) for nonorthogonal grid of data 2) for orthogonal
instead (4) have

e 5 1 ¢ o’J
J(B)-J(B,) = —— =Y ———— +..p ABtAB tAB | (14)
B IBO Z{ { ;6'3[_0/}[ 4y {6,\Zaﬂ,6ﬂ/8ﬂk 5y } 'BA} ﬂ} p
or Ay=a(f)- Aﬁ} 15), where Ay=AJ, a_qﬁ . AB=/-PB,|(16)
Po,
oJ oJ gt
For local neighboring regions Ay = @ — s AB =By, =By, pET|(17)
“opl,, BB,
further, increasing, we have Further
a7 ar| & | | L3
ar . O (18 19
5, “7%), 2o, PP g, 2 57 o “a/faﬁa/fk i
0 0r i
and so on

Fig. 3. The composition of models.

The method is used for:

1) determination of the structure and parameters of the test dependence | (B) (fig. 4,
: : _ el
p. 1) with minor error 0,058, due to proximity of calculation —;

2) construction of analytical dependence of energy of the first half-wave of the
discharge current of capacitor C in the RLC-circle as a function of merit gQ (fig. 4, p. 2),
and determination of its optimal value. The error in determining the optimal merit was

0.05% compared to values found on the basis of numerical simulation;



3) definition of multidimensional nonlinear dependencies based on experimental data,
presented in the tables (mechanic and energy objects). Here the model is consistently built
as a function of one variable, coefficients of which are approximated as functions of the
second variable, if there are three variables, the process continues to the third variable.

As a result of such consistent composition, nonessential components in the model are
automatically reset, that is the structural identification is correct. At this the search of
canonical structure of intermediate one-dimensional models does not create difficulties.
The standard regression analysis with brute force of structures is substantially more

complex, especially if vector of variable 3 has large dimension n.

Zxamples of obtaining the multidimensional nonlinear dependencies from the experiment
Test example

::\(ﬂx ): a,p+p+a,- ﬁ‘:: ’
i 1.6

ap+a,py,

j=12;

";\(/}\ sﬁ: ): (a\’u * (I", )ﬂ\ + ((1;, T a;|ﬂg ):b)x:
CKO=2%3,,..

4).

3(B)= B +0.588,+0.54:
3(8)=3(B)+0.055:

Determining the dependence of energy of the first half-wave of the
capacitor discharge current in RLC-circle from the merit of circuit of power
converter

i d’x Rdx 1 ’ 1. |L
e T —+——+—x=0, |x()dt=CU_.(0), f=—.=
| @ La 1c” j,‘( X @ F=zr\c
04 /‘M-"‘w
{ ~rr2 1y
‘ CU(0 ; ; 5
| /" ; -/(/’7)=‘#1 J'R.\”(l)dl, t, = ArgSupr x* (1)
02 t A = J 0 te(0,%)
" ’/ i) = —0.031+1.0664-0.6583° +0.1493°
y ] ] L ; ' 1+0.234-8.87-107° g +1.112:107° B°
J(B)=a,p +a,pl, i=123% k=123 J(B)=-0.96-10°BS, B, —0.61-107 BB 42 +0.9-107 B2 52 +0.23 52 B, B +
@y (B) = fy+a’ B, j=12 +0.04 8. 8,7 — 1728, —0.24-107 B2 7 B, + 0.46- 107 3, ; B, — 0.02323; 3, —

& —0.012682 5,4, +0.1333, /3, 3, +1.028,8,, CKO=5%3,,, .
ajl)(ﬂ‘):a;/).{ 1»(17/3{ 51, P f 338,B.f oy ni

J(P)=-0.61-107 8, B2 B2 +0.9-107 B2 B2 +0.23 52 4, f2 +0.04 8, 5, 2 ~ 1728, B, -
—0.02325; B, - 0.0126 B2 B, B, + 0.133 8.5, , + 1.02 8,8, CKO =5%3__, .

Fig. 4

If the information about the structure of the model is absent, the problem of
identification as the problem of approximation has many solutions, but the only one

solution will be effective relating to the problem of prediction at a certain time T.



The test example was considered in fig. 5, p. 1+4. The unknown dependence is
approximated on the interval [0, T] by degree polynomials of the Ist, Iind, Ilird degrees.
The higher the degree is, the more accurate approximation is. We can say that the
prediction error is proportional to the product of dimension model “n” on the interval of
the forecast 7: the more “n' is', the less T it needs. The academician A.G. Ivakhnenko
proposed to introduce the external criterion to select the structure of forecast model, for
example, "regularity" criterion (fig. 5, p. 3).

The perfect 7 and the “external” criterion are compared in the table (fig. 5, p. 4) for
the above test. The criterion of "regularity" was not mistaken in choosing the optimal
structure for t=0,2 and t=0,5. In order to increase the accuracy of the forecast it is
proposed to create a base of canonical models ordered on the set of attributes.

The forecasting of solution (10) of system (8) when you have known image

1. The dependence x.(¢) 2. The model 5).
x(0)= B, + it + fysinwi +5, 0=, nen=123. ﬁ
it =0 X% !”
= 3. Regularity criterion | /
4 /i . Nin o [ Nun .2
_ i Anp ey = L =
| I_[;('q’{k)—.rf.’(}’.))/g(\; (k])}
2 L L
1 ! . 4. forecast results
T
5 pel ! n g | Mo, [ | Mo
© Tr T |
1 03 07 1 14 z
6. Forecast consumption - % | 22 2 Gl
02 | 02 5 0 | 6
3 a5 | 3 7 62 | &8
(Tp—IWT7p" = 26T, p + 1)x(t) =0 2 o5 | 3 3 52 | 10
1 03 | 12

7. The forecast for known TxTxXxQ->X

s Soemhn rapepeten (5] amn v

s | dX . 4
B wip, il 1= 6.....[5. Wip P _:. P : [(I . Q‘)X - C]

8. The set of canonical models ")

n = Bisin(Box+ f,) ey 3y = fx"2e™

Fig. 5
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Then the problem of structural identification will be reduced to a problem of image
recognition. The nonius approximation is possible with the choice from the base of models
at every step of the appropriate specifying supplement (fig. 5, p. 8).

If we have information regarding the structure of the model (fig. 5, p. 6,7), it should
be considered in the forecasting models. Thus, the process of energy consumption is
determined by the aperiodic trend with seasonal fluctuations that are superimposed on it.
This corresponds to a continuous model (fig. 5, p.6) and its difference analogue in
increments of 1 year. The block diagram can be put into compliance with this process
(fig. 5, p. 6).

The nonlinear dynamic models, for example Hammerstein’s models, take into

account the properties of real objects more accurately. In the case of the parameterization

of non-linearity f(u) of the model such approach requires the definition of a large

number (n +m+ r) of interconnected (through an information matrix) unknown
parameters.
In order to separate non-parametric estimation of nonlinearity f (u) and dynamic

component, the proposed method aims to use the fundamental property - the smooth of
processes, which is extended to nonlinearity in real objects.
Using the results of arbitrary dynamics of an object we will find the nonparametric

model of nonlinear dependence f (v) or f(z) provided to a minimum of mean square of (

r +1)-th- derivative from f to v or to z, or equivalent to its relevant difference of (
I +1)-th order in accordance to optimized parameters of linear dynamic component.

Further, having a model f(v) or f(z) we find coefficients of linear component of

Hammerstein’s models.

The method is used to determine the nonlinear dependences on the dynamic
processes of field test of aircraft, electric drive and tare characteristics of thermistor meters
TP 100 of gas temperature in main gas pipelines.

The possibility of improving the efficiency of solving the problem of time series’
prediction using the main criterion, the extension of the set of identification methods, the

use of the set of canonical models are investigated.
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The importance of the optimization of natural experiment for the objective
determination of the parameters of a mathematical model of dynamic object is presented.

The necessity of a clear division of tasks of the parametric and signal identification is
indicated.

The examples of systems of identification and optimization of technological
processes of spinning the quartz tube and training on a computer simulator are given.

The following material is only fragments of the theory of identification; it may be
effectively used in practice and for the further development of the theory of identification

— the mathematically formalized the theory of knowledge of the real world objects.

12



Chapter 1. The System Approach to Identification

1.1. The Definition of the System

The stage of formalization is the initial step while solving the problem of
identification. The task should be set at this stage. The setting of the problem is mapping
the input uncertain situation related to the real object into a formalized task which is
defined on the set of quantitatively comparable items. These elements are the system,
processes that occur in it, the criteria (objectives) and their optimization strategies
(achieving objectives).

R. Kalman gave the general mathematical definition of the system [7]. In this book
discrete continuous finite linear and smooth dynamical systems definition are fixed in
terms of its external behavior. The necessary conditions for the existence of mathematical
models (MM) are defined too.

The theorem of state transition function, i.e. the mapping

TxTxXxQ—>X

Is the solution of the differential equations, was proved for smooth systems

%: f(t,x,u), (1.1)

where X € X, u(t) =o(t)eQ, teT, T -is the ordered set of the time moments Q, T

—is the set of the input influences and states.
The system state [7] is that minimum information about the past, which is necessary

for complete definition of the future behavior of the system, if the behavior of input
variables is known, starting from the current time t; .

If the set X belongs to the finite space, the model (1.1) is a finite system of the
nonlinear unsteady first order differential equations.
The linear and (or) stationary equations can be obtained from the system (1.1) with

certain assumptions; the discret system is also linear and (or) stationary.

The narrower the range of the variables {X ,Q,T} , the closer the simplified model

will be to complete one (1.1) in the space X.
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If the system (1.1) is smooth there are such X, € X,Q, € Q, T, €T, as the system

(1.1) will be an equivalent system of linear differential equations with matrices A and B

with constant coefficients

¥ (1) = A (1) + Bu,(t);  yi(t) =Cx (1), (1.2)

where X, (t) - is vector-function {x; (t)}, i=1,n; u,(t) - is vector-function {uj (t)}

j=1m; %(t) - is derivative vector-function {%i®)}, i=1n; y,(t) - measurement

vector-function {yi (t)} i=1n; ; 4 B C — are matrices nxn,, Nxm, Fxm

respectively.

The structure and rank of the matrices 4, B, C determine the conditions of
controllability, observability and identifiability of the system (1.1) [1].

The criterion of optimization or aim which is set by higher level hierarchy system
and may be “blurred” in nature.

The formalization of the criterion (aim) is achieved by functional task, which clearly
determines the efficiency of system behavior in many cases.

The purpose of the system is providing extreme value of this functional. The
functional is the mapping

TxTxXxQ—>R,

where R is a set of the real numbers.

The system (1.1) corresponds to a specific real number | from R for fixed primary
t, €T and ended t, €T time moments, conditions X, € X, X, € X system behavior
X(t), which caused nonzero initial conditions and control action status u(t).

The control u(t) is optimal if a number 1 is extremal 1*< R considering initial
conditions, an equation (1.1) and other restrictions for X(t) and u(t). The model (1.1) i.e.
the type and parameters of functional mapping f are necessary to find the optimal control

strategy U™ (t) by the real object.

14



The task of identification is the image definition f in (1.1) due to measurement

results X(t) and u(t).

Optimum model f of the mapping f is evaluated as quality identification criterion
J, which is also the functional that reflects the sets of implementations or specific
realization X(t) i X, (t) to a real number J , where X, (t) is the solution of the model
equation:

de 3
—= = f(t,x,u 1.3

for mutual input action with the object u(t).

Since f = f in general, the value f received at the control action on the object

u(t) for model (1.3) will be worse than the true optimum value |".

The model (1.3) which was built with provision for not only the functional J, but

also 1, is called goal-oriented [35].
If at the set {fi} (i=1, 2, ...n) of the acceptable images, the image f (1.3)
provides the extreme value for a fixed control u(t), i.e.
f =argextrl, fi € {fi},

then this model is called optimal goal-oriented.

The nearness of the model to the optimal goal-oriented one is determined by the

nearness of measured variables X(t), U(t) to valid variables X(t) i u(t) of the real object.
On solving the problem of identification in (1.3) and in J (X,Xy, ) one doesn’t put

X(t) and u(t), but their estimation X(t), U(t), the formation of which is the task of object

signals identification.
The estimates X(t), U(t) of the signals x(t) and u(t) in (1.1) are got by using

filters f]c :

15



dz
o f (t7,2), 1.4
=T, (L22) (1.4

X N
where z(t) is the vector-function of measured signals X(t), u(t), z ={ }+{ X}, N,,
u

N, - are measurement errors X and U respectively.

The filters optimality (1.4) is estimated by filtration quality’s criterion J; which is

the functional of signals z,2 or their spectral characteristics. Since ff doesn’t make

perfect conversion Z to (X, U), the criterion value J in the problem identification mapping
f in (1.3) will depend on the criterion J . in the problem of identification signals z, 2.

The value criterion | of the control quality of the real object depends on the criterion
value J in the problem identification mapping f.

Let us introduce the concept of goal-orientation and optimality for filter (1.4).

~

The filter (1.4) is goal-oriented if the problem of identification f was taken into

account in its construction in (1.3). If on the set of admissible mappings {fﬁ} the

mapping in (1.4) for a fixed f provides extreme value J*, e
fo =argextrd, f; e { fﬁ},

then the filter will be goal-oriented and optimal.

The functionals’ optimization 1,J,J is linked with a concept of the relaxation

process [16]. The set {Qk}, k >0, each element of which belongs to some (usually

convex) region G of the normalized space is called the relaxation process (RP) in relation

to optimized functions F (Qk ) if the sequence F (Qk) Is also ordered for the value k.

The set of the minimization task F(Qk) is F(Q)=F(Q)=F(Q,)>.. RP

coincides the functionality if

16



k"“'(l (Qk )_ | (Q* ))—O’
—>00
and simple coincides if

limQ, =Q",

k—o0

where Q" -is true value.
Let us expand the definition RP in case if items Qk are the region G of the space,

where the concept of standards or distance is not defined. The sign > is understood as a

symbol of order relation. For example, the estimation of the vector 3 of the model
parameters (Z,B) RP is not strictly relaxation in the problem of identification while
putting in the subset of models structures £ and methods set Opt.

The set {Qk},kZO will be called RPasto F(Qk), if for any k>0 there is

such value j>0, as Fkﬂ. < F, . Such RP is not rigorously relaxation. Its convergence on

functional F or on Qk depends on dimension and ordered of the subset non-normalized
elements (is (Z,0pt)).

In common identification system we will call the multiply subset {Z,B}, {Opt, a},
{3}, {1}, {T}, that is designated as {Z,B}, {Opt,a}, {J}, {I}, {T} and have the
structure which allows to realize the relaxation process relating to the indicator such as
Feoj SFo k=125 j>0,Q e ({Z,8} {Opt,af, F e{{J}{ I}}.

Here {Z,B} - is the models’ subset; {Opt, a} is estimation methods subset of the
vector models parameters {X,B}; a - is parameters’ vector of the method Opt; {J} - is
the subset of the functionals from &(B,t) optimized for B by methods {Opt,a};

e(B,t) is the difference of the coordinate measurement of the real object X and

the model;
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{1} -is the subset of the basic functional which determine the quality of solving the
basic task for the real system X, by using model {%, B}

{T}- is the subset of instants of time t, , where the real system X is presented by

the data set {u (tk ) Y (L )} as a system in terms of its external behavior [7].

Table 1.1

I type of signal Q. F1

B D) a o J |
1 is { B } ) a Opt J
2 IS B} =} a Opt J
3 ias B} ) ) Ot J
i IAS . =) o} o J
5 mais B} > e} {Opt} U I
6 MAIS B =) o) {opt} {3} !
7 SOS B =) o} {opt} e o)

The more effective identification system is the less prior information is necessary
for its work. The required identification quality is achieved by adaptation. The latter is the

goal-oriented change of one or all elements of the subset {Qk} for in order to achieve the
extremum of the main index F. The better adaptation algorithm is the more efficient is the
system. If the complexity is ignored, then the wider is the subset {Qk} during the
adaptation {Qk} , the more efficient is the result.

If the complexity of the system is taken into account in the index F, there is the

subset potency {Qk} which is optimal for index F. Generally the subset {Opt, a}

consists from one element for method type Opt in the adaptive identification system. RP

{Bk} is common for all types of identification systems for index J, the subset

configuration {Qk} and {Fk} is different.

18


http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%81%d0%be%d1%81%d1%82%d0%b0%d0%b2&translation=configuration&srcLang=ru&destLang=en

There are identification systems for different {Qk} and {Fk} in the table 1.1.

1. In a narrow sense the identification systems (is) implements RP {Bk} referring to

Jif =, Opt, a are constant and the subset | is empty, namely Qx = {Bk}’ F=J.

The identification task is equivalent to the optimization task J {Bk} which can be

solved by theory of linear and nonlinear estimating methods or mathematical

programming algorithms, it depends on the structure J.

2. In a wider sense the identification systems (1S) implements RP Zk ,Bk referring to

Jif X, Opt, a are constant and the subset | is empty, namely Qy = {Ek : Bk}’ F=J.

For example, the dynamic orthogonal vernier or regression models with variable

dimension vector B*, for which the optimal pair {2* ,B*} Is determined from the condition

{Z* ,B*} =argminJ {, B, |, are considered in [37].
{2k Bk}

3. In a narrow sense the adaptive identification systems (ias) implement RP
{ZK ,Bk} referring to J if Opt is constant and the subset | is empty, i.e. Q, = {Bk ,ak},
F=J.

The systems, using accelerated gradient descent {Bk} for J, have regularization

parameter as o, , which is optimized with supporting terms of the minimum of the

difference of the mean-square values of the errors for two similar models. These models

are adjusted identical algorithms Opt, but they are different in parameter o : for the first

one itis a=a, for the second one itis o=, +A, where A>0, ay >0.
4. In a wider sense the adaptive identification systems (AIS) implement RP

{Zk,Bk,ak} referring to J if Opt is constant and the subset | is empty, i.e.

Q ={Zy By} F=1.
For example, we assort the systems of the “best regression” selection by the

algorithm of the ridge regression [5].
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5. In a narrow sense the multiply adaptive identification systems (mais) implement

RP {Bk ,Opt, ,ak} referring to the main index | as a composition of the two RPs:
a) RP {Bkn},n =1,2, .., referringto Jy ;

b) RP {Optk ,ak,Jk}, k=1,2,..., in respect of I; that Q, ={Bk ,Optk,ak}

F={{3{1}}.
The multiplicity repeats the RP {Bkn} for each element {Optk,ak,Jk} of the

higher rank RP. The specific method Opt corresponds to each index Jk and it is absent for

heuristic algorithms. Then the pair “the method and its parameters” is optimized in
reference to .

As an example we can take the system “MIAS -1”. The optimal eclement

{B* ,Opt* ,a*} is found from seven methods {Optk} and their parameters {ak } for one

of the five index | (or their weighted sum), which include the regularity and unbiasedness

criteria [4], the accuracy of the prediction by the model.

6. In a wider sense the multiply adaptive identification systems (MAIS) implements

RP {ZK B .Opt, ,ak} in respect of the main index | as a composition of the two RP:

a) RP {Bkn}, n =12,.., referring to Jy ;

b) RP {Zk ,Opt, ,ak,Jk},k = 1,2,..., in respect of I, that
Q= {Zk B, .Opt, ,ak}, F :{{Jk} ,{ I}} , where | — is the higher rank index.

There are systems, which are an example of the MAIS. They were built on the basis

of the method of the group accounting arguments [5]. In this methods the structure X and

parameters [3 are selected by the condition of the extreme 1. The reasonable extension of

the set {Optk} provides obtaining the model which is more effective by the criterion |.
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The qualitative difference of the systems of p. 5.6 is their goal orientation on the

index |, which regulates and optimizes the selection task{Z* ,[3* ,Opt* ,a*}. The issue of

evaluation of the quality of the model obtained as a result of the identification is not

considered for multiply adaptive identification systems. The model quality is estimated for
the index |. This is the most objective assessment, because that model is good the use of
which provides the best solution to the basic problem, which defined quality of the index
l.

7. The self-organizing control system implements RP {Zk,Bk,Optk ,ak,Jk,Ik}
referring to the some index A( I ) as a composition of three RPs
a) RP, {qun}, n=1,2,.. (g and Kk are constant), referring to qu with the

stationary point
qu = argextqukank (qun 2 ,Optqk ,aqk) = argJ;k ;

b) RP {J;k (qu ,qu ,Optqk,aqk)}, k=1,2,.. (q is constant), referring to I
with the stationary point

Ja =Jq(Bg.Zq.0ptg,04 )= argextrlq(J;k) = argla;

c) RP {I;(Bq 2q,0pt, ,aq)} ,q =1,2,..., referring to the higher rank index A
with the stationary point

I” =argextrA(ly) =argA’,

Let us consider the task of improving the automated control process by the complex

power aggregate.
Suppose A is the enterprise performance index {Iq} = { Il,lz}; |, — is the quality

index of stabilization process variables x of the aggregate in the field of the operating
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modes X,, plotted by experts; |, — is the index quality of the aggregate’s operation;

{qu} — is the subset of the quality indicators of identification by the local models

{qu,Bql} which reflect the control u into x (k= 1), and by quality models {Zqz ,qu}

which reflect u into |, (k= 2). The local models {Zlk,ﬂlk} are determined for J by the
easiest identification methods at the first stage of the automation. The local regulators

selected for the models {21k ,Blk} stabilize X in the range X, for the minimum criterion

l,. The optimal element is determined for |, in accordance with the RP of p.7,a and 7,b.

At the second stage, having accomplished the process of collecting and processing

information automated, the complete model {Zqz ,qu} that connects |, with variables X,
U can be built. The local regulator parameters and the optimal value XS of the operating

modes x, can be refined for the models {Zqz,qu}, including models {qu,Bql}. The

optimal element {2; ,BZ ,Opt; ,aZ} for |, can be determined in accordance with the result

RP of p.7,a, 7,b. Thus, the transition from X, to X, leads to the replacement (according to

RP p.7,c) of the main index I, and I,.

1.2. The Multi-Level Decomposition of Systems

The decomposition is an opportune approach to represent the large dimension
system exactly or approximately with complex network of forward and backward linkages
as a system with simpler subsystems that are better amenable to formalization.

Imagine the task of designing the system and the optimal adaptive control system of
a real object as three subtasks and subsystems corresponding to them:

-optimal control of a real object;
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-identification of mapping “input-output” of an object;

- object signals’ identification.
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Fig. 1.1 Three levels of the optimization in the multi-level system.

These elements generate the closed optimization system for local quality index
inside each subsystem which works as a system with backward linkages:
- issuing the controlling action on the object;
- measurement or calculation the object reaction;
- evaluation of subsystems’ optimality according to the criterion of its level.

The subsystems are combined by direct (bottom-up) and reverse (downward)
linkages. The extreme subsystems are united by the same links with the systems of low
and high levels which are not considered here. Let us present the designation and physical
content of the elements, internal and external direct and feedbacks.

The signal identification system has such elements and linkages:

Jf — 1S a creator of the identification (filtration) quality index of the vector X of

object’s signals;
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2. ¢ - is the filter which transforms the signal of a primary converter output X,, to

its estimated value X;
OptJ; - is the optimizer of J; of the structure X and the vector B¢ of the
filter’s parameters;

2 Bnn - is the information on the structure and parameters of the primary
transducers (sensors) of the physical object’s variables, Ef Is the transfer function of a
sensor, static (tare) characteristic etc;

OXnn - is the information on sensor’s errors: systematic, random, time; frequency

and probability characteristics (distribution law, its parameters, correlation functions etc);

J,J; -is the information on the optimality criteria of identification systems of an
object and its signals: J enters this subsystem through the feedback channel, Jf - enters

the subsystem of primary converters.

The subsystem of the object identification consists of:

J —a creator of the quality index of the object’s identification;
>,B - an object’s model with the structure £ and parameters’ vector [3 ;

Opt J — an optimizer of J of a structure X and parameters’ vector [3;

2By , X - the information on the filter and the evaluation X of the signal X,

taken from signal X,, of the primary converter;
Z,B, Xy - the information on the model of the controlled object (X,3) and the
evaluation X,, of the signal X, received in terms of filter signal X ;

I, J — correcting feedbacks from the control system to the identification system and

from the object identification system to the identification system.
The subsystem of optimal control of an object includes:

| - a creator of quality control index;

X _ - areal object (its input and output variables U and X);
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Opt | - an optimizer of the index | in terms of control signal U ;

X —an object’s output — an input of primary converters’ subsystem;

U - an input of an object and a model;
A, | - correcting feedbacks from the system of higher level to the control system

and from the control system to the identification’s system respectively.
Every element (optimizer, model, criterion’s creator) has three components in it:
- an element itself resolving its own task;
- the set of elements ordered by their properties;
- a projector (PR) that chooses the optimal element from the elements’ set in
terms of the higher level quality system index.

Fig.1.2 shows the schematic representation of the tasks of systems design and the
systems of the Ist, lind, Ilird levels. The indices ¢, 0K, gkn correspond to steps’
designation of the composition and relaxation process of the optimization system. For

example, g — is a number of iteration of the index’s change; gK — are J changes; gkn —

an increment number in the optimization B in the system of object’s identification.

The whole system consists of 27 elements, among them there are methods of

optimization sets {Oth?}, {Othq},{Opth}, criterion sets {J?},{Jq},{lq} and

models {qu } ,{Zq} ,{Zi} which are composed of the sets of the existing ordered items.

There is a single optimal set of these elements and their parameters for every
specific criterion.

The task is to select the “appropriate” set, if the costs for its search are limited. The
problem of finding the "appropriate” set may be implemented by sorting options, if the
priory information about all elements is unknown.

The complete enumeration guarantees finding the optimal set, if costs for
optimum’s search are not included in the optimality criterion. If these costs are significant,
they affect the optimal solution. In order that this decomposition does not lead to
complications, it is necessary to carry out an elaborate analysis of the subsystems and their

elements. The use of the projector Pr of each level (fig. 1.2) allows narrowing down the
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initial set of the elements to a limited subset of the contenders for the best ones for this
particular situation.

The principle of the decomposition is efficient for complex systems and their
components. Thus, the infeasibility to formulate all requirements to the designed system
using just one functional led to the problem solvable in practice — this informal criterion is
decomposed onto the set of criteria that are subjected to strict formalization and decision
of multi-criterion optimization problem.

This solution does not give the only result. It only can provide the limited area
(Pareto’s subset) in the criteria-functionals from the optimized variables. The final version
of the solution, which is selected by a designer, belongs to this subset.

The widely accepted is the principle of decomposition for optimization’s methods.

The easiest method in terms of | of the coordinate optimization (Gauss-Seidel’s method)

and the method of group relaxation carry out the decomposition of the space’s optimizing
variables and step-by-step coordinate-wise or group optimization;

for linear stochastic control systems that are optimal in the terms of the quadratic
functional, the decomposition of common task into subtasks of the state optimal evaluation
and finding the optimal control strategy [13] enable to simplify the difficult task of the
dual control [44];

- the division (decomposition) into independent subtasks of signals’ evaluation, their
covariance matrices and parameters provides a solution, which is closer to optimal, using
simple algorithms for the problem of simultaneous estimation of the parameters and states
of the stochastic objects (extended Kalman’s filter [4], the method of the quasi-
linearization and invariant embedding [4]).

The model decomposition’s task (1.1), which describes the system of nonlinear

unsteady equations

Xg ()= fq(t. %, Xq Uy, U ), =10 (1.5)

and set of linear systems which describe a system’s behavior (1.1) with required closeness

at the limited areas of determination of the variables t, X, U, is of a particular interest.
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Fig. 1.2. The goal-oriented subsystem of identification of signals (a) and an object
(b) and optimal adaptive control of an object.

These local models within the limits linearly proportional systems allow solving the

problems of analysis, synthesis and implementation of the optimal control and

identification strategies.
The identification problem of the structure of an unknown nonlinear dependence f

of the model (1.1) can be solved using the local models.

Let us input (1.5) in the denotation of a vector v with components v;:

-

X i=1,n;
vi =qUi,i=n+1,n+m; (1.6)
ti=n+m+1l=s.

"

By reason of the continuity and the i-fold differentiate dependence (1.1), the

dependence (1.5) can be represented by Taylor series:
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+EZS:ZS:ZS: AviAvjAvk +--+ R (V), (1.7)
6 i=1 j=1 k 1

Vo

where Av;(t) = v;(t) —vj.;veG;v, €G;
SUpR, (v)<6;8 - is the permissible error of the dependence of approximation

(1.1) by series (1.7).
Let us divide the region of variables v determination G into subregions so that

a) [ JG; =G v, €G, .G, NG, =, r=r;

r=0

) (Y6, )3, =argmin(sup| L | By <h)

BreR Vro

where B, —is parameters’ vector of the linear model
Ay, ()= v €, (1.8)

Byi is a component with number I and evaluation with the accuracy to h of the expansion

coefficient % (1.7) around the centre v .

Vo

oy

Let us find the B, vector, which is equal to vector 5 (with the accuracy to h) ,

Vo

oy

I.e. let us obtain estimations of the first derivatives 5 in (1.7) for the region G, that

Vo

contains the global center v, of the expansion (1.7) and uses the model (1.8) and data’s

v (t), v(t).
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In a similar way let us calculate the vectors 3, of the partial models (1.8.) for other
regions. Now the derivatives of the higher orders can be evaluated using values B, and
Vro-

Thus, if the subregions neighboring with G,, merge to extended

G, =U™MG,, m >s, (the regions are numbered with distance from the “central” G,

), such as
SUpR;(v) <98, ve Gy,

then the decomposition (1.7) will include members of no higher than the second order with

the accuracy to o. Let us differentiate (1.7) with respect to V| in the regionG,,, then with

the accuracy to OR;(v) / Ov;

t S, 0°
YO 5 Oy | (L9
v oy Fovov,
Vo Vo
where ﬂ is found from (1.8) for the region G, .
Iy,
If Av; is diminution Av; = v i — Vv, the derivative is closely related to
ay(v(t) P
oV T
Thus, the expression (1.9) can be represented as
S
BOJ Z (Veoi = Voi) - (1.10)
1
v0

If r>s and if S from r vectors (v., —v,) is of linear independency, s of other

2

derivatives is clearly defined 1=1,2,.,s.

Vo
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* * R .
One must have no less than s advanced around G, subregions G,,, similar to G,

3

G

of the series (1.7) (the number of such
OV jOvy

in order to find out all coefficients
Vo
central subregions must be at least s).

2

o7y

Vil
"o

are found for each G:l from the equation (1.10),

The second derivate

where values obtained for the central subregion G, were taken instead B, and v.; .

If we differentiate twice (1.7), we get

2 2 S
oyw) oy Z V. —Vg) (1.11)
(9\/ aVJ N 5‘v,5vj k=1 8\/ a\/k rOk
Vio Yo

The third derivatives are identically found from (1.11) for I >s and if S vectors

(vr* — v, ) are of linear independency. All derivatives of the series (1.7) are taken in this

way and they determine series’ structure.

The structure restoration of the those vectors v i that changes from region to region

is possible in case of the insufficient number of subregions G, . On conducting active

experiments the minimization of the regions’ number G, and optimization of the accuracy
of derivatives values in (1.7) are achieved by using composite experimental design that

provides orthogonality of vectors (v, — Vo) (Ve — Vo).
ro

The limited (at every step of expansion) dimension of a vector of unknown
parameters, analysis capability at every step of the significance of found coefficients of the
series (1.7) and rejection of the insignificant coefficients is the advantage of this approach.

The example 1.1. The unknown dependency (1.6) has the form

y(v) = vy (1) +0,5v,(t)v, (V) + Vg(t) )
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Where the variables y(v),v;(t) are defined as follows (v, =0,vy, =0)eGy;
(i, ==1,v;, =0) e G, ; y(0)=0.
There are two tests v; (t jr) in each region, deviations of which from the center are

the  same for each  region Av,(t,)=0,1;  Av,(,)=0;
Av,(t,,)=0; Av,(t,,)=-0,1. Taking into account these deviations we get:
Ay(t,)=0,1; Ay(t,,) =0,005; Ay(t;,)=0,1; Ay(t,,) =0,055;
Ay(t,)=0,5; Ay(t,,)=0,105.
The structure and parameters of the unknown dependency Y(V) are necessary to

determine.

The solution of the task:

a) let us make the equation (1.8) for Gy :

AY(tjo) = BoiAvi(tjo) + P AV, (o) ;
substituting the data, we obtain

01=By-0,1+B,,-0;0,005=L,-0+By,-(=0,).
Hence we have the sought first members of the series (1.7):
Bor =1, B, =—0,05;

b) for G,:

Ay () =BuAv, (L) + B Av, (L)),
from here B, =1, B, =0,55;
c) for G,:

AY(j,) = PuAvi(ty) + BrAv, () ;
from here B,, =0,5; B,, =-1,05;
d) having B;,, it is possible to proceed to find the second derivatives in (1.7)

according to the equation (1.10):
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where (vroj Vo ), ] = 1,2 is the divergence of centers’ coordinates for r and O region.

The second equation is similar

oy o| _o% %y
— | === (Vi =V ) F——| (Vg1 — Vo )-
6\/2 o 8V2 . avzz V0( roz 02) 8V15V2 VO( rol 01)
Having substituted the data for the first equation, we obtain the system
2 2
0=3% (DX o,
5"1 Vo aVla"z Vo
s
2 2
05=2Y] 0+ 2V ().
v, Ov,0V,
%) Vo

Its solution instantly indicates the lack of the quadratic dependency from X, :

2 2
OVl _o; 9| _os.
aVz Vo avlavz vo
Analogously, from the second equation
( 2 2
05=2Y 04 9V (),
aVZ 8\/18\’2
Vo Vo
<
2 2
i A N ¥
aVz a\/16\)2
L Vo Vo
we obtain the solution
2 2
OV~ 9V o,
8VZ 8\)16\/2

Vo Vo
We substitute the obtained values of the first and second derivatives in (1.7).

Considering that v, =0, Yy, =0, we find the estimate Y(v) of the unknown dependence

y(v):
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y(v) = v, (1) = 0,05v,(t) + 0,5v, (t)v, (1) + V5 (1).
The estimate Y(v) differs from y(v) at a non-essential value of -0,05v,(t) for

the region G, which is due to the proximity of calculating first derivatives.

