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The Introduction 

The task of increasing the accuracy of identification of complex dynamic processes, 

despite the significant development of these issues is still relevant: if the income   

(fig. 1) has a finite value even if the model is ideal  2ε 0 , the costs    to obtain 

this model tends to infinity; so the net profit  Δ  is positive in a limited range of model 

complexity. 

  

Fig. 1. The models of processes 

 

The task is in maximizing . For this purpose we need to find that fundamental 

property that is common to all the objects with the help of which you can achieve the goal 

( Δmax , fig. 1), and on using this property: 

1) to improve models and methods of identification;  
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2) to find methods of correct evaluation of structure and parameters of complex 

dynamic objects; 

3) to get unbiased estimation methods for model parameters in terms of noisiness 

measurements both output and input; 

4) to develop a range of approaches in order to improve the conditioning of the 

information matrix in terms of active and passive experiment; 

5) to develop the method of independent evaluation of nonlinear statics and dynamics 

of Hammerstein’s model in conditions of arbitrary object dynamics; 

6) clearly differentiate between task of signal and parametric identification. 

The properties of the real world objects are: 

– non-autonomy and infinite dimensionality, and as a result there is no state of 

rest, because all processes are dynamic; 

– limited power and natural inertia do not allow immediate change of any coordinate 

of the object, thus, all processes are smooth. 

This fundamental property will be the basis of identification: 

–there are not two or more identical objects, so averaging on the set gives not precise 

information about the parameters of a specific object; 

–analogously the natural non-stationary of process limits the averaging on time; 

–interrelationship and infinite dimensionality of real objects make it impossible to 

build a model which is isomorphic to object. 

Depending on the purpose for which the model is built, infinite dimensional 

functional space of all state’s variables of hypothetical base model (fig. 2) can be divided 

by the frequency feature in low -  LFX , middle -  MFX  and high -  HFX  frequency. 

Then there is the only middle frequency component in the partial model (model (1), fig. 2), 

 LFX  is considered by quasi-stationary state of the vector  β t  of the parameter of this 

model,  HFX  is seen as a noise  N t . We get a finite dimensional model (model (3), 

(4) fig. 2) for scalar i-th component if  from f  and limited dimensions  MFX . 

 

 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%b1%d0%b5%d1%81%d0%ba%d0%be%d0%bd%d0%b5%d1%87%d0%bd%d0%be%d0%bc%d0%b5%d1%80%d0%bd%d1%8b%d0%b9&translation=infinite%20dimensional&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%b1%d0%b5%d1%81%d0%ba%d0%be%d0%bd%d0%b5%d1%87%d0%bd%d0%be%d0%bc%d0%b5%d1%80%d0%bd%d1%8b%d0%b9&translation=infinite%20dimensional&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%b1%d0%b5%d1%81%d0%ba%d0%be%d0%bd%d0%b5%d1%87%d0%bd%d0%be%d0%bc%d0%b5%d1%80%d0%bd%d1%8b%d0%b9&translation=infinite%20dimensional&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%b1%d0%b5%d1%81%d0%ba%d0%be%d0%bd%d0%b5%d1%87%d0%bd%d0%be%d0%bc%d0%b5%d1%80%d0%bd%d1%8b%d0%b9&translation=infinite%20dimensional&srcLang=ru&destLang=en
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Fig. 2. The hierarchy of models 

 

The system of identification in all is considered as a subsystem of multi-level system, 

where principles of decomposition, composition and optimization are used. The base 

model of real processes and its derivative models, modeling and forecasting solutions in 

the absence or presence of information about the studied process are under examination. 

The issue of increasing the accuracy of identification of complex dynamic processes 

remains relevant. It is therefore important to find a fundamental feature common to all 

objects with which you can achieve this goal and on its basis to improve models and 

methods of identification. 

The approach to structural-parametric identification of nonlinear multidimensional 

dependency is considered. It is based on the representation of the series (3), (4), fig. 2 as 

(14), fig. 3 or (15), where α  is (16) for local subregions (fig. 2), it is (17) for combination 
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of local neighboring regions; and enlarging the region further we have the model (18), 

next – the model (19) etc. 

 

 

Fig. 3. The composition of models. 

 

The method is used for: 

1) determination of the structure and parameters of the test dependence  βI   (fig. 4, 

p. 1) with minor error 20 05β,  due to proximity of calculation 
β

I


; 

2) construction of analytical dependence of energy of the first half-wave of the 

discharge current of capacitor C in the RLC-circle as a function of merit  Q (fig. 4, p. 2), 

and determination of its optimal value. The error in determining the optimal merit was 

0.05% compared to values found on the basis of numerical simulation; 
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3) definition of multidimensional nonlinear dependencies based on experimental data, 

presented in the tables (mechanic and energy objects). Here the model is consistently built 

as a function of one variable, coefficients of which are approximated as functions of the 

second variable, if there are three variables, the process continues to the third variable. 

As a result of such consistent composition, nonessential components in the model are 

automatically reset, that is the structural identification is correct. At this the search of 

canonical structure of intermediate one-dimensional models does not create difficulties. 

The standard regression analysis with brute force of structures is substantially more 

complex, especially if vector of variable β  has large dimension n. 

 

 

Fig. 4 

 

If the information about the structure of the model is absent, the problem of 

identification as the problem of approximation has many solutions, but the only one 

solution will be effective relating to the problem of prediction at a certain time τ . 
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The test example was considered in fig. 5, p. 14. The unknown dependence is 

approximated on the interval [0, T] by degree polynomials of the Ist, IInd, IIIrd degrees. 