The equally effective principle of decomposition is relevant to the signals’
description. We can speak about the temporary and frequency partition of signals. The
temporal partitioning can be built on various grounds, such as the selection of slots
corresponding to static and dynamic modes of the object, for the independent studies of its
statics and dynamics; the selection of the strong and low noise recording areas of the
variables for the optimal choice of the intervals and the algorithm of signals’ estimation;
the selection of the "informative" recording areas (in the sense of object model
identification) with the orthogonal or uncorrelated variables.

The frequency partitioning is equivalent to the signal decomposition in Fourier
series. The transition to the frequency domain makes it possible to synthesize the optimal
Wiener filter for evaluating signals [34,45]. The modern theory of the spectral analysis and
synthesis systems [1] is also based on the decomposition of signals and their functional
mappings. The decomposition is performed on the system of orthogonal functions. The
decomposition of the complex signals oscillatory systems can identify individual tones and
build partial simplified aircraft models for them [8]. Thus, the principle of the

decomposition is appropriate at all levels and for all elements of the complex systems.

1.3. The Principle of Criteria’s Consistency
There is at least one value for the set elements of the hierarchical control system
(fig 1.1)

{1,0pt1,3,0pt3 28,1 ,0ptl ¢ ¢ B¢ Iy Optly, B,

in which the main index A is optimal if losses for searching this value are not taken into

account.
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The real optimization tasks can’t take these losses into account. Therefore, the
relaxation process of finding the absolute extremum (for example, minimum) stops at
some stage if further increment in losses for search exceeds the reducing of the rest of the
functional.

The search of the absolute extremum is performed by brute force if the information

on A dependence on the set’s elements is absent. The general number of steps RP

n! : :
M = ———— for the real value m and n is too big.
(n—m)!
The task is in many orders easier if each of the functionals A,l,...,J,, is
optimized on the variable subset of its level: X, U, .. ., (Z,,,Bpn )- This leads to the

composition of conventionally optimal solutions
AN =extA
X| I =extr
(1.12)

u|I*:extrl

(Z’B )|J’:c =extrJ f

(Z'B )|Jﬁn:extrJnn

( me 9Bnn )| !

where at the left of each vertical bar there is a variable that optimizes the functional of
"its" level, and at the right — there is the result of conditional optimization at lower levels.
The optimization problem of each level undergoes quite strict formalization that
allows intensifying the process of finding the conditional extremum. The dimension
problem is withdrawn, but the problem of efficient solving is still actual. In order that the

procedure (1.12) gives the solution close to the absolute extremum of the main functional

it is necessary to ensure the consistency of criteria A,l,...,J,,. The criteria

A, ...y, are called absolutely consistent if the composition of conventional solutions

(1.12) leads to the global extremum A . Two functionals neighbouring by level are called
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locally consistent, if their variation in a limited region of G space of variables of the lower

level subsystems is similar to:
OA(uU +du) =Kol (u+du);
ol (B +0P) =k,0J (B +3P);
0J(B; +3P) =k (B; +0B¢);
0J ¢ (Bnn +0Bnn) = Ky8J 0 (Bn +BBnn)')

If the intersection of regions G; variables’ existence of the levels i represents a non-

VT

(1.13)

empty set that includes a point determining the global extremum for A, that their multiple
consistent optimization from J,, to A and back from Ato J,,, allows to find the global
extremum.

However, it is not easy to achieve it. That is because the functionals can’t be

optimally built from the top down when optimal values of lower levels of upper functional
are unknown. Thus, the functional | of the control u on the object X, can’t be
constructed without knowledge of what mathematical model it will be described with, and

what level and type of noise is in the estimates obtained according to the filtration

subsystem and so on.

It is possible to apply the minimax approach and to build | in order to obtain the
best guaranteed solution for the worst model (X,[) and estimates X,, of the signal. But

there is an identification subsystem in the general system (fig. 1.1) that always gives
solutions not worse than the worst as the result of optimization, so on using the minimax
approach we will lose on the optimality.

The following algorithm of constructing locally consistent functionals is

appropriate:
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1. The elementary subsystems of the initial converters of the evaluation signal X, the
model (Z, ) and the optimal control U are accepted on the basis of the prior information
on the object X, the main functional A and existing subsystems’ elements of all levels

and taking into account the principle of sustainable complications at the first step of the
multilevel RP.

2. The selected subsystems of i-level are optimized by brute force of structures and

by the method of optimization using a priori adopted criterion of subsystems of the (i +1)
level: Zp, by J., (Z;,0ptd;) by J, (2,0pt) by I, (Optl) by A. Since the

dimensions of these variables are small, then costs for searching are valid. As a result of
this optimization, we obtain the optimal system of the first approximation.

3. The consistent criteria 1,J,J,,J,, are designed by the methods of the

sensitivity theory or simulation and experimental design [18].
At first let us consider the approach based on the analytical calculation of the

functional’s sensitivity. Assume that there is an optimal system of the first approximation,

in which the real object X, is replaced by its model (X,[). Let us find the variation of

the basic functional A relating to its extreme value A*(u*), which is caused by the

variation du of the optimal control on an object. Assume that

u(t) =u" (t) +edu(t), (1.14)
(1) |
where ¢ -isa small quantity; u(t) =| - - is a vector-function of time t.
[ Up (D) |
Assume that
A(U(D) = j AU (1) +Su(t)e)dt, (1.15)
6,
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where _[ - is an integration operator on the time t interval 6,; A(-) - is a scalar function

01

of a vector argument U.

Let us find the first variation

sa =k _ j( j I(ax) sudt,
88 88 5, 5, ou
where
O | [ ou,
ou e
%_ 1 G_U_ o<
o ol vl B
a | T oy
| OUp, | | Ot _

Now let us take the second variation:

S2A — 6/2\ 0 0A g (ij sudt
o’ Oe O 8891 ou
T T
=Ig(@j -8u-dt=ji[(@j6u} 8—udt, 116
5 0e\ ou 2oul\au Ok (1.16)
where
- A
ou,ou ou,ou
P ) 1YY 1““Ym
ou'ou
o
| OUp0u, OUy,OUp,
If A is determined on the X(t), but not on the u(t), so acting by the same procedure,
we get
&°A = I ox' O Sxdt,
OX' OX
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or

T 2
3°A=[ou’ (axj 8T7“ X sudt, (1.17)
5, ou ) OX Ox ou
where
8X=%5 :
ou
A
0X, (1) ou, (1) ou, au, OUp,
OX
OX = , ou= , — =
ou,
OXp, (1) U, (1) X % . OXp,
| ou,  adu, OUp, |

Comparing (1.16) and (1.17), we see that

%\ (aij %\ ox

ouTou \du) ox'oxou’

(1.18)

The first variation is equal to zero on the extremalx (t),u” (t), the second

variation (1.16) or (1.17) determines the etalon surface (for the functional | (U)) in the
functional variations spaceoU(t). Assume ouU(t) =1(t) - is an ordinary vector-function

from t, then (1.17) is an etalon matrix A, of the real numbers for |

(1.19)

ox) 8% ox
A=A = dt
A Jl(auj ox' ox ou

When constructing the functional 1 we will seek the coincidence of the arguments
of the extremums A and |, and the second variations should be similar.
Example 1.2. Assume

| = I(xTGx+uTQu )dt, (1.20)
02

where G, Q — are weight matrices; 0., - is a control interval.
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Then

al OX

os ou
2

l ol : 8 8I G

2 0¢ 88 88

OX

o —j{auT(gx) Gx+ X G 5u+5u"Qu+u Qé‘)u}dt
u
02
ox
J’{SUT (—j — U +du QSU}C{U— (1.21)
5, ou ou

% {(@x) s, Q}Sudt.
5 ou ou

The functional (1.20) will be consistent with the main functional for those ordinary

variations ou that are in (1.19), if the variations (1.19) and (1.21) are similar:

6x 8x
G— dt =k, A, 1.22
or in a scalar mapping
ZZQ.,I " uj dt+jq|kdt =k, Ik=1,m; (1.23)
i=1l j=1 k

where K, - is a similarity coefficient; a}k - is a matrix A element in (1.19); Jij» Oy - are

matrix elements G, Q respectively.

Since A, is symmetric, then the total amount of equations (1.23) is 0,5m(m+1),

and the total amount of the sought coefficients gj;, g, is 0,5n(n +1) and 0,5m(m+1)

respectively. This allows them to satisfy the m(m+1) requirements of consistency | to
A and a series of other requirements which are determined by the optimization system | .
The tasks of matrices GG, Q and the task [4] become much easier while using this approach
to construct the functional 1.

The next step is to design of the criterion J of the identification subsystem. Assume

that the functional | (1.20) which is consistent with A, was obtained at the previous step

with weight G and Q* that satisfy the condition (1.23). Let us find the second variation
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| at parameters B space of the model (X,8) and define it as the standard for the

2
functional J: 1a—i:J.ESU (8X] G*%8U+Q oudt,
2 O¢ ), ou ou
where
0 0 0
au au Bl BZ Br Bl
Su _SB’ _— — ... ’B:
P op
| OB, OB, P, |
Then

) TraxY oax . eu B
5°1(B) = ISB ( B] _(E) G +Q }ﬁwdt_

= 5p L[(‘;Ej Kax xG*g—erQ*}g—Edt]SB:SBTAZSB.

(1.24)
At the functional
J= ji(f(,xM Ja)dt (1.25)

03
at the point X=X, corresponding to the estimate B that is equal to 3, the first

variation J should be zero, and the second one

523(B)=op" {j( 8[3 j ai;:(a?(; Ggg dt}SB

Is similar to (1.24), viz

o%i(a) OXy,
ej( B jaxMaxM op  dt=lkott, (1.26)
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where A, has 0,5r(r + 1) of various elements ocizj.

The functional (1.25) should contain at least 0,5r(r + 1) of controlled parameters
o in order to satisfy (1.26) the functional (1.25) absolutely.
Let the model (X, B) be presented in the form of

X ()= 3B (DU .27)

d
where W, (p) - are assigned operators from p = I

Assign that is in (1.24)
A, =diag [afj }

5, let us find u(t) and present it by the set of

From the condition k,of =aj;,

orthogonal functions @, (t)

m
u(t) = > oy 9y (1), (1.28)
k=1
where m — is the amount of components @, (t) that provide the adequate representation

u(t) on the identification interval 8, =[0 T]; @, (t),k=1,n - is the system of

orthogonal functions, for example cosine series

¢, (D)= cos(2k2_lj£t. (1.29)

T

.
If J = jsz(t)dt , Where g(t) = X(t) — X, (t), then in (1.26) there are elements
0

3

o

2 Y%
oj =—=

O ey —|

[Wi (pu®]|Wj P .

2

Let us denote

Wi (pJu(t) =y;(t), i=1n,
taking (1.28), (1.29) into account
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0 = - [Wi (P (0] = 3 s v 0

Yij (©) =W; (P) oy (D).

Then

k_l I(Zm:ak Yik (t)jﬁzak yjk (t)jdt -
Zmlzm:akaq j Yik (t)yjq (t)dt o Zzakaq Yik
=1 g=1

k=1 k=1 g=1
.
where Y, = j « ()Y jq (1)dt are calculated previously.
0
The optimal value o will be found from the condition
ki
ZZakaq Yij
2

where all variables, except o, are calculated previously. If the dimension is equal or

o —argmln I,j=1,n, (1.30)

ocR

more than 0,5r(r+ 1), then the least value of the norm in (1.30) is zero and the

functionals’ variations J and | are similar.
In a similar way to the previous ones, having obtained J and having defined its

variation from the vector 3. of filter’s parameters, let us select the quality index J . of
the filter (X;,B;) from the similarity condition (1.24), and the quality index J,, of

primary converters is similarto J ., obtained at the previous step.

Taking into account the complexity of the analytical solution of the functional’

concordance, the approach of planning the experiment will be constructive.
The creation of computer aided design (CAD) of hierarchical systems’ criteria with

appropriate mathematical software facilitates the issue. The computer consistently issued

subsystems of the two neighbouring levels, starting from the top; the experiment aimed to
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determine only the second functionals’ variations relating to their extreme value is
performed; the additional functional [type (1.30)] is formed, which determines the
proximity (similarity) of the second variations of given (upper level) and constructed
(lower) functionals; the additional functional is optimized by adjusting options of the
lower level subsystem. In order to reduce the options it is appropriate to apply the optimal
plans of the experiment [14,18].

It is necessary and sufficient to perform a "star experiment™" in order to determine
the second variation only if extreme value is known and the experiment is performed to
study the region of the functional’s extremum. The “star experiment” is a sSuccessive
deviation on the “star shoulder” magnitude =@ each of the variables for which the second
variation of the functional is found. If the coordinates of functional’s extremum are

unknown, the optimal experiment performed to design the type of quadratic model

n n-1 n n
Y(X) =g+ D 0% + D D XX+ Y X (1.31)
i=1 i=1l j=i+l i=1

(1.31) is Box’s central composite plan [18]. It is possible to perform this plan as

orthogonal. The normalized variable models (1.31) take five values 0; +1, -1, + a; —a.

The plan of the experiment is as follows:

1) the complete factor experiment 2" or fractional replicas if n>>5 [18];

2)“star plan”
3) point in the plan’s center (N experiments only).

In order to design the orthogonal plan the model (1.31) is transformed to the type
n n—1 n
G2
y(X):bO—FZI:(XiXi +Zl:ainin +;aijxi , (132)
1= 1= 1=
where
y 2 g2 _ 2 13,
by =0+ D X, X=X _C’C:ﬁzxi (K),
i=1 k=1

k —is the number of the experiment.
The new variables )?iz will be displaced on the value —c. This allows to select & so

that all the columns of the experiment matrix become of pairwise orthogonality.
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For example, for N=3 and the model (1.31) the matrix of the Box’s plan is

15
depicted in the table 1.2, where ¢ = (1/15)2)_x’ (k) = (8+2a’) / 15 for any i.

k=1

The ”star shoulder” a is selected according to the table 1.2, from the orthogonal

condition X;:
N
D % (K)%: (k) =8(1—c)* —4c(a” —c) +3c® =0.
k=1

Substituting the expression for C, we get

a=+30-4~15, c~0,83.

The model’s (1.36) coefficients b,,a;,a;:,00;: are determined by the method of

i
least squares independently because of mutual orthogonality.

From these coefficients it is easy to access the models’ coefficients (1.31) and from

there — to the models with nonnormalized variables. For this aj is divided by the modulus

of variation’s step of the variable i, and Oljj is divided by the product of these moduli and

variablesiand j, 1=1,n,j=1,n,i=|.

If there are functionals’ models (1.31) of the upper and lower levels, the lower level
is designed on upper by variations of structure and parameters of the lower subsystem
from the condition of the minimum of the additional functional of the deference between

coefficients o 05,0 of models (1.31) of two levels.

The number of different options can be cut on using the experiment planning in
order to construct the dependence model of this additional functional from structures and
parameters of lower level’s subsystems. Having made subsystems’ criteria of all levels
consistent and optimized, we obtain the optimal system of the second approximation.
Having repeated this procedure of criteria concordance and having optimized them, we get
the third approximation. The concordance process stops when the results of further

iterations differ little.
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Table 1.2

Normalized
Plan’s
type variables X(k)
X1X

2| %2 2| yk)

=
N
w

Xo X1 X2 K3 2 X1X3 [XoX3

111 | 1)1 |1 | 1¢c |1c |1c y(@)

1hla bl alal1 | 1¢c |1c |1c | Y

1l b a1 11 1¢c |1c |1c | YO

11 11| e |1c |1c | Y&)

1 il |1l ] e [1c [1c | YO

11t |2l 1] e |1c |1c | Y(O)

1t | a1 | e |1c |1c | V()

1l bl 2111 | 1¢c |1c |1c | Y(B)

1lglo 0| 000 leee| - |- | YO)
1L oo 0]o |0 |e-c|— |- |YQ0)
2 1 0lalo| 00 |0 | ¢ leoe|le | YAD
10l 0|00 0| ¢ [ec|— |YE
100 Lu| 000 |« |- wec|Yd3)
1olol|ofo]o | o | be_el Y24
1plofoolo|o| o« |« L Y9

Ensuring criteria’ consistency in theory or by simulative computer modeling brings
the conditional optimization task into proximity with the task of finding the best solution

(the determination of the global extremum of the main criterion ).
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1.4. The Composition of the Subsystems of Different Levels into the Single
System

The third and final stage of designing the structure and algorithms of functioning of
multilevel optimization system close to the optimal at /A is the stage of composition of
individual subsystems into the one complex.

The formulated definitions of a system, relaxation processes, and the principle of
the rational complication [43] allow determining the main approaches to the composition:

e sorting the elements of the models sets and optimization methods;

e achoice of the first approximation optimal system;

e an organization of the relaxation processes of complication and
improvement of certain elements of systems, and perhaps the structure of
the system itself, beginning with the optimal system of the first
approximation and ending up with the optimal to /.

The sorting of the subsystems’ elements is implemented by projectors PJ, narrowing
at the first step the initial set of elements to acceptable subsets, and then to the candidates’
subset for the optimal elements.

For example, the nonlinear identification methods that don’t require the complete
observability, are acceptable at the incomplete observability of the object X _ . At the first
level of projectors PJ1 select those elements (methods and models) that can be applied in
this situation, which is determined by the signals U, X under observation and by given
criteria J.,J, 1, A.

The projectors PJ are multidimensional discriminators that allow outputting those
elements which properties are fully consistent with the factors, determining the actual

situation. At the second level projectors PJ2 select two or three candidates for optimality.

For this in the projector PJ2 there are regressive dependencies of the relevant criteria

A

Jiron A (if criteria can’t be realized a priori) for each element, criteria taken from the

quantitatively calculated vector of factors 0, characterizing the specific situation.
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The factors for the elements-methods of the linear evaluation are the correlation of
the signal - noise on the amplitude and width of the spectrums, signals correlation, the
model’s approximation (the value of the final approximation’s error) and so on. Having
determining several factors that are the most distinctive for the practice of regression

analysis, we construct the regression dependency of the appropriate criterion J ..., A or

its estimate jf A from 0.

Then projector PJ1 determines the region, and the PJ2 determines the criterion value
for concrete O for each element of this region. The task of projectors constructing refers to
the phase of the design and it requires as much costs as accurate and wider are the regions
and dimensions of the factors 0.

The choice of the optimal system of the first approximation was described above.
The basic process at this stage is the organization of the system’s structure.

Let us consider the version of the optimization system structure J — the
identification’s system. In the table 1.1 identification’s subsystems are structurally
systemized from the simplest to self-organizing structural ones: we get the structure of the

MAIS as acceptable in order to create the identification subsystem in the multilevel

optimization system A (if Z° andOpt*are prior independent).

For this identification system, contrary to the simple ones, the closedness at the
basic criterion | and the nonidentity of the element X are typical (as for mais). Let us
make up the functional scheme, determining its interconnection with the subsystem of
upper and lower levels (fig. 1.3). The peculiar parts of the system (subsystem) are
encircled by a dotted line and numbered: 1 — is the optimization A, 2 — is the optimization

I, 3 — is the optimization J that adds the simplest identification’s system (part 4) to the

multiadaptive one (parts 3 and 4), 5 — is the optimization J . .

The part 4 of the system contains the functional J_, , which is determined above,

gk’

the model Xk with the vector 3, - of adjusted parameters, the optimizer (OptOlk : aqk).

gkn

gk » Using the optimizer (Opt,, , o, ). The

Here the RP {qun} is realized in terms of J ok
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information on the structures qu optimal on qu and vectors [qu of the model’s

parameters enters the subsystems of the upper levels.

The part 3 of the system contains three sets {Eqk } {Optqk } {qu }; the first
1 1 1

level projectors PJ1 that restrict these sets to subsets {qu } {Op'[qk } {qu} of feasible

elements; the second level projectors PJ2 that choose among acceptable candidates on the
optimal elements.

For a specific type |, and required value | _, that is determined above, the

q gk

projectors PJ1, PJ2 define the elements qu, > Opt Olgk of the part 4, where RP

gk’ gk’

{qun} get the model (qu,qu) optimal on qu as a result. In the subsystem of the part
2 the criterion value qu is estimated on the real object X or its model (qu,qu). If it
does not satisfy the required one, the candidate in one of the projectors PJ2 is substituted.
The process {qun} repeats again for as long as qu IS no worse than required, or until

the process of sorting all candidates is completed.
The structure and parameters of the lower level subsystem can be changed while

changing qu in the parts 4 and 5. In the parts 3 and 4 there is the composition of two RPs

{qun} on n and {qu} on K that corresponds to the definition MAIS.

In the part 2 there is a real object X_, its optimizer Opt Iq, the set {Iq} and the
u

projector PJ that determines (based on values qu and A) type Iq of the criterion qu.

The signal X from the object’s X output enters the lower level subsystem. The estimate

X gets to the system of identification and control from the lower level subsystem’s output.

The optimizer Oupt |q based on the information qu,qu, qu,)”(, produces the

control action U, entering on the object or its model (at the stage of searching the optimal
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system’s elements). If the optimal value Iq on the k does not satisfy the part 1 of the

system after the completion of RP {qu}, then the projector PJ can receive the command

from the upper level system to change on the q type of the functional Iq. The step on q

leads to the repetition of the steps on K, next kK on n in the MAIS, viz. there is the

composition of three RPs in the parts 1-4. The composition of three RPs is a self-

organizing system (SOS).

¢
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Fig. 1.3 The functional scheme of the multiple adaptive subsystem

of identification
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The strong feedback with the criteria from A to I, from | to J, from J to J ¢ , which

optimizes and orients the structure and parameters of the all level to the goal,
accomplishes the regularization in a broad sense.
The multiple adaptive systems of identification have more opportunities for

regularization in comparison with conventional ones.

> = const
inf 1_(Z,0pt, &, u)| 8 = arg min J(inf 1 (u)/(Opt, ) = const
p=argmin J, (1.33)

The MIAS efficiency is as obvious as far as obvious the inequality
2 = const
infl, (E,Opt,a,u)‘B = argminJ <inf 1,(u)|(Opt,a) = const

f =argmind, (1.33)

where the right side corresponds to minimization’s systems with a conventional identifier
(only the part 4 of the scheme in fig. 1.3), the left side corresponds to the systems with
MAIS- identifier (the parts 2, 3, 4).

If Iq doesn’t take losses for searching ianq into account (as in the example of the
prognosis), then the inequality is strict. If Iq does take, that the inequality can’t be

perform for the elements X, Opt,a. of large dimensionality and bad sorting by projectors

PJ1, PJ2. The principle of rational complication is discolated in such systems. The
complications (the extension of elements’ dimensionality) of multilevel system with
MAIS- identifier must be that that the inequality (1.33) is not weakened but intensified.

Only this complication is appropriate.
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Chapter 2. The Basic Model of the Real Processes and its Derivative Models

2.1. The Basic Mathematical Models of Real Processes

The processes that occur in time in real material objects are subjected to the
fundamental laws of nature. As we said before in the Chapter 1:

— all processes and their elements as a particle of matter can’t be completely
autonomous, all is interconnected with everything;

— there is no absolute state of rest (statics) in the real objects, all objects are
dynamic due to the infinity of the material world and the direct or indirect interrelation
with its components;

— the presence of the response rate (for example, the mass in the mechanical
objects) and real delimitation of the power of control actions on the object do not allow an
instant change in time of any coordinate of the real world’s object, viz. all variables’ of the
object’s state are smooth functions of time;

— two or more identical objects do not exist in the nature, so an ensamble
averaging of roughly identical objects does not allow to define accurately their
characteristics or coefficients, because each object has its own ones;

— in the same way the nonstationarity of processes in the real objects makes
impossible to use the time averaging (Chebyshev’s theorem on the large numbers is
accomplished only approximately in practice: suppose you toss a coin a hundred times,
you will change coin’s geometry by fingers’ friction and, as a result, the instantaneous
average value of the correlation "heads-tails");

— the total interralation of the objects and their natural infinite-dimensionality does
not allow to construct an accurate finite-dimensional model of any process; that is all
models are approximate, the task of the researcher is to select the best one for specific
application (prognosis, control, internal parameters’ control, etc).

In accordance with fundamental Kalman’s theorem [7], taking the smoothness of real

processes into account, it can be said:
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“For smooth systems, the transition function of which is a mapping

TxTxXxQ — X, itis also a differential equations solution at the same time

x = f(x,u,t), (2.1)
where X - is a derivative from X at the time t, T — is an ordered set of time t moments, Q -
is the set of input infuences, X — is the set of states, xe X, ueQ, teT ”.

Thus, any process that occurs in time t,, can be represented by the model (2.1)
exactly (if the dimension X,U is directed to the infinity) and approximately if their
dimension is finite in the real world.

Let us add, that the process can be presented also by the system’s (2.1) solution X(t)
- this is the direct modeling task, or we have the inverse task — the task of the
identification’s mapping f with samplingsx(t) u(t), if there are the experimentally
obtained dependences X(t),u(t) and the function f should be identified (parametrically

or non-parametrically). We construct the dependence X(t) as the function t or the values

X(t) that are previous time (as a rule, these are polynomial and autoregressive models),

not searching for the interconnection of the component X; (t), x;(t), I,J=1n, x(t)

with u, (t), k =1,m.
It is clear that for the finite deviations’ values AX, AU, At and the acceptable

approximation’s error €, the nonlinear non stationary model (2.1) can be represented as a

linear stationary system:
X(t) = A4x(t) + Bu (), (2.2)

where X, X, U — are deviations from the basic regime, X(t) =[x (t),...,x (1)]",
i=1, i=1,
u(®) =L@, u, O A =[]55, B =[]
For the inverse task the measurements X and U are perturbated by the noise N(t),

which is considered as a random process if the dimensions X, U and the time’s t interval

T, are limited. The presence N (t) causes the difficulty of the inverse task: the simpler
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model (smaller n and m) is, the greater the error € of its approximation of the real process
will be; but if the model (2.2) is more complex (and potentially more accurate), the

dimensionality (n+m) of the coefficients aj bij in the inverse task is larger, the
conditionality of the information matrix [1] is worse, and, as a result, the solution of the

inverse task is less correct: the small perturbations N(t) in the measurements x(t) and

u (t) lead to large errors A, OB in coefficients of matrices A and B of the model (2.2).

Then we use the property of smoothness for the more accurate solution of the direct
(simulation) and inverse (identification) tasks. In order to avoid the mentioned
incorrectness of the inverse problem’s solution, we use the principles of decomposition
and correct composition in constructing mathematical models of the real processes. For

this purpose we will divide the infinite large number of variables X, U interconnected by

the hypothetical model (2.1) into:

1. X;, U; - are essential for solving the main task for which the model is
constructed (their dimensionality is small);

2. the other variables X,, u, , which are divided into variables x3", us’, that
have the spectrum band close to the band X, u, ( AF —is an average frequency), and the

amplitude insignificant towards to X, u, (power, variance) and the variables, the
frequency spectrum of which lies on the axis of frequencies above (XlHF, ulHF) or below (
LF

X ulLF) of the average frequency band of the significant variables x, u,.

Then for the simplified model (2.2) the unmeasured variables XfF, u2AF create a

systematic error g, (t) while determining coefficients of the matrices A, and B, so far as
the variables XZAF, u?F can be represented in the basis X,, U, and the orthogonal additive
Xy (1), Uy (1)1 X5 = KX (£) + KX (8), Uy = Ko, (8) + K,U3 (1),

This yields that instead of sought matrices A, B, at the identification we get their

estimates: A = A +k,, él = B, +k;, shifted on k;, k,. But it does not interfere with
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prognosis and modeling tasks. Instead, the estimates A, B, take into account the impact
of variables non-included in the model that correlated with included ones.
The unaccounted low-frequency components X', Us", which are in the nonlinear

model (2.1) slowly transfer the mapping point {x,u} in the space {X xU}, the point of
decomposition (2.1) into the series (2.2), from one value to another, slowly changing the

value of matrices A, B, at time as derivatives from the basic nonlinearity f of the model

of; :
(2.1): [a1ij]={87'} ’[blie]={%} K
Jij=in e _lig=Im

They create the error g;(t) from the nonstationarity of the coefficients of matrices

A, B, which in a limited period T, of the time t are taken as stationary: ,5& = A (1);

B, = B,(t).

However, we can correctly receive the nonstationary model (2.2) based on the

A

composition of partial models with constant matrices Alk, Iélk while defining Alk, B,

for certain intervals T, limited in time and further approximation Alk : élk to the whole

interval T that consists of subintervals Tk .

Finally, the impact of high frequency components XZHF, u;F can be significantly

reduced both in the direct and in the inverse tasks (modeling tasks and tasks of
identification respectively) by the averaging (filtering) allowable for spectral band of the

basic variables X, U,.
Let us combine the variables X' (t), u"(t), x* (t), u™ (t), x"(t), u™(t)

that are unrecorded in (2.2) and included in the hypothetical exact equation (2.1) with

unknown final value’s coefficients into one variable-remainder ¢(t). Let us also denote the
set (X, U) through z, the matrices (A, B) through C, X through Y. Then, instead of the

approximate equation (2.2), we have the hypothetical exact
y=z-C+e. (2.3)
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Hence LSM-estimate C [35] of the matrix C

C=@E"2)"2"(y-¢), (2.4)
will consist of the sought exact value
C=@"2)"7"y (2.5)
and of the error
AC=—(2"2)"7"¢, (2.6)

where the scalar product 2" is non-zero for the nonorthogonal to Z components (these are
X" and UAF). Lower-frequency components will be orthogonal to z, if at first we place z
In the centre that is to take

2°=72-7, (2.7)

where Z -is value z average for the interval T. Then (z°)- ("™ ,u"™)>=0 as x*" and

u'F can be considered as constant on the interval T. The high-frequency components are
orthogonal to z and will affect only on the variance of the LSM estimate [2]:
cov{é} =(z'2)"'2"Qz(z"2)". (2.8)

If we assume x, u"*

as “white noise”, that covariance matrix is converted into the
diagonal:

cov{(f} =c’(z'2)", (2.9)
where 6°— is a “white noise” variance.

Considering the total association of variables, it can be argued that with further

increase of dimensionalities N and m and (n+m) the functional space of variables z(t)

space for z, the condition of the linear independence of components z(t) will become

worse and, consequently, the norm of inverse matrix (' z)™' will be increased. This leads

to the increase of the covariance’s (2.9) estimates (2.5). However, the larger is the

dimensionality (n+m) of the model (2.3), the more variables are accounted, the less is

the remainder € and, as a consequence, o’ in (2.9). Thus, it can be said that in the series
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of the models which are ordered by complexity (dimensionalities (n+m)) there is an

optimal one on condition that the norm of the covariance matrix (2.8) or (2.9) is minimum
[37].

2.2. The Discrete Time Mathematical Models that Correspond to the Basic
Continuous Model Exactly or Approximately (2.2)

As so far natural is the continuity in time for real processes, so natural is time
discreteness for real measurements of these processes. Thus, there is the issue: how to find
out the continuity’s dependence (2.2) using the discrete time measurements

x(k),u(k), k=0,1...,M and knowing the step constant At or variable A tin time. A

separate issue is to do it in a way that the perturbations N (k) influence its solution as less

as possible.
The one-valued transition from the continuous model (2.2) with the initial

conditions X(0) = X, to discrete one
X(t, ) = Ax(t, )+ Bu(t, ), x(t))=x,, (2.10)
can be obtained through the system’s (2.2) solution for discretes t, of the time t:
t
X(t, ) =D(t, —t,)x(2,) + j@(t —1)Bu(t)dr, (2.11)
0
where @(-) - is the transition (2.2) matrix of the system, which is equal to[16]

o k
D(t)=e™ =D A L , (2.12)
k=0 k!

or through the Laplace transform X (8) =(s- 1 —A)™Xx(t,) +(s-1 — A)"Bu(s), from
which
D(t—1,) =2 (sI - 4)" ], (2.13)

where s — is a Laplace variable, Z™ - is an inverse Laplace transform.
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If the inverse task is solved, the signal u(t) in (2.4) will be represented as a sample
of measurements u(t, ), which (for the calculation X(t, ) in (2.4)) should approximate by

the analytical dependency. Then the solution (2.4) can be obtained analytically. As it will
be shown below, in many cases of the inverse problem’s solution, the step of time shift At

of variables of the difference equation (2.10) is larger than the step At of the

discreteness’s measurements. Let us represent within the step At the experimental

dependence u(t) as a power-polinomial, for example of the third order:
u(t) = at® +pr° +yr +39, (2.14)
where T € [O, At] . If the dependence is simpler, then the part of coefficients will be zero.

According to the scalar recording of the least squares’ method

Re=D.u(t)) 1§, k=0,1,2,3;
j=0

a:D_lkZ:c;Aks'Rk’ B:D‘lekz.Rk’

3
Y:D_lekl'Rk’ 8:l:)_lz:'a‘ko'Rk’
k=0

k=0
B n n , n 37
n+1 th Z’CJ T]
j=0 j=0 j=0
n n ) n , n .
Z;‘Tj .OTJ 'otj .OTJ
1= J= 1= 1=
D_det . 2 . 3 . 4 . 5 |
27 T T T
j=0 j=0 j=0 j=0
n 5 n . n ; n .
LT Lt Lt LT
| j=0 j=0 j=0 o |

here A, k,s=0,1,2,3 - are algebraic additions of the matrix [D].
The matrix recording (2.11) of the vector process X(tk) Is the sum of the scalar

processes, which are (depending on the dimensionality of the matrix A,) the solutions of
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the typical differential equations of the corresponding order. Let us consider the series of

these equations which are ordered by complexity and their analytical solutions. Taking up

the operator % as p, we have

px, (1) =byli(x), (2.15)

(p + a,)x, (1) =b,l(1), (2.16)

(P +a9)%; () = (b, p + by)ti(7), (2.17)

(p* +a,p +ay)x, (1) =hyli(r), (2.18)

(p* +a,p+a,)%(v) = (b, p +1y)l(v), (2.19)

(P® +2,p+8,)%(x) = (b,p* + b, p+by (D), (2.20)

where U(t) corresponds to (2.14). The analytic solutions of the equations (2.15)+(2.20)

are mentioned in the appendix A.

If the step At is constant, the matrix exponent e” in the equation (2.5) can be

k

= t
approximated by the linear component of the series ZAlk P or the derivate X(t, ) can
k=0

be substituted by the relative difference [X(t,.;)—X(t)]-At™, and the differential

equation (2.2) becomes directly difference (2.10), where
A=1+At-A, B=Il+At-B,.

The discrete models which are the most frequently encountered in the contemporary
tasks of modeling and prognosis will be discussed in the following sections:

- autoregressive (AR);

- autoregression with moving average (ARMA);

- autoregression with integrated moving average (ARIMA);

- autoregressive conditionally heteroscedastic model (ARCH);

- generalized (GARCH).
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In addition to the models listed above, we obtained and used these combined models
for prognosis the time series: the aperiodic trend approximated by power-polinomial

(Taylor series) and the oscillatory components approximated by autoregression.

2.3. The Determining the Structure of the Nonlinear Operator f of the Model
(2.1) by Composing the Local Models (2.2) into the Global one

Let us denote the variables (X,u,t) which are the argument of the vector function
f in (2.1), through B, X; through J. Then, for i-line of the system (2.1) X; from x,u,t
will be represented as J (). Next, as we know from Weierstrass theorem, every smooth

dependency can be represented by Taylor series and, if the region 3 is limited, and series

are endless, that this representation is exact:

5 0J
B)=3p >+§aﬁiﬁ ;;aﬁlaﬁj AB; +
1 n n n
+€§§28[3 B aBk < ABAR APy +-- (21)

where [, - is a global centre of decomposition, AR = —,.

Apart from the global center g, of the region G let us introduce (according to the

capabilities of the experiment) a number of local centers B,, (r =1,_m) of the limited
subregions G, . The dimension G is selected under condition that the dependency J (/)

with the permissible error 6 is approximated by the linear part of decomposition (2.21),
and the distance between centers of neighboring subregions is such that J(B) is
approximated by the linear-quadratic part series (2.21) with an accurate 0.

Analogously, the distance between the centers of the groups of neighboring

subregions should satisfy the conditions of approximation by the first three terms of series
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(2.21) and so on. Thus, there is a gradual increase of the dimension of the region and of
the polynomial order (2.21) respectively. In this case the components of series for which

p
the coefficients ——————|  are insignificant, are automatically discarded at the step p

N1Bop

(p=12,...).
This approach enables to determine the final set of coefficients o at each step using

the linear model only
Ay =a-AB, (2.22)

where Ay determines for local subregions r

Ay =AJ a;g , AB=B-Byr; (2.23)
P,
AY is to increase the region by combining neighbouring subregions
A 0°J
o= — . AP=Bgp —PBor, P#EIr; (224)
- Bly,, OBl oBTOBly,

and so on.

Genuinely, for local neighboring subregions r the first derivative from J on 3 into

(2.21) is approximately equal to

A
8.
BJBop

this yields the dependence (2.24);

.9
=
BJBM

n 2
"’Z 0°J

— GBiaBj (Biop —Bior)> (2.25)

Bor

- for increasing neighboring regions
2 n

~ O Y
aBiaBj Bor

0%]

oBioB;, (Biok —Bior) (2.26)

Bor

1 OP; 5[3 aﬁk

and so on.
If in certain direction | any derivative p is close to zero, the corresponding term of

the series (2.21) is discarded while determining the coefficients a of the linear model
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(2.22). That is, the sought structure of the polynomial (2.21) is automatically found
without sorting all the options.
The coefficients o of the polynomial that is obtained in this way can be specified

while minimizing of the appropriate norm of the proximity J(f) and the polynomial
J (o, B). Euclidean’s mean square or Chebyshev’s norm of the uniform approximation are
commonly used. In order to increase the accuracy in the corresponding subregions the
weighted mean square norm can be used.

A slightly different approach to the approximation J(P) by analytical dependence
arises from the following presentation of Taylor series, which is isomorphic to the

expression (2.21):

IB)-IB,) =
) K R e 18 8% ,
_izzll a_BiBo+ Ejzﬂlaﬁiaﬁj Bo+ EEMBOJF ''''' A (ABj (A
(2.27)
i Ay =a(p)-AB. 2,28

This points out the possibility of defining the unknown structure J() by
constructing a partial model, if the latest B; (i #1) are constant. Next the coefficients
a, as functions f3,, are approximated by relevant dependencies o, (p,,a,), next a, as
function B, and eventually we get the sought dependence a(p,....,B,) for the model
(2.28).

In this approach the dependencies’ unidimensionality that are approximated simplifies
the task of selecting the structure of partial models. We can create a database of canonical
models (the models with minimum dimensionality of the vector o of the unknown
coefficients) and arrange it in order by using the table of properties. Then the candidate for
the best model will be that one, the set of properties of which coincide the most with a

similar set of properties of the experimental curve.

The following examples illustrate these methods.
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The test example. The unknown dependence J(B)=p, +0.58,8, +O.5B§ defined by

the table 2.1,
Table 2.1
Region G G Gs
Ne point 1 2 3 4 5 6 7 8 9
J 0 0.1 0.005 -1 -0.9 | -0.945 1 0.61 0.605
Bl 0 0.1 0 -1 -0.9 -1 0 0.1 0
B, 0 0 0.1 0 0 0.1 -1 -1 11

where the total region G consists of three subregions G,, G, , G;, each has a centerpoint 1,

4, 7 respectively, and two points with a deviation of + 0.1 from the centerpoint. Using the

oJ .
equation (2.22) let us determine the first derivatives —| , 1=1,2; r =1,2,3; next for
i Bor
the whole region G — the second derivatives (2.24); having substituted them in the

equation (2.21), we obtain the model’s equation:

j(B) = LBl +0.58,8, +O.5B§J +0.05B,, that coincides with the sought one, after

discarding the insignificant component which was arisen as a result of substituting the
derivative by difference .

The example 2. The determination of the analytical dependence of the energy of the
first half-wave of the current discharge to the capacitor C in the circle with the inductance
L and the resistance R depending on the quality factor  of the contour line of the energy

converter’s power.

The current X with the R, L, C parameters of circle is connected with the equation

d’x Rdx 1 ¢ 1\F
—C+——+—x=0, [x(t)dt=CU.(0), B==,|=, 2.29
dt? Ldt LC _JOO() O F=pyc 229

where U (0) - are initial conditions for the voltage on the capacitor, X(0) =0.

The index
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-1
CUZ(0)) %
J(B) = c(0) Isz(t)dt, t, = ArgSupr x*(t). (2.30)
2 7 te(0,0)
The task (2.29), (2.30) was solved by numerical method. The dependence J () was
obtained where B— is a scalar approximated by fractional rational function from g

(fig.2.1)

04

03

0.2

0.1 {4

Fig.2.1. Dependence J(B) (a dotted line) and its model (2.2.31) J(4) (a continuous
line)

—0.031+1.066B —0.658p% +0.149B°
1+0.233 —8.87-10°p* +1.112-10°p*

J(B)= (2.31)

A

Hence the estimate P~ of the optimum value g°is found under condition

Dx

A 29 o
AP _o 2IB) <0. The error P B*B -100% is 0.05%.

op op°
The example 3. The obtaining of the multidimensional nonlinear dependences at

the power facilities according to the natural experiments’ data.

The charts of the experimental J(p) and analytical j(Bl,BZ) dependencies are
represented in the fig. 2.2. The dependence j(Bl 3,) is obtained by the approximation of

the coefficients a; of the local i- models J(B,) = a;B, + B2, i=1,6 in terms of the

63



linear functions B, a;;(B,)=aj, +a,B,, Jj=1,2. The mean square error is 2% from

Jmax-

Fig. 2.2 The dependence J(j3,,B,) (a dotted line) and its model j(Bl B5)

(a continuous line).
In the fig. 2.2 we see the charts of the experimental J(B,,B,,8;) and analytical

J (B;.B,.B5) dependencies, which are obtained in the same way:

J(B,) =y B, + o, B2, 1=1,23; k=1.23; (2.32)
oy (By) = 0By + By, 1=1,2; (2.33)
oy (Bs) = o5 + i3 (2.34)

Substituting the coefficients (2.34) into (2.33), (2.33) into (2.32), we obtain
J(B)=—-0.96-10°B,B,B, —0.61-102B,B2B% +0.9-102p2p2 +0.23pB,P2 +

+0.04B,B,B% —1.72B,B% —0.24 - 10 BB, +0.46-10°B,B2P, —0.0232p2B, +

—0.0126B2B,B, + 0.133B,B,B, +1.02B,B,.

The approximation error does not exceed 0.5% from the maximum value J. If the

permissible error is 5%, the expression simplified

J(B) =—0.61-107B3B5 +0.9-10°B2p3 +0.23p7P,B3 +0.04B,,B —1.72B,B; —
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~0.0232B2, ~ 0.0126B7B B, + 0.133,5,8, +1.02,,

A
Il

100
(N) r
80 -
70 Bs1
60
50 +

40

30 30 35P0

Fig. 2.3 The dependence J(f,,B,,B5) (a dotted line) and its model JA(Bl,B2 Bs3)

(a continuous line).
Thus, the rational use of the mathematical or numerical modeling or experimental
research and the methods of the identification theory makes it possible to obtain the

analytical dependence which connects the appropriate parameters of the complex system
that is tested or designed. Next the obtained analytical dependence J(B) is used for

solving tasks of systems’ analysis and synthesis, for interpolation and extrapolation for

regimes, for which the experimental data are unknown.

2.4. The Modeling and Forecasting of the Solution (2.11) of the System (2.1) if
the Information on the Mapping T x T x XxQ — X is Missed

Under condition that the information on the mapping of the set € of the controlling

action u(t) and the previous values of the state’s X variables are missed the modeling task
comes to the approximation task of the data extraction x(k), k=0.,2,...,M, which

are perturbed by noise N(k). The task of identification in order to approximate the
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aperiodic processes is simple with provision for the fundamental process’s property, its
smoothness, that is known a priori, and taking into account two Weierstrass’s theorems on
approximation of the aperiodic processes by Taylor series, and the periodic processes —
by Fourier series.

The other situation is at the approximation for forecasting. Among the model’s set

which describe the process X (k) with a given accuracy you should select one that

corresponds to the real hidden regularity, because only this can provide the sufficient

accuracy of the forecasting process X (k) in the future. This is especially actual for short

data X(k) extractions [K =1,m].
The example. The unknown solution (2.1) of the unknown system (2.2) for one from

the coordinates x; of the vector-function X(K) has the unknown type

X; (t) =By + Byt +PB,sinwt +¢;, (2.35)
. 2n o
where the coefficients B, =2; B, =3/t;B,=0.7, w= T T — is the interval of the

solution’s observation X;(t), which is like an ordinary degree function at the [0,T].

Therefore, as a rule, in these conditions the researcher and automated system will select

the model X(t) as a degree polynomial for the approximation X; (t).

n . .
%(t)=>B;-t!, where n=1,2,3. (2.36)
j=0
For the models’ selection (degrees n) it is necessary to use the external criterion, for

example, the “regularity” criterion

'A{szi(xi” ()~ %" (K)) Nf,(xi‘” (k))z} , (2.37)

where X' (k), k=1,N or — are values of the time series x; (k), k =1,M selected in the

N~

checking sequence; %' (K), k:l,Npr— is an estimate’s forecasting X;(K) at the

66



checking sequence, obtained on the model constructed at the operating sequence
M — Npr of the points k (k =1,2,...,M —Npr).

Let us take [O,T —7;], J=12, 7,=02T, 7,=0.5T as an operating range,

where we obtain LSM- estimates [§ i of the model (2.36) for various degrees Nn. As the

criterion of "regularity" (2.37) we take the module of the difference of real and forecasting

values x; (t) in the point T:
=[x m)-%P"(T). (2.38)
So far as this is a test task, let us calculate the forecasting accuracy criterion that is
not physically implemented,
[=|x (T +7) =% (T +1)), (2.39)

A

in order to compare it with the physically implemented criterion 1 .

A

In the table 2.2 there are criterions” | i | values for T=0.2T and t=0.5T,
numbers of the relevant points of the graph (fig. 2.5) for the models (2.36) of various

degrees n:  1,2,3.

xi(t)A

T2

i |

(€]
PN I . S __B,

N
it pty |

:]__

(72

Fig. 2.4. The dependence X; (t)
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Table 2.2

The forecasting results

n T f Negnt | Nepnt
1 0.2 0.7 1 14 2
2 0.2 1.8 3 3.6 4
3 0.2 0.2 5 0.4 6
3 0.5 5 7 6.2 8
2 0.5 5 9 6.2 10
1 0.5 0.2 11 0.3 12

As it follows from the table and figure 2.5, the model (2.36) is optimal for
1=0.2T in terms of | and | at n=3; the model (2.36) is optimal for T=0.5T at

N =1. The proximity of values | and | confirms the validity of the criterion of regularity
in the forecasting task. Though different models will be optimal for different intervals 7. If
we use the optimal model for T=0.2T while forecasting at T=0.5T (point 13), the
error of the forecast increases significantly. Thus, it is desirable that checking and
forecasting intervals will be the same. The effect of regularization by external criterion

(2.38) is that for the same data, the larger 7 is, the simpler is the model selected by the

criterion (2.38): the criterion | discarded the models of the second and third orders for
t=0.5T.

Let us consider the case in which the presence of a periodic component time series
is obvious, for example, the monthly volume of electric power consumption. Although this
index varies from year to year, but within each year, that is strictly periodically in time, it
increases in winter and decreases in summer. In the fig. 2.6 there is the sample at 312
points of average values of electricity consumption in Ukraine in a period of 26 years
(1960 + 1986).
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-2 T T T+ T+m2

Fig. 2.5. The graph X; (t) and its forecasting models.
The lack of input variable u(t) (mainly of the growth of industrial capacity) makes

it impossible to construct the model “input-output” or "cause-effect". Analyzing the
consequence, we have the opportunity to represent it as a homogeneous differential

equation only

(T,p—1)(T,/ p* — 26T, p+ Dx(t) =0, (2.40)

d
X(0) = 2000; px(0) =70/ month, p= P is a differentiation’s operator.
For that time this model corresponds to the growth tendency of the average annual

1
consumption (P, = T_ IS the root) and gradual increase of vibrations.
1
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However, there is the exponential growth tendency for k =0,220. Next the
process goes into the stationary mode. Thus, the model with time variant coefficients
T,(t) and &(t) will be more accurate, while T, is unchanged and equal to 12 months.
Within that set up the predicted value X" (T + 1) is calculated by the model (2.40) as its
solution (2.11) for predicted values T, (T + t) and (T + 7).

In the fig.2.6 there are measured x(k;) and predicted X(k;) values of electricity

consumption for one year to come. The forecast is carried out by the nonstationary
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difference model in increments of a year (12 months), which was calculated for the
previous three years
X(k +12) =Box(k) + B x(k —12) + B, x(k —24) +B,x(k —36). (2.41)

This model is a difference equivalent of the continuous model (2.40) with time

variant coefficients. The estimates 3;, 1=0,3 of the model (2.41) are determined by the

least squares’ method.

As it is highlighted in the work [5], the problem of constructing the models with the
use of the criterion (2.37) is the abnormal criticality of the models to the method of
selecting points for checking and operating sequences. For greater efficiency of models’
selection, the criterion (2.37) is completed with criteria of unbiasedness or balance of the
variables. This makes it possible to construct models of rather high quality for medium
term and long term forecasting of time series.

In general the time series” models which are uniform differential or autoregressive

difference equations can be considered as nonuniform ones, where the input variable u(t)
Is represented by the additional system of differential equations of the order m:
U=cu, u(0)=u,. Then we get the uniform system Z(t)=DZ(t) of extended
dimensionality n+m, instead of the system (2.2) of the order n where Z =(X,U),
D =D(A,B,C).

It is observed in the description of the time series. Thus, the homogeneous equation

(2.40) which is artificially extended to the third order due to the lack of controlling action

u(t), such as gross domestic product, the total production volume, which creates aperiodic

(annual average) series’ component; heating costs that make up the vibrational component,
and their connection with power consumption is noninertial, or it is of the response rate of
the first order maximum and a nonidentity coefficient of the transfer (due to losses).

It is obvious that the more accurate are the models that take into account the
fundamental cause-effect connections in the examined object. If the information on these

connections is absent, it is necessary to select the models’ structures at the external

criterion I, beginning with the simplest ones (with minimum dimensionality of the
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evaluated parameters), but those ones that take into account the geometric properties of the
approximated time series. Let us give some of these models and their properties

(characteristics) as an example:

y; = B;sin(B,X+B;) - is a sine wave extracted at 3, Y times, compressed at f3, X

times, shifted along the axis at a segment (3, /B, , with a period T = 2x/B, and has zero

n—P,

n
at the points X = ————=;
2

Y, =B;tg(B,X+B;) has a period /B, , is discontinuous at the y, in the points
n+1
g+ m
2 B,
y, = B,arcsin(B,X) - increases monotonically from —7n/2 to +7/2, if X changes

from —1/B, to +1/B,;

y, = Barctg(,x) - increases monotonically from —m/2 to +m/2, if X changes

from —o0 to +o0;
y5:BlX[32 - increases monotonically with acceleration if B, >1 and with

deceleration, if 3, <1;

Yo = Bleﬁzx =, °B§ - increases monotonically from 0 to oo, if B, >0 or B; >1,
decreases monotonically from 0, if B, <0 or B, <1;
y; =Pylogg X (B, > 0) - is amirror image of y; inrelation to a line, if B, =1;
2
y, = B,e 2" - increases monotonically from 0 to B, and decreases from B, to 0
symmetrically in relationto X =0;
Yg = BleBZX + Bseﬁ“x - changes the configuration monotonically depending on the

signs and quantities B, +PB,;

2 - - - - - -
Yio = B,e" P =y, y, - is increasing nonsymmetrically, if B, > 0 or decreasing

to By, if |By| >[B,], Bs <0
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Vit :leﬁze%x, X>0 - is increasing, if B, >0, B,>0, B,>0, it is
extreme, convex, nonsymmetric, bell-shaped with the shift of the extremum on the axis
OX, the shift as large, as larger is f3,.

Analyzing the examined series with the use of characteristics provided for functions

Y, (X) = y,;,(X), where X for time series is t, we can select the model that is optimal by

criterion of minimum complexity. This analysis is easily automated using the standard
contemporary algorithms of images’ recognition which are based on the theory of fuzzy

sets and neuron shaped structures or any other statistical methods.

2.5. The Modeling, Forecasting and Diagnostics of the Solution (2.11) of the
System (2.1) if the Information on the Mapping T xT x X xQ — X is

Available

In the section 2.2 we considered the direct modeling and forecasting, under condition
that the mapping “input — output” is known and using the cubic approximation of input
signals and analytical calculation of the solution of an appropriate differential equation.

If the mapping “input-output” is unknown, but input u(t) and output Xx(t) variables
are available, there is an inverse task, viz the task of the identification of mapping

f (u,x,t) in (2.1). This task is the most complicated, but it is the most important one.

There are several options:
d
1) to determine the linear operator W (p, B) at a given point (XO : uo), p= m of the

dynamic connection of small deviations Au, AX, using an input u(t), an output X(t),
which are usually perturbated by the noise N(t). It is necessary for the analyzis of the

object’s stability and the synthesis of the process X(t) controlling system.
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2) to find out the fundamental (more stable) static, usually nonlinear connection of

sustained values U and X, viz X(U) (balancing dependances) from the process dynamics
for the input u(t) and the output x(t) perturbated by noise N(t).

3) to determine the shape of the input signal or parametric variable using the output

X(t) and the apriori known operator W (p, B); to establish its physical meaning: to
diagnose the cause of the transition process in the X(t) using the methods of expert

evaluation. This is the task of causes’ analysis.

Let us illustrate the first two tasks by the previous example of the electricity

consumption. Let us represent the process X(t) as the sum of periodic X, (t) and

aperiodic X, (t) components of the object’s output which has this structure (fig. 2.7).

xa(0) 1 Xa(t)
3

T1(t)p+1

xn(0) 1 sinot

Taps1

Fig. 2.7. The block diagram of the process X(t) model.
Here T,(t), changing in time from negative to positive respectively, provides the

coincidence of aperiodic component X, (t) with the current average value X(t). The

operator (Tzzp + 1)_1 is the generator of the sine signal sinwt, where ® = ?I'_n T =are
12 months. The signal sinmt passes through the nonlinear transformer, its output is
amplified in proportion to the estimate of average X, (t), forming a periodic component
Xp (t) of the signal X(t).

The first task is to define T, using the window X, (0) current values, for example, at

the beginning of each year and reactions X, (t) at it within 12 months.
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The second task is to find out the nonlinear type, which transforms the sine signal

into Xp(t). The fundamental (stable) property is found in nonlinearity’s asymmetry: in

winter the half-wave of oscillations has a larger area than in summer, and depends on the

oscillation’s amplitude from X, (t).

From the model’s analysis follows that managing impact onto the system of electric

power consumption of Ukraine, which will reduce the peak load in winter, may be a

change of tariffs for industrial power consumption proportionally to xp(t) (in the peak

winter months the power is expensive, in summer it is cheaper). This may force the
company to redistribute capacity at time in order to minimize the cost of the consumed
energy. As a result the peak winter load decreases.

As an example of partially the first task and partially the third task, let us consider

the schedule curve of the change of the gross national product (GNP) (fig. 2.8).
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Fig. 2.8. The curve of the gross national product in period

of “rebuilding” (“perestroika’) and probable controlling actions u(t).
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The sustained **~"1e of GNP begins to decrease rapidly in 1989-1990. In 1995 the rate
drops and in 1997-2000 we have the consistently low level of GNP. Since 2001 to
nowadays we observe the slow rate of GDP’s growth. In order to determine the reasons for
such dynamic of GDP, we use classical macroeconomic model of the economy in the

industrial and technological interpretation (fig. 2.9).

Environment {S]
Depreciation royalties
Economy
i ¢A Clear capatal
Aok investmen
OB® — pf; = ——
AK
gross
capital
:'.m'esmlenl P]
gross the final —
product product P
Ws | natural . Y Y non-productive
=T———>|production X P = . >
resource F | I'X consumption
W production ; consumption _l
Labour |
L

Fig. 2.9. The dynamic macroeconomic model.

The production process variables are:

L —is a labor; K — are capital goods (the main production assets); W — are objects of

labor which consist of natural resources W and labor object W , returned into production

as a part of the gross national product.

The output variables of the production process are: X —is a gross product, which is

distributed in the subsystem P, on the production consumption W and the final product Y.
Then, in the subsystem of distribution Py the product Y is divided into the gross capital
investment | and productive consumption C. The subsystem P, divides the investments |

into amortization deductions A and net capital investments.
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It follows from the scheme (fig.2.9) that X =W+Y , Y =1 +C. Assuming that the
investment | is used for the increment of growth AK of basic productive assets K over the
same year and also for A, we obtain the discrete model

I, =qAK; + A, A=pK,, (2.41)
or
AK; =g (I —pK), (2.42)
where q — is the model’s parameter; p — the amortization factor ; K; — are basic

production assets in t - year.

If instead of the year we take the increment growth per dt, we obtain the continuous
model of the first order

dK

E —

If we assume that production costs W are proportional to the gross domestic product

g (1 —puK). (2.43)

X (W =aX), X; =W, +gDK; +mK; +C, then, going to the continuous model, we

obtain the expression

dK 1
—=—|(1-a)X -uK -C |. :
i q[( a) 3 C:I (2.44)

According to the absolute Lavrentiev model, assume that the increment growth the

gross product DX; = X;,, — X; (where t — are years) is proportional to the capital

investments I, Iy = xAXj;.
Then we get the gross product model from the previous equations:

axX
szl[(l—a)X—C}. (2.49)

From the structural scheme (fig. 2.9) and the equation (2.49) it follows that the

reducing of the investments I, (t=1990, ..., 1997) has led to an exponential decrease with
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a time constant 7= of the basic production assets K and as a result, of the gross

7

domestic product X.

For the normal course of economic development X (t) must grow, viz the root
P, =y "(1—a) of the characteristic polynomial P, —x ‘(1—a)=0 of the equation

(2.45) must be positive. But in the period of “rebuilding” the coefficient a exaggerated the

unit and in the equation (2.45) we have the process x(t) damped in the interval [1990 -

1997]. Approximately approximating it by the exponent (a dotted line in fig. 2.8), define

the time constant T = Pl_1 = Ll ~ 5 years.

Thus, the conclusion on both parametric and signal perturbations, which arose in
1990, follows from the graph (fig. 2.8), the model (fig. 2.9) and the formula (2.45). The

signal perturbation has the reduction of W, , K, W, L; the parametric one has the change of

relations of a (between W and X) and 7 (between |, and AX;): a increased,

decreased.

This example does not provide the detailed analysis of all the problems of social
production, distribution, exchange and consumption, but it confirms the continuity of
processes in the economy and, consequently, the possibility of presenting their dynamics
by the continuous or difference equations.

The presence of inertia, continuity and, consequently, the smoothness of dependences
of the economic index on the time should be taken into account when planning and
forecasting its development in time. Otherwise the purpose and the reality will vary
significantly, for example, as it took place in the program of conserving the primary

energy resources PER of Ukraine and its implementation (2.10).
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Fig. 2.10. The costs of PER in Ukraine.
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Fig. 2.11. The models of the mappings “input-output”.

These objects have the measured input variables U, output variables X, that are
related to the input ones:

- by the linear stationary operator W ( p, ) (fig. 2.11,a);
- by the linear nonstationary operator W ( P, B((p)) (fig. 2.11,b);

- by the nonlinear stationary Hammerstein’s operator W(p,B) f(U) (fig. 2.11,c),
where [ is the parameters vector, ¢ is the variable of the time t or of the input U or of the

output X, f (U') is the static nonlinear dependence.
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The variables U, X and the operators W, f can be both vectors and scalars.

Chapter 3. The Analysis of the Simplified Methods of the Confluent Analysis

3.1. The Least Square Method’s Analysis if the Input and Output Signals are
Noisy

The setting up of the practical problem contains a substantial proportion of the
uncertainty of statistical properties of the noises at the measurements of both input X and

output Y data about the examined object, the model of which can be represented as
Y =XB +¢ , (3.1)
where ne Y , X, — are accurate output and input variables and deficiency, under

condition that the estimate B* for these values is obtained by the least square method
B=X"XHY X" =CcY,Xx'xH)Y'x"=C". (3.2)
In case of:

B =argmin8*T £ . (3.3)

In practice the LSM-estimate is obtained using the perturbated noises N, and the

data N :
X=X"+N,, Y=Y +N,, (3.4)
X @D X@.. x@)...x, 1) |

where Y — X (2) %,(2)... %(2)...%,(2) |

Y= @) y(2).yMI  x(i)=x(i)+Ng (i), vi(i)=yi (i)+Ny (i),
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Then LSM-estimate ﬁ of the vector [3* Is found from the condition (3.3), but for the

real data (3.4) in the usual
B=(XTX)XTY=C.Y, C= (X"X)XT (3.5)

or in the recursive type with the initial conditions P(0), B(0)

BG +1)=BG)+ PG +DX D] Y - XT(4)-Ba) |

P(j+1) =P() — P(IX () [XT()PGIX () +1] KT ()PG).  (36)
If the initial conditions are unknown, we take [§(O)=O, P(O):GB(O)Z -, GB(O)Z —> 00,

In order to simplify the analysis, let us take that noises N, and Ny are white
Gaussian noises, and consequently they are auto- and mutually uncorrelated. Let us

determine the shift AﬁA’ of the estimate (3.5) with respect to the estimate (3.2):

*

AB =M {ﬁ}—ﬁ* M {[C*+50(N )[Y +e Ny [ =B =
=M {[C +5C(N)]-Y*}—B" =M {C"+3C(N)}-Y" —p" =
-1 (3.7)

= XTX*+M{NIN, || - XTTY " - =

=[XTX" +diage? M -1 XY —p".

Letus denote X ' X =AM {N)T(NX} =8A, XY =B . Then (3.2) and (3.7)
are A =B [A* +6A][§ — B" respectively. Hence 3AB = —A" (ﬁ—B*)= — A AB,
viz 5A([3* +AB)=—A AB or

A . -1 .
AB:—(A +34) -84 (3.8)
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As we can see, the estimate ﬁwill be reduced with respect to the true B* by the

value (3.8) if “white noises” N, and Ny are uncorrelated. A[§ tends to zero if the norm

134||—> 0 and B tends to B’ ; if the norm || 84 ||—> oo that AB tends to —B" and B - to

ZEro.

Under conditions mentioned above and taking that the norm || N, " -£]| is much less

than || X~ &[] or || N, " - Y™ ||, the estimate (3.5) covariance is approximately equal to

cov|B]=M {[Cl-8+C2NX].[C1_8+C2NX]T}:
(3.9)
=C,-M {g.ST}.ClT +C,-M {NXN)T(},CZT’

where e=¢ + Ny,
* * -1 *
Co=| XX+ M{NNT}H] - X7,
* * -1 *
C, = XX+ M{N,NG}| YT
The first component of the expression (3.9) with increasing of the level Ny decreases,

at the second one — C, decreases and M{NXNXT} increases, but C, enters the expression

(3.9) quadratically, while M{NxNx'} does it linearly.

A

Then for the “white noise” when M {NXN)T(} = GZNX M -1, the estimate B

covariance with the increasing G will be reduced.

Thus, LSM has tendency to regularization of the normal system equations, similarly

to Tikhonov’s regularization [14]. The last one consists in minimization of the ordinary
quadratic functional | =¢'e with regularizing additive aBTﬁ where o - the

regularization’s parameter.
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T=c"e==XB) (Y =XB)+ap’B,
ol oA s )
aﬁ:OZZ(XTX B—XTY+aB), (3.10)

B=(XTX +a-1) -XT.y.

Comparing (3.7) and (3.10) we see that the Tikhonov’s parameter in LSM is diagcsiz M.

A

leov

and (curve a) and

The characteristic curve of the normed values

* *

HcovB

|8

*

(curve b) is represented in the fig. 3.1.

Fig. 3.1. The dependence of the shift and the covariance of the LSM-estimates from

relation “noise-signal” in X.

3.2. The Generalized LSM and its Practical Implementation

In this method LSM-estimates are found using weighted (filtered) data:

X =U7X, Y=U".
This is equivalent to minimizing the functional
M i} . ~ 2 l
1=05>|lyG)—x@B|| -Q*, (3.11)
j=1

where Q —is the weight matrix of each ] measurement: Q = (covf%) U'.

Then, the estimate weighted by weight Q"1 of the generalized LSM (GLSM) and
obtained with minimum (3.11) is equal to
B=XTQIX)t-XTQYY. (3.12)

The estimate (3.12) covariance is
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covB= (XTQ1X)*XTQ'M {INgNJ}-Q'X(X'Q'X)™  (3.13)
The estimates (2.3.12) have the minimal dispersion if
_ T
Q=M{N y N y}.
Then

covp= [ XTM{N,NJIX ] . (3.14)

For the uncorrelated “white noise” in the measurements Y Q = Gzy(j)| . Then the

recurrent formula of the GLSM coincides with the weighted LSM

Bi+1)=B(I)+P(I+D)X ()= y(})- X" (D)B(J)].

oy (J) (3.15)
: . : : : . (-1 . :
P(i+1)=P())-X (D) X" (HP()X()+oy(3)] X" (I)P())-
The inaccuracy of the definition or prior task of the matrix Q_l leads to a significant

optimality loss of the estimates (3.12) or (3.15).

This algorithm is not robust [21]: the statistically insignificant inadequacy of the

covariance matrix Q of noises Ny Is dictated, for example, by some failures in the data,

which form so-called "heavy tails" [21] at the noise N y distribution law, while estimating

the vector S by the algorithm (3.12) can lead to a significant error. Thus, the quasi-
optimal GLSM will be more convenient and reliable on implementing:

- at the first stage there is the quasi-optimal estimation of the signals X, Y by smoothing
their noisy samples X (j), Y (j), j =1,M with the linear filters;
- at the second stage there is a LSM-estimation of the vector f% using estimates X and

Y of the accuracy value X, Y  signals obtained at the first step.

For this approach the noises N,, Ny may be mutually correlated. In addition, since
the model (3.1) is linear, and under condition that all the variables X;(t), Y;(t) are

filtering by one filter, the non-coincidence of the smoothed values X, Y to the true X
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,'Y™ does not lead to the bias of the estimates [§ with respect to B*. Indeed the sign of
equality in (3.1) is not violated if we act upon its left and right parts by the linear filter

operator W :
Wi ={Y I=W,{XB +& =W {X"}-B + W, {c }. (3.16)
The mathematical expectation of the estimation [?S IS
MBI =[ X7 X"+ M{NNT ] XY, (3.17)
If for simplicity we take that M {NXN)T(} dlag{ } , and put that matrix

A * A * _1 - -
eigenvalues (X X ) -diag {GE_ } are less than one, then the expression
1

par ANl -1
[I +(X X ) ~d|ag{02Ni}:| can be represented by a series. Then

A

ST\ R ST\ 2 e
(XTX")-B [|+(x X") dlag{GNi}} XY

Therefore

A

B= (xTx) X TY* (x*T>2
Taking into account that
B=(XTX")

we obtain the expression for the shift:

—1 A % A A A —2 A A

XY =(x*Tx*) XTY",

D%

AR =p—p = —diag{o? |- (XTX)" 3.18
B=p—p=—diag{o? |-(XTX") f" (3.18)
So far as the norm AP is not larger than the product of norms of the components of

the right part of (3.18), we have the inequality
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‘ ‘ :

—‘ < Hdlag

The stronger is filtering X, Y by filter operator Wf, the less is the norm of the

(3.19)

perturbations’ matrix O N - Thus, the filter suppresses noises without violating the

equation (2.16). Smoothing the components X; (t) of the vector-function X (t) by filter,
however, reduces their frequency spectra and, consequently, reduces their linear

A A

independence. The condition number of the matrix XX reduces and, consequently,

-1
the inverse matrlx(X X ) norm increases.

[~8]
The high-grade picture of the dependence of the normalized values (curve
8]
T
a), (curve b), (curve c) as the function t of the filter’ W
N f
Hdlach H H X TX H

inertia for a fixed relation of “noise-signal” is represented in fig. 3.2.

As it follows from the graph, for each case there is an optimal value of the smoothing

effect of the filter W , which norm of displacement (3.19) will be minimal.

A

The covariance of the estimate B by GLSM method assuming the mutual
uncorrelated noises, is similar to LSM, but the matrices M {S-ST}, M {NXN;} are not

diagonal anymore. The further separated are the spectra of signals and noises, the better

are the estimates of the quasi-optimal GLSM.