The higher the degree is, the more accurate approximation is. We can say that the 

prediction error is proportional to the product of dimension model “n” on the interval of 

the forecast τ : the more “n' is', the less τ  it needs. The academician A.G. Ivakhnenko 

proposed to introduce the external criterion to select the structure of forecast model, for 

example, "regularity" criterion (fig. 5, p. 3). 

The perfect І and the “external” criterion are compared in the table (fig. 5, p. 4) for 

the above test. The criterion of "regularity" was not mistaken in choosing the optimal 

structure for τ 0 2,  and τ 0 5, . In order to increase the accuracy of the forecast it is 

proposed to create a base of canonical models ordered on the set of attributes. 

 

 

Fig. 5 
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Then the problem of structural identification will be reduced to a problem of image 

recognition. The nonius approximation is possible with the choice from the base of models 

at every step of the appropriate specifying supplement (fig. 5, p. 8). 

If we have information regarding the structure of the model (fig. 5, p. 6,7), it should 

be considered in the forecasting models. Thus, the process of energy consumption is 

determined by the aperiodic trend with seasonal fluctuations that are superimposed on it. 

This corresponds to a continuous model (fig. 5, p. 6) and its difference analogue in 

increments of 1 year. The block diagram can be put into compliance with this process 

(fig. 5, p. 6). 

The nonlinear dynamic models, for example Hammerstein’s models, take into 

account the properties of real objects more accurately. In the case of the parameterization 

of non-linearity  f u  of the model such approach requires the definition of a large 

number  n m r   of interconnected (through an information matrix) unknown 

parameters. 

In order to separate non-parametric estimation of nonlinearity  f u  and dynamic 

component, the proposed method aims to use the fundamental property - the smooth of 

processes, which is extended to nonlinearity in real objects. 

Using the results of arbitrary dynamics of an object we will find the nonparametric 

model of nonlinear dependence  f   or  f z  provided to a minimum of mean square of (

1r  )-th- derivative from f  to υ  or to z , or equivalent to its relevant difference of (

1r  )-th order in accordance to optimized parameters of linear dynamic component. 

Further, having a model  f̂   or  f̂ z  we find coefficients of linear component of 

Hammerstein’s models. 

The method is used to determine the nonlinear dependences on the dynamic 

processes of field test of aircraft, electric drive and tare characteristics of thermistor meters 

TP 100 of gas temperature in main gas pipelines. 

The possibility of improving the efficiency of solving the problem of time series’ 

prediction using the main criterion, the extension of the set of identification methods, the 

use of the set of canonical models are investigated. 
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The importance of the optimization of natural experiment for the objective 

determination of the parameters of a mathematical model of dynamic object is presented. 

The necessity of a clear division of tasks of the parametric and signal identification is 

indicated. 

The examples of systems of identification and optimization of technological 

processes of spinning the quartz tube and training on a computer simulator are given. 

The following material is only fragments of the theory of identification; it may be 

effectively used in practice and for the further development of the theory of identification 

– the mathematically formalized the theory of knowledge of the real world objects. 
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Chapter 1. The System Approach to Identification 

1.1. The Definition of the System 

The stage of formalization is the initial step while solving the problem of 

identification. The task should be set at this stage. The setting of the problem is mapping 

the input uncertain situation related to the real object into a formalized task which is 

defined on the set of quantitatively comparable items. These elements are the system, 

processes that occur in it, the criteria (objectives) and their optimization strategies 

(achieving objectives). 

R. Kalman gave the general mathematical definition of the system [7]. In this book 

discrete continuous finite linear and smooth dynamical systems definition are fixed in 

terms of its external behavior. The necessary conditions for the existence of mathematical 

models (MM) are defined too.  

The theorem of state transition function, i.e. the mapping  

ΩT T X X     

is the solution of the differential equations, was proved for smooth systems 

                                                            
dx

f t ,x,u
dt

 ,                                        (1.1) 

where x X ,  ( ) ω Ωu t t  , t T , T –is the ordered set of the time moments Ω,T  

—is the set of the input influences and states. 

The system state [7] is that minimum information about the past, which is necessary 

for complete definition of the future behavior of the system, if the behavior of input 

variables is known, starting from the current time 0t . 

If the set X belongs to the finite space, the model (1.1) is a finite system of the 

nonlinear unsteady first order differential equations. 

The linear and (or) stationary equations can be obtained from the system (1.1) with 

certain assumptions; the discret system is also linear and (or) stationary. 

The narrower the range of the variables  ΩX , ,T , the closer the simplified model 

will be to complete one (1.1) in the space X. 
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If the system (1.1) is smooth there are such 1 1 1Ω ΩX X , ,T T ,    as the system 

(1.1) will be an equivalent system of linear differential equations with matrices A and B 

with constant coefficients 

             1 1 1 1 1( ) ( ) ( ); ( ) ( ),x t Ax t Bu t y t Cx t                                     (1.2) 

where  1x t  - is vector-function   ix t , ni ,1 ;  1u t  - is vector-function   ju t , 

1 ;j ,m  1( )x t  - is derivative vector-function  1 ( )ix t , ;,1 ni    1y t  - measurement 

vector-function   iy t , ;,1 ni   ; А, В, С – are matrices ,nn ,  ,mn  mr   

respectively. 

The structure and rank of the matrices А, В, С determine the conditions of 

controllability, observability and identifiability of the system (1.1) [1]. 

The criterion of optimization or aim which is set by higher level hierarchy system 

and may be “blurred” in nature. 

The formalization of the criterion (aim) is achieved by functional task, which clearly 

determines the efficiency of system behavior in many cases. 

The purpose of the system is providing extreme value of this functional. The 

functional is the mapping  

RXTT  , 

where R is a set of the real numbers.  

The system (1.1) corresponds to a specific real number I  from R for fixed primary 

0t T  and ended 1t T  time moments, conditions 0x X , 1x X  system behavior 

x(t), which caused nonzero initial conditions and control action status u(t).  

The control u(t) is optimal if a number I  is extremal RI *  considering initial 

conditions, an equation (1.1) and other restrictions for x(t) and u(t). The model (1.1) i.e. 

the type and parameters of functional mapping f are necessary to find the optimal control 

strategy  u* t  by the real object. 
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The task of identification is the image definition f in (1.1) due to measurement 

results x(t) and u(t).  

Optimum model f̂  of the mapping f is evaluated as quality identification criterion 

J, which is also the functional that reflects the sets of implementations or specific 

realization x(t) і  mx t  to a real number J , where  mx t  is the solution of the model 

equation: 

    m
m

dx
f̂ ( t ,x ,u )

dt
              (1.3) 

for mutual input action with the object u(t). 

Since ff ˆ  in general, the value 
*f  received at the control action on the object 

u(t)  for  model (1.3) will be worse than the true optimum value 
*I . 

The model (1.3) which was built with provision for not only the functional J , but 

also I , is called goal-oriented [35]. 

If at the set  
i

f  (i= 1 ,  2 ,  …n )  o f  the  acceptable images, the image f̂  (1.3) 

provides the extreme value for a fixed control u(t) , i.e. 

argextrf̂ I ,     ,ˆˆ
i

f
i

f   

then this model is called optimal goal-oriented. 

The nearness of the model to the optimal goal-oriented one is determined by the 

nearness of measured variables )(ˆ tx ,  )(ˆ tu  to valid variables x(t) і u(t)  of the real object. 

On solving the problem of identification in (1.3) and in  mJ x,x  one doesn’t put 

x(t) and u(t) , but their estimation )(ˆ tx ,  )(ˆ tu , the formation of which is the task of object 

signals identification. 

The estimates )(ˆ tx ,  )(ˆ tu  of the signals x(t) and u(t)  in (1.1) are got by using 

filters  
ff : 
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                               f

ˆdz
ˆf ( t ,z,z )

dt
 ,

          
                    (1.4) 

where z(t) is the vector-function of measured signals x(t), u(t) ,  
x

u

Nx
z

Nu

  
    
   

,  xN ,  

uN  -  are  measurement errors x and u respectively. 

The filters optimality (1.4) is estimated by filtration quality’s criterion 
fJ  which is 

the functional of signals zz ˆ,  or their spectral characteristics. Since 
f

f  doesn’t make 

perfect conversion z to (x, u), the criterion value J in the problem identification mapping 

f̂  in (1.3) will depend on the criterion 
fJ  in the problem of identification signals zz ˆ, . 

The value criterion I  of the control quality of the real object depends on the criterion 

value J in the problem identification mapping f̂ . 

Let us introduce the concept of goal-orientation and optimality for filter (1.4). 

The filter (1.4) is goal-oriented if the problem of identification f̂  was taken into 

account in its construction in (1.3). If on the set of admissible mappings  fif  the 

mapping in (1.4) for a fixed f̂  provides extreme value 
*J , i.e. 

argextrff J ,   if fif f
,
 

then the filter will be goal-oriented and optimal. 

The functionals’ optimization 
fI , J , J  is linked with a concept of the relaxation 

process [16]. The set  kQ , ,0k  each element of which belongs to some (usually 

convex) region G of the normalized space is called the relaxation process (RP) in relation 

to optimized functions  kF Q , if the sequence  kF Q  is also ordered for the value k. 

The set of the minimization task  kF Q  is      0 1 2F Q F Q F Q ...    RP 

coincides the functionality if  
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lim 0*

kk
( F(Q ) F(Q ))


  , 

and simple coincides if 

lim *

kk
Q Q


 , 

where 
*Q  - is  true value.  

Let us expand the definition RP in case if items kQ  are the region G of the space, 

where the concept of standards or distance is not defined. The sign   is understood as a 

symbol of order relation. For example, the estimation of the vector β  of the model 

parameters  Σ β,  RP is not strictly relaxation in the problem of identification while 

putting in the subset of models structures   and methods set Opt. 

The set   0kQ , k   w i l l  b e  c a l l e d  RP as to  kF Q ,  if for any k>0  there is 

such value j>0, as 
k j kF F  .  Such RP is not rigorously relaxation. Its convergence on 

functional F or on kQ  depends on dimension and ordered of the subset non-normalized 

elements ( is  Σ,Opt ). 

In common identification system we will call the multiply subset  Σ β, ,  αOpt, , 

 J ,  I ,  T , that is designated as  Σ β, ,  αOpt, ,  J ,  I ,  T  and have the 

structure which allows to realize the relaxation process relating to the indicator such as 

k j kF F  , k=1, 2…; j>0;     Σ β αkQ , , Opt, ,      kF J , I .  

Here  Σ β,  - is the models’ subset;  αOpt,   is estimation methods subset of the 

vector models parameters  Σ β, ; α  - is parameters’ vector of the method Opt;  J  -  is 

the subset of the functionals from ε(β ),t  optimized for β  by methods  αOpt, ; 

ε(β ),t  is the difference of the coordinate measurement of the real object Σ  and 

the model; 
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 I  -is the subset of the basic functional which determine the quality of solving the 

basic task for the real system Σ  by using model  Σ β, ; 

 T - is the subset of instants of time kt , where the real system Σ  is presented by 

the data set     tku t ,y t  as a system in terms of its external behavior [7]. 