86


http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%ba%d0%b0%d1%87%d0%b5%d1%81%d1%82%d0%b2%d0%b5%d0%bd%d0%bd%d1%8b%d0%b9&translation=high-grade&srcLang=ru&destLang=en

6)

T
g

T*

Fig. 3.2. The dependence of the normalized shift (a), noises’ covariance (b) and the

information matrix (c) on the parameter t of the inertial filter.

3.3. The Analysis of the Integral-Correlation Criterion and Method of its
Minimization (the Integrated LSM)

3.3.1 The Method’s Main Point

The LSM and GLSM-estimates of the previous methods are found as a minimum
point coordinate of the corresponding functionals g'e and €' €. We take the minimum
point as a coordinate’s value of zero point of the functional derivative of [3. So far as the

functional is averaged on the finite interval T by the value of square € or € which is a

mixture of useful signal ¥~ —X*B and random perturbations Ny — N,[3, then, it is not

accurate as a function of 3.

It is known [22] that the operation of differentiation of the noisy function g'e isill-
posed. It is responsible for the low-precision of the LSM-estimates on the short heavily
noised data X, Y samples. GLSM slightly improves the accuracy due to the smoothing
noises at the X, Y. However, the uncertainty of boundary conditions influences on the

precision of filtration on the short samples. Moreover the smoothing reduces the matrix
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A A

XTX conditionality and that is equivalent to reducing of the functional steepness. Then
the uncertainty’s region G of the estimate ﬁ Increases again.

As it follows from the fig. 3.3, it is desirable to reduce variations the functional’s
values without reducing its curvature in the extremum’s zone. This can be done for
unsmoothed X, Y by additional averaging over the set of quasi statistically independent
functionals that are close to the average quadratic one.

The average products can be shifted in time t on the interval ® by those functionals,

.
Tijg(t)g(t +®)dt . Averaging them on the interval [~t,,, |, we obtain the sought
0

integral-correlation criterion:

=2 n(@):.;g(t)s(t L)t do. (3.20)

-1

where 1(®) — is a weight function, unit in the simplest form.

€'e
eTeA .
a) 9% 2
€'e
A\ 5) j
n“éﬁnmﬁ A
B
Gy B -
oo e E3E

Fig. 3.3. The uncertainty’s region G of the optimal value of LSM (a) and GLSM (b)

of the estimate ﬁ
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The necessary condition for a minimum | in [§k k=1,n,

f =5 f n(®)| {88(0 e(t+0)+e(t) a‘c’(tg )}dtd(a =
k —t k

- j n(®) j (=% (t)){ym@) ZB.x <t+®>} (3.20)

_tl

+( — Xy (t + ®))|:Y(t) - Zlel(t):| =

From the expression (3.21) follows the standard equations system:
A-B=B, (3.22)

where 4 — is a matrix nx n with elements &y B — is a matrix-column nx 1 with elements

ay = }1 n(@)ff[xi (t+0)-x (1) +x(t)-x (t+©) [dtd®, (3.23)

b, = jn(@))j[y(u@) X () + Y (1) % (t+©)]dtde. (3.24)

— tl

For discretely time t samples let us substitute the integrals by the relevant sums. Then

o= S0 XG0 R (Dex()x+)] 629
bk=§:n Z[y (i+1) % (0)+y(i)-x (i+1)] (3.26)

The system’s solution (3.22) gives the sought estimate ﬁ :

B=A1.B (3.27)
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3.3.2. The Analysis of the Method Components

Let us analyze how this estimate differs from the true B* (3.2). For this, firstly we
consider one from the components of the sum in |, for example, if | =—m. There is a

shift T=—mAt, where At - is a step of discrete measurements X, Y at time t. Then,

without considering the weight n(m), where m — is the component of the discrete model

1& Mo
==Y n()D e@e| +1) (3.28)
2{5 j=1
of the integral — correlation criterion (3.20) will be equal to
1 1 ~N\T A
|, = ESTS‘T _ E(Yo ~XoB) (Yoo = X_B) =
(3.29)
1,1 14t T T 1aro o
=>Yo Yo =B (XgY_ o+ X_TYO)+§[3 XIX_B,

% (1) X (1) oy
X - % (2) *(2) | v - v(2) |
% (M-m) ... X (M-m) y(M -m)
% (m+1) Xq (M+1) | L y(m+1) |
X = X (M+2) ... X,(m+2) Cy,= y(m+2)
| % (M) X (M) | | Y(M)

If the shift T in (3.29) is larger than correlation time of the noises N and €, that the

mathematical expectation |, will be invariant to those noises.
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The necessary of the minimum 1 :

al,
op’

The sufficient condition:

1 1 )
=—§(X§Y_TYO)+§(XJ><_T+XLXO)BZ =0. (3.30)

%det(xg X_ .+ xITxo) > 0. (3.31)

Contrary to LSM the linear independence of the functions X; (k) is insufficient for
the positive definiteness of the matrix (Xg X_.+ XITXO). Let us determine the

upper border T, for the shift 7, for which the inequality (3.31) becomes the equality, viz
the system becomes degenerate.

So far as the noise N only improves the conditionality of the matrix X' X , we will
take N=0, X = X while developing T,q - Let us represent X* . by Taylor series
X" =Xy —1X; +R(Xy), (3.32)

s *x dX* 2 x
where X, = d—to R,(X,) - the matrix of remainders in the decomposition (3.32). With

an accuracy to R (X;) we have:

1 * * * * . 1 * * S * * S * *
E(XoTx—r)"' X2 QE[XOT (X =Xg)+(Xs —1X)' Xo]:

(3.33)

XX (XX XX =TT
0 o 2( 0 o T Ao 0) 5

where I', I, - are symmetric matrices. I" is the Gram matrix, that is why it is positively

identified.
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It is known [11] that two symmetric matrices, one of which is positive and defined by

transformation T, can be reduced to the diagonal form so that there are only unity elements
T
on the diagonal matrix I, there are eigenvalues A; of the matrix I''T; (for 2.33 _EF T

) on the diagonal I;:

TYr-=n [T=| - |-5 . | (3.34)
2 2
0---1 0-+Ayp

The border value Tpd of the shift is defined under condition

T 2
1—7pmaxx1i =0, or T4 = (3.35)

i max\;
1

. T . .
where A; - are eigenvalues of the matrix EF 1F1. It is clear that the larger 7 is, the worse

conditioned is the matrix I" (the larger HF'1H), the larger maxAi,;; and, as a consequence,
1

the less possible is the shift T, .

3.3.3. The Definition of the Maximum Shift

Let us consider how symmetry of the displacement + 7z will affect on the border value

rbd.Here
ANT A
T=¢ (e, +8_0)=(Yo = XoB) (Yo +Y_o = (X +X_;)B)=
=Y (Y, +Y_)—B" [xg (Yo +Y_ )+ (X + X)) YO}+ (3.36)

HBTX (X, +X_,)BT,
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| xl(m +1) xn(m +1) ] - y(m+1) |
Xo=| %(M+2) o xp(m+2) 1, Yo= Wﬁ+3

) T (M), | y(M —m)

_x1(2m+1) xn(2m+1)_ y(2m+1) |
Xo=|x(2m+2) . wm(eme2)], v, =|YETHI|

My v :

i X (M) Xn (M) | o

6D . () ' y(;) ]
Xoo=| ox(2) %0 (2) Y= ys)

(M —2m) %, (M —2m) | | y(M —2m) |

The necessary condition of the minimum |:

ji_:g§@%+gﬂ)=[xgog+Y4)+(x +x;JTn}+

T

op” (3.37)

The sufficient condition:

detffIA::(XJ(XT+)L4)+(XT+)(4)rXO»>O. (3.38)
opTop

Analogously to the derivation (3.35) we find the border value t,,. from the

condition that (3.18) is zero. Let us consider three terms of series (3.32):
2
% * . T eeex .
xrzxﬁ4x0+5xo+&@<gy

) (3.39)
* T

><T:x;—rX}+§X;+Rxxi—Q.

With an accuracy to R, ( X" ,irr), we obtain
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%x;T [(x: X ) (X X)) x;]
2
~ XX +%[ng>'<;; + X T X, | = (3.40)
2

=T +-T,
4 )

where I" and I, - are symmetric matrices, I" is positively identified Gram matrix. Then,

as (3.34), the expression (3.40) is given by the transformation T to the form
2 1 0 2| A 0
TC+2T)T=| . |+=| 2 | (3.41)
4 0 -1 4|0 -.A,,

2 —_—
where A; - are eigenvalues of the matrix LF_1F2 (i=1,n).
4

The border value tj,4 of the displacement 1 will be defined under condition
2

1+Tﬂmax|x2i|:0

or

2
= (3.42)

Tha = ,
[max|,;
1

where, contrary to (3.35) for the asymmetric displacement, max|k2i| is taken over the set
|

2
T - "
{kzi} of the negative eigenvalues of the matrix — I""'T,. Continuing the decomposition
4

(3.39) and substituting it into (3.38), we see that all odd terms of the decomposition (3.38)

are cancelled out.
. * . *T * * * * T *
Thus, for the precise X, the matrix X (XT + X_T)+(XT + X_T) X0
differs from the matrix X;' X, of LSM by the pairing terms of the decomposition (3.39).

Considering that X, (t) Is smooth, this difference is significantly less than in (3.1) for the
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precise X", so far as all components of the decomposition are present there (3.39). Thus,
the border value (3.42) is larger than (3.35), and at the same r the index (3.36) at

inaccurate X = X~ + N s closer to the LSM index (at inaccurate X ) than the index

(3.29). To confirm this, let us consider the displacement and covariance of the estimate B ;

A T -1
B=] XJ (Ko Xo)+ (X + X o) X |

(3.43)
X3 (Yot Yo+ (X + X ) Yo |

3.3.4. The Displacement Estimation of the Vector’s B Estimate

The displacement Aﬁ ;

AB=M{B—B"} =M {[ X3 (X, + X_)+ (X, + X_) "X, |
(3.44)
[ Xg OV +Y_0) + (X + XY | = (X5 X5) X" Yy |

or
A T T -1
AB=M{| Xg (X +X_ )+ X+ X_)' X, | %
XM{X (Yo +Y_) + (X + X)) Yo ) = (X5 X5) XY, =
=[XT O+ X))+ (X + X))+ (3.45)
+MENG (N +N_ ) + (N + N_ )TN T
XSO +Y )+ (X + X7)TY, +
+M{XST (e, +_)+ (X, + X ) e J1- (X5 Xg) XYy
Using the decomposition(3.39) and the formula (3.40), we obtain
AR =[(4T +1°T,) + 4(M — 2m)R,, (1) *-
[4X,TY, + T2 (X, Yy + XY, ) +2(M —2m)- (3.46)
(Rywer ONI-T XY,
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where Ry, (t) - is the matrix (nxn) of correlation functions RNiN,—(T) I,j=1n;

>

R, . (£ T) - is the column vector (nx1) of correlation functions R s (x7), 1,]=1,
i €]

It can be shown that the shift Af% is caused by members (M —2m)R,, (t) and
(M=2m)- (R, ()R

e (<1)). The first one is equal to zero if there is T longer time

of noises correlation. The second one can be represented as:

2
T * e X *
(M -2m)[R,.... (*)] ~ E(xOTg0 +X;'gy), (3.47)

2

Then A= (2T + %Fz)‘l(M —2M)(Ryegs (1) + (Rynn (— 7). (3.48)

From here we can see, that the displacement Aﬁ Is reduced if

[1\:/[_—_2;”) (2r+§r2 jl < H(zr—rrl)‘lu. (3.49)

3.3.5. The Variance Estimation of the Vector’s [3 Estimate

The covariance of the estimates B
cov[ ] =m{B-M{BHB-m{EHT |.
Let us represent B as

B=[Xg" (X; + X2+ (X; + XZ)TXg +4(M - 2m)R,, (v) +
+EXC N DT +NJ(Y, +C+Y _+e_ )+ (3.50)
+(XT+ N+ X+ N_)T (Y, +8)]-

_ _ T
For large M, ignoring the random part and random components No (8T + 8_1),

(N, + N_.)¢, of the second order of smallness, denoting
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1 ' * * * * * * _ *
ch =X (X + X))+ X+ X)X, +4M=2mR, (D] X,

1 " * * * * * * _ *
ch =[XT (X + X))+ (X + X)X, +4M=2m)R,, (D] XL,

1 " * * * * * * _ *
ch =X X+ X))+ X+ X)X, +4M=2m)R,, (D] X,

1 ' * * * * * * N, *
ZCZ =X X+ X))+ X+ X)X, +4M=2m)R,, (D],

1 " * * * * * * _ *
Zc:2 =X X+ X))+ X+ X)X, +4M=-2m)Ry, (D] Y.,

287 =X 0+ X)X 4 X)X +AM = 2Ry (Y,

we obtain:

or

cov

B} = M{[%C{(gT + a_r)+%(C1" + Cl”')g0 + %C;(NT +N_, )+

c, +C§") NO][%C{(&:T + s_T)+%(C1" + Cl”’)so +%C§(NT +N_ )+

" " 1 '
C, +CENoT}= 2 CM( ) (550 3G, 4

! " T n
+%C1 M{(aﬁa_r)sg}(Cl +C1”) +%(C1 +C1'")M{80(8T+8_T)T}C1’T+

1 " " " mT 1 T '
+E(C1 Gl Mecelol €, +C] M NJ(N L) )G

! " T "
%q M{(NT+N_T)NJ}(C1 +cl'") + 1((:1 +C1”’)M{NO(NT+N_T)T}C1'T+

16

1 " " T
+E(C1 +C1'”)I\/I{N0NTTO}(C1 +c1'") | (3.51)
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COV[B} = Cé[%M{(ST +e_;)(&; &, )T }+
+%M{(8T + a_r)sg}+%M{so (8T +e_, )T b+

+%M{aog[0}]cg +C6[%M{(NT +N_; )(Ng+N_; )T e+ (3.52)

1 1
+§M{(NT + N_T)Ng}+§M{NO(NT +N_, ) 3+

1

+_

4

where C,~C,"~Cy"= Cs, C,’~C,"~Cy""= Cg.

M{NoN (0}IC; =CsQiCs +CFCs

Considering the correlation (3.49), it can be expected that at the |r|>0
] >[1Cs [l > IS, NICall > [ICs | > IIC- | white [Qq| = Q1] [[Fs]| = [IF |
due to the fact that in (3.52) there is the correlation of diagonal and nilpotent

matrices. The displacement and the covariance of the estimates B at =z will be less than
for -7 if r are alike. That is to say, the symmetrical displacement moves the criterion

T T
e (& + & . * *
0 (6, +e) closer to the ideal &~ 0"+

Thus, each m component of the integral-correlation criterion (3.28) within the

displacement *+mAt =+t, which is smaller in magnitude than Ty (3:42), in its

minimization gives the estimate B (3.43), that is close to the true B*, if the displacement is
greater than the noises’ correlation time T, and less than the border T, .
Then it is simpler to define the weight function 1(®) from the condition

0, T =|0O| 2
11(@)_{ cor 2[0] = 7y,

— , (3.53)
1, Teor <|O] < 1pg4

If noises N, are the “white noise”, at the displacement in one step the correlation is

absent, the errors of the partial estimates [} are statistically independent for | component of

98



the criterion (3.28). Then, according to the law of statistics [19], the average value B inp

partial estimates (the estimate at zero displacement is rejected), will have at \/; less

variation and zero displacement.

.3.6. The Recursive Form of Calculations

The recursive LSM at the normal distribution of prior estimates B, and noises €

leads to Bayesian estimation [4]. But the presence of noises N, in X brings a shift into the

A

estimates . Therefore, we consider the recursive form of the calculation for M

measurements by the step At, i.e. t, =kAt, k= m :

M n_ . n .
I= Z{Y(k) =D BioX (k)}{Y(k +m) =D Bix(k+ m)}. (3.54)
k=1 i= i=1
From the condition (3.30) we obtain the system:
> yl)x; (k+m)+ y(k +m)x; (k) | =
= (3.55)

>

=3 0t e my+ gm0 ] =

i=1

or in a vector form

[ Xg X+ XX |B =XV + XY, (3.56)
let us denote
P, = X0 X+ XX, | (357)
then
B, =Py (X Y+ XpYo). (3.58)

Let us set (3.57) at the bloc type for the (k+1) measurement
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-1

Pt =| Xok Xk + X X | =
— -1

. XO(kl)] [Xm(kl)]+lxm(k1):| XO(kl)] .
B T T T T -
Xok Xk Xk Xok (3.59)

_ -1
_ T T T T _
- ><O(k 1)xm(k -1) + Xm(k 1)x0(k 1)} XOkak + kaXok ﬂ -

-1
= _Pk—l +[Xokxzwk + kaxgkﬂ ,
where X} =[%,(K),X, (), %, (K)],
Xri =% (K +m), %, (k+m), - X, (k+m)].
From (3.59) we find

P—l

-1 T T
o1~ e = Xor Xmic + Xk Xok - (3.60)
Then, we obtain B for the kK measurement

Bk+1) =P (XLY  +XT Y, )=

~ v Y
=P, [xg(k_l), Ok]{yrzl((kjm)} |:XrTn(k 1) mk:||:y0((|t)l):|:|: (3.61)

= P | P + Xy y (K +m) 4+ x y(K) | =
= BCK )+ Py | Xor YK+ M)+ x0, y(K) + (B = RHBK) |.
Considering (3.60), we obtain from (3.61):
Bk +1) = B(K) + B, [Xy V(K +m) + X, y(K) -
~(ok Xk + Xk Xoic ) (K)] =
= BK) + Py | X (V¢ + ) = X7, BOO) + Xy (Y(K) = X5, BK) | =
=B(K) + P [ Xoek +m) + Xpee(k) ],

where B, | —is defined with respect to (3.59).

(3.62)

For the criterion (3.36) from the minimum condition we obtain the system
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[ (yk+m) + y(k = m)x; () + y(k)(x; (k +m) +x; (k —m)) | =
1 (3.63)

_ n ﬁi [(Xi (k +m) + % (k =m))X; (k) + % (K)(X; (K +m) + X; (K - m))]

=~

M=

or in a vector form:
[ XaZ+Z"Xq By =Xg (Y +Y ) +Z7Y,, (3.64)
where Z = X, + X_ppy-
Let us denote
(xiz+7"x,] =P, (3.65)

Then

A

B=P[ Xg (Y +Y_m)+Z™, |, (3.66)
Analogously to (3.59) + (3.61) we obtain
1

Fea = [ngzk T Zkaok] =

+1

T T
XO(k—l) Zk_1 Zk—l x0(k—1)
=1 7 T T T T - (3.67)
Xok Xk T % mk | [ Xmk T %mk ] | Xok

=[Re" + X K + X i)+ e + X i i

. l T T
B =B = X0, (X, 30" (X X)X

k+1

plk+1) = Pk+1[XoTk(Ymk + Y—mk)+ZkTK)k] =

Y .ty Y,
XT m(k-1) -m(k-1) N ZT N 0(k-1) _
| °(“”x°"]{y<k+m>+y<k—m> 2]

= P[P BUk)+ o, (v +m)+ y(k = m)) + (x, + %, ) y(k)] =
= BUY Py [0 (0K +m) + y(k = m)) +(x, + ) y(K) +
+(P7 4 BB,

- Pk+1

(3.68)
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Let us denote
uk)=yk+m)+yk-m), z, =X, +X_ -
Then
Bk +1) = B(K) + B DXy U(K) + 2 Y(K) = (g 2y + 24, B(K)] =
= B(Kk) + B [y (U(K) = 2 B(K)) + 2, (y(K) = X5y Bk )] = (3.69)
=B(K) + P, [ X, (e(k +m) +e(k —m)) + 2, £(K)].
The estimation of the recursive integrated LSM is equal to the sum of estimates,

averaged at M =1,P . It is possible to use robust algorithms for calculating the mean. For

example, it is Tukey’s algorithm [12], where we take the distribution median of the values
éi at m, 1 =1,Nn instead of the mean. In order to do this the estimates ﬁi (m) are ranked

by value, the lowest and highest values are dropped, the remainders are averaged out. The

parameters n(@), P of the integrated LSM may be optimized by the external criterion

[Nakhnenko] (stability, forecast accuracy and others).

3.4. The Method of the Auxiliary Variable (MAV)

3.4.1. The Method’s Main Point

In the cases when the model accurately reflects the behavior of the examined object
(process), that £ is insignificant, the noises N, in the measurements X are significant
and X (t), (i =1,n) is alternative, the method of the auxiliary variable U; defined as

sign X; (t), can be relatively simple and accurate. In order to reduce partially the noise’s

Nx influence, the function U; (t) are defined as

Ui 1) = {sign X (1), [x ()] = Ai, 870

0, |x(t)<Ai|.
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Then, according to the method of the auxiliary variable there is the estimate B from the

equation
which is equal to
where
o
D % (k)U, (ky),
k1—1

UTY =UTXB ,

B=

S %, (k)U, (k).

k1=1

U™X = Zx(k)U ). Zx(k)U k),

kn=1

k2_1 k2_1

le(k U (Kn). ZX (Kn)Up (kp).

kn=1

Zl y(k)U, (k)

k1=1

ZY(k U, (ky)

k2 -1

ZY(k U (kn)

kn=L

UTX)U'Y,

(3.71)

(3.72)

S X (k)Us (k)

k1:1

ZX (k)U, (k)

k2_l

PIACHINCS

{k;} - is the discrete set, where the condition (3.70) is implemented.

3.4.2. The Shift of the Estimates (3.72)

If the noises N, are mutually uncorrelated with X, Y and smal

approximately

Ui () = sign X (1),

103

then



and the estimate [3 at € =0 remains constant, so far as
M{U'X}=U"Xx, M{UY}=U'Y.
The shift can take place if € #0
AB=UTX)UTE (3.73)
So far as from the condition X '& =0 ina general case does not leak out that
U'e =0.
In total, the shift (3.73) is less than the shift of LSM estimates due to the noises N,

if the influence €0 on (3.73) is less than the influence N, on the shift of LSM

estimates.

3.4.3. The Covariance of the Estimates (3.72)

cov| B | = M{[B — M{B}I[B - M{B}T"}.

Putting the uncorrelatedness of the random errors at (U*TX)_1 and U'Y and
decomposing in a series
B~M{B U X)MUTY 1+ UTX)BUTY +UTN, ], (@74)
we obtain:
cov[B]~M{[[3(U" X)*[UTY 1+ (U X ) [8UY" +U"'N, J]x
X[[BU " X) MUY 1+ U X)) TBUTYT + U NI} =
= M{[5(U" X)IUTY T [UTY T [BU T X) T +
HUTXTY MU -SUT T [SUTX) ™" +
HUTXTY TM{SU -SUT[(UTTX)TTYY +
HUTXTTUTM{INGNGHUT X)) U,

(3.75)
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where the first and the second components depend on the thresholds A; (3.70), noises N

, the third one depends on the noises Ny. There is an optimal vector A" of the thresholds

Al :1,_n, where the covariance (3.75) norm is minimum. If the noises N, Ny are

uncorrelated and €< — 0, then the estimate (3.72) will be unshifted. The estimation (3.72)
effectiveness can be optimized by the external criterion by the vector’s selection A .

The estimates (3.72) in MAV can be calculated by a recursive algorithm:
B(k +1) = B(K) + R, [U (e,
P.,=[P*t+U®)X (K], (3.76)
(k) = y(K) —x" (OBK),
where U (k) can be not only relay one (3.70), but it can be any system of linearly

independent, or even orthogonal functions. In order that the estimate (3.76) approximates
to the optimal (LSM estimate for precise X, Y*), it is desirable that the auxiliary
variable is close to X . This will provide a positive definition of the matrix
UTX = )ZTX, but smoothing X makes the condition number of the matrix X’X

slightly worse. Thus, the algorithms of the data X quasidiagonalization are important; they

will be considered next.

Chapter 4. The Increasing of Data Informativeness and, as a
Consequence, of the Accuracy of the Estimates of Parameters of the

Examined Objects

4.1. The Increasing of Informativeness of Data Samples in Terms of the

Passive Experiment

If the precise values of X, Y are powerful not at all sites of the sample and have

sites with linearly independent components X; (t) i =1,_n, then, with increasing length
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M of such sample the reducing of covariance Covﬁ , dictated by the noise Ny, may be

irrelevant, and the shift, dictated by the noise N, may even increase. Therefore, for

sufficiently large numbers M it is appropriate to conduct the weighing of data in for their

full or partial orthogonalization.

Fig. 4.1. The informative ([0,t, ], [t,.t;]) and uninformative ([t,.t, |, [t;.t,]) sites

of the sample X' = [x.,X,].
In the fig. 4.1 it is shown the simplest illustration of the necessity of that weighing of

samples. If we introduce the weight function

(1, telon], Ity t]
n® ‘{o, telt,t] [t.t,]

the informative matrix X' X will be diagonal as a result of the orthogonality X1(t)

and X, (t) at the sites where n(t)=1. If you do quite the reverse, the X' X will be
degenerate.

Let us construct some algorithms of the quasidiagonalization of the matrix XX,
The algorithm 1. At the recursive LSM we introduce the weight function that is

adaptive to the current value X
X (k)
% (€)% ()

nj(k)= 0

2

i=1

(4.1)
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Then, the measurements weight will increase for those k, where the correlation of the

diagonal elements of the matrix XX to the nondiagonal ones is greater. The weighted

matrix will not be symmetrical, but it will be better determined:

Bk +1)=P(k) + P, - Xg(K)ek), P, =[F"+X(K)- XTI, (4.2)

where Xg (k) = [n, (k) - % (K),+-,np (K) - X, (K)].
The algorithm 2. You can obtain the more qualitative result, if you introduce the

weight function n; (t) from the condition of the maximum accuracy of estimating the i

parameter Bi, i=1,_n. only. Thus, for LSM, GLSM, MAV the estimate Bi can be
presented as a solution of the equation

B=A-B, (4.3)
which is the correlation of determinant A; of the matrix A (the matrix A, where the first

column is substitutes by the vector B) to determinant A of the matrix A:

~ A
B; :XI' (4.4)
The differential of the expression (4.4) with respect to the accurate values (*) is equal
~dA; dA-A
to dfj =—+————", or
A ()
dB; dA,
E' =—1- dé. (4.5)
B A A

From here we obtain the expression of the relative variance

2

2 2
Oopi | Z oA ciiz _20m (4.6)
B ) @& KA
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o

B.

In order to reduce the variance of the relative error

in the estimate ﬁi, it is

necessary to maximize not only A, but A;. From here we obtain the optimal weigh
function nt (k):

n’f (k) =arg max ‘A JAY ‘, k :I,_M. (4.7)
I ne{-l,l}

In other words we add the variables (1. (k) =1) or subtract (0, (k) =—1), trying to

get execution (4.7). The multistep process of defining n’: (k) may be constructed using

the scheme:

the elements a;;

i o; of the matrices A and B are calculated in (4.3), next A, A; and

the value |A - A;| for n: (k)=1, k=LM;

n
for all rows b, = Zaiij
j=1

of the equation (4.3) consistently on the every k-point all possible combinations are

sorted from n to 2 (so far as m; € {—1; +1}) of the products x; (k)-x; (k) with a plus

sign;

or with a minus sign (n = —1) and something is left on the every k-point for which

(4.7) is maximum, and we do the same for all kK = 1,M:

- the process repeats | times until the values |A WAY | difference on the | and (I-1) steps
becomes insignificant with respect to |A - A; .

Then, the estimate ﬁi is calculated. The process repeats for (i+1) estimation. The

performance of this algorithm is not high; for it is necessary to count the value |A-Ai|

|\/|/2n times. If X™, Y™ are smooth functions, the enumeration n (k) can be carried out
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at the intervals [(k -m), (k+ m)]from 2m points. The number of calculations |A - A;|

M
reducesto — -1 - 2",
2m

The algorithm 3. The previous algorithms of diagonalization of the matrix A of the
system of standard equations do not provide the symmetry A. This algorithm involves the
invariance of the symmetry of the matrix A at its diagonalization. Assume the system is
formed as a result of usage LSM, GLSM or MAV

B=A-B, (4.8)
A=[a;T ., & = kZaij (k).
=1

where g;; (k) - is determined depending on the method, for example, for LSM:

a; () = % (0%, (<) B=[0 T, b = () by (K) = y(K) - x; (K).

Let us introduce the weight function into the system (4.8)
M n M n
{Zﬂi (K)ay; (k)} B= { n;i (Kb (k)} - (4.9)
k=1 i,j=1 k=1 i=1
The condition number (condA) of the symmetric matrix A is equal to the ratio of the

maximum value A , of the matrix A to a minimum [14]

Mmaxa ,

condA = — .
mInA ,

(4.10)

For the diagonal matrix A condA = 1, for degenerate one — the infinity. The inequality
is known [25]:

max|%; — 4 < Jz\spAAT | —%(SpA)Z , (4.11)

where SPA -is the trace of matrix A, ‘SpAAT ‘ = ||A|| - is the Euclidean norm of the matrix

Al j=1n;i#].
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We see from the expression (4.11), that on minimizing the right part at the limit on

the trace A: SPA = C,, or on the every element &;; of the trace:

M —
Zﬂi(k)aii(k)ZC, i =1,n, (4.12)
k=1

if &; and a;; are symmetrical”

M M
k=1 k=1

it is possible to provide the minimum ‘Ki —XJ—‘ at the minimum value 2; ,kj, which is

fixed due to (4.12), viz. it is possible to provide the minimum condA (4.10). If you put

C=1, then at the full diagonalization of the matrix A:

B; :ini(k)bi k), i =1,n, (4.14)

where

Ln,i=j. (4.15)

an(k)au (k) = O, I = 11n’j

1
Thus, it is necessary to execute n conditions (4.12), E(nz_n)_ (4.13) or

1 1
E(n2 —n)— (4.15), E(n2 +N) conditions in all, changing M -n of the values n;(K) (

i=1n; k=1,M).
So far as M >>n, the task can be solved. The solution can be simplified if we

parameterize the functions 1; (K)

i ()= yy@ k), i=1,nk=1M, (4.16)
=1

where @, (K) —are basic functions.
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1
Then, m-n of coefficientsy are defined by E(n2 +n) conditions (4.12), (4,13) or

(4.1). Thus, putting C=1, from (4.12), (4.15) and (4.16) we obtain the system of the

equations that are linear with respect to y;,

Z Zm:’yil(m(k)jaii(k):1, I:l’_n’

1

m

i Zy”(pl(k)Jaij k)=0,i=1,n-1;j=i+1,n;

or
iy“ (Z(PI (k)jaii k)=1,i=1,n;
|=1 k=1

iyn (i% (k)]aij k)=0,i=1,n—1;j=i+1,n.

I=1 k=
In the matrix form:
F-v=G (4.17)

where F- is the netting matrix (m-n)x(m-n); v — is the vector v, of dimensionality

(m-n)x1; G —is the vector with single and zero elements.
The system (4.1) is solved by LSM. LSM-is the solution of the system (4.17):

-1
7=(F'F) F'G (4.18)
will satisfy the conditions accurately (4.12), (4.15), and the estimates ﬁi will be defined

from (4.14). If m is an even number, you can assume the different numbers m; for

n
different i so that Zmi =0,5(n” +n). Then (4.18) will definitely satisfy (4.12), (4.15).

i=1
The matrix F'F is non-degenerate, if X; (k) and ¢, (k) form the systems {xi (k)},
{(pl (k)} of the linearly independent functions. Namely, the matrix A in the (4.8) should

be non-degenerate. Any system of linearly independent functions, better orthogonal ones,
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can be defined as {(p| (k)} Haar functions [11] and other which take values +1, will be

convenient for calculating.

4.2. The Improving of the Convergence

This property is characteristic for identification methods: the more uncertain is the
problem, the easier are the solutions. This is LSM in the algorithms of the chapter 3, where

ﬁ enters linearly; this is the gradient procedure [42] in the algorithms of nonlinear
estimation at the uncertainty of the statistical characteristics of the surface /()
or (B(CI))
B(a+1) =B(a) —Ma) —=— = (4.19)

For the convergence of the algorithm (3.16) it is necessary that / (ﬁ) Is continuously

differentiable by Frechet on B
o1 B+AB) ol (B)‘
o(B+AB) B

and Lipschitz condition is satisfied for the gradient from I:

ol (Bl) o1 (B, )|l <
oB, oB,

0, (4.20)

HABH—>0

(4.21)

HABH—>O

where L>0, HH —isa norm in a Banach space [26].

Considering (4.29) we can write:

aI(B )AB+e ‘ (4.22)

TR+AR)—IPB) =

where

=0, AB=B(a)—B".
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On performing (4.21), (3.19) there are [11] such A(Q) in which the algorithm (4.19)

converges to a stationary point, that is equal to ﬁ* for the strongly convex functional.

Thus, for the strongly convex functional

I(R(@) = I, + AR —2 2 A,
oBoP
AB=B@) B,
taking the derivative on B
A 2
aIa(BB) _ aga[{s _AB,
and substituting it in (4.19) we obtain
AB@+ 1) =M@~ AR, 423
oBop’
2
where GﬁGBT — is the strongly positive [27] operator.

Then, there are A(Q) = diag{A;(q)} which are not identically zero, that the system

(4.23) will be asymptotic stable [42]. In practice the gradient is inaccurately calculated due
to noises.

The low rate of convergence in “ravine” situations is a serious weakness of the
gradient algorithm. The modification of the “ravine method” is proposed for accelerating

the convergence; it involves the application of n identical models with the initial values

ﬁ(')(O), (= L_n) of i-th model parameters that are given in the I-th top of n-dimensional

cube with the value ﬁ* inside of it. Then, the index Il(') with the additive accelerating the
convergence can be constructed for each I-th model.
I = o, (ABY)TABY, (4.24)

where o, — is the algorithm parameter,
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) _ R ) _ R n
s\ _ | B =By Bn’ —Bn __lz”_(l) .
(ABH ) — [ Bl ) ’ Bn j y Bi — n . Bl — i-th Component for the

I-th model:
| | A ( P
or® _ory B’ —Bi
OB’ OBy Bi
Substituting (4.25) into (4.19), we obtain the gradient algorithms with accelerated

(4.25)

convergence in “ravine” situations. There is the gradient setting of n models at the a,, = 0.
Then, taking into account the spread of stationary points between the models we can judge

about the spread of estimates [3 ;

cov[B ~ [65”31_ ]inj_l , (4.26)
where
s i B -B)(BY R

If 1, > o0, all n models immediately reconstruct their parameters to the average

value relative to the initial value, viz to ﬁo, of the corresponding center of the initial

values’ hypercube. It is advisable to set o, increasing from zero. Then, at the first steps

there is the independent motion of the parameters of each model to the “bottom of the

ravine” and next the contraction of the estimates B¢’ on the ravine to the average p

which also changes, approximating to the stationary point ﬁ*. The number of models can

be both larger and less than n. Thus, applying two models only we can construct the
algorithm with the desired law of change of the index I at the time t:

A A T A A
I=1P + 12 +0, (B0 - ) (50 -2) @27)
Let us define the desired law
df
f(t)=—<0, 4.28
(t) m (4.28)
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where f (t) - is the desired function of time, for example, the exponent, the constant

etc.