                                                                                 Table 1.1 

№ 

 

type of signal  

  

 kQ   

Opt 

 kF  

    J  I  

1 іs  k      Opt J  - 

2 ІS  k       Opt J  - 

3 іas  k     k  Opt J  - 

4 ІAS  k      k  Opt J  - 

5 mais  k     k   Opt   kJ  I  

6 MAIS  k      k   Opt   kJ  I  

7 SOS  k      k   Opt   kJ   
qI  

 

The more effective identification system is the less prior information is necessary 

for its work. The required identification quality is achieved by adaptation. The latter is the 

goal-oriented change of one or all elements of the subset  kQ  for in order to achieve the 

extremum of the main index F. The better adaptation algorithm is the more efficient is the 

system. If the complexity is ignored, then the wider is the subset  kQ  during the 

adaptation  kQ , the more efficient is the result. 

If the complexity of the system is taken into account in the index F, there is the 

subset potency  kQ  which is optimal for index F. Generally the subset  αOpt,  

consists from one element for method type Opt in the adaptive identification system. RP 

 βk  is common for all types of identification systems for index J, the subset 

configuration  kQ  and  kF  is different. 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%81%d0%be%d1%81%d1%82%d0%b0%d0%b2&translation=configuration&srcLang=ru&destLang=en
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There are identification systems for different  kQ  and  kF  in the table 1.1. 

1. In a narrow sense the identification systems (is) implements RP  βk  referring to 

J if Σ , Opt, α  are constant and the subset I is empty, namely  βk kQ  , F=J.    

The identification task is equivalent to the optimization task  βkJ   which can be 

solved by theory of linear and nonlinear estimating methods or mathematical 

programming algorithms, it depends on the structure J. 

2. In a wider sense the identification systems (IS) implements RP Σ βk k,  referring to 

J if Σ , Opt, α  are constant and the subset I is empty, namely  Σ βk k kQ , ,  F=J. 

For example, the dynamic orthogonal vernier or regression models with variable 

dimension vector β
*
, for which the optimal pair  Σ β* *,  is determined from the condition 

 
 

 
Σ β

Σ β Σ β
k k

* *

,
k k, arg min J , , are considered in [37]. 

3. In a narrow sense the adaptive identification systems (ias) implement RP 

 Σ βk k,   referring to J if Opt is constant and the subset I is empty, i.e.  β αk k kQ , , 

F J .    

The systems, using accelerated gradient descent  βk  for J, have regularization 

parameter as αk , which is optimized with supporting terms of the minimum of the 

difference of the mean-square values of the errors for two similar models. These models 

are adjusted identical algorithms Opt, but they are different in parameter α  : for the first 

one it is α αk , for the second one it is α α Δk  , where Δ 0 , α 0k  . 

4. In a wider sense the adaptive identification systems (AIS) implement RP 

 Σ β αk k k, ,  referring to J if Opt is constant and the subset I is empty, i.e.  

 Σ β αk k k kQ , , , F J . 

For example, we assort the systems of the “best regression” selection by the 

algorithm of the ridge regression [5]. 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%8d%d0%ba%d0%b2%d0%b8%d0%b2%d0%b0%d0%bb%d0%b5%d0%bd%d1%82%d0%bd%d1%8b%d0%b9&translation=equivalent&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%b2%d0%b8%d0%b4&translation=structure&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%b2%20%d1%88%d0%b8%d1%80%d0%be%d0%ba%d0%be%d0%bc%20%d1%81%d0%bc%d1%8b%d1%81%d0%bb%d0%b5&translation=in%20a%20wide%20sense&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%bd%d0%b0%d1%81%d1%82%d1%80%d0%be%d0%b9%d0%ba%d0%b0&translation=adjustment&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%b2%20%d1%88%d0%b8%d1%80%d0%be%d0%ba%d0%be%d0%bc%20%d1%81%d0%bc%d1%8b%d1%81%d0%bb%d0%b5&translation=in%20a%20wide%20sense&srcLang=ru&destLang=en
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5. In a narrow sense the multiply adaptive identification systems (mais) implement 

RP  β αk k k,Opt ,  referring to the main index I as a composition of the two RPs: 

а) RP  βkп ,п = 1, 2,. .., referring to kJ ;  

b) RP  αk k kOpt , ,J ,  k=1 , 2 , . . . ,  in respect of I; that  β αk k k kQ ,Opt ,  

    kF J , I .  

The multiplicity repeats the RP  βkп  for each element  αk k kOpt , ,J  of the 

higher rank RP. The specific method Opt corresponds to each index kJ  and it is absent for 

heuristic algorithms. Then the pair “the method and its parameters” is optimized in 

reference to I. 

As an example we can take the system “MIAS -1”. The optimal element 

 β α* * *,Opt ,  is found from seven methods  kOpt  and their parameters  αk , for one 

of the five index I (or their weighted sum), which include the regularity and unbiasedness 

criteria [4], the accuracy of the prediction by the model. 

6. In a wider sense the multiply adaptive identification systems (MAIS) implements 

RP  Σ β αk k k k, ,Opt ,  in respect of the main index I as a composition of the two RP: 

а) RP  βkп , п  =1,2,…, referring to kJ ;  

b) RP  Σ αk k k k,Opt , ,J ,k = 1 , 2 , . . . ,  in respect of I, that 

 Σ β αk k k k kQ , ,Opt , ,      kF J , I , where I – is the higher rank index.  