Let us substitute from (4.27) the value % into (4.28). Then, we obtain:

W\ HAD @\ AR2)
f(t):[é{l J 4P +[6{1 J B

o™ dt op® dt
A A dB(l) dﬁ(Z)
20 (B® —_g@Y _ ’
al(B g ) ( dt dt

or

aIl(l) A0 A®) T dB(l)
{[8[%(1)J+2a1([3 —PB ) F:
or,” g | 9B
= f(1)- Kafs(z)} o (B —B?) | =
Let us denote
(1) . .
)]

(5 )20 -) |

then,
(1) 5(2) ) )
T (A /{f(t)—A!d‘;t J
-2 - > (4.29)
P (-l A{f(t) A J

If the functional (4.27) is convex, the algorithms (4.29), constructed under condition

(4.28), guarantee the convergence not only by the functional (4.27), but also by the

parameters B, B® to B at the given law of the reduction I, .
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If the signals, noises and parameters are non-stationary, the additional filtering is

required, for example, by the inertial filter of the first order W, (p) = (ap + 1)‘1,

d o
where p = e a - is a filter constant.

Then, the gradient algorithm (4.19) is transformed into the method of “heavy ball”
[4]:

d_ZBer_B:_}LaI(fS, t)

=, (4.30)
dt> = dt oB

04

in which the parameter o “ball mass” may be adaptive: the “mass” should be that as [§ IS
smoothly “rolling” down the non-stationary stochastic surface to the minimum. For the
stationary objects (according to the method of stochastic approximation [24]) we can
require that a(t) indefinitely increases. The factor A significantly affects on the

convergence of the algorithm (4.30). Let us rewrite (4.30) with regard to (4.23) in order to

get the appropriate choice of its structure:

20 A 2
a d AZB + dAp +A aAI(At) AB =0, (4.31)
dt dt  opop’

o°I(t
where 8[%8[(33 — is the stochastic nonstationary symmetric matrix of instantaneous values.

o°I(t
The matrix 8A8E3 should be diagonal. It is the sufficient condition for the system’s

-1
o°I(t
strength (4.31). In order to do this it is not necessarily to count the matrix [aéaégj :

especially as it does not always exist for the non-averaged values. Assume
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821('[) oI (t) -1 ) A (1) |
5[3@[3 A(t) |:alj (t):|| ] ! then (W] —|:detA(t):|, where A“(t) — IS an

algebraic addition of the ji-th element of the matrix A(t).

It is enough to set A = a’[AJ—i (t)] =o/detA- A for the orthogonalization (4.31), then

, .
ad AZB+dAB+
dt

where o'~ is an algorithm parameter.

a’detA-Aﬁ =0,

This algorithm is adaptive to the “informativeness”: if the Fisher’s matrix A is not
informative (degenerate), that detA(t) is close to zero and AB =0(and o =const);

when the useful information occurs, there is an independent adjustment of each element

Bi of the vector B

dAp _ @y
- AM] TS (432)

The algorithm is realized in practice

dap _
dt

A A

—a Ay(t) |- 'g%’t) , (4.32)

where ,5“-

ol (f ol
(B Y —are the values A;(t), (B Y smoothed by the filter W .
8[3 op

The functional diagram of the algorithm (4.32) of the orthogonal setting with

adaptation to the “informativeness” of the object’s signals is represented in the fig. 4.2.
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= > W
B Jdja .
P =

Fig. 4.2. The block diagram of the identification system with
the gradient algorithm (4.32).

4.3. The Increasing of the Informativeness of Data Samples in Terms
of the Active Experiment

4.3.1. The Theoretical Argumentation of the Expediency of the

Coordinatewise Quasi-diagonalization

If the functional | (B) is of the “ravine” character, viz it is not strictly convex and in

some ways has very small changes, then, the system,
I"(B")-Ap=-I'"), (4.33)
where I'" - is the second derivative, I'— is the first derivative from I on B in the point

B* , will be ill-conditioned. Then, the solution:

o ey 1L rrn*

B=[I"(B")] -I'®), (4.34)
will be excessively inaccurate as a consequence of the impropriety [46] of calculations
under the expression (4.34).
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The significant separation of the matrix spectrum into two groups that correspond to

the large and small eigenvalues A
M2h, 2.2\, 20N 2...20\,; 6>>1 (4.35)
is the main condition for the “ravinity” 1 (p).

The linear membrane of the eigenvectors that correspond to small eigenvalues can be

taken as a bottom of the “ravine” Q for the system (3.29).

Q={xeR"(<x-xu>0 (i=Ln-n),

0. —R". cszhl/ (4.36)
0 , |7Vn—r+1|.

The condition of the “ravinity” (4.35) is realized here.

The condition number of the matrix I"(B ) for the model (4.35) (4.36) of the

“ravine” functional is defined by the correlation:

cond (I”(B*)) = ‘ I"B) -H[I”( B9 | = km%min >0 >>1. (4.37)

Moreover, the greatest error of the solution (4.34) is concentrated in the subspace

spanned on the eigenvectors of the matrix I "(B*), that correspond to small eigenvalues.

Let us show this.

The lemma. Let the condition (4.35) is implemented for I"(B ). Then, the

solution’s (4.34) errors satisfy the relation
Ad; <o'Adj; 6>>1; i=1k—1; j=k,n. (4.38)
It is known [33], that the solutions (4.34) of the system (4.33) can be represented as
AB=>"d; -uj, where Uj - are the matrix I"(B") eigenvectors.

The coefficients d; are equal to
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d; = G A’ i =1,n, where A; — are the matrix I"'(B") eigenvalues that correspond

to the vectors U;; C; — are coefficients of the vector’s | (B) decomposition at the basis
n
{ui }i=1'
Expanding the error 6f3 at the same basis
n
AB+8B22ai Uy,
i=1

_Ci +ACi _&+ACi ‘?\,i _Ci A)\’I

where @ =d; +Ad; =———= we obtain that
N+AN N (A AN )N

AC, i —Ci-Aki . —
=—1—1—L 1 i=1,n. Inaccordance with (4.36), the eigenvectors U,

(N AN )N
..., Uy set up the ravine’s bottom where the gradient’s |I’(B)| vector norm is defined by

the small eigenvalues and it is significantly lower than in any other part of the parameters

B space, then,

G <Cj; i=1,k—1;j=k_,n; (4.38)

at the same time

That means we have Ad; <c™ +Adj; 6 >>1. The lemma is proved.

It follows from the lemma that the axis of the most rational coordinate system while

minimizing the quadratic functional ravine structure coincide with the eigenvectors of the
matrix I"(B"). The dependence of the error S8 on the relative orientation of the

coordinate and orthonormalized bases is shown in the fig. 4.3
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Fig. 4.3. The dependence of the error 53 on the choice of the basis.

If the unit vector coincides with the eigenvector U;, the error df, of the estimate Bl
is minimum. In the contrary case, even for large eigenvalues (B, and U,) the error 6f3, of

the estimate BZ Is significant. The error §4; is maximum for small eigenvalues (5 1 Us).

If the coordinate basis coincides with the orthonormalized basis, the quadratic functional:
* ] * 1 " *
I(B)%I(B)+I(B)-AB+§ABT1 (B)-AB, (4.40)
takes the separable form

13)=316)) @41
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the estimate [3; are found independentl and the smallness of the error 3 j Is guaranteed

for those 3 j that have large eigenvalues.

The task is significantly simpler, if it is required to ensure that the coordinate unit
vectors f; coincides with its eigenvectorU; . Moreover, the errors 6f; at other directions
uj,(i# j) have little impact on 8 ;.

The required properties I(B) can be ensured by the appropriate selection of the

controlling actions, i.e. the active experiment on the examined object. We will prove this
with the help of the assertion that follows.

The assertion. Let the matrix I"() = A has structure:

aj # 0, & = aj, =0; 1,J#k, where k — is the fixed number, 1< k < n, then,

a =M, (A) and the eigenvector u, (A) coincides with the coordinate unit vector B, .

In accordance with the theorem on the spectral decomposition [42], let us represent

the matrix 4 as follows

A=UTAU=UTAU+UTAU, (4.42)
where A =diag(Ay A, ... A, ); A =A—-A,, A, - is the matrix [nxn] in which all
elements are zero except  , U — is the orthogonal matrix, the columns of which are the

eigenvalues of the matrix 4.

So far as the basis is orthogonal

UTAU =a, U, -U, =diag(0....,a.-..,0), (4.43)
UTAU =diag(r,.-- A, 0 A o0 20). (4.44)
then, it follows from (4.42)
A =diag(Ay,..., A, 0,4, . Ap). (4.45)
from here
M =8y, (4.46)
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According to a spectral representation of the operator 4 [21] for any vector B,

B=CU, +...+C,U, there is a relation:
n
AB =Y MCU; =A,CU, +...+1,C U, (4.47)
i=1
Considering (4.46) for the k unit coordinate vector of the matrix A we obtain
From here it follows, that the vector Bk coincides with the vector Uk. The assertion
IS proved.
Let us apply the obtained result. Let us set the criterion of the signal synthesis as any
matrix norm ||| of the difference of the optimized I"'(B) and the wanted 4 matrices:

II"B) =|1"B)-A. (4.49)

From the inequality [19] ||A—B||Zi[kl(A)—ki(B)]2 it follows that the

i=1
functional (4.49) with Euclidean norm | minimizes the mean square deviation of the
eigenvalues . It is convex, monotonous and uniform on the set of the Hesse’s matrices. The
next conditions are met for this:
J[ad+ (1—a)B]<a3I(4)+(1—a)I(B), O0<a<l,
JI(A)<TF, A<LB,
3J(aA) = aI(A)
These conditions are met in accordance with the axiomatics of the matrix norm.
|A+B] <A+ 8], oAl < oAl
If we connect the functional with one k order of the matrix I"'() , then, instead of

(4.49) we obtain:

IA"B) =| i B) - ag] (4.50)

where jy: - is an element i of the k row of the matrix I"'(B), a; =a,, #0, i =k.
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After this optimization of the active identification modes, the minimization task of
the ravine functional /() becomes the task of coordinate-wise optimization, which is

represented with respect to (3 in the separable form:
n
min I () =min > I;(B), (4.51)
i=1

where I; (B) = I;(B; /Cp =d).

The matrix C; of the linear restraints has the form C;™ =[1,,,,0].

4.3.2. The Synthesis of the Testing Input Actions on the Examined Object

Some assumptions should be taken into account during the synthesis of the optimal
signals that test the object:

1. The signals should be physically executed at the object.

2. They should not introduce the object into the area of emergency operations.

3. Their amplitude should be such as to meet the requirements for the ratio “signal —
noise”, but not so large that the phenomena, not provided by the model, appeared at the
object (nonlinearity, etc).

4. The signals should provide the optimality of the relevant criterion (4.49) or (4.50).

The pulse input actions’ sequence can satisfy these restrictions.

u,®
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Fig. 4.4. The testing pulse u(t) and its derivative w(t).

0; t<t
nt-t); L st<y
u(t) =u(t,t,t,t,) = U oy t, <t<t, (4.52)
Upax —(t-1) t;<t<t,
0; t, <t <t
or
2 k+1 2 j+1
u)=> (-n* Z(—l)“S(t—tj,k) . (4.53)
k=1 j=1

The sequence of pulses of trapezoid form (fig. 4.3) is quite simply executed at the

real objects of technology and economy:

S(t—t;,) =0| ot —t;,)], (4.54)
(X) = 0, x<0 4.55
P00 = X, x>0 (4.55)

du
where ® = E_ is the slope of signal fronts.

The sequence of controlling signals of i control is as follows:

u'(t) =D (D"t b, t ). (4.56)
1=1
The derivative of the single pulse
dU 2 k+1 2 j+l
—=0) (=) (-=DMt-ty), (4.57)
dt k=1 j=1
here 1(t) —is a single function 1(t) 0, t<0
where —is a single function = :
) 1, t>0

The limitations to the fronts slope, the length and the amplitude signals are
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(&
max| — |= o, (4.58)
dt

min Stj, _tjl < Imax » (4.59)

! j

Umax 2> OJ(tJZ - tjl) . (460)
So far as the signals are completely determined by the moments t;, and the fronts

slope m, it is not hard, if it is necessary, to impose the additional restrictions on the relative
position of signals at their synthesis. The task of synthesis of optimal testing signals is
formulated as the task of optimal control is that: knowing the required equations of the
object,

X = Ax+ Bu, (4.61)
the class of signals (4.53)—(4.57) and the restrictions (4.58)—(4.60), to find the program
control at which the functional (4.49) or (4.50) takes the minimum value. The optimization

of control at the classic functional:
t
| =V, x(t,) |+ j L[x(t),u(),t]dt, (4.62)
t

where L, V3 - are set scalar functions of the vector arguments x and u, is complex. This is
due to high power of sets at the numerical solution of the dual point boundary problem of
the functional.

The application of the semidefinite
| =V3[x(tk)]+§jQ(x,t)dt +§j(uTKu +UT KU ydt,  (4.63)
to to

allows to solve the problem easier and properly. This problem is solved by the method of
forecasting models for the synthesis of continuous control in the work [13].
The solution in this case. We assume the switching points in (4.53) (4.56) as

components of the generalized object, obtained by association (4.60) i (4.64):

Tp:U;Tp:{tij};j:ﬁ; i=1m. (4.64)
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The equation (4.64) describes the restructuring of the j-th switching moment of i

component of the control vector Tp :

oV’
U, =—K pe (4.65)
where — is a partial derivative of scalar function V (x,T ,t), satisfies the equation:
V \
N N (Ax+Bu) = -Q(x.t), (4.66)
ot oXx

with the boundary condition V (t, ) =V;.

The application of

{XM = Ax,, +Bu,, w67

TIO =0
allows to find the function V (X, T ,t) at the point corresponding to the current state T, of
the trajectory

V(X,t,1) =V;(Xy, Ty ) + T Q(x, ,T)dr, (4.68)

To
where T —is a current time for the models (4.67).

Substituting (4.68) in (4.65), taking into account the rules of differentiation, we get:

U  — _k{dvs(xm Tk ) _I_TJI‘( dQ(Xxy, ’T)} _

Kid dT, . dT,
[+ oV, (1)  OVs(Xty) ]
z (7)) ox, (Tk)+ ar, (4.69)
= —k-< -
f ()6Q © dQ’ (1) d
: OXy, (1:) dT,

OX
where Z(t) = 8? - is the matrix function of sensitivity of the extended object (4.63),
p

(4.64), which is obtained by differentiation at the vector T):
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ﬂ[%j:i XA X g M AL
o, \dt )~ dt| T, oT oT

or

2=Az+B—. (4.70)

ou
The matrix of the partial derivatives —— with regard for (4.53)

p
ou _ ou i(t) | 4.71)
6Tp ik
where
aui(t) K+ j i
. = -1t -tt)), 4.72
o, D0 (@72

1(t) — is the Heaviside function.

Solving (4.70) relatively to z and simultaneously integrating (4.72), we obtain the
vector of gradient which allows to determine where to shift the switching points along the
time axis in order to achieve the functional’s I extremum at the end of one cycle of

modeling.

The dimensionality of the vector TIO can be reduced. Thus, if the amplitude of signals

is fixed, then, the dimensionality TIO Is reduced by half. The signal is completely defined

by the moments tijl : tijB, and the sequence of signals of i control is as follows:
L
_ - _
u'(t) =D (-1s;(t-t)), (4.73)
j=L

where L;j - is the number of inclusions of the i-th control organ, and

Si(t—t}) =o| ot—t)) |,
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0; x<0O

oX)=9X%; 0<x<lI. (4.74)
1, x=>1
The matrix of partial derivatives:
ou ® _ -1 -t ) — l(t tt —ij . (4.75)

The furthest reducing of the dimensionality of the vector TIO Is possible, if the test

signals have fixed shape. Such signals are completely determined by the moment of their
injection. It is necessary only to define their relative position at the time axis. The

sequence of the heteropolar pulses can be described by the equation:

ui () =D (-1s;(t-t)), (4.76)
j=1
0; t<t
X, tj St<tj +C

where S(t—t}) =o| ot —tj) | 00) = Uy =C; tj+¢ <t<tj+c,
Uy =X, T +C, <T<T; +C, +C

0; t2t;+c,+¢

\
The restrictions on signals are connected with their relative position and duration of

the experiment:

i
y

The criterion (4.63) has the terminal component:
Vsl 1= 3" (B)] (4.78)
and, with the restrictions like (4.58)-(4.60), it has the integral component:

—ti 2 ¢, Vik; t —t <T, (4.77)

C; ueG,

Qx.t) = {thC +B; ugG, (4.79)

Then,
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oQ(xt) _ {0; ueGy, (4.80)

aT, o, ueG,’

where « — is the vector of coefficients, the value of which depends on the restriction.
The designed method of synthesis of test signals allows to construct the gradient

algorithm of the correction of the switchings vector T,:
0 0
Ty =To(t), k=0, (4.81)
that allows to identify the local extremums of the functional (2.64) in the space of

controlled variables. The condition for stopping may be the demand for the relative or

absolute accuracy:

eng = Ne| S|l [+ @, (4.82)

where ay, an — are set values of the relative and absolute accuracy of the optimum’s
localization on the functional.
It is necessary to carry out the check-ups on the argument at the slow approximating

to the extremum

Mo =To| <ea|Ts | +e2. (4.83)

Due to the multiple experimental properties of the functional (4.78) in the space of

controlled variables Tp, it is possible to have a case where the localized extremum of the

functional does not provide the significant improvement of the identification conditions. In

case that computations stop, it is required to verify the condition ®@, < ® and repeat the

searching for the optimal TIO at other starting conditions TS :

The algorithm of optimization:

1. The initial conditions are formed for (4.67), (4.70) u(t) :uo(t,Tp),

T, =Ty, z(t,) = 0, where T, T} - are the initial conditions for the switching points

and the sensitivity function.
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2. The object’s movement is modeled using (4.67), and simultaneously the matrix
equation of sensitivity is integrated using (4.70).
3. Using the results of modeling with the help of (4.69) we define the gradient of the

minimized functional by the controlled variable Tp. We obtain the algorithm of correction

of the vector T, component on the iteration j: ij =ij_1 + kvj , experimentally
selecting the value of k in (4.65).
4. If the rule of algorithm stopping is not executed, that we should move to p.2 for the

next iteration of search Tp. The rule of stopping:
A =3 -S| <aS v A =TT <a T+ 2

where €,, €, -are the predefined small numbers.

5. The condition 3J; < 3, Is verified, if it is implemented, that should move to p.1

]

with the formation of new initial conditions.

4.4. The Method of the Separate Estimation of Static
Nonlinear and Dynamic Linear Components of the

Hammerstein’s Model

Hammerstein’s model describes the real system at the input (X;, ) - output (Xoy ) by
the combination of linear dynamic operator
n m
d " Xout AXout d"x,
dt” dt dt™

with the static nonlinear f (u) that is decomposed by the system of linearly independent

/ / dXin
Bn + B, + Xout () =7 +7; at + 7%, (D) (4.84)

(preferably orthogonal) functions @, (u):

f(u)=l -0 (U). (4.85)

k=1
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: o . : d'
According to the non-linearity’s position (fig. 4.5), denoting the operatorﬁ =p

u g 2 7P|y oy Y 7P| s oy Y
Y 5(p) ) gy He

Fig. 4.5. Hammerstein’s models: a) — the nonlinearity at the input,

b) — the nonlinearity at the output.

and substituting the decomposition (4.85) and dynamics (4.84) into the corresponding

of the a) nonlinearity at the input:
structures (4.5), we obtain the model for the variants of

By = 7P (iakcpkw)] (4.86)

we obtain the model for the variants of the nonlinearity b) at the output:
n (.
D Bip (Zakcpk(y(t))}v(p)-u(t), (4.87)
i=0 k=0

where B'(p) =Bnp" +---+BiP+1 v(P)=vYmP" +--+ViP+ 7,

Then, the (n+m+r+2) parameters o, B;, v; are determined in the identification task.
The parameters v;, o, are the part of the model (4.86) as a set their products, and the
parameters B, o, are the part of the model (4.87) as a set of their products too. This
complicates the solution of the estimation’s problem. Moreover, if U (t) that provides the

orthogonality @ (u (t)) that is difficult to implement, the orthogonality is discolated as a

result of differentiation of functions @, (u (t)) in time.
For example, if ¢, is sine-cosine series, then, the first derivative from ¢, will be

linear dependent function from @, ;. Using the exponential polynomial:

f(ut)) = Zr:akuk (1), (4.88)
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does not creates the orthogonality. All this worsens the practical application of the models

(4.86), (4.87), especially in the noisiness of signals, which have to be differentiated.

Therefore, putting the limitations of the band of the signals spectrum X, (t), Xou¢ (t)

and assuming the finite error A of the approximation of the differential equation (4.84) by

the equation

d"x dx
Bn Tﬁm Tt Bld—c;:m + Xout ()= Xin(t) +A(1), (4.89)

we obtain the simplified Hammerstein’s models: instead of (4.86), we obtain the model:

B(P)- y(t) =D oy 0" (u), (4.90)
k=0

instead of (4.87) we obtain the model

n o r
D Bip! (Zakcpk (y(t))j =u(t). (4.92)
i=0 k=0
The last model may be represented as (4.90), if we consider the inverse dependence
u(y) instead of direct one y (k).

y@® 20 >ﬂy'((§)) uo) |

Fig. 4.6. The model that is inverse to the model (4.87).

Then, the task of identification of both models is reduced to the identification task of
the model (4.90) with the n+r+1 unknown variable. Further simplification of the task is

accomplished by taking into account the fundamental laws of smooth mappings, namely

f(u).

The criteria of approximation, that take into account the smooth of sought
dependence

The root-mean-square criterion of proximity, provided by Legendre-Gauss in 1806-
1809, makes it possible to get the best approximation to the mathematical expectation of

the sought dependence, if noises are normally distributed, and the data sample is large
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enough. If the data samples are not sufficient and the normality of the law of data
distribution is broken, this method loses its actuality [22].
The situation may be improved, if we take into account the additional information:
— we discard the anomalous data
— we control the nature smoothness of the sought dependencies
The anomalous data are discarded or corrected at the stage of robust filtering of
signals, and the property of smoothness was first taken into account when determining the

models of technological processes in the work [23]. Instead of a minimum of the mean

square error, it is offered to minimize the mean square value of r+1 finite difference A™'e
according to the standard procedure:

I =Y (A")* > min, (4.92)
where, if r=1, then, the approximation of smoothness takes place, if r=2, — the
approximation on curvature and so on .

The generalization criterion is proposed in the [23], where instead of the square, any
degree is taken. Taking into account the demand of robustness [22], it is not advisable to
increase the degree. The order of the difference r+1 is set a priori, if the model’s order is
known(4.85), or it is gradually sought, starting with r=1.

The method of determining the smooth static nonlinearity from the dynamic of control

Let the dynamic of the object be described by the linear differential equation

n d n- k
da,  —— k =f[x(1)], (4.93)
0 dt
where f [X(t)] - is the static nonlinearity, on the input of which the testing signal x(t)
arrives; the output of this nonlinearity influences on the dynamics of the object, the model
of which is the transfer function W (a, p).

The task is to recover (estimate) the static nonlinearity and therefore to offset its
impact on the dynamics of the object, taking into account the measured noisy values of the

output y(t, ).
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The classical methods of solving problems of this involve applying of method of least
squares (LSM) for estimating parameters of the model of the object’s dynamic (parameters

of the transfer function).
The unknown nonlinearity as a function of the input exposure f[X(t)]is
approximated by the polynomial:
f [x(t)]=by +Bx(t)+b,x*(t)+...4+ by, x" (t). (4.94)

the discrepancy is formed:

v)_ [ x(t)] (4.95)

n d ky
S(t) = Zak k
o dt
and the functional is minimized

J :ij'sz(t)dt. (4.96)
T 0

The parameters bk,kzl,_m;ak,k:l,_n are estimated under condition of the

minimum of this functional:
0J 0J
—=0;, —=0.
ob oa
The practice of application of the least squares method to solve such problems shows

(4.97)

that it is characterized by fairly significant weaknesses, connected with the high
requirements for testing (input) signal, and the low accuracy of the estimates of parameters
of the nonlinear dynamic model as a result of the inadequacy of the model structure of the
control object, that restrict the application of the classical least squares method for solving
those tasks.

The attempts to improve the adequacy of the model by increasing its order lead to the
sharp increasing of estimation’s time, which is generally unacceptable in a limited time of
the control (especially while solving problems in a real time) and the noisiness of the
measured output data. This leads to the systematic errors that significantly limit the

application of the classical LSM.
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Having regard to the above, the problem of finding methods of estimation of the static
nonlinearities which affect on the dynamic of the control object and estimation of

parameters of model of the transfer function of the control object is important and relevant.

In order to determine the nonparametric model f[X(t)] of the static nonlinearity

f [x(t)], let us define the compensated output of the control object define as:

d d2y
Yeor (1) = Y(t) =B, y() -B, diz(t), (4.98)

where parameters P,,3, are determined under condition of the mean square r of the

derivative from y(t) onx,

N
(B,B,) =argmin) ————=~ (4.99)

Taking into account the discreteness of measurements of the output value y instead of

the y r-th derivative we can use the appropriate discrete sequence X(t, ) which is measured

with a constant time step At at the sequence with the constant increment AX, but with the
variable time-step. This task can be solved in this way.

Firstly we should smooth of noisy input and output sequences of the measurements. In
order to solve this task the smoothing of the measured values is performed by using by

smoothed splines.

Then, we sort the value of the input variable X(t, ) in ascending order. Next in order
to determine the values t i that correspond to the input variable, that are changed with the

constant step, let us perform the interpolation of the obtained sequence using the

interpolation splines.

S, (1) =x +m (t-t )+, (t-t ) te[t b, ] (4.100)

We find the values tj that correspond to JAX by solving the equation spline

1 —
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where j =11, , I, :[X(tk+1)—x(tk )]/ AX.

Having determined all tjk we count the values y(tjk), df/(tjk)/ dt .

So far as the finite differences are used instead of the derivatives, we have

A Yeor = { yeo-p, 2L -p, S y“’} @102

In particular, for r =2 we have

N Yeor = [ycor (tk+2 ) o 2ycor (tk+1) + Yeor (tk ):| / (AX)Z' (4.103)
For r =3:

ycor [ycor (tk+3) 3ycor (tk+2 ) + 3)’cor (tk+1) ~ Yeor (tk )] / (AX)S. (4.104)

Thus, the minimization of the functional is in solving this system of linear equations

with respect to By, B,

: | A~ r dZA t r
DAYt )-A y(k)Bl iﬁk)BZ}A
k=1
- (4.105)

NN . i y( ) dzy(tk) rdzy(tk)_
;k; AY(t)-A e BZHA reami

dy (&)

:O,
dt

Having identified the parameters 1,3, , we define the value of the smooth static

nonlinearity by the formula:

2 A
dy(t) a7y (4.106)

f[x(t)]=yt)-B,—==-B, e

The algorithm of smoothmg the experimental data.

Let the value of the function f (X) be obtained as a table for values of the argument

T . . .
X= [xl,x2 ,...,Xn] as a result of observations. The process of smoothing is used in order

to reduce the random errors and obtain the smooth function. The process of smoothing is in
replacing the values that are obtained as a result of observations, by the values that are
obtained as a result of the smoothing treatments.

The problem of smoothing is formulated that way.
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It is necessary to find the function f”(x)eLj[a,b] in order to achieve the

minimum of the functional:

J[t]:zznolpi[yi —f (xi)]2+pi[f(”)(t)]dt, (4.107)

where P >0 - is an auxiliary parameter, p; - are given numbers (weight coefficients).

If p=0 the task is reduced to the task of approximation at LSM. Having all p=0

the task turns into the task of interpolation.

The smoothing spline is sought in the form
3. .

Ss(x):a+Bx+ch[(']x', X <X <Xy (4.108)
i=0

In order to construct a smoothing spline and to specify the system of equations, it is
necessary to apply the additional conditions at the sites of “stitching” of splines. These
additional conditions are commonly called boundary conditions. They depend on the nature
of the data that are measured, and on the conditions that should be satisfied at points of
“stitching”. While smoothing we distinguish: the frequency terms and the conditions for
the first or the second derivatives at these points [11].

There is a system for the definition of the coefficient of smoothing spline in the
nonperiodic case
a,M,+b,M; +c,M, =0g,,
boM, +aM; +bM, +cM; =g,

CN—ZM N-3 T bN—zM N—2 T aN—lM N-1 + bN—lM N — gN—l’
CN—lM N-2 +bN—1M N T ay M N = On-

The coefficients of this system are determined by formulas

2
1 1 1 1 1
ak :E(bk—l+hk)+ﬁ pk1+[ﬁ+a] ‘|'h—li pk—l;k :1,N —2,
-1 -1
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2
h 11( 1 1 1 1 1
b = ——|| —+— | +—— +| —+— k=1L,N-2;
"6 h [hkl hk) h? P Lh thpk“

k-1 k+1
C, = 1 P s k=1LN-3
k — kg™ — T Y
hkhk+1 '
0 0 0 0
Z, . .—2L Z, — 2L
gk — K+1 Kk _ Kk k-1 pk_l;k :1,N -1 (4110)

hk hk—l

If the spline that smooths, satisfies the boundary conditions S”(a) = S"(b) =0, then
a=ay =1 by=c,=by,;=Cy,;=0y=9,=0.
In the periodic case the system of the equations has the form
¢ M., +b M, +aM +bM . +cM, ,=0,, k=LN. 4111)
where the matrix coefficients are determined by formulas (4.110) for all k.

The systems of equations listed above are solved by the method of non-monotonic

sweep. After determining the parameters M, , the value z, are determined by correlations

2, —2p =—p, Dy .k =0,N. (4.112)
Moreover
1
DO:h—(Ml—I\/IO),
0
1 1
D, _h—(l\/lk_1 Mk)—h—(Mk -M,,).k=LN -1,
K k
1
D, :h—(l\/lN -M4). (4.113)
N-1

In the periodic case h, =hy; M, =M ; M, =M, 4, all value D, are determined
by formulas (4.113) for K =1,N.

The determination of the weight parameters p, is the most important aspect while

constructing a smoothing spline. The errors of the determination of the magnitude ZE are
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usually known in practical applications, viz ‘Zk —fk‘ < 6k are known, where Z, - are the

exact values of the measured value. In this situation it is natural to demand that the

smoothing spline satisfies the conditions
2, -7}| <8, k=0N, (4.114)
or the conditions
pk‘Dk‘ <8, k=1,N.
These restrictions are used to calculate the weighting factors p, . Let us construct the

iterative process, the implementation of which will provide us with the unknown factors

M, and multipliers p, .

(A+6HR<"‘>HT)|\/|<”‘> — 6HZ". (4.115)
Sm) Jif D™ £0:
pg‘” = ‘Dm (4.116)
0,if D™Y =0.

where m — is the number of iteration.

The matrices A, H are

1 0 .
0 1 h
. hor, : :
A=l.. . . . . P (4.117)
hN—3 -2 hN—2
hN—Z rN—l
0 1

where I, = l( h, +h )
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0 0 0 0 |
hy' —(h*+ht) ht 0
H = . . e
hit, ~(ht+hy) o by
i 0 0 0 |
Po
R= . (4.118)
P
The connection M, with Z, is defined by the matrix equation

AM =6Hz. (4.119)

As an initial approximation we take pg =0 that corresponds to the interpolation
spline with the values D, = D The iterative process continues until the value of spline

Z, does not appear in the “corridor”.

The Algorithm of Interpolation by Parabolic Splines

Let f(x)e C[a b] ,{a,b] € R,;a <D, and two sets of knots A, A}, are presented

AL Xo=a<¥X <...<X,=D. (4.120)
Assume that X ; <X <X;,i=1,n. The function S,(x; f) is the interpolation

parabolic spline for the function f (x) if

S,(x)ePy; XE(% ,iiﬂ); i=1n;

S,(x)e C[(i)’b] ;
S,(x)="f(x). (4.121)

The numbers X; are knots of spline, and X; are knots of interpolation. The knots of

spline are the points of a possible gap of the senior derivative (in this case - the second
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one). The spline S,(X; f) depends on n+3 parameters, thus, it contains two free
parameters. Therefore, two additional restrictions are imposed on the parabolic
interpolation spline.

If the function f (X) is (b—a) periodic, we require the spline to be (b—a) also
periodic and to have the continuous first derivative, and the point X, = a don’t be the knot

spline.

s (a)=s(b), i=12. (4.122)

Generally, the following conditions are the most widespread:

S'2 (a)=ay,; 8'2 (b)=by; (4.123)

S,(a)=Ay;; S,(b)=B,, (4.124)
where a,,,b;, A,, B,, - are given real numbers.

The particular choice of these numbers depends on the task under solution. For
example, if the function has corresponding derivatives, we can put
a =f'(a),b, =f'(b),A =1"(@),B,=1"(b) or replace them by the appropriate
approximated values of the derivatives (the finite differences). If the choice of boundary
conditions is difficult we can require the spline to have the continuous second derivative,
viz

S'Z(Z—O):S'Z(z+0); z:ii,(izl,i:n) (4.125)
at the points X, X
Let m; =S;(x);i=0,n; M, =S(x). So far as S;(X)- a piecewise constant

function, that

SI(x)=M.: Xi <X < X, i =0,n. (4.126)
Let us denote

h. = x

i i+1

Xi. Py =X, —%,0,1=0,n=1;
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Oi = 1:(Xi+1)_ f(Xi)hi = VYia— Vi
Ui zhihi+1+hi; Yi Zﬁihi _ﬁi;

Vi = hi—lhi—l + hi; UI = Ui'Yi X Vi =ViVi: | = O,n -1, (4127)
Then, for X [Xk ,Xk+1] we have

S,(X)=y; +m; (x=x )+ (x=x) +d; (x=x,) - (4.128)

We will require that S,(x,,) = f(x.,,) and S;(X,,,)=m, ,,K=0,n—2. Then,

for the coefficients C, ,dk we obtain

m. V. m. V- O:
¢ =—1=1 Loy h i+v—_' +v, (4.129)
"2 (h B 2(h h|h
. m:
d; =Y_I—_2|(mi + ;1 ~(Yia Vi )j (4.130)

So far as the equality S5(X..,; —0)=S;(X,,; +0) should be implemented in the

point X;,; we obtain the equality ¢, +d, =C,4 or

1 (hk + ﬁk 1 'Yk j 1
— M+ =t te= Mg+ ——— M2 =
Yk hk hk hk hk+1 hk+1

—p2k g Okl (4.131)

hi hea + i |

In the periodic case K =0,n—2, at this my=m,; m, =m,.,; hy=h,,h,,=h,
that we have the system of equations from n unknown m;,m,,...,m,.

m,, M, are known in the case of boundary conditions (4.111), thau, the system
(4.123) contains (n—1) the equation with (N —1) unknowns. For the boundary conditions

(4.131) we have
2c, =A,,2c, ,+2d,,=B,.

For the boundary conditions (4.125):
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h h

k-1 k

In the periodic case the system of equations (4.131) relatively to m, takes the form
Ukmk_1+(Uk + Vi +1)mk +kak+1=gk;k:1,_n. (4.133)
My =My, My, =m; h,=hy,h, =h,.

For the boundary conditions (4.123) the system of equations takes the form
Am=(g, (4.134)

m:[ml’mZ""’mn—l];
9= [gl _LTlan 192:031-0n2:9n _Vn—lbn]- (4.135)

For the boundary conditions (4.124) the system of equations takes the form

h, h -
(Z—h—oJmo+h—0”‘1=200—A1(ho—ho)?

0 0
Ukmk_1+(LTk +Vk +2)mk +Vkmk+1:gk; k=1,_n; (4136)
1 h,_, +h, -
—mn_l + n-1 n-1 — ZGn_l + Bnhn_l.
Vn-1 n-1

The Least Squares Method

The minimization of the criterion (4.104) is the determination of the estimates of the

parameters by, k =1,m and a;, I =1,n, and it is implemented by solving the system of

linear algebraic equations

( (r— N d yk— | N | .
J bek Za xk}:Zykxk, | =0,m;
i=1

9 o R | (4.137)
m . n d'yk d yk N d yk -

3 biXI o a i = y ) IZ N,
; k Z 1 dt dt’ Z K dt’

i=1
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Let us denote

N - N dly -
_ k :
C:[b,a] , € ZzkaLl, | =0,m; ¢ :Zykw, |=0,n; (4.138)
k=1 k=1
N -
d,=N,d;, =d ;=D xx.1=0m
11 ’ J,I I,J k kl 1 ’
k=1
N ! - L
| =Z {k X ;1=0m, j=0,n; (4.139)
 dt
N d'y _ L
K i1
d|+mJ:Z—IX|i ,IZ ,mn; J=0,m;
a dt
N djy d'y L L
iy jin = ==K 1=0,n; j=0,n
I+m,j+n é dt] dt| J
Then, the system of linear algebraic equations for determining the unknown
parameters b, , K =1,m and a;, | =1,n, has the “classic” form
Dc=e. (4.140)

The example. The definition of the nonlinearity automated electric drive
In order to control the stability and accuracy of the automated electric drive it is
necessary to determine the size and asymmetry of the dead zone, the slope and the levels of

saturation of the nonlinear dependence of the rotational speed of the output shaft of the
system on the voltage U, at the shaft of the armature of the DC motor in the reverse mode,
viz the speed of transition from —.., to +Q.., [38]. The differential equation
corresponds to dynamics of this process:

d’Q(t) _ dQ(t)
e M

where U, changes at the interval from —U 5 to +U 4, it is stepwise:

ua(t)zuma{_uizil(_km)},

q/

+Q(t)=f[Uy(t)], (4.141)
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1,t > kAt;

where q =16; 1(t) = {O AL

The values of parameters a,,a, are unknown. The parameters of testing impact are
equal to U =120B, At=Ic. The initial condition: (0) =€, =-300 rad/s,
dQ(0)/dt =0.

In order to model the process, let us take the nonlinear dependence as

Q[U, () |=3[U,(t)]-60sin(0,065U,(t)),
that corresponds to the condition of smoothness of dependence with dead zones and
saturation zones. The measurements of the output signal of the drive are executed with the
step At=1c at N =200, q=16.

So far as the measurements of the output variable are performed under the influence of
interference measurements, for the process modeling we impose a 10% error of
measurements in the form of “white noise”, that is the random normal process with zero
mean and unit variance.

The process modeling includes the following steps:

1. Smoothing of the input U, (t) and output y,, k=1,N values that are

measured.
2. Sorting the values U 4 (t) in the order of their increasingness.
3. The interpolation of the values using the interpolation splines.
4, The determination of the values tkj that correspond to the uniform change

U, (tk ) with the constant step AU .
5. The calculation of the values y( Uy ) and derivatives of the first and the second

order from these values (the finite differences).
6. The minimization of the functional (4.96) by composing and solving the

systems of the equations (4.140).
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The simulation of the process of determination of the static nonlinearity is performed
for several values m in order to define the optimal order of the polynomial

dependence of the static nonlinearity on the input influence. In the fig. 4.7 we see that

the optimal value is m =5. The mean square error is €, = 26,72.

approx. on MNK -- driver
400 ! ‘ \

300 -

200 -

-100 -
-200 -

300k 4

-400 i i I i 1
-150 -100 -50 0 50 100 150

Fig. 4.7. The estimation of the nonlinearity for m = 2,3,4,5 by LSM.

Let us solve the same task applying the method of compensation of dynamics of the
control object.

The first three steps are the same. Having performed the steps 4 and 5, viz the the
definition of time intervals that correspond to the constant increment of the values of the
testing signal and determination of the values of the output signal that correspond to the

value of time tkj , instead of the step 5 we do

7. The minimization at 3,,B, of the functional (4.99) in this form

mind o, = minkz %r((tt;)
=1
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provides the estimates Bl =0,0196, ﬁz =(,000134. Then, the sought nonlinearity is

defined as follows:

2
f Ua(t)=y(t)-0,0196¥—0,000134°I y(®

dt?

Approximation on OMNK
400 T T T T T

300 -

200

100 -

-400 | i | i |
-150 -100 -50 0 50 100 150

Fig. 4.8. The estimation of the static nonlinearity by the method of

compensation of dynamics for r =1,2 and r =3.

The results of modeling for r =1,2,3 are represented in the fig. 4.8.
The final error is the least for r =2 and is equal to &€, =3,067 , that is less than

0,5%.

Chapter 5. Constructing of the Models of the Deterministic Processes, the

Measurements of which are Perturbated by Random Interferences

5.1. Modeling, Identification and Forecasting of Economy Performance
by Methods of the Simplified Confluent Analysis
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The indicators of the economy (power industry, etc) as a function of time may have
the most diverse structure, longitude of a range, accuracy, the type of hidden conformity of
development (change) in time, the step in time, the interval of the forecast, etc [26].

The elements that make up the model of time series can be analytic functions of time

t (degree: t) , —o0< j<oo; periodic trigonometric: Sin(mt + (p); combined:
sin’ (oot + (p) and other exactly given functions: f (t)) or suspended in the time t values

of the series y(t) (y(t —T),O <T <t,, where t, - the finite value of time). As a rule,

the time T, represented by the discretes t , k=0,1,2,..., is not always the uniform step.

If the structure of the model of series is unknown, we can choose the best structure
from the different variants of structures constructed on these elements (according to the
main criterion | (the criterion of the accuracy of forecast)). The models with the
exponential elements are generally better used for the short series and the autoregressive
models are used — for the long ones (where the uncertainty does not influence much on the
initial conditions).

Let us represent the index | of the forecasting accuracy (which is physically realized)

as the weighted sum of the partial indexes I; (i = 1,2,3) that are responsible for the quality

of individual properties of the model of the series. The index I,

, =L (5.1)

where B}, B and B; - are the estimates of i parameters of the model, that are received by
sorting even, odd, and all discrete k of the time t, ; it is so called the parametric index of
regularity.

The index 1, :

I, =(8T8>'(XTX)_1, (5.2)
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where g(K) - is an error of approximation of signal X(k) by the corresponding model in

the k point of series; it is the signal indicator of the unbiasedness or the accuracy of the
series simulated by the model.

The index I5:

L
> i [X(M =i)- XM —i)|
l,=-K|, K=—= - . (5.3)
i [xM =)D i [RM —i)|
i=1 i=1

Here n; - is the coefficient of distribution of the desired accuracy of forecast by the L

L L
last points of sampling x(k), k=1,M, Zni =1; X(M —1i) - is a predictive value

i=1

(M —1), received from the model that is constructed on a shortened L of the last points of

the sample K =1,M — L.
Since it is considered that the estimated number X(K) consists of the hidden

determinate component which is smoothed in time and the random component that is close

to the Gaussian “white noise”, then, in the variation series of models that are ordered by

complexity (the dimensionality of the vector  of unknown parameters), the indexes I,
and |, restrict the dimensionality n of the vector [3, while the index I, decreases with the

increasing n. Depending on the purpose of identification the coefficients of the weight g;

of the weighted sum of these three indicators vary:
3
i i=1

For the task of the control of parameters B; of the model of the known structure, the
maximum weight is g, ; for the task of the accurate approximation of series X(K) by the

model X(K), the maximum weight is g,; for the forecasting task, the maximum weight is
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0,. The set of indexes 1, I,, |, provides the compromise between the stability of the

model’s estimates, the accuracy g'e of approximation and the accuracy of forecast.
As an example of the real time series that have 43 discretes X(K) with a uniform step

At =4 months (one of the indexes in power industry of Ukraine), the fig. 5.1. and the

table. 5.1., let us consider the solution of the forecasting task X(k), k =1,37 for the last
6 points, taking them as unknown. This formulation of the problem makes it possible to
implement the objective index | of relative accuracy of the forecast for these 6 points that
was physically unimplemented in the forecast for the future:

_ [£(38),.,£(43)]- [6(38),.... 6(43)[
[X(38),..., x(43)]- [x(38),..., x(43)[

(5.5)

viz the relative mean square deviation &(k)=X(k)—x(k), k=38,43, of the

: - L 1 1
forecasting values X(K) from the known X(K). In the criterion we have n; = s

50000 [

40000

30000

20000

10000 o i

Fig. 5.1. The time series of one economic indicator in the energy sector of

Ukraine.
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The weight coefficients in the generalized criterion (5.4) are g, =0,9; g, =0,4;

g,=0,4.

Table 5.1
The dependence X(K) on k

k X k X k X k X
1 10550 12 13600 23 59250 34 57800
2 47070 13 14550 24 16850 35 49630
3 47350 14 49900 25 17830 36 18780
4 11500 15 56750 26 54800 37 16000
5 10900 16 16050 27 50700 38 53950
6 54700 17 14680 28 14150 39 57500
7 50000 18 59300 29 13550 40 22000
8 14320 19 57700 30 47430 41 19650
9 12900 20 15500 31 56350 42 59900
10 51650 21 13350 32 19450 43 57550
11 50740 22 55600 33 17600

The mean value of series is 35100, the mean square deviation of series from the mean
Is 19550, the coefficient of variation is 0,55. The various mathematical models were
associated with the series that are represented in the table 5.1.

1) the models as a different order of the degree polynomial from t, viz from the

discretes k of time:

)A((k) - Bo + Blk’ (5.6)
(k) = Bo + Bk + Bk, (5.7)
)A((k) - Bo +B1k +B2k2 "‘Bekg’ (5.8)
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1 1 1 3

R(K) =By +Bk* + B,k +B,k2 +B,k?, (5.9)
X(K) =B, +B,K+B, k™ +Bk, (5.10)
2) the autoregressive model from k with the constant and variable step:
X(k) =B, +Bx(k —1), (5.11)
X(K) =By +BX(K—1D +B,x(k —2), (5.12)
X(K) =By + B X(K—1)+B,x(k —2) + Bx(k —3), (5.13)
X(K) =B, + B, x(k —4), (5.14)
X(K) =By + B x(K —1) +B,X(K—2) +Byx(k —=3)+B,x(k—4), (5.15)
X(K) =By +Bx(k =1 +B,x(k—4), (5.16)
X(K) =By + B x(K =)+ B,x(k —4) +Byx(k —8), (5.17)
3) the combined polynomial autoregressive models:
R(K) =B + Bk +B,x(k-1), (5.18)
X(K) =B + B,k +B,x(k—4), (5.19)
R(K) =By + Bk + B,oX(k —1) + Bsx(k —4). (5.20)

The efficiency of application of the physically realizable criterion (5.4) in terms of its
proximity to the physically unrealizable criterion (5.5) was tested at a set of structures
(5.6) ~ (5.20) of the models of time series (table 5.1.) and a set of methods (LSM, GLSM,
ILSM, ) that were suggested in the previous chapter for the forecasting tasks. Here, the
efficiency should be read as a right choice of the best method by the criterion (5.5) that is
selected by the criterion (5.4).

The results of numerical simulation are represented in the table .2., where 15 lines of
the table represent:

in columns

1 —the types of models (degree (5.6)-(5.10), autoregressive (5.11)-(5.17), combined
(5.18)-(5.20));

2 —the relative mean-square error of simulation of series by corresponding model in

its k =1,37 identification by LSM;
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3 —the physically unrealizable ideal criterion (5.5) by LSM;

4 —the physically realizable criterion (5.4) in the identification of the model by LSM;

5 —the best (by criterion (5.4)) method of identification for the model that
corresponds to the row;

6 —the value of the ideal criterion (5.5) for chosen by real criterion (5.4) for the
appropriate method to model line;

7 — the value of the criterion (5.4) for the best method of identification, chosen with
its help for appropriate to row model,;

8 —the best method of identification the appropriate to row model, chosen by the ideal
criterion (5.5);

9 —the value of the ideal criterion (5.5) for the best method of identification the model
of appropriate row, chosen by this criterion;

10 —the value of the real criterion (5.4) for the best method of identification of model

the appropriate row, chosen by this criterion (5.5).

Table 5.2.
The results of modeling

Ne |1 2 3 4 5 6 7 8 9 10 11
1 |56 049 [047 [025 |GLSM [041 |0242 |[MAV |0,2363 |026 |[1,3
2 |57 0,484 | 0593 [0,26 |[ILSM |0,415 | 0,223 |[ILSM |0,415 |0,223 | 1,43
3 |58 0,476 |0,883 [0,41 |[ILSM [0,38 |02 ILSM [0,38 |02 2,32
4 |59 0,485 | 0,593 | 0,27 GLSM | 0,43 0,226 | ILSM | 0,365 | 0,235 | 1,62
5 |510 |0488 [049 [025 |ILSM |045 |0,23 |GLSM |0,425 |0,237 |1,15
6 |511 [049 [0435 |[024 |GLSM |042 |0,235 |GLSM |0,415 [0,235 | 1,05
7 |5.12 0,62 0,58 0,28 GLSM | 0,56 0,262 | GLSM | 0,558 | 0,262 | 1,04
8 |513 |0,123 |0,143 [ 0,04 |LSM 0,143 | 0,04 |MAV |0,096 |0,048 | 1,49
9 |514 [0,133 (01 0,03 |LSM 0,1 0,03 |MAV |0,088 |0,126 |1,13
10 | 5.15 0,113 | 0,122 | 0,037 | MAV 0,092 | 0,03 MAV | 0,092 | 0,03 1,33
11 [5.16 [0,131 |0,103 {0,034 | MAV  |0,091 |0,031 | MAV |0,091 |0,031 |1,13
12 | 5.17 [0,087 |0,092 {0,015 | MAV |0,063 | 0,011 | MAV |0,063 |0,011 |1,46
13 [5.18 [0,488 |047 |0,245 |MAV |0,489 |0,225 [GLSM |0,411 |0,237 | 1,14
14 | 5.19 0,132 | 0,108 | 0,035 |LSM 0,108 | 0,035 | MAV 0,081 |0,038 |1,33
15 520 0,131 [0,111 |[0,036 |LSM 0,111 [0,037 |LSM |0,111 [0,037 |1
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Let us analyze the results of calculations:

The autoregressive model (5.17) with the variable delay at k-1, k-4 and k-8 steps is
the best one by the ideal criterion (5.5) at a set of 15 structures and 4 methods of
identification for specific row (table 5.1); the best method is MAV. The same result is
obtained by the real criterion (5.4).

Generally, the optimal method of identification by the real criterion (5.4) was
selected correctly (rows 2, 3, 6, 7, 10, 11, 12, 15, the table 5.2) in 8 of 15 considered cases,
viz it coincided with the method selected by the ideal criterion. In other 7 cases (rows 1, 4,
5, 8, 9, 13, 14) the ideal index (5.5) for the method, selected by the real index (5.4), is

slightly worse than this index for the optimal method by the ideal index (columns 6,9,

fig. 5.2).

0.5 ~ ~ /.

0.4 - - £ =

N
Pzl

0 0.1 0.2 0.3 0.4 0.5 II\

Fig. 5.2. The dependence of the ideal index |~ (5.5), obtained for the optimal method
of identification on the same index for the optimal method of identification by the real

index | .

The conclusion that there is a strong correlation of indexes (5.4) and (5.5) and, as a
consequence, the possibility of the effective application of the physically realizable
criterion (5.4) clearly follows from the fig. 5.2.

With the complication of the models (5.6) (5.7) (5.8), that are degree series, the index
(5.2) (the column 2 of the table 5.2) of the mean square error of approximation of the
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series (the table 5.1) by models (5.6)+(5.8) decreases. It follows from the first Weierstrass
theorem [11] on the approximation by degree polynomials (Taylor series).

At the same time the ideal criterion (4.5) of the forecasting accuracy at the
complication of models worsens (rows 1,2,3 of the third column in the table 5.2). This
confirms the biased nature of the internal approximative criterion (5.2) and the
incorrectness of its application for the task of forecast.

Another situation occurs for autoregressive and mixed autoregressive polynomial
models (5.11)+(5.20). Here due to the regularizing properties of the LSM, when variables
are noisy, the internal criterion (5.2) of the mean-square measure of the proximity in the
area of approximation and the external one, both ideal (5.5) and actual (5.4), criteria are

rather strongly correlated (the fig. 5.3).

J(5.2)

0.5

0.4

0.3

0.2

0.1

0 01 02 03 04 05 06 @5

Fig. 5.3. The regressive dependence J (5.2) on | (5.5).

In other words, the application of the approximative criterion (5.2) for this class of
models in the forecasting task to the points (38+43) at the noisy data in the points (1+37)
Is less critical. We have the self regularization here. The more complex is the
autoregression, the worse is the conditionality of the information matrix LSM for the
accurate data. But for the data, noisy by the uncorrelated obstacle, the diagonal elements
of this matrix increase and, as a result, the LSM-estimates of the coefficients of the model

reduced (by the module), thus simplifying the model (regularizing by Tikhonov [14]).
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Let us compare the value of ideal criterion (5.5) for the models, obtained by the LSM
(the column 3) and one of the proposed methods (the column 6), with the optimization at
the real criterion (5.4). The index (5.5) is slightly lower only for the model (5.18) from
these 15 models. Thus, only here the MAV was mistakenly selected by the criterion (5.4)
instead of the LSM. In other 14 cases the method, that was found at a condition of
minimum of the physically realizable criterion (5.4) of the forecast accuracy, gives better
results than the LSM or it gives the same results if in (5.4) the LSM was selected as the
best one (the columns 6 and 3 of the table 5.2).

Within the framework of one method of identification, for example, the MAV (the
column 6, the lines 10 + 13), the dispersion of the ideal criterion (5.5), depending on the
structure of the model, is from 0.063 to 0.489, that confirms the relevance of the choice of
the model’s structure.

Within the framework of one model (5.17), for example, optimal by the criterion
(5.5), the optimization of the solution at a set of four methods (LSM, MAV, GLSM,
ILSM) gives the gain of 1.5 times (0.092 - 0.063 for the LSM and 0,063 for the MAV, as
the best method).

In the large, the optimization at a set of methods and models gives significant gains in
the accuracy of forecast. Let us define this gain as the ratio criterion (5.5) for the model
with the coefficients that are determined by the LSM (the column 3, the table 5.2), to the
value of the same criterion (5.5) for the same model, with the coefficients that are defined
by the optimal (5.5) method (the column 9, the table 5.2). The column 11 of the table 5.2

represents the ratio that lies between 1 to 2.32. Upon the average it is 1.33.

5.2. The Numerical Modeling of the Task of Active Identification of the Parameters

of Discrete Dynamical Systems
The theoretical principles on the advantages of the method of active experiment with
the coordinate-wise optimization, discussed in the section 5.1, were also confirmed by the

numerical simulation that is considered below. As it is known, the continuous system
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X({t)=AX({t)+BU(t) that describes the dynamics of the real process (the

electromechanical object) at a set of the discretes of time t, , provided with the uniform
step At, can be displayed by the discrete system:

X (k +1) = AX (k) + BU k), Y (k) = X () + N(K), (5.21)

where k=1,M; X(k) - are the variables of the state, U(k) -are the control
influences; N(K) - are the errors of measurements of Y (k) of variable X (K). In the
example below X(K), Y(k), N(Kk)- are three-dimensional vector functions from k,
k =1,300; U (k) - are two-dimensional functions k; N(K) - the sequence of “white

noises”, the ratio of “noise — signal” is10%. The scalar form of the equation (5.21):
3 2
Xi (K +l)=Zaijxj(k)+Zb"u| k), 1=1,2,3 (5.22)
j=1 =1

The numerical value of the coefficients of the mathematical model (5.21) of the

electromechanical object is shown in the table 5.3.

Table 5.3.
The numerical value of the coefficients
4j oy
| =1 j=2 ] =3 =1 | =2
=1 -1,27 0,01 0,05 -1 0,8
=2 -0,34 -0,13 1 -0,01 -12,5
=3 -16 -3 0,18 -1 0

We should find the estimates of parameters &;, b”, (1=1,2,3, 1 =1,2) using the
integrated method of the least square (ILSM), the methods of synthesis of the optimal
testing signals Ul(k), U 2(k) and the technology of the coordinate-wise optimization of

the plan of experiment that were discussed in the section 4.3.
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The identification is performed row by row. But for each i-th row of the system

(5.22) the matrices of the second derivatives of the minimized functional are the same and

form the information matrix ILSM:
M :Z[FT(F_T+F+T)+(F_T+F+T)TF] (5.23)

where F - [300x5] is the matrix of the plan of experiment, F, . -is the same matrix,
shifted in time to the discrete k, k =1,2,3.
Each of the testing signals Ul(k) and U2(k) is defined as a sequence of two

heteropolar pulses of the same form. At this the first pulse on the time axis was fixed, but

the position of the last three pulses varied discretely. The dependence of the functionals

F i J =15 of the coordinate-wise optimization (4.46) on the number of the variant of the

plan of experiment (8 options are taken) is presented as an example in the fig. 5.4 for the

coefficients of the first row of the table 5.

Fig. 5.4. The graphs of the change of functionals F j of the coordinate-wise

optimization on the number k of the plan of experiment.
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As it is shown in the figure, the maximums of the functionals of optimization Fij and

D-criterion [44], viz the normalized determinant of the matrix (5.23), are significantly
different for all i , except i = 1. This confirms the effectiveness of the algorithm of the

coordinate-wise optimization.

A

The estimates of the parameters a:; biI of the model (5.22) are shown in the table

1
5.4. They are obtained by the ILSM using the results of the experiment which is optimal

by D-criterion. Let us compare these estimates with the true values of the coefficients aj »

biI (the table 5.3). As it follows from the comparison, the optimality by D-criterion does

not guarantee the equivalence on accuracy for each of the ratios.

Table 5.4
The numerical values of the estimates of the coefficients for the optimal plan

by D-criterion

élij b,
j=1 j=2 j =3 =1 | =2
i=1 -1,38 0,007 0,063 -0,99 0,83
=2 -0,3 -0,17 0,93 -0,011 -12,52
i=3 -16,24 -3,63 0,179 -1,04 0,0014

The estimates of the coefficients a,,,8,,,8,5,8,,,8,,,8,5, 85,,0;,are significantly

different.
The estimates of the parameters of the model (5.22), obtained by the ILSM as the

results of the active experiment on using the coordinate-wise optimization procedure are

A

represented in the table 5.5. These estimates &;;, b, are the best approximated to the

1
precise (table 5.3) values of the coefficients.
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Table 5.5
The numerical value of the estimates of the coefficients for the plan of

coordinate-wise optimization

élij b,
j=1 j=2 j =3 | =1 =2
i=1 -1,28 0,008 0,052 -0,99 0,83
=2 -0,32 -0,14 0,99 -0,011 -12,52
i=3 -15,8 -3,28 0,1804 -1,03 0,0013

Several algorithms have been tested when optimizing the information matrix M
(5.23) by the methods of nonlinear programming. The working of the gradient algorithm
with simultaneously descent in all directions and the constant step is presented in the
tables 5.6, 5.7. The same algorithm is presented in the table 5.8, but the length of step
changes when the sign gradient changes. The table 5.9 presents the working of the
algorithm with the constant small step in all directions.

The same algorithm is presented in the table 5.10, but with the shifting of the initial
conditions for one of the coordinates. The convergence to the local extremum is obvious.
If we substantially change the initial conditions in the same coordinate, then there will be
the convergence to another local extremum (the table 5.12). The algorithm of the gradient
descent is presented in the table 5.13. The working of the gradient algorithm is illustrated

in the table 5.14, where the length of step is taken as a proportion to the gradient with the

integrated limit Q(X)=XTX. The working of the gradient algorithm of the minimization of

n
criterion coordinate-wise in the form @, = /Zaﬁ for maximum (the table 5.15) and
j=1

minimum (the table 5.16) diagonal elements of the matrix M (5.23) is represented in the
tables 5.15 and 5.16.

The results of the simulation of the gradient algorithms of optimization of the plan of
experiment showed the efficiency of the gradient procedures. For further practical

application it is reasonable to use the algorithm with the simultaneous descent in all
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directions with the small constant step of descent. However, it is necessary to take into

account the possible multiexperimentality of the functional. In order to find the global

extremum we should carry out the gradient process several times with the different initial

conditions.
The optimization of the determinant of the information matrix
for different initial conditions
Ne Gradients Control Det (M)
Vi V, Vs k2 Ka
1 2 3 4 5 6 7 8
1 0,0567 0,0341 0,0522 100 50 200 0,96
2 0,1702 0,1268 0,1304 88 38 188 3,67
3 0,2610 0,0648 0,1628 76 26 176 10,17
4 0,3110 0,2027 0,2587 64 14 164 16,05
5 -0,2111 0,4469 0,1051 52 2 152 20,21

Table 5.6

Remark: 1. The algorithm is stopped due to the approximation of the moment of the

pulse delivery before starting the counting time; 2. The step of the algorithm is A=12.

1 2 3 4 5 6 7 8

1 0,0556 0,0424 0,0530 100 150 200 0,74
2 0,1189 0,1118 0,0976 88 138 188 2,16
3 0,1721 0,0880 0,1083 76 126 176 5,16
4 0,2496 0,1994 0,2089 64 114 164 8,571
5 0,4569 0,2179 0,0068 52 102 152 9,43

162

Table 5.7
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Ne Gradients Control Det
V, Vs, V3 ka ks Ka (M)
1 -0,0031 -0,0059 0,0117 (150 50 180 0,221
2 0,6150 -0,0700 0,0865 (162 62 168 1,789
3 0,2020 0,1567 0,0485 [156 74 156 4,354
4 0,1548 -0,0269 0,1320 (150 68 144 4,425
S) 0,0805 -0,2831 -0,0888 (144 71 132 4,611
6 -0,2769 -0,2932 0,0875 (138 74 138 5,450
7 -0,0070 -0,0331 0,0244 141 77 135 5,743
Table 5.9
Ne Gradients Control Det (M)
' \'Z Vs ko ks Ky
1 -9,271 5,980 -5,511 80 50 150 4,679
2 -8,829 6,707 -7,953 82 48 152 5,443
3 -7,962 7,708 -11,26 84 46 154 6,366
4 -6,216 8,931 -14,81 86 44 156 7,389
5 -3,083 10,325 -19,29 88 42 158 8,440
6 2,022 11,855 -24,45 90 40 160 9,322
7 -0,104 11,730 -29,16 89 38 162 12,32
8 4,359 11,851 -33,95 90 36 164 13,88
9 1,379 9,683 -37,23 87 32 166 17,19
10 -7,088 5,565 -39,01 87 32 166 21,61
11 -2,009 2,709 -39,98 88 30 170 22,68
12 10,768 -0,216 -12,48 90 28 172 24,98
Table 5.10
Ne Gradients Control Det (M)
A Vy Vs k2 ks Ka
1 14,919 11,328 -12,94 100 50 150 0,532
2 9,335 8,416 -10,144 98 48 152 1,120
3 8,479 9,184 -12,180 96 46 154 2,170
4 7,548 10,442 -15,618 94 44 156 3,834
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S) 5,552 11,480 -19,849 92 42 158 6,211

6 2,022 11,855 -24,444 90 40 160 9,322

7 -3,208 11,252 -28,978 88 38 162 13,09

8 0,564 11,197 -33,632 89 36 164 14,76

9 -2,855 9,977 -36,938 88 34 166 18,16

10 8,322 7,118 -39,551 89 32 168 19,48

11 -2,009 2,709 -39,983 88 30 170 22,68

12 4,487 -1,057 -39,169 89 28 172 23,22

13 2,132 3,100 -36,107 88 29 174 23,41

Ne Gradients Control Det (M)
2 V5 V3 k> ks Ks

1 -2,615 1,559 1,452 160 50 200 0,523

2 -3,439 1,646 1,514 162 48 198 0,714

3 -5,011 2,057 1,786 164 46 196 1,09

4 -7,485 2,685 2,114 166 44 194 1,78

5 -10,92 3,428 2,334 168 42 192 2,83

6 -15,25 4,128 2,207 170 40 190 4,35

7 -20,30 4577 1,471 172 38 188 6,37

8 -25,30 4,539 -0,121 174 36 186 8,89

9 -28,94 4,253 2,037 176 34 187 10,23

10 -32,39 3,114 1,263 178 32 186 12,62

11 -34,37 0,866 -2,306 180 30 184 15,60

12 -34,01 -1,32 0,964 182 28 185 16,62

13 -29,58 1,925 0,164 184 29 184 16,84

14 -23,78 0,317 -5,117 186 28 182 17,47

Ne Gradients Control Det (M)
V, Vs, V3 ko ks Ks

1 14,919 11,328 -12,940 100 50 150 0,536

2 4,114 5,283 -5,681 96 50 150 0,957
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3 0,967 4,836 -4,988 92 50 150 1,593
4 -2,064 5,051 -5,025 88 50 150 2,435
5 -2,563 6,242 -7,423 88 46 150 3,721
6 -3,344 6,652 -10,304 88 42 150 5,559
7 4,499 5,500 -13,337 88 38 150 8,007
8 -6,071 2,331 -16,991 88 34 150 11,01
9 -8,036 -2,769 -18,621 88 30 150 14,39
10 -8,084 -2,548 -25,424 88 30 154 16,85
11 -7,642 -2,010 -31,784 88 30 158 19,08
12 -6,674 -1,082 -36,878 88 30 162 20,903
13 -4,927 0,382 -39,883 88 30 166 22,13

The optimization of the trace of the information matrix

Gradients Control Det (M)
No Vi V, V3 k ks Ka
1 -0,132 0,332 0,139 100 50 150 39,34
2 -0,090 0,257 0,174 102 44 148 42,84
3 -0,047 0,176 0,203 103 39 145 45,44
4 -0,020 0,120 0,242 103 36 141 47,85
5 0,007 0,078 0,279 103 34 137 49,32
6 0,042 0,055 0,314 103 33 132 51,66
7 0,106 0,045 0,330 103 32 126 54,67
8 0,165 0,096 0,337 101 32 120 58,10
9 0,224 0,148 0,339 98 31 114 62,23
10 0,269 0,188 0,340 94 29 108 67,31
11 0,280 0,206 0,339 89 26 102 73,37
12 0,268 0,182 0,317 84 22 96 79,62
13 0,207 0,200 0,246 79 19 90 84,86
14 0,148 0,141 0,213 75 15 86 88,35
15 0,137 0,138 0,116 73 13 82 90,19
16 0,098 0,112 0,088 71 11 80 91,23
17 0,098 0,112 0,088 71 11 80 91,23
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Ne Gradients Control Det (M)
V, V; Vs ko ks Ks
1 0,018 -0,003 0,014 160 40 180 0,757
2 1,048 -0,006 0,019 162 38 182 1,102
3 0,089 -0,006 0,022 164 36 184 1,562
4 0,146 -0,004 0,016 166 34 186 2,132
5 0,218 -0,010 -0,004 168 32 188 2,769
6 0,267 -0,002 0,003 170 30 187 2,718
1 0,041 0,002 -0,038 100 3 150 8,006
2 0,006 0,001 -0,005 102 32 148 9,123
3 0,006 0,001 -0,004 104 34 146 10,084
4 0,005 0,001 -0,002 106 36 144 10,809
5 0,003 0,001 -0,001 108 38 142 11,242
6 0,000 0,000 -0,001 110 40 140 11,357

Table 5.14

Table 5.15

The surface of the functional J = detM, as a function of the other two control actions (

A, and A, -are the displacement of the control pulses in time) is shown in the fig. 5.5 for

166



clarity at a fixed value of the third control action. The surface has the multimodal

character: the largest maximum detM =12 takes place at the origin of coordinates (A, =0
and A, = 2), next the local maximum detM =12 for A, =4,5 and A, =2, then we have
the less extremum detM =1 for A, =7, A, =1. As it follows from the fig. 5.5, at
A,(0) < 2.8, the algorithm (4.66) leads to the first maximum; at 2.8 <A,(0) <5.8 it

leads to the second one; at A;(0)>5.8 it leads to the third maximum. Therefore, in

general, the problem of optimization of the index (4.46) or D-criterion should be

performed for different initial conditions.