There are systems, which are an example of the MAIS. They were built on the basis 

of the method of the group accounting arguments [5]. In this methods the structure Σ  and 

parameters β  are selected by the condition of the extreme I. The reasonable extension of 

the set  kOpt  provides obtaining the model which is more effective by the criterion I. 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%bc%d0%bd%d0%be%d0%b3%d0%be%d0%ba%d1%80%d0%b0%d1%82%d0%bd%d0%be&translation=multiply&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%bc%d0%bd%d0%be%d0%b3%d0%be%d0%ba%d1%80%d0%b0%d1%82%d0%bd%d0%be&translation=multiply&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%bc%d0%bd%d0%be%d0%b3%d0%be%d0%ba%d1%80%d0%b0%d1%82%d0%bd%d0%be&translation=multiply&srcLang=ru&destLang=en
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The qualitative difference of the systems of p. 5.6 is their goal orientation on the 

index I, which regulates and optimizes the selection task Σ β α* * * *, ,Opt , . The issue of 

evaluation of the quality of the model obtained as a result of the identification is not 

considered for multiply adaptive identification systems. The model quality is estimated for 

the index I. This is the most objective assessment, because that model is good the use of 

which provides the best solution to the basic problem, which defined quality of the index 

I. 

7. The self-organizing control system implements RP  Σ β αk k k k k k, ,Opt , ,J ,I  

referring to the some index  Λ I  as a composition of three RPs 

а) RP,   βqkn , n= 1 , 2 , . .  ( q  a n d  k are constant), referring to 
qkJ  with the 

stationary point 

β argextrβ (β Σ α ) arg *

qqk qkn qk qkn qk qk qkJ , ,Opt , J  ; 

b) RP   (β Σ α )*

qk qk qk qk qkJ , ,Opt , ,  k=1 , 2 , . .  (q  is constant), referring to qI  

with the stationary point 

β Σ α argextr ( ) arg* * *

q q q q q q q qqkJ J ( , ,Opt , ) I J I   ; 

c) RP  (β Σ α )*

q q q q qI , ,Opt , ,q  =1 , 2 , . . . ,  referring to the higher rank index Λ  

with the stationary point 

argextrΛ( ) argΛ* * *

qI I  , 

viz   Σ β αk k k k kQ , ,Opt , ,  kF J ,I .  

Let us consider the task of improving the automated control process by the complex 

power aggregate.  

Suppose Λ  is the enterprise performance index    1 2qI I ,I ; 1I  – is the quality 

index of stabilization process variables x of the aggregate in the field of the operating 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%bc%d0%bd%d0%be%d0%b3%d0%be%d0%ba%d1%80%d0%b0%d1%82%d0%bd%d0%be&translation=multiply&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%81%d0%b0%d0%bc%d0%be%d0%be%d1%80%d0%b3%d0%b0%d0%bd%d0%b8%d0%b7%d1%83%d1%8e%d1%89%d0%b8%d0%b9%d1%81%d1%8f&translation=self-organizing&srcLang=ru&destLang=en
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modes 0x , plotted by experts; 2I  – is the index quality of the aggregate’s operation; 

 qkJ  – is the subset of the quality indicators of identification by the local models 

 1 1Σ βq q,  which reflect the control и into х  (k= 1), and by quality models  2 2Σ βq q,  

which  reflect и into 2I  (k= 2). The local models  
kk 11

,  are determined for J 1 k by the 

easiest identification methods at the first stage of the automation. The local regulators 

selected for the models  1 1
Σ βk k,  stabilize x in the range 0x  for the minimum criterion 

1I . The optimal element is determined for 1I  in accordance with the RP of p.7,a and 7,b. 

At the second stage, having accomplished the process of collecting and processing 

information automated, the complete model  2 2Σ βq q,  that connects 2I  with variables x, 

u can be built. The local regulator parameters and the optimal value 0

*x  of the operating 

modes х0 can be refined for the models  2 2Σ βq q, , including models  1 1Σ βq q, . The 

optimal element  2 2 2 2Σ β α* * * *, ,Opt ,  for 2I  can be determined in accordance with the result 

RP of p.7,a, 7,b. Thus, the transition from 1Σ  to 2Σ  leads to the replacement (according to 

RP p.7,c) of the main index 1

*I  and 2

*I .  

 

 

1.2. The Multi-Level Decomposition of Systems 

The decomposition is an opportune approach to represent the large dimension 

system exactly or approximately with complex network of forward and backward linkages 

as a system with simpler subsystems that are better amenable to formalization. 

Imagine the task of designing the system and the optimal adaptive control system of 

a real object as three subtasks and subsystems corresponding to them: 

-optimal control of a real object; 



 23 

-identification of mapping “input-output” of an object; 

- object signals’ identification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1 Three levels of the optimization in the multi-level system. 

 

These elements generate the closed optimization system for local quality index 

inside each subsystem which works as a system with backward linkages: 

- issuing the controlling action on the object; 

- measurement or calculation the object reaction; 

- evaluation of subsystems’ optimality according to the criterion of its level. 

The subsystems are combined by direct (bottom-up) and reverse (downward) 

linkages. The extreme subsystems are united by the same links with the systems of low 

and high levels which are not considered here. Let us present the designation and physical 

content of the elements, internal and external direct and feedbacks. 