Det(M)
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o
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Fig. 5.5 The dependence detM on A, and A, at A, = const.

Chapter 6. The Unity and Difference of the Signal and Parametric Identification
of Real Objects [26]
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The emergence of the theory of identification as a mathematical formalization of
cause-and-effect relationship in the objects of the real world has a long history. The peak
of its development is the second half of the XXth century, the period of the emergence and
rapid development of means of computerization and the automation of experimental
researches. But now it cannot be said that this theory is finally formed and that its
application to the real-world objects is always correct [26]. According to the basic
categories of philosophy, real world is infinite dimensional, everything is interconnected

directly or indirectly. Conventionally, it can be represented by the equation

X, ="f,(X,). (6.1)
where X_ - is the infinity dimensional vector-function of the variables, XOO -is the speed
of change X in accordance with a function of total interrelation f_. By reason of the

total interrelation f_ is the component X; of the infinite dimensional vector function, the
system (6.1) is unstable (the matter and the motion are unified), and the total interrelation

f_ (even if it is sustainable) is unknowable.

6.1. The Statement of the Problem

On restricting the space-time area of the change X _ by the small area, only the
projection X to the finite number n of coordinates is considered [2]:
X =f(X), (6.2)
where X (t) - is n-dimensional vector-function of time, X -is its derivative in time t.

We proceed to the linear stationary model

AX = AAX + BAU, (6.3)

with the certain degree of accuracy €, continuing to narrow the area,
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where the significant variables of the real object, marked in the model (6.3), are divided
into causal U and consequential X and taken in the deviations AX, AU from any center
(Xo.Ug ) of the region G [35].

The model as an operator that connects the conditionally accepted inputs AU and

outputs AY of the object
AY =W - AU, (6.4)
where AY , AU and W may be the functions of time or Laplace’s complex variable.

The unaccounted subset (XOO — X) of variables of the real world determines the
proximity of the models (6.3) (6.4). The error € goes to zero only at narrowing the region
G to the point. But the ratio of “noise (X, — X )- signal AY (t)” infinitely increases.
Thus, the model (6.2) (6.3) (6.4) and the methods of their identification cannot to be
accurate: the fast (relatively X ,U ) variable components of the rejected subset, perceived
as a random process Nl(t) influence on the small samples; the boundary theorem of
Chebyshev does not work for the large samples because of the influence of the slow

variable components N, (t) of this subset, that contribute the non-stationarity into the

average characteristics of the random process (the process is not ergodic).

Then, from the variety of similar models the best one will be the model by means of
which the main objective,for which the model is determined, is achieved [9]. For example,
these objectives may be the optimal control, the forecast of the behavior or the control of
specific physical parameters of the object. According to the main objectives we distinguish

two fundamentally different approaches to the problem of identification.
The first approach is the signal identification, if for a given set of input signals U (t)
it is necessary to choose the mapping that is random by its structure U (t) in order that

any rate of the error ¢ is less than the desired A :

le]| < A. (6.5)
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Thus, the signal Y (t) is approximated with an accuracy to A in the basis of signals

U (t); i:l,_n that are converted by the operators W;. The second approach is the

parametric identification, if at a set of signals AX or AY it is necessary to define (for the
given point (X0 U, ,to) of these region) the structure and/or parameters of the matrices
A, B of the model (6.3) or the operator W of the model (6.4), which would correspond to
the essential correlation of the variables of the real object. The signal identification must
be used for the goal orientation of the models to the tasks of control and forecast, the

parametric identification is used for the diagnosis and monitoring of specific, but not

directly measurable, parameters of the real object.

6.2. The Strategy of the Signal Identification and the Invariance of the Adaptive
Control (an Example of the First Approach)

Let us represent the model of the real object in the limited region as
AY =W -AU +W,-AF +W, - AN | (6.6)
where AF - is the vector of controlled perturbations, AN -is the vector of uncontrolled
perturbations, W W, W, - are corresponding operators.

It is necessary to construct the invariant optimal (in terms of the functional that is

quadratic by € and AU ) regulator:

AU (1) =W, (e(t,p)), (6.7)
where [ is the unknown vector of parameters of the operators W and W, of the model
(6.6).

The error in (6.7) is equal to
e(t)=AY"(t)-AY (1), (6.8)

where AY” (t) - is the desired optimal trajectory of the motion of the aircraft (AC).

The operator Wp of regulator is linear in the absence of restrictions
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AU (t) =W, -&(t) +Wp, - AF(t). (6.9)
Substituting the control (6.9) into the model (6.6), we obtain the expression for the

closed system:

AY (t)=
= (W W+ 1) W W AY () + (W W, +W, ) AF (1) +W,-AN(1) ] (6.10)

The condition of the invariance of its access to the controlled perturbation AF (t):

Wy, =W W, (6.11)
where W and W, are the unknown operators of the model (6.6) of the object.
In order to indentify these operators W and W, , let us consider the model:
AY =W (B)- AU +W, (B)- AF . (6.12)

The vector [§ of parameters of the model (6.12) is estimated from the conditions of

the minimum of some index | of the proximity AY (t) and AYA(t):
| ([3) = HAY (t)— AY (B,t)H. (6.13)

In this case we have the signal identification: the faster is determined the vector ﬁ of
parameter of the operator W i V\A/1 from the conditions of the minimum | and the wider
is the basis approximating functions AY , the closer are AY to AY . Thus, the impact of
the uncontrolled slow perturbations N, (t) is indirectly compensated (due to the

operational adjustment Q).

In the asymptotic behavior the system has the invariance [9] to change the parameters
of the object, and controlled AF and uncontrolled low frequency perturbations. The high

frequency component N, of the perturbations is usually smoothed by the nature of the

object, and influences on the minimal time of the identification of the model. The

complexity of the model’s structure (6.12) can adapt to the pace of nonstationarity of
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characteristics of the random process N (t) It is appropriate to apply the orthogonal basis

or the nonius approach [35] in order to adapt the base dimensionality to the non-
stationarity.

The simple nonstationary model, where A(t) changes in the rate of processes,

providing the proximity AY to AY of the object (the parametric feedback) and the
hypothetical complex stationary model (6.1) are theoretically extreme in the series of
complexity. There are the quasi-stationary models (6.12), the complications of which
should help to improve the accuracy in terms of the index (6.13) and quasi-stationarity of
the vector ﬁ of their parameters and, consequently, the degrees of optimality of the
controlled object. In this case the account of the physical processes in the object is not
required. The estimate f% may not have the physical meaning. The strict convexity and the

unimodality of the index (6.13), as a function, is not required either.

6.3. The Strategy of Parametric Identification (an Example of the Second

Approach the Evaluation of the Aerodynamic Coefficients f% of the Aircraft)

When selecting the structure of non-linearity in the model (6.12), the matrices A, B

in the model (6.13) or the operator W in the model (6.14), it is necessary to take into
account the “physics” of processes in AC. The models (6.13) and (6.14) are the
linearization of the model (6.12). The linearization is allowed through the smoothness of

nonlinearity f (in nature, due to the power of systems, the ideal jJumps are absent).
It is necessary to ensure the strict convexity of the index (6.13) and, if it is possible,

the autonomy for the unaccounted subsets (Xw - X ) of the variables by special planning

of the nature experiment in order to obtain the unambiguous and objective estimate B of

the physical parameters B of the object, for example, AC. It is also desirable that the

estimate ﬁ linearly goes into the expression of the mistake (6.18) and n of its components
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are the coefficients at the linearly independent functions of the sensitivity of error (6.8) on

A

B
For this purpose we take the minimum of the left and the right sides of the

incoherence of each row of the equation (6.13) instead of the minimization of the index

(6.13) as the difference of outputs of the object and the model. Then the estimation ﬁ IS

reduced to the one-step solution of the minimization problem of the strictly convex
quadratic indicators. The estimation is single, and at the relevant approaches [35], it is
statistically unbiased and effective.

However, there is its displacement due to the proximity of the models (6.12), (6.13),

(6.14). The proximity tends to zero if the region G of the change of variables collapses to

the point (XO,UO,tO). With the decrease of AX, AU, the ratio of “noise — signal

AX (t) increases. This leads to the loss of effectiveness of the estimate B The method

that allows getting the accurate and unbiased estimate at the point (XO,UO,tO) IS

proposed in [37].

In order to do this it is required to accomplish the sequence of similar (but of diverse
deviations’ amplitude Ax) active experiments at the object, each of which provides the
convexity of the index (6.13) for the linear basis of the model. The sufficiently effective

estimates, shifted as a result of ignoring the nonlinearity, are found. The unbiased estimate

is determined using the regression dependence, that is constructed for each f; at a set of

amplitudes |AX || and taken at the point where |AX || is zero.

Test example. The accurate nonlinear model:

3

y(k)=ij(k)+ > xj(K)xg(K), (6.14)

j.a=1.j=q
with single coefficients for four samples of different amplitude is approximated by its
linear part for those signals

K (K) = Xpax ()sin [n

. k-1
1), X, (K) = xmax(l)sm(Zn v 1),
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k-1 —
k)= I 2 k=1,M,1=14. 6.15
X5 (K) = Xy ( )cos( Ly 1) (6.15)

The estimates ﬁj ,(J =1,2,3) are counted by the least square method (LSM). Here
the index (6.13) of the -error of approximation by the linear model
y(k):lel(k)+[§zxz(k)+[§3x3(k) was by 2 orders less than the magnitude of the

similar norm ||Ay||. Thus, the approximation problem is solved on rather high quality level

in the sense of (6.13). But the coefficients ﬁi are significantly shifted.

Fig. 6.1. The dependence AB(Xay)-

The linear regression dependences of the shifts AB; (j = 1,2,3) from Xmax (1), (I =

1,2,3,4), agree at zero amplitude X5 10 zero; the estimates Bj coincide with true 3; =1

, respectively.

If we take the complete model (6.14), then, with Tikhonov’s regularization (the index
(6.16) of the LSM-estimation of coefficients of the complete model (6.14) ) we obtain the
near-zero index (6.13), because the convexity of the index (6.13) is not strict, as a function

B.

The regularized index
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| (B.0) =AY () ~AY B0+

where o is the parameter of regularization, Bapr - Is the vector of parameters, given

H | (6.16)

apriori.

Here the near-zero meaning (6.13) is achieved at a variety of meanings Bapr. The

estimate B Is close to Bapr, and not to the actual unit.

To be more illustrative, we consider the two-dimensional problem when the object

and the model are isomorphic
y(k) =B (K) +B,x, (k). (6.17)

Here X, (K) and X, (K) are strongly correlated. Therefore, the functional (6.13) (the

A

dashed lines in fig. 6.2) as a function [, is strongly convex for the first and the third

quadrants of the plane ([31,[32) and slightly curved (the “furrow”) for the second and the

fourth quadrants.

\_ ‘bk '.‘

-~ —-(no;l |
Bxp S\

e St l( l

Fig. 6.2. The exact value 3 and its estimate [3 obtained from the condition of
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minimum of the functional (6.16) for the various aprior meanings Bapr.

The regularizing one-in-ten addition «|4- 4,

of the functional (6.16) (the circles in

the fig.6.2) is strongly convex and, consequently, makes the functional (6.16) convex.

The process of minimization of the functional (6.16) is shown by the arrows, the
aprior estimate [§ is obtained from the aprior estimate B, as result of the process of

minimization.

Table 6.3.
Papr [31 Bapr ﬁz HAY (t) —AYA(t
[aY ®]

1 1 1 1 0

-1 0.904 -1 0.904 0.0091
-2 0.857 -2 0.857 0.0091
-3 0.809 -3 0.809 0.036
2 1.048 2 1.048 0.0023
3 1.095 3 1.095 0.0091
1 19 -1 0.0015 0.0045
2 2.85 -2 -0.95 0.011
3 3.8 -3 -1.9 0.0226
-1 0.0015 1 1.9 0.0045
-2 -0.95 2 2.85 0.011
-3 -1.9 3 3.8 0.0226

As it follows from the table 6.3 and the fig. 6.2, the estimates ﬁ coincide with the

region that is close to the actual value, when B, is in the first and the third quadrants

(closer or farther on 3 depending on the distance B,y from the ). If By, is in the

second or the fourth quadrants, the estimates, as a result of minimization of the regularized
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functional (6.61), are not far away from the aprior ones and find the point of compromise

B_Bapr

between the increasing addition «

and the decreasing value of the norm
INTOEINT(R

At the same time the ratio of this norm to the similar norm |AY (t)||does not exceed
2.26%. Thus, the quality of the signal identification is high, while the parametric

identification is not correct: 3, goes away from Baprz in the opposite side from 3, in the

second quadrant, similarly, in the fourth quadrant ﬁl. In general, for n variables, the

function 1(B) (6.13) can have several “furrows” of minimal or even zero slope, which

complicates the task much.

The real example. The seven modes of the change of the handlebar of height, the
angle of attack a(t) and the angular velocity ®, (t) of the aircraft M-17 in the short-
periodic longitudinal motion are represented in the fig.6.3. It ensures the non-interaction
concerning the unaccounted multitude of variables (the lateral-directional motion is

absent, the velocity, the height, the configuration of the aircraft and other variables are

practically constant).

The complete model of the dependence @, (t) on 6, (1), a(t) and w, (1) is

similar to the model (6.14). The estimates of the coefficients Bj , ] =1,2,3., shifted due to

the approximation of the models, were determined in each from these seven modes. The
specific physical parameter was calculated using them: the distance between the center of

mass and the aerodynamic focus of the plane, normalized by the mean aerodynamic chord

of the wing, viz the reserve G, of the aperiodic stability at the vertical overload [39].
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Fig. 6.3. The oscillograms of the modes of the change of handlebar of height, the

angle of attack and the angular velocity.
Next the reserve was approximated by the linear dependence in the function |Ad(|
(the fig. 6.4):
&(|Aaf) =0,22-0,075]|Aal. (6.18)

=4 0:(0)

0.2
0.19 I
0.18
0.17

0.16

| Aol

0 1 2 3 4 3 6 7

Fig. 6.4. The dependence of the estimate G, on ||a|.
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The forecasting in |Aa/|=0 value G,(0) is in the region of the real value ,,. The

unbiased estimate is obtained by the linear approximation of the dependence (6.18) and the

calculation of its value at the point where the deviation is zero. The simple averaging of

the results will give the significantly shifted estimate (the underestimate) 6, = 0,188.

The further clarification 6, can be achieved by approximating the estimates 6,,(0) by

regression smooth dependence on the other flight parameters (the velocity, the altitude,
etc.).

The linear regression dependence of the aerodynamic coefficients (ADC) on the
initial angle of attack o and its derivative, which determines the pace of implementation
of dynamic modes in the short-periodic longitudinal motion of the aircraft, are given in the
table 6.4. The appropriate ADC are given in the first column of the table, next a;,a,,a; -
are the coefficients of regression, next there is the mean square error (ASE) of
approximation of the appropriate ADC, next the mean value ADC and its mean square
deviation. As we can see, taking into account only a and & allowed increasing the

accuracy at the average of 2 times.

Table 6.4
The dependence of the estimates of ADC on a and d..

ADC a a, a, ASD apr. Average ASD aver.

me: -8.54 -0.2289 -0.0112 0.01 -10.61 0.02

me -0.0092 0 0 0.007 -0.0091 0.007

m?s -0.0161 -0.0012 0 0.003 -0.02 0.009

mZCy -0.0873 -0.0029 0 0.004 -0.0928 0.006

o 0.1068 -0.003 0 0.001 0.0979 0.003

CSR -0.01 0.0012 0.0001 0.431 0.0028 0.923

o, -0.2301 0.0071 0.0001 0.001 -0.2119 0.002

The data, summarized for different types of the aircrafts, supporting the effectiveness

of clarification, in particular, the stability margin o, by approximation by linear
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regressive dependence on various flight parameters, are given in the table 6.5. The
dimensionality was changed from 2 to 6 and the number of modes was changed from 15 to
190 for different aircrafts.

Table 6.5

The comparison of the simple averaging and the regressive approximation o, from

the parameters of flight

Ne Type of AQD % Dimensionality | Number of
the aircraft Models Average AX modes

1 AH-72 5 102 6 190

2 11J1-86 7 31 2 25

3 Ty-154 4 13 4 70

4 Mur-29 7 50 4 50

5 M-17 0.5 1.5 2 15

The conclusions. In order to set the problem of identification correctly, we should
clearly distinguish the signal and parametric approaches. Their generality is in the

minimization of an error (6.18); their difference is in the models (abstract and “physically”

adequate) and in the requirements to the functional (6.13), as a function of the estimate B

(nonstrict and strict convexity respectively). Unfortunately, the signal identification is
sometimes used in practice of flight test of the aircraft for the estimation of parameters, by
putting the coefficients that are not objectively accurate apriori (using the calculation or
the results of insufflation in the wind tunnel) in the model (6.13) and then adjusting them

from the condition of minimum of the functional (6.16). The apparent adequacy of the

model is achieved here: the error (6.18) is rather small, the estimates B are close to the

aprior ones. But the latter may significantly differ from the actual physical parameters that
could then lead to a decrease of safety of flights due to the incorrect evaluation of the

aerodynamic coefficients of the aircraft which determine their stability and control.

Chapter 7. The Integration of Methods and Models [29]
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The stability of dynamic systems is one of the most important characteristics,
especially if they are non-stationary, not fully known and prone to random noises in the
measurement channels of the state variables. These systems include the aircraft, in
particular, with its stability in the longitudinal short-period motion [41]. In terms of the
variables (the angle of attack, the angular velocity and the handlebar of height) this motion

Is described by the system of equations of the first order
X =PraX +ProX; +Pygu ’}
Xp =P1X +BooXy +Poyu

for the small deviations of variables of the balancing mode (the constant altitude and the

(7.1)

speed in the vertical plane), where X;, X, — are the derivatives of time from X, i X,; Bij :
(1=12; j=12,3)— are the aerodynamic coefficients.
The transfer functions that reflect the input signal U into the output X;,, or X,,,, for

example U to Xy, :

B3P _(stﬁn _BISBZZ) |
p° - (Bn + Bzz) P+ (511[322 - [312[321)

are the equivalents to the system (2.7).

The coefficients (Bll + Bzz) =—a, and <(B11[322 —[312[321) = a0> of the

denominator determine the oscillatory and aperiodic stability of the reserve respectively.

W,2(p) = (7.2)

J
Multiplying these coefficients by % b (where J, - is the moment of inertia, q -
qSb, By, !

is the dynamic pressure, S - the area of the wing, b, - is the mean aerodynamic chord of

the wing), we obtain the appropriate reserve of stability in the fraction
<(B11B22 _[312[321) = a0> from b, . The coefficients B,,,B,; determine the effectiveness

of the handlebar of height, f3,,,B,, - are the damped forces and moments. The evaluation
of the coefficients Bij of the aircraft (AC), which determine the stability and control of the

aircraft, is an actual task of the flight tests (FT).
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7.1. The Formulation of the Problem

The estimates Bijﬁij cannot be obtained with the relatively high accuracy from the

measurements )A(i ,U that are noisy by the interference, because of the limited cost of the

nature experiment, the transience of time of the experiment and the nonlinearity of the
range of changes of variables. For these reasons, the practice of FT is limited by rather
approximate estimates of the stability and controllability AC [41]. We can increase the
accuracy of the evaluation of the aerodynamic coefficients (ADC) without increasing the
time, using the statistical modeling of the interferences.

In order to do this, it is enough to perform the filtering of noises and obtain the
approximate implementation of the interference as a difference of the filtered and output
signals, taking into account the information on the spaced spectra of signals and
interferences (interferences are more high frequency). Then we should determine the
statistical characteristics of these implementations and generate M statistically similar

implementations of interferences for each variable x;,u. Adding these implementations up

with the relevant filtered signals we get M pseudosamples of data of FT. Having m
statistically identical samples, the p identification methods and the q models of the aircraft,

we can use their redundancy in order to obtain more accurate estimates of ADC [29].

7.2. The Methodology of the Research

With regard to the problem of determination of the ADC AC in the longitudinal
short-periodic motion, let us consider three models (q = 3): the models (7.1), (7.2) and

the model, that leaks out from the first two:
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X, = (Bn + B, ) X, = ([311[322 - BlZBZl)XZ +B,5U -
_([323[311 —BiaBoy )u ==X, —8yX, +a,U + a,U.
The number p of methods for determining the ADC is defined by the number of

(7.3)

functionals of proximity in the space L2 [6] of variables AC and its models (7.1), (7.2),

(7.3). The optimal estimates ﬁ of the ADC are defined from the condition of the minimum

of these functionals:

2
2
{Blj} = argBrnin Xi _ZBij )21 _Bi3U , (74)
i j=L
where i =1,2; j = )A( )A( lj — are the variables, smoothed by filter.
2
{ } argm|n||x Xom || (7.5)
* a 7 0 2
{ai } =argmin||X, + a x, + a,X, —a,u —au (7.6)
3

In order to avoid the methodological error in the linear equation (7.1), (7.3) AC, all
variables are smoothed by the same filter. The other methods of identification that give the
unbiased evaluation ADC under noisy conditions can be applied [35].

Next for each from the algorithms (7.3), (7.4), (7.5) at a set of m implementations, for

each implementation we define the optimal values {B,J } {a}‘} , their average values for m

implementations {B:]} {ﬁi*}, the estimates of their own 6% ., 6°.  and mutual

y O .
Bij k) g (K)

~2 ~2 . _ Cn_2 = _
S8 dops (1)’ Oa (e (y VATANCES, where kK=1,2,3; p=3; 1=1,2,3; k=1. Let us
denote the elements of sets {Bij}, {ai} by means of {«;} for brevity sake. Then we search

for the best estimate o; at a set of three methods—models in the form

3 3
=Y C,o;(k), D>.C,=1. (7.7)
k=1 k=1

The coefficients Ck are determined from the condition:
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where
13 i
06°, (ch(a (k,j)—a;(k, J))j
W m- 11_1

3
Z (k) + ZCkCI O, K)oy (1) =C'AC.

k=1
k;tl

For brevity sake let us denote 6’ ) = =6;, 62 ) = =Gy, then C" =[C,,C,]
A2 | & A2 A2 A2 a2
(51 +63 — 2(712> (61 T 03 ~ O3 _012)

A2 22 a2 a2 A2 | A2 a2
(01 T 62 ~ O3 _012) (01 T 03 _2013)

Now the condition (7.8) is equivalent to the system
AC =B, (7.9)

B_ 6]?_6]?2 C_ CZ
162-64] T |G
1 13 3

The solution C = A™'B of the system (7.9) is single if matrix A is positively defined.

where

The less correlated are errors in the evaluation of o; by different methods (7.7) (7.8) (7.9),

the closer is the matrix A to the diagonal one. Since the norms of proximity (7.4) (7.5)

(7.6) are taken in the space of variables X, X, X, it is possible to expect the weak

correlation in errors of estimates o; by different methods—models (7.4), (7.5), (7.6).
Substituting the optimal values C,, C,, and also C; =1-C, —C;, found from the

system (7.9), in the equation (7.7), we obtain the optimally weighted estimate a? of the

coefficient a; (under good conditioning of the matrix A and a small error of the estimates

2

A2 A -
cj, Gjj of the variances G}, G” In other case in order to guarantee the non
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deterioration of the result of weighing of estimates oc? we should use the minimax

approach.

If we assume that the errors of the estimates o, (k) are distributed under the normal

law, the estimateséiz, calculated by the m generated sample of data, have errors with

Ij '
xz— distribution. The true values csiz, cizj for the given level of authenticity are in the
range (1% y)_léiz, (1% y)_léﬁ or approximately (1+ y)_lciz, (1% y)_lcizj , Where 7 is

a fractile of distribution, y <<1.

Let of =67 (1+7y) for ieI:{Zrnl}, o’

:62j(1+y) for jEJZ{n1+1,n}.
Then o =G (1+v) fori,jel; oj =6j; (1-v) for i,j € J; of; =65 (l—yz) for

lel,jed oried,jel. The evaluation of the variance of the weighted estimate a:

r-th ADC:
ZC (1+7) ZCfé?(l—y)+ ZCiCjéﬁ (1+7)+
icl jed i#]
e (7.10)
+3CCi6% (1-7)+ 2.CC;62 J(1-v2) + 2.C.C;62,(1-72).
i#] icl ieJ
i,jed jed jel

The expression (7.10) is taken L times for all possible combinations 62J (I1£y),

| = ﬁ For each of j-th combination from the condition (7.8) we obtain the system that is

similar to (7.9), and solving it, we find the optimal & - th vector C™ (€)

L (7.11)

* *

C'(2)=[Cl(2).C; (8).C5 ()] &=
and calculate 0(21,; (S,C* (g)), g=1,L,S=1L.

[E—

The minimax estimate C* is determined from the condition

C* = argminmax o (s.C°®). (7.12)

§6{1 ,L},Se{l ,L}
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That is, each vector (7.11) is substituted in each case of the variance (7.10) and we

accept as C™ that one, the greatest value of which is the lowest (7.10) in all variants

among the greatest values of other vectors (7.11).

The example. For clarity we consider the two-dimensional case (P = 2). Let 012 =1

: c§ =9; 0122 =2,8, y=0,1. The possible combinations are represented in the table 7.1.

Table 7.1.
The multipliers of possible deviations of the estimates of variances.
Multipliers for
Ne of variant 612 cg 0122
1 1+7v 1+7v 1+
2 1-y 1-y 1-v
3 1+ 1-
Y V i)
4 1- 1+
V V i)
The estimate (7.7):
(x’; =Co;(D)+(1-C)u;(2). (7.13)
The variance (7.10):
Gé,; =(Gf+c§—26122)C2+2(0122—0f)C+G§. (7.14)

Substituting four variants of their evaluation from the table 7.1 instead of variances
and executing the operations (7.8) (7.9), we obtain the set (7.11) for 4 variants (7.14):

A2 A2
O; — 6Oy

C)=C2)=5152=141

6, + 0, — 20y,
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C*(3) = 62 (1=7) =GNl -7 _ 1,465
612(1+y)+6§(1—7)—26@\/1—72

C*(4)= 6§(I+Y)_6122\/1_'Yz —1361.
61 (1=7)+65(1+7) = 263,417’

The value ci* (S C (é)) is represented in the table 7.2.

Table 7.2
The optimal values of variances.
oy (5.C°©)
No of 1 2 3 4
variant
1 0,290 0,290 0,304 0,300
2 0,236 0,236 0,249 0,245
3 0,327 0,327 0.316 0,354
4 0,232 0,232 0,275 0,218

If o’=1; 02=9; o5,=28; v=01l, then C (1)=C (2)=0,756;

C'(3)=0,737; C'(4) =0,737. The table 7.3 is similar to the table 7.2.

Table 7.3.
The optimal values of variances.
2 *
Ga’; (S C (i))
1 2 3 4
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1 0,081 0,081 0,089 0,087

2 0,067 0,067 0,073 0,071

3 0,082 0,082 0,078 0,099

4 0,076 0,076 0,094 0,070

C tl i 6%, =6 (S,C7(€))=0,082, C" =0,756,
onsequently ére?lliglrsrl%}car Gar( (é;)) 0,08

(1— o ) =0,244 . 1f we assume that 6. < o2, for different values of the correlation ratio

2
°12_ and the interrelation F, =22, we obtain the family of graphs C” (r,,,F)

I, = ——t—
12
2 2
/ c
0,0, 1

(the fig. 7.1).
A
C* /—\
—
L5 / S i
- ﬁL
1 / k%—
05 r12=0/ 0,25 0,5 0,75 0,85 0,95 Fio
1 2 3 4 5

Fig. 7.1. The dependence of the optimal weight C” on

the degree of correlation and noisiness of estimates

For F,=1, C"'=05 forany I,; at F, >0, C —1, (1—C*)—>O, that

means that the inefficient method is eliminated. It is characteristic that for the same

188



012 : c§ : ‘0122‘ the value 63,; depends on the sign o, (for the positive one it is 0,316, for

the negative one it is 0,082). Thus, the weighing two methods with the negative 0122

provides the better result. In this example for o, = 0 the variance 6% =0.,9.

r

It is much greater than the minimax values of variances at 6., = +2,8 (0,316 and

0,082 respectively). The mutual correlation allows increasing the accuracy of the minimax
estimate.

Thus, the application of several isomorphic models of the object of identification and
several different methods of parametric estimation together using the technology of
statistical modeling of interferences we can significantly improve the accuracy of the
estimates of parameters ADC of the aircraft without increasing the length of the data
sample of the nature tests. Moreover, so far as there is the nonstationarity of the object of
identification, the samples cannot be arbitrarily large. In the [40] it is considered how to

ensure the unbiased estimation by ignoring really existing nonlinearity.

Chapter 8. The Multilevel Systems with the Identifier of the Controlled
Object

8.1. The System Approach

Let us return to the content of the section 1.1. The system of identification is a set

{Z,B,Opt,a,Y,I ,T} at which the relaxation (optimization) process {Qk} is realized
relative to F, where Q, € {{E,B,Opt,a},F € {Y,I}} issuch that F, , <F  k=12,...

The content of the components of the system are as follows:

{2} — s a set of models’ structures;
{B} —a set of vectors of the models> parameters;

{Opt} —a set of methods of the parameters 3 estimation;
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{a} —a set of parameters of the methods Opt ;

{Y} - the functional of the identification quality; the elements (X,) of the model
and (Opt,a) of the identification method are found under condition of the extremum{Y }

{1} - the functional (index) of quality of the goal achievement, for which the

problem of identification is solved.

There are such classes of the identification systems (IS), depending on the elements
that are in Qk i Fk: the single-level IS in a narrow sense (sis), the single-level IS in a

broad sense (SIS), the single-level adaptive in a narrow sense (sais) and in a broad sense
(SAIS), the two-level adaptive in a narrow sense (tmais) and in a broad sense (TMAIS),
the three-level (ThMALIS).

The structure of the set Qk, that optimize the indices Fk for the appropriate

identification systems are represented in the table 8.1.

Table 8.1
The classification of the identification systems.

Ne Class of {Qk} {Fk}

the B > o Opt Y I A

system
1 Sis {Bk} {Ek} o Opt Y 0 0
2 SIS {Bk} )y o Opt Y 0 0
3 sais {Bk} {Zk} {ak} Opt Y 0 0
4 SAIS {Bk} )y {O‘k} Opt Y 0 0
S mE TR (B e (o[ [0
° TMAIS B =) e | {oet ) (Y |0 0
! TIMAISHB Y () ot [ {Optf | ) [ {0 |2
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The identification task is in the optimization of the internal criterion J in the single
level IS. That is the identification problem is not enclosed by the main (external) criterion
(goal). In the two level IS there is the process of finding the best set of those and other
elements by the main criterion I. The criterion | is subordinate to the goal of higher level,
which is defined by the criterion A in the three level system. Let us represent the content
of the best IS (the 1st row in the table 8.1) and the most perfect IS (the 7th row in the table
8.1).

The first row: the single level identification system in a narrow sense (sis) is the

relaxation process {Bk} [16] relative to J if X,0pt,a is constant and the set | is empty.

For example, the vector 3 of the equation of regression y = X3, where Y - is a vector of

measurements of the dependent variable, X - is the matrix of independent variables, is

determined by the least square method. Here the functional J =E'E,E =y —xB, the

structure X of the model is given, the parameter & and the criteria | and A are absent.

The seventh row: the three level multi adaptive IS (ThMAIS) is the relaxation process
{Zk By 0pt, .o Y1y ,Tk} relative to the index of the third level.

This process is the composition of three processes:

a) {ngn} ,n=1,2,... (g and k is constant) relative to Jgk to the stationary point

*

ng = argextrJ ok {ngn 2ok ,Op'[gk ,agk} =argJ ok
b) ‘]gk {ngn,Egk,Optgk,agk},k:1,2,... (g is constant) relative to Jy to the
stationary point I; =1y (Bg 2q.,0pty a4 ) = argextrl (Y;k ) = argI;;
C) {Ig (Yg (Bk,Zg ,Optg O ))},g =1,2,... relative to the index A of the third

level of the system to the stationary point | = argextrA( I )= argA.
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For example, there is the task of improving of the automated control of the

technological process: A - is the production quality; {Ig} :{Il,lz}, where |, - is the
quality index of stabilization of technological parameters (variables X of the process), |,

- Is the products quality index, {‘]gk} - Is the set of indices of the identification quality of
the dynamic models, {Zgl,Bgl} - the mapping of the control variables U in the state

transition X (k =1) and the regression models; {292,[392} - is the mapping of the
variables X in the index I, (k = 2). At the first stage of automation (I,, =1,) on J,,
the local models {Elk ,Blk} of the object are determined by the methods {Optlk ,oclk}.

The local regulators, stabilizing the variables X close to the set values X, of the

extremum |, conditions, are synthesized. According to the items a) and b) the ThMAIS
determination, the element {BI .z, ,0pt; ,oq}, optimal on |, is defined, next we
construct the model {EZ,BZ} of dependence |, on X after having stabilized X around
X, by planning the experiment in deviations AX =X —X,.

The setpoints X, of the operating modes are refined with the help of this model:
X, — X;. Then the optimal (on 1,) element {sz ,BZ ,Opt; ,oc;} is determined as a result

of the relaxation process according to the items a), b). The transition from X, to X, leads

to the change of the indicator I, to I, , in accordance with the item c), thereby optimizing

the index A of the third level system, for example, the production efficiency.

8.2. The Reconciliation of the Quality Indicators

The convergence of the relaxation processes of optimization in two- and three-level

identification systems can be significantly improved by conducting the specifically
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planned active experiment, which would ensure the similarity of variations of the

functionals of the related levels (J and I or I and A) in the space of the varying parameters
B.
Obviously, if | as a quality indicator of the solution of the main problem at the object

with the help of the model, is very sensitive to the errors in the evaluation of the i-th

component B; of the vector B of the model parameters and little sensitive to the j-th (B j),
it is desirable to have the evaluation 3; more accurate than f j- The extreme values I

and J” must meet the same value B*. Considering that the first variations of J and | in the

extreme point B* IS zero, we obtain the variation of the second order:

o’
SI(5B) =op' - OB, 8.1
) =87 e 38 6.1)
0°J
SJ(5B) = Sp" - -OB. 8.2
(59) = 8" | 3B 82)
The conditions of similarity of the variation (8.1), (8.2):
2 2
ol K 0°J ©.3)

op-opT  opop
The ellipsoids of scattering Of3 will be similar to the fixed values 81, 8J , that is the
surface of the equal value of variations ol , dJ . The coefficient K in (8.3) depends on the
informativeness of the experiment. For the ergodic process, the greater is the time of the
experiment, the more accurate is the estimates 3 and, consequently, the less is K.
Let us denote
0°J
ap-op"

B* :aij, (l,] 21,2,..n).