The signal identification system has such elements and linkages: 

fJ  – is a creator of the identification (filtration) quality index of the vector x  of 

object’s signals; 

Рис. 1.1 Три рі 
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Σ f  - is the filter which transforms the signal of a primary converter output nnx  to 

its estimated value x̂ ; 

fOptJ  - is the optimizer of fJ  of the structure Σ f  and the vector β f  of the 

filter’s parameters; 

Σ βnn nn,  - is the information on the structure and parameters of the primary 

transducers (sensors) of the physical object’s variables, Σ f  is the transfer function of a 

sensor, static (tare) characteristic etc; 

δ nnx  - is the information on sensor’s errors: systematic, random, time; frequency 

and probability characteristics (distribution law, its parameters, correlation functions etc); 

fJ , J  -is the information on the optimality criteria of identification systems of an 

object and its signals: J enters this subsystem through the feedback channel, fJ  - enters 

the subsystem of primary converters. 

The subsystem of the object identification consists of: 

J – a creator of the quality index of the object’s identification; 

Σ β,  - an object’s model with the structure Σ   and parameters’ vector β  ; 

Opt J – an optimizer of J of a structure Σ  and parameters’ vector β ; 

Σ βf f
ˆ, , x  - the information on the filter and the evaluation x̂  of the signal x , 

taken from signal nnx  of the primary converter; 

Σ β M, , x - the information on the model of the controlled object (Σ β, ) and the 

evaluation Mx  of the signal x , received in terms of filter signal x̂  ; 

I, J – correcting feedbacks from the control system to the identification system and 

from the object identification system to the identification system. 

The subsystem of optimal control of an object includes: 

I - a creator of quality control index; 

Σ - a real object (its input and output variables u  and x ); 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%81%d1%82%d0%b0%d1%82%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b0%d1%8f%20%d1%85%d0%b0%d1%80%d0%b0%d0%ba%d1%82%d0%b5%d1%80%d0%b8%d1%81%d1%82%d0%b8%d0%ba%d0%b0&translation=steady-state%20characteristic&srcLang=ru&destLang=en
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Opt I - an optimizer of the index I  in terms of control signal u ; 

x  – an object’s output – an input of primary converters’ subsystem;  

u  - an input of an object and a model;  

Λ, I  - correcting feedbacks from the system of higher level to the control system 

and from the control system to the identification’s system respectively. 

Every element (optimizer, model, criterion’s creator) has three components in it: 

- an element itself resolving its own task; 

- the set of elements ordered by their properties; 

- a projector (PR) that chooses the optimal element from the elements’ set in 

terms of the higher level quality system index. 

Fig.1.2 shows the schematic representation of the tasks of systems design and the 

systems of the Ist, IInd, IIIrd levels. The indices q , qk , qkn  correspond to steps’ 

designation of the composition and relaxation process of the optimization system. For 

example, q  – is a number of iteration of the index’s change; qk  – are  J changes; qkn  – 

an increment number in the optimization  in the system of object’s identification. 

The whole system consists of 27 elements, among them there are methods of 

optimization sets  q

fOptJ ,    q qOptJ , OptI , criterion sets      q

f q qJ , J , I  and 

models      Σ Σ Σq q

qf , ,   which are composed of the sets of the existing ordered items. 

There is a single optimal set of these elements and their parameters for every 

specific criterion. 

The task is to select the “appropriate” set, if the costs for its search are limited. The 

problem of finding the "appropriate" set may be implemented by sorting options, if the 

priory information about all elements is unknown. 

The complete enumeration guarantees finding the optimal set, if costs for 

optimum’s search are not included in the optimality criterion. If these costs are significant, 

they affect the optimal solution. In order that this decomposition does not lead to 

complications, it is necessary to carry out an elaborate analysis of the subsystems and their 

elements. The use of the projector Pr of each level (fig. 1.2) allows narrowing down the 
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initial set of the elements to a limited subset of the contenders for the best ones for this 

particular situation. 

The principle of the decomposition is efficient for complex systems and their 

components. Thus, the infeasibility to formulate all requirements to the designed system 

using just one functional led to the problem solvable in practice – this informal criterion is 

decomposed onto the set of criteria that are subjected to strict formalization and decision 

of multi-criterion optimization problem. 

This solution does not give the only result. It only can provide the limited area 

(Pareto’s subset) in the criteria-functionals from the optimized variables. The final version 

of the solution, which is selected by a designer, belongs to this subset. 

The widely accepted is the principle of decomposition for optimization’s methods. 

The easiest method in terms of I of the coordinate optimization (Gauss-Seidel’s method) 

and the method of group relaxation carry out the decomposition of the space’s optimizing 

variables and step-by-step coordinate-wise or group optimization; 

for linear stochastic control systems that are optimal in the terms of the quadratic 

functional, the decomposition of common task into subtasks of the state optimal evaluation 

and finding the optimal control strategy [13] enable to simplify the difficult task of the 

dual control [44]; 

- the division (decomposition) into independent subtasks of signals’ evaluation, their 

covariance matrices and parameters provides a solution, which is closer to optimal, using 

simple algorithms for the problem of simultaneous estimation of the parameters and states 

of the stochastic objects (extended Kalman’s filter [4], the method of the quasi- 

linearization and invariant embedding [4]). 

The model decomposition’s task (1.1), which describes the system of nonlinear 

unsteady equations  

        
1 1 1g g n mx ( t ) f ( t ,x ,...,x ,u ,...,u ),g ,n  .              (1.5) 

and set of linear systems which describe a system’s behavior (1.1) with required closeness 

at the limited areas of determination of the variables t, x, u, is of a particular interest. 
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Fig. 1.2. The goal-oriented subsystem of identification of signals (a) and an object 

(b) and optimal adaptive control of an object. 