The coefficients &;; are functionals of the vectors of testing influences 6U (t) and
the parameters a, which are optimized under the following condition:

GU1),a") = argrgg?H[Aaij]H | (8.4)
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where Ag;; = K -g;; (8U (1),0) — a
For example, let the model of dynamic of object be the weighted sum of operators

Wi (p,a), reflecting the input testing influence dU (t) into the output signal y(t):

(0 = i Wi(p.0p)-5U (1) = 3 Bix; (1) ©5)
where p = % , oU(t)= Zm:yk(pk ), (8.6)
k=1

@y (1)- is the system of ortogonal functions.
T
If J = ISZ (t)dt, where g(t) = y(t) — y(t), then
0

0°J ™
W_[aij], Lj=1n,
where &) = j [Wi (p.0t)-8U (D] [W; (p.0tj)-8U ()]t

Or taking into account (8.5) and (8.6)

%) = j(zm:VkXik(t)J'(Zmlykxjk(t)jdt =

:ZZYquIX.k(t) Xji (Dt ZZykyq X, (8.7)

k=1 g=1 k=1 g=1
.
where X9 = [ x:: (t)- %, (t)dt - are calculated separately.
ij ] ik
0

The expression (8.4) is defined with the accuracy to the coefficients v, v, selected

under condition of the minimum of the norm H[Aaij (7 ,yk)]H, I, =1,_n with restrictions

in order that U (8.6) does not extend out of the zone of permissible values, as a function
Y- The greater is the time T, the less is K in (8.3), the more accurate is the estimate B

and, consequently, the less is the variation (8.1) of the main index.
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Let us show the conditions of conformity of the functionals 7 i J and hence the
conformity of their variations (8.1), (8.2) for specific cases.

The functional 7 is the unimodal function of the scalar . Its allowable variation
Al =1—T" =C iscomposed by the deviation of the estimate § from B, I” = inf,7(B),
B is a scalar. The evaluation B with the certain probability is in the range [Bl,BZ] of

length L. L is the distance between the points of the intersection | (B) and 7=1 +C.

Then there are two obvious statements.

The statement 1. From all the uncertainty intervals of length L of the evenly

distributed evaluation [ the mln max{ (B,).! (Bz)} is achieved under condition that

K =K, where K =(B" ~B,)/(B,~B"), K™ =(p"~5,)/(B.~F").
Indeed, any shift of the interval [, B, ] increases max{ (B.).1(B,)}.

The statement 2. The value K = K~ ensures the minimum of losses, i.e.

L+[§1
nlls!n Bfl 1(B)dp. (8.8)

Genuinely, any shift of the interval [Bl,BZ] relative to [ﬁlﬁz] increases the area,
L+[§1
viz the integral j 1(B)dp.
)

The example: | (B)=a,B*+ap, a,>0. Letusfind B :
ol (B) a

=0=2 a,p =——+

op aZB e p 2a,

Solving the equation a,p* +a,8 —C = 0 for the variation C, we find ﬁl, ﬁz ;

B, :—(aiir\/af +4a2C)/ 2a,. (8.9)
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Therefore, we find the dependence C on L - C = (a’L* —a,) / 4a, and substitute it

in the expression (8.9), considering that BZ —ﬁl =L:

ﬁlzz—%il_/zzﬁ*il_/z.

2

It follows from the statement 1 that
K'=(L/2)/(L/2)=1. (8.10)

Using the statement 2, we show that (2.8.10) is optimal

L+Bl

[ (@B +ap)dB=Q(B,) = &,[(L+B,)° —B1/ 3+a[(L+B)* —Bi1/ 2.
P1

2
d—Q:aZ(LZ +2LB)+al , 4°Q =2La, >0.

dp, dp;
From the condition €Q_ 0 we find 3, = ~ A 2,
dp, 22,

Then B, =[A31+L=—21+L/2, K" =(L/2)/(L/2)=1, viz we obtain the

2
ratio (8.10).

Let us consider the two-dimensional case: the vector § has two components B, f3,.
We find the projection Al =C on the plane (B,,B,) under the same assumptions about

1 (B) and I(B). Let the area of this figure be equal to S. Let it be the ellipse F with

parameters a and b and the area S = mab. Let the evaluation B with a certain probability

be in the ellipse of scattering with its parameters p and g of the same area wab. Then we
have the following statement.

The statement 3. From all the ellipses of scattering F of the area wab of the evenly

distributed evaluation B the min rrgTaFX{I(p)} is achieved under condition that p=a,
X

q=b,ie. F=F".
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The proof of the statement is similar to the proof of the statement 1: for any point N
of the arbitrary ellipse, which lies outside the ellipse—projection F~ the value | (N) IS
larger than C, therefore the ellipse should not have the points N, that lie outside the ellipse-

projection F~ for which min max {I(B)} is achieved
paBeF

The statement 4. The ellipse-projection F~ provides the minimum of the loss

function, viz min j j | (B)dB,dB, = j j |(B)dB,dB,. (8.11)

The proof of the statement is similar to the proof of the statement 2: the loss function

for two-dimensional [ is the volume of the body, bounded at the top by the surface | (B)

at the bottom — by the ellipse on the plane [Bl,BZ]. The ellipse F is the generator of

cylindrical body. Comparing two volumes V of cylindrical bodies, the generators of which

are the ellipses F and F’, it is easy to see that
V(F)=V,+S, +1(M)),

V(F)=V,+S, +1(M,), (8.12)
S,=S-5,,

S,=S,—-S, =0,

|(M)>1(M,),

S;) =F N F" - is the generator of cylindrical body, which is the common part of both
volumes; M, i M, — are the inner points, such that M, eF, M, ¢F M, eF,
M, ¢ F ThenV (F)>V (F"),

The illustrative example.

| (B)=(B; +PB3)/ R. Itis clear, that the minimum I (B) will be for B =0. Let us
intersect the paraboloid 1(B) by the plane | =R. The circumference B; +B; = R with

the radius R will be the intersection. The same circumference with the area wR? will be

its projection on the plane (Blz + Bg )
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Let us take the random ellipse F —-+ =1 on the plane (Bf + Bg) with the area
a

mtab . Let us show that the minimum loss function is achieved if a=b=R. We calculate the

integral:

4 p 2 2 _TERZ 2 R4
J(a>=Edexlﬁj2(Bl+Bz)dﬁz—§(a +;}

where B, =(R* / a® )\Ja” —p? .
dJ nRZ( R

The condition of the minimum J on a; — = —— 2a—2—3 = (0. From here
da 16 a

a=R. From the condition wab = tR? we obtain b = R? / a=R. So a=b=R which was to
be proved.

The statements 3 and 4 can be generalized in the case of n-dimensional vector [ and
n-dimensional ellipsoids of scattering that correspond to it.
The statement 5. From all the ellipsoids of scattering of the given volume s® the

evenly or symmetrically distributed evaluation B the minimum of the loss function and

also {I(B)} are achieved if F = FY, where FY is the ellipsoid with volume S(l),

similar to the ellipse—projection F .
The overall conclusion. For the consistency of the quality functionals of the
multilevel system it is preferably to maintain their similarities in the space of the estimated

parameters 3. Then, under the boundedness condition of the accuracy of calculations of

functionals, that ellipsoids of scattering of the estimates B will be similar too, viz the

A

errors Of; (i :1,_n) of the estimates  of component of the vector  are distributed

among themselves in order that the variation of the main index d6/(df) in the two-level

system or d4(dp) in the three-level system will be minimum.
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8.3. The Recursive Bayesian Estimate of the Vector f3

In probability sense, Bayes method that comes out of the equation for the appropriate

densities of distribution, gives the most complete and accurate solution in order to obtain
the estimate B of the parameters 3 of the object under examination:

P(y/B)-P(B)=Py.p)=PB/Y)-P(y). (8.13)
P(y/B), P(B), P(B/Y), P(y) - are densities of probability measurements ¥, priori
values [3, posteriori values B (that depends on P(f) and ¥), measurements of ¥ for all
possible 3.

From the expression (8.13) we determine the a posteriori density of probability of the

unknown vector f3:

Py /B)-PB)

PB/y)= - (8.14)
P(y)
The loss function C which is goaloriented to the main index /, is given:
O(6B) = 35" ~——|, -6 15
aBaBT B ! )

where / — the main index of the system quality.
We write the expression for the average-risk R under condition of statistically

representative sample Y =[y(i),...,y(m)], viz the vector Y must be considered as a

deterministic one, then

R=[c(3p)-P(B/ y)d'B, (8.16)
where P(B/ V) is determined by the expression (8.14), in which a priori density P(B) is
the regularizing multiplier for P(B/ y). In most practical problems P(B) and P(y / B)

can be considered as normally distributed:
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P(B) - C1 eXp (‘%(B - Bo )T PO_I(B _Bo )j
. (8.17)
Ply 1) =Cyem( -5V - XB) QY -xp)|

where C,, C, - are the normalizing multipliers, that provide the condition

0

J PR = [ POY 1 9IOY =1, cave G, = (20)7 R €, =(20) 7 [0

M{e?(1)}.. M {{e()s(M))}
Q=M{ee" b =| coorrrrmni ,
 M{e(M)e(D)}..M {e?(M)} |

Y — XB =€ —the discrepancy between Y and its model XJ3.
The density of distribution P(y) (taking into account that Y — X = &) will also be

normal with the expectation X3, and the dispersion matrix P = XPOXT +Q:

P(y)=C, exp(—%(Y - XBy) pH(Y — XB, )J, (8.18)
m 1 m 1
Cy=(2n) 2|P[2 =(2n) 2 [xRx" +Q] *.
Then the posterior density of the estimate [ distribution P( / ) takes the form
=2 (8= By) P (B-Bo)+
(Y = XB) Q7Y =YBy) p2(Y - XBy)

C,, —is the normalizing constant.

P(B/y)=C,exp (8.19)

After the appropriate transformations, the expression (8.19) takes the form:
_ Lo aY o—1(p_a
P(B/ y)—C4eXp{—§(B—B) p (B—B)}. (8.20)

Hence the estimate [§ and its covariance matrix P are equal to [35]:
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B =B, +PXTQ (Y — XBy),
P=(F"+XTQ"X)™

For the symmetric loss function (8.15) minimum average risk (8.16) is achieved

(8.21)

A

under condition B =3, viz the estimate (8.21) is Bayesian.

On the other hand, if B, and P, are the estimates, obtained in the previous (m-the)

step, B and P in (m-1)-th step (by adding (m+1)-th measurement), then the formula (8.21)
implements the recursive method of Bayesian estimation of the vector B and its
covariance matrix P.

Taking into account the symmetry of the matrices P, and Q, the expression (8.21)

can be simplified for P:

P=P,-PX"[Q+XP,XT]?’XP,. (8.22)
If 8(k) is nonstationary “white noise”, that Q :Gi 1, k=1,2,...mm+1,...,
and some vectors are replaced by the scalars

Y =ym+1), X" (m+1) =[x,(m +1),....X, (M +1)],0°", (m+1) =1/ csfml.
Under these conditions, the method of recursive Bayesian estimation 3 degenerates

into the weighted recursive least squares method:

B(m+1)=p(m) + x(m)ciz[y(m) = XT(mBml, (8.23)

P(m+1) =P(m)-Pm)X M)[X" (MP(M)+c5]"XT(MP(m);

and under condition of the stationary white noise (6° = const) the expression (8.23) is

simplified to the ordinary recursive least squares method:

B(m +1) = B(m) + x(m)[y(m) — X" (m)B(m)]

P(m-+1) = P PTX (X (WP +1X (P().

If at the time of calculation there is the whole data sample y(k), X(k), k= im.

the estimates (8.23), (8.24) are calculated applying the ordinary least squares method:
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B=(XTX)XTY, 629
covp =2 (XTX)™. |

The series of methods of the unbiased evaluation 3, when ¥ and X are measured with

the errors are considered in [9]. Obviously, the wider is the set of elements

{J, >, B, opt, a} and more perfect is the algorithm for searching the element optimal on

I, the better is solved the optimization problem of the main index 1.

8.4. The Identification and Optimization of the Technological Process

Parameters [30]

In order that Ukrainian products come to the world market and be competitive to the
foreign standards, it is necessary not only automate the process of its production, but
implement the most effective control principles such as adaptation of control systems to
the controlled object, based on the correct methods of its identification; adaptation of the
process of identification to the non-stationarity of stochastic processes that happens in the
controlled object; adaptation of the reference models; optimization of setpoints and the
process of stabilization of the appropriate variables of the object.

Let us consider the application of these principles by the example of the automated

technological process control system of drawing the quartz tube of the specified diameter
d;p; and wall thickness &, from the glass block with external Dgy; and internal Djy

diameters (fig. 8.1).
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Fig. 8.1. The area of the block where the tube is formed.

The block is warmed up to the temperature t° of softening, it is spun out into the
tube under effort F.,; and pressure P, from the inside. If the speed of the block’s feeding
IS Ubl’ and the speed of drawing the tube is Uy, then if the mass is unchangeable, we
obtain the relation:

Dezxt — I:)iznt _ U

2 2
ext — Mint UbI

(8.26)

or using the wall thickness 6,

U
8w(2dint + 8w) = U_bl( Dezxt - I:)iznt ) (8.27)
t

The equation (8.27) indicates the relation d; and d,,. Therefore, the controlled
object should be considered as a multidimensional one with cross-connections: in order to

ensure the stability d;; and d,,, it is necessary to change the pressure Py and the speed
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UbI of drawing the tube simultaneously. Moreover it is required to stabilize the speed of

the block feeding, its temperature to, the viscosity 1 of the heated glass mass or the

drawing force (the moment M (1)).

The physical and chemical instability of the block acts as a stochastic perturbation,

thus, the automatic control system aims to compensate its effect.

8.4.1. The Mathematical Model of the System in the Mode “Working”

The nonstationary nonlinear stochastic process that takes place in the object, can be
represented by the stationary vector-matrix differential operator for the bounded deviations

from the nominal mode and the interval of time:

L(t)- Xg(t)=L(t)-U(t) (8.28)
or by the matrix transfer function W (S) if using the Laplace transform
Xo(s)=W(s)-U(s), (8.29)
where X, is the vector—function of the output values of the object, namely 8, diy;, Uy,

1%, M (n); U(s), the input values: U, P, Uy, the current | of the block heater.

In the fig. 8.2 it is shown the structure which has the cross-connection of the first and

the second channels (the transfer functions W,, and W,,). The impact of other channels on

these ones are taken into account by the parametric perturbations & acting on Wij,
I, J=1,2, in addition there are the signal perturbations caused by the instability §U,, of

speed U,, and the influence t° on M (7).

For their compensation the system has the Pl-regulators on separate channels and the

diagonalizer Wg (s) is additionally enabled for decoupling the first and the second

channels. Then, provided that
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W, (s)-W (s)=diagW (s), (8.30)
the operators Wijg of the diagonalizer are determined:
-1 -1
W3 (5) =-W,, -Wi ' (s), W,3 (5) =-W,; -W,, (s). (8.31)
The dynamics of each channel is close to dynamics of the reference model (the

fig. 8.3) by setting the parameters and kI of the Pl-regulator. In order to do this the

appropriate channel of the object of inertial channel of the first order is approximated (the
fig. 8.4) using the principle of minimal complexity. The coefficients of the Pl-regulator are
determined under condition of the equivalence of the reference model (the fig. 8.3) and the

automation control system of i-th channel.
Kn = Kem “Kii * Tiis K, =Kep Kie - (8.32)
The block | (8) controls the quality of the output product (the deviations of diameter

and thickness of the tube) and if the quality decreases, the system goes into the mode
“Training” (the fig. 8.5).
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programmator]
technologist

UxX) .

Fig. 8.2. The block diagram of the control system in the mode “Working”.

g

Fig. 8.3. The reference model.

ki X
TS+l
S0 S

Fig. 8.4. The automation control system with the Pl-regulator.
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8.4.2. The Mathematical Model of the System in the Mode “Training”

argmin I(¢) o

U

Fig. 8.5. The block diagram of the system.

Switching from the mode “Working” to the mode “Training” is done by closing the

key 3 and opening other keys (fig. 8.5). Then the object is subjected by the program’s
influence U, and by test influence 3U . The object’s model W,, (s) is defined in the

block 7 and, in accordance with its parameters, the blocks 8, 9 adjust the diagonalizer
W, (s) by the algorithm (6) and PI-regulators W, (s) - by the algorithm (7).

The mode “Training” always takes place at the beginning of the process of drawing
the tube, and it also can occur while drawing, if 1(g)>A.

As an example, let us consider the identification process of direct W,;, W,, and cross
W,,, W, , operators of the object at the beginning of tube drawing process. Depending on
the sign deviationsd,, and s, from the nominal values ranging from plus or minus, the
block ID feeds mutually independent sequence of steps AP and AUy, the amplitude of

which gradually decreases (fig. 8.6).
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.f_EP (1) Region "Identification" Region "Control"
Adins [

Teeml o se M

Fig. 8.6 The graphs of transients on d;; and §,, .

Within each step the transition process Ad;,, (t) and A8, (t) nearly ends and is

described by the exponent. Then the estimate of the coefficient Kij, 1 =1,2 is defined as

the ratio of the increment of the output variable of the j -th channel to the increment of the

VAN

appropriate input AU; ; the evaluation of the time constant tij is determined by the robust

Tukey’s algorithm as a median of series ty; (k). ordered by value:

AN

Tij = Me{rij (k)} | (8.33)
where

b
AXj (tn)

k =0,n - is the discrete time of the particular area [t, ,t,.,], 1 =0,5 (see the fig. 8.6).

Tij(k):_

In

AN AN

The further refinement of the estimates Kij, Tij is achieved by their linear

approximation as functions of amplitude of the testing signal:
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kij (AP, AU, ) =K, +all - AP +alAU,
) | (8.34)
tij (AP,AS, ) = Tj; + by’ - AP +b) AU,

k;} and r?j will be the sought ones. Having defined the object parameters on all channels,

the settings of diagonalizer and regulators are adjusted, the keys 1,2,4,5 are opened and the

key 3 connects ACS to the object, viz the system goes into mode “Working”.

8.4.3. The Working of the System in the Mode of Nonius Refinement of the
Object’s Model and Control Algorithm

If the functional | (8) (fig. 8.5) in the mode “Working” is significantly smaller than

A and the control actions vary slightly, then the information about U*, which specifies

the modes’ flow chart viz the ratio between the nominal values of the input and output

variables of the object, comes to the subsystem “Technologist”. Then at these valuesU ™,
the commutator 3 (fig. 8.5) is opened again, and the others are closed and the system
switches to the mode of nonius refinement of the object’s model.

In order to do this, the mutually correlated and autononcorrelated pseudorandom

binary sequences of testing signals are fed from the block 8 (fig. 8.5) to the appropriate

channels (fig. 8.7) and the parameters kij, Tji of basic models are specified by the least

squares method for the smoothed data; the approximation error of object by basic models
Is defined, next the parameters of refining operators of the nonius models are evaluated
applying the same method, if the basic operator is already known. For example, the inert
differential operator of the channel of temperature stabilization:

T,5+1
W =4 :
y(S) T,5+1

(8.35)
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Fig. 8.7. The correlation function (a) of the signal (b).

Then the nonius model is
k, T,;s+1
1,5+1 t,5+1

W,,, = (8.36)

In order that dynamics correspond to the reference one, the control algorithm is

corrected by connecting to the Pl-regulator of compensating operator Wy (s) of the level

W, *(s) (fig. 8.8).

. v ! I {
, w4 : st !
-—m?}-;c- kst i"i — ;‘ﬂ 5 > W(s) }ﬁ":ﬂﬁ

Fig. 8.8. The nonius correction of the stabilization t° channel.

In the process of the nonius identification the index | (s) value is controlled and, if it

is close to A, the system switches to “Working” with the model that is succeeded to

identify. Thus, the adaptability to non-stationary perturbations is achieved: the more
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stationary is the process, the more accurate is the model and the less is the value | (s)

But even under condition of non-stationarity the system succeeds to construct the simple

base model and provide stability and quality of the control process.

Besides, if | (8) << A, the system can reduce the inertia of the reference models and,

consequently, the channels of the stabilization of process parameters.

8.5. The Identification and Optimization of the Process of Self-Study with the

Electronic Simulator

8.5.1. The Introduction

The process of self-study occupies an important place in the electronic teaching
resources of the discipline (ETRD) [27, 31, 32]. An electronic simulator is one of means of
self-study. The electronic simulator should provide the optimal process of transmission of
information to the person who studies in order to approach the level of direct
communication “teacher — student”.

The optimality of the process of the information transfer is understood as a
minimization of the loss of information when transferring it from the “teacher” to the
learner (pupil, student, etc.) and the assimilation of this information as well. Such
electronic simulator as part of the ETRD and also the teacher and the learner create the
two-level automated control system of learning process. The teacher (the upper level)
defines the way (count) of passing the required sections of the discipline, the weight of
these sections in the overall assessment of the level of the learner’s knowledge.

The electronic trainer and the learner create the lower level of the system where the
learner is the controlled object and the simulator is the regulator of the learning process of
this object. The teacher and the learner can plan the overall pace and the duration of
studying the discipline and the desired rating (score) of learning. The simulator must
provide the control influence that is adaptive (preferably optimal) to the student’s

parameters. The controlling variables of the system are:
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1. the average rate of information (time interval between classes);

2. the trajectory of moving forward from section to section and, if necessary,
returning back to course modules that have been already passed, based on the information
of the current student testing;

3. the volume of motivational information.

The returning to the previous modules as a controlling influence is required at the low
index of current control (i.e., understanding) of knowledge; the motivation is required as
the impact on the quality of learning.

Thus, having the sufficient level of formalization and capabilities to control the the
current parameters of the model of the object of training, the learning process on an
electronic simulator can to be submitted (with the appropriate degree of approximation) as
the automatic control system (ACS) with the identifier and the synthesizer of the optimal

mode.

8.5.2. The Description of the Elements of the System of Automatic Control of

Training

The teaching material of the relevant subject is divided into thematically coherent

blocks, that are of the same volume, the classes’ duration is 75+ 15 minutes.

The material of each N -th block is divided into informative | (n) and motivational
M (n)components of the subject matter. There are several levels of incentives depending

on the student’s success rate k(n). For N -th block the rate is set based on the results of

current monitoring of individual microblock within the limits of N -th and final monitoring
for the whole N -th block.

The control in the microblocks is exercised by representing the material in the
interview mode: 30 seconds of language and appropriate on-screen information, the
question and 3 answers: surface, normal, and profound. The student, opting for one of

them, gains a certain number of points, and the trainer, having received this information by
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the feedback channel, corrects the further way of giving teaching material: the skip to the
next microblock or return to the microblocks which have been already passed, and which

are logically associated with the current one.

On completion the process of submitting the information | (n) of the N -th block, the
final control is made for the N-th block by the index K (n), the decision is accepted

depending on the actual and the desired level (specified by the program path KV” (n) of
the accumulation of rating):
If K(n)= K, (n), then, after having the desired pause, there is the transition to (

N+1)-th block; if K(n)<Kin(n), then there is the repeat of n-th block without

pause with the increase of the motivational component M (n)

At the beginning of each n-th class, the student undergoes the control of residual
knowledge at the (N —1)-th block-lesson and gets his rating KV (n) depending on the
level, then he goes to the assimilation of N -th block in accordance with KV (n) the level

of motivation or he returns to re-studying the (n—21)-th block. The total rating

Z KV (n) is considered as a function of time { and adjusted by the automation control
n

system by changing the pauses T, between the blocks-lessons. The sequence of actions at

one lesson is represented in the fig. 8.9.

Input Micromodules of the N -th block (n,i), i =1,m Qutput
control control
z T a2 = EIE|E |2
g ~ = 5 ~— = 5 el 3 E/ =
< SE (T S |E |5 S £ I 2

Fig. 8.9. The components of the N -th lesson.
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For the successful operation of the automatic control system it is required to build the
structure of the learner’s model as the controlled object and to define the current values of

the parameters:

K(n)=K,+K, -M(n)+K,-R(n), (8.37)

KV(n):K(n)-exp[—%}rKVr-R(n), (8.38)

where K,, K,, 1 K, — are coefficients of the linear stochastic model of the dependence
K (n) on the level of motivation M (n) and incidental R(n), R(n) - is the Gaussian

noise with the unit variance, T, -is the time constant of exponential forgetfulness of

information of the (N —1)-th lesson at the N -th lesson:

tn B tn—l

'”(K(%w)

The exponential process of knowledge accumulation within one lesson is given by

T, = (8.39)

the linear model (8.37) due to the short time of one session; the process of information

forgetfulness in a pause T,, between classes is taken as exponential.

n -
The desired optimal trajectory Z KV * (tj ), n=1,n, of knowledge accumulation
j=1

at the time tj Is given on the basis of psychological aspects of training by a teacher or a

student, depending on the planned level of knowledge and time reserves.

The task of the simulator as a system of automatic process control is to provide the

n n
closeness of the real trajectory Z KV (tj) to the desired Z KV * (tj) that minimizes
=1 -1

the functional error s(n) :

e(n)=KV"(n)-KV (n), (8.40)

214



n =1,_nk, where N, - is the number of finitesimal lesson. This problem will be solved

using the proportional (k; ) and integral (K, ) regulator [20] of the interval AT, between

N -th and M -th lessons:

AT,

_ ATmin + ATmax 1

2

(8.41)

where AT i, ATyax— are restrictions on the smallest and the largest interval. The model

of discrete ACS with frequency-pulse modulation, identification and adaptation to the

controlled object corresponds to the process of training on a simulator (fig. 8.10):

Selector of
optimal
trajectory

Regulator

Estimator

—] | —
(n).Kq.Kn(n)
Estimator current Estimator current
rating and I rating and
proofreader proofreader
Mil(n) (n) Mil(n)
Discrete < KV (n)
integrator

Fig. 8.10. The functional diagram of the ACS of training.

The control of motivation M (n) is exercised during the N-th lesson depending on

the quality K (n,i) of learning of the i-th lesson. The increase of M (n,i) leads to (at a

fixed time T = AT of the N -th lesson) reduction of the number of m microblocks in the n

-th block. Then the regulator AT (€,t,n) reduces the break between classes in order that

D KV (n) approachesto » KV *(n).
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8.5.3. The Numerical Modeling of the Process

The simulation of automatic control of training (fig. 8.10) is carried out in such

modes using MATLAB: K, =KV, =0), AT (n)=const is determined (the perfectly
concentrated student), viz the system (fig. 8.10) is disconnected and as a result the
trajectory ZKV(n) is slightly ahead of the optimal ZKV*(n) (fig. 8.11); there is
the same student, but ACS is locked and has the K, - regulator (fig. 8.12); there is the
same system with proportional (K, ) and integral (K, ) regulating lawAT (n) from
e(n) (fig. 8.13).

As we see in the case (fig. 8.12) the mean square error of tracking the desired

trajectory of training is minimal; if the random component is not zero KV, =0,2 in the

model (8.38) (the non-ideal student), then the error for the system (fig. 8.13) and the
number of lessons slightly increase (the error is from 1,62 to 3,67; the number of lessons is
from 39 to 58).

Ko=0.6. Kyor=0.2: K0 KADD KViand™0!  Npous™08)  Nyeews=17.

68
S g
Optimal Trajectary f ,/91 ®
51 AR
RealTajectory | 2 37" | fmc e I
. 7 % | A"
s N
L 4 L = m
I?’_ 4 ,-'/.. .a.-"‘.-.‘.l "3
./" _.,..-"“" |
R | MSD=6,09
17 S B e '
,/ g . T - | Niesson =36
./'.‘.-"" L " . |
“m "
0 (£ I
I
I
7 | wweeks
0 5 10 15 20 25 30 35

Fig. 8.11. The open-loop control system of the ideal student.
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Ko= 0.6; KMOT=O. 2 Kp= 1. KFO KV,anfO Nb.bks=58 Nmeeks= 17.

68
f——4 —— 44—+ ——4
. D R A B
Optimal Trajectgry @j/ |
51 , )/
Real Trgjectory 2 N W R
T‘-;\ - |
2 I
& - wd
I
| MSD=1.57
[
| Miessons =39
I
i
i
I
I
17 | w, weeks
0 5 10 15 20 25 30 35

Fig. 8.12. The closed loop automatic control system with the proportional regulator
(the ideal student).

Ko=0.8.' KMOT=02 KP=05 KFOS erand=0-' Nb;oks=88.' Nweekg=?7.'

68
A, A A L A A A0 S
Optirmal Trajectory ?j/ |
51 I A4
Real Trajectory /
) j p—— ————- S P L '
-
= A
T 34 o]
g 7 5
|
| MSD=1,62
17 i | |
Error : Niessons =39
0 Aty
I
| k
17 | w, weeks
0 5 10 15 20 25 30 35

Fig. 8.13. The closed loop automatic control system with the integro-proportional

regulator (the ideal student).
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Ko=0.6: Kuor=0.2; Ke=0.5: K=0.5; KVi3ns=0.2: Nppis=68. Nyeors=17.

68
?jﬁ_{‘f___i_{‘f_ﬁ_.._"}__'V‘_ff.___@_\*_ﬁ_.
Optinal Trajectary ?j 7| »
51 ||
Real Trajectory 7
) P S S [——
:\\ // ./' ’ |
= 3 % |
S 34 72 " .
@ o | 3
‘o .- A ,. |
s | MSD=3.77
17 2 /9’ | : ,
é"e | Nlessons=58
/ ,9; Errot |
0 ety ey ay Y
|
|
A7 | w, weeks
0 5 10 15 20 25 30 35

Fig. 8.14. The closed loop automatic control system with the integro-proportional

regulator (the real student).

Thus, the standard proportional and proportionally integral control laws provide
tracking the optimal trajectory with the error of 1.57 - 3.77 units with total maximum

rating of 68 units, i.e. with the error 2 — 6 %.

For the further improvement of the process of training the real student (KV, =0,2),

let us consider the possibility of constructing the optimal adaptive (to the student) control

law instead of the standard proportional and integral one. Let the total current rating of the

student, after executing the input control of residual knowledge of the (n —1) -th lesson

(KV (n —1)), be ZKV(n) at the end of the n-th lesson (fig. 8.9, the time t,,). The

total of estimates of the current control on m micro blocks of the n-th lesson is K (n) .
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Fig. 8.15. The optimal system of automatic control of training process (the ideal

student).
K06, Kyor=0.22  KVig=02 Npici=68. Nigeers=17;
68
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Optimal Trajectary gﬁ .
s
|
N A T 7 I I R I
./ "
a e ) | 4
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T a4 r |
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| F e | MsD=223
17 7 i : :
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Error |
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Fig. 8.16. The optimal system of automatic control of training process (the real
student).

219



The optimal (desired) value of the total rating is known at the time t,,, this is

D KV ™*(n). Taking into account that the level of student’s knowledge exponentially
n

decreases (the time constant t,) at the beginning of the (n +1) lesson, then for the

moment t,., ,, the forecasting rating of student is determined by the expression:

DKV (n+1, t,,)=> KV (N, t,,)+K(n, tn,z)-exp{m}. (8.42)

Tp

Having equated the expression (8.42) to the optimal rating ZKV*(n +1), we
n

obtain the expression for determining the optimal time €, ;, to start the (n +1) -th lesson:

> KV (n, t,,)+K(n, tnz)-exp{w} = KV*(n+1). (8.43)
n Th
From here the optimal time t,,,;, to start the (n+1)-th lesson is
D KV*(n+1)-> KV (nyt,,)
K(n.t,,)

As we can see, the time constant t,, and the indicators of total Z KV (n,tniz) and

tn+11 = tn,z +1,1N (8.44)

current ZKV (n,tnlz) ratings have influence upon the t, ;. On the right side of the

expression (8.44) all components are known, with the exception of the time constant t,,. It
can vary from lesson to lesson depending on the state and degree of student’s motivation.

Therefore, in order to solve the equation (8.44) it is required to set T,. The easiest way to
do this is to assume that t,, = T,_,, where T,_; is found from the previous lesson from the
expression (8.42), if taking n instead of (n+1) and (n—1), instead of n:

> KV(n, ty,)=> KV (n-1 t,,,)+K(n-1, tn_llz)-exp{m}(&%)

Tna

from here

220



(tn;L o tn—1,2 )

TSR (M) - > KV (-1t 1)

In-"
k(n—1t,,,)

The more accurate forecasting value t,, is determined (if n>3) by the linear

(8.46)

approximation r(t) and by the forecast to the interval (tnﬂ;L -1, ):

Tn — Th_
Thy=Tn T [tn+11 _tn,z:l' T (8.47)
tn1 o tn—1,2
The computer modeling of the optimal ACS, as a mean of ETRD, is conducted under

the same conditions as the ACS with the proportionally integral control law: K, =0,6;

Ky =0,2; the number of blocks N =68, the number of weeks — 17, K, = 0,2 (the real

student). The result of the simulation of the optimal mode of training is shown in the
fig. 8.15, 8.16. Comparing the ACS with the regulator (5) (fig. 8.15) and the optimal

regulator (8.44) with the additional restrictions on a break T, between lessons

(maxT, >T, >minT, ), due to the fact that the expression (8.44) is adjusted by the

restrictions on the length of the pause, we can conclude that at nearly the same number of
lessons (58 and 57) under condition of the optimal regulator, the trajectory of
accumulation of student’s rating is much closer to the desired one (the mean-square error
is 2,23).

Thus, we have the possibility to automate and optimize the process of training under
condition of its appropriate formalization, based on a systematic approach with the
appropriate degree of adequacy.

We believe that the quality of education process will increase significantly and reach
the level of direct communication between the teacher and the student, if the material is
submitted by micro-blocks (the student is not distracted for 30 seconds) with the questions
at the end of each micro-block and three correct answers of different degree of
understanding the question. The student chooses the best one for him, the teacher-trainer

changes the contents of the next micro block depending on the answers selected by
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student. Such dialogue with the initial and current motivation and control at the end of the

lesson can dramatically improve the training process.
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