 

These local models within the limits linearly proportional systems allow solving the 

problems of analysis, synthesis and implementation of the optimal control and 

identification strategies. 

The identification problem of the structure of an unknown nonlinear dependence f 

of the model (1.1) can be solved using the local models. 

Let us input (1.5) in the denotation of a vector v with components ν i : 

                     

1

ν 1

1

i

i i

x ,i ,n;

u ,i n ,n m;

t ,i n m s.

 


   
    


                     (1.6) 

By reason of the continuity and the i-fold differentiate dependence (1.1), the 

dependence (1.5) can be represented by Taylor series: 
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    

  
                    (1.7) 

where  00Δν ( ) ν ( ) ν ν νi i it t ; G; G;     

Sup (ν) δlR ; δ  - is the permissible error of the dependence of approximation 

(1.1) by series (1.7). 

Let us divide the region of variables   determination G into subregions so that 

а) 0

0

ν
m

r

r r r r r
G G, G ,G G f



    , r r ;  

b)

          0

ν 0
β ν

( )( β argmin (sup β ))
r

r rR
r r r

dy
G h

dx

     

where βr  –is parameters’ vector of the linear model 

             1Δ ( ) β Δ ( )T

ry t v t ,                              ( 1 . 8 )  

βri  is a component with number i and evaluation with the accuracy to h of the expansion 

coefficient 

0νν

y


 (1.7) around the centre 0νr . 

Let us find the βr  vector, which is equal to vector 

0νν

y


 (with the accuracy to h) , 

i.e. let us obtain estimations of the first derivatives 

0νν

y


 in (1.7) for the region 0G  that 

contains the global center 0ν  of the  expansion (1.7) and uses the model (1.8) and data’s 

 1y t ,  ν t . 
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In a similar way let us calculate the vectors βr  of the partial models (1.8.) for other 

regions. Now the derivatives of the higher orders can be evaluated using values βr  and 

0νr .  

Thus, if the subregions neighboring with 0G , merge to extended 

1
01 1 1

m

r rG U G , m s,   ( the regions are numbered with distance from the “central” 0G

), such as 

3 0sup (ν) δ ν jR , G  , 

then the decomposition (1.7) will include members of no higher than the second order with 

the accuracy to δ . Let us differentiate (1.7) with respect to ν j  in the region 01G , then with 

the accuracy to 3(ν) ν jR /   

                              

0 0

2

1
ν ν

(ν( ))
ν

ν ν ν

s

i

i
j j i j

y t y y

y 

  
 

   
 ,                   (1.9) 

where 

0ν
j

y

y




 is found from (1.8) for the region 0G . 

If i  is diminution
0Δν ν νi roi i  , the derivative is closely related to  

0

(ν( ))
β

ν
r

rj
j

y t



. 

Thus, the expression (1.9) can be represented as 

                           

2

0 0 0

1
ν0

β β (ν ν )
ν ν

s

i

rj j r i i
i j

y




  

 
 .                        (1.10) 

If r s  and if s from r vectors 0 0(ν ν )r   is of linear independency, s of other 

derivatives is clearly defined

0

2

ν
ν νi j

y

 
, i= 1, 2,., s. 
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One must have no less than s advanced around 
*
rG  subregions 1

*

rG , similar to 01G  

in order to find out all coefficients 

0

3

ν
ν ν νi j k

y

  
 of the series (1.7) (the number of such 

central subregions must be at least s). 

The second derivate 

0

2

ν ν
*j ri

y

 
 are found for each 1

*

rG  from the equation (1.10), 

where values obtained for the central subregion 
*
rG  were taken instead 0β  and 

0ν i . 

If we differentiate twice (1.7),  we get 

      
0

00 0

2 2 3

0

1
ν ν ν

( )
(ν ν )

ν ν ν ν ν ν ν
*

*
r

s

kr
k ki j i j i j k

y t y y



  
  

      
    

             

(1.11) 

The third derivatives are identically found from (1.11) for 
*r s  and if s vectors 

0ν ν*r
( )  are of linear independency. All derivatives of the series (1.7) are taken in this 

way and they determine series’ structure. 

The structure restoration of the those vectors ν j  that changes from region to region 

is possible in case of the insufficient number of subregions rG . On conducting active 

experiments the minimization of the regions’ number rG  and optimization of the accuracy 

of derivatives values in (1.7) are achieved by using composite experimental design that 

provides orthogonality of vectors 
0 0

0 0(ν ν ) (ν ν )*
r

r r
,  . 

The limited (at every step of expansion) dimension of a vector of unknown 

parameters, analysis capability at every step of the significance of found coefficients of the 

series (1.7) and rejection of the insignificant coefficients is the advantage of this approach. 

The example 1.1. The unknown dependency (1.6) has the form 

2

1 1 2 2(ν) ν ( ) 0 5ν ( )ν ( ) ν ( )y t , t t t   , 
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Where the variables (ν) ν ( )iy , t  are defined as follows 01 02 0(ν 0 ν 0), G   ;  

11 12 1(ν 1 ν 0), G     ; (0) 0y  . 

There are two tests  ν t jri  in each region, deviations of which from the center are 

the same for each region   1 1Δν ( ) 0 1rt , ; 2 1Δν ( ) 0rt  ; 

1 2 2 2Δν ( ) 0 Δν ( ) 0 1r rt ; t ,   .  Taking into account these deviations we get: 

10Δ ( ) 0 1y t , ; 20Δ ( ) 0 005y t , ;  11Δ ( ) 0 1y t , ;  20Δ ( ) 0 055y t , ;  

12Δ ( ) 0 5y t , ;  22Δ ( ) 0 105y t , .  

The structure and parameters of the unknown dependency (ν)y  are necessary to 

determine. 

The solution of the task: 

a) let us make the equation (1.8) for 0G : 

01 02 20 0 0Δ ( ) β Δν ( ) β Δν ( )j i j jy t t t  ; 

substituting the data, we obtain 

01 020 1 β 0 1 β 0, ,    ; 01 020 005 β 0 β ( 0 1), ,     .   

Hence we have the sought first members of the series (1.7):  

01β 1;  02β 0 05,  ; 

b) for 1G : 

11 1 12 21 1 1Δ ( ) β Δν ( ) β Δν ( )j j jy t t t ,   

from here 11β 1 ;  12β 0 55, ; 

c) for 2G : 

21 1 21 22 22 1Δ ( ) β Δν ( ) β Δν ( )j jy t t t  ; 

from here 21β 0 5, ;  22β 1 05,  ; 

d) having βir ,  it is possible to proceed to find the second derivatives in (1.7) 

according to the equation (1.10): 
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   
00 00

2 2

01 01 02 022

ν1 1 21ν νν

ν ν ν ν
ν ν1 ν νν

r

r r

y y y y
,

   
    

   
 

where ( 0 0ν νr j j ), j = 1,2 is the divergence of centers’ coordinates for r and 0 region. 

The second equation is similar 

   
0 0 00

2 2

02 02 01 012

2 2 1 22ν ν νν

ν ν ν ν
ν ν ν νν

r

r r

y y y y
.

   
    

   
 

Having substituted the data for the first equation, we obtain the system 

 

 

00

00

2 2

2

1 21 νν

2 2

2

1 21 νν

0 1 0
ν νν

0 5 0 1
ν νν

y y
;

y y
, .

 
    

 

 
 



 





 
 





 

Its solution instantly indicates the lack of the quadratic dependency from 1x  : 

00

2 2

2

1 22 νν

0 0 5
ν νν

y y
; , .

 
 

 
 

Analogously, from the second equation  

00

00

2 2

2

1 22 νν

2 2

2

1 22 νν

0 5 0 ( 1)
ν νν

1 ( 1) (0)
ν νν

y y
. ;

y y
;

  
    

 


 
    
  


 

we obtain the solution 

00

2 2

2

1 22 νν

1 0 5
ν νν

y y
; , .

 
 

 
 

We substitute the obtained values of the first and second derivatives in (1.7).  

Considering that 0ν 0 , 0 0y  , we find the estimate (ν)ŷ  of the unknown dependence 

(ν)y : 
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2

1 2 1 2 2(ν) ν ( ) 0 05ν ( ) 0 5ν ( )ν ( ) ν ( )ŷ t , t , t t t .     

The estimate (ν)ŷ  differs from (ν)y  at a non-essential value of - 20 05ν ( ), t  for 

the region G, which is due to the proximity of calculating first derivatives. 

The equally effective principle of decomposition is relevant to the signals’ 

description. We can speak about the temporary and frequency partition of signals. The 

temporal partitioning can be built on various grounds, such as the selection of slots 

corresponding to static and dynamic modes of the object, for the independent studies of its 

statics and dynamics; the selection of the strong and low noise recording areas of the 

variables for the optimal choice of the intervals and the algorithm of signals’ estimation; 

the selection of the "informative" recording areas (in the sense of object model 

identification) with the orthogonal or uncorrelated variables. 

The frequency partitioning is equivalent to the signal decomposition in Fourier 

series. The transition to the frequency domain makes it possible to synthesize the optimal 

Wiener filter for evaluating signals [34,45]. The modern theory of the spectral analysis and 

synthesis systems [1] is also based on the decomposition of signals and their functional 

mappings. The decomposition is performed on the system of orthogonal functions. The 

decomposition of the complex signals oscillatory systems can identify individual tones and 

build partial simplified aircraft models for them [8]. Thus, the principle of the 

decomposition is appropriate at all levels and for all elements of the complex systems. 

 

 

1.3. The Principle of Criteria’s Consistency 

There is at least one value for the set elements of the hierarchical control system 

(fig 1.1)  

 Σ β Σ β βnn nп nnf f f fI ,OptI ,J ,OptJ , , ,I ,OptI , , ,I ,OptI , , 

in which the main index   is optimal if losses for searching this value are not taken into 

account. 
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The real optimization tasks can’t take these losses into account. Therefore, the 

relaxation process of finding the absolute extremum (for example, minimum) stops at 

some stage if further increment in losses for search exceeds the reducing of the rest of the 

functional. 

The search of the absolute extremum is performed by brute force if the information 

on   dependence on the set’s elements is absent. The general number of steps RP 

m
n

n!
С

( n m )!



 for the real value m and n is too big. 

The task is in many orders easier if each of the functionals Λ nn, I , ..., J  is 

optimized on the variable subset of its level: X, u, .. .,  Σ βnn nn, . This leads to the 

composition of conventionally optimal solutions 

 ext*
       

*I extrI
x


    

*I extrI
u


                                              (1.12) 

Σ β *J extrJf f
( , )


 

Σ β *J extrJnn nn
( , )


 

Σ ,β
...тт nn( ) ,  

where at the left of each vertical bar there is a variable that optimizes the functional of 

"its" level, and at the right – there is the result of conditional optimization at lower levels. 

The optimization problem of each level undergoes quite strict formalization that 

allows intensifying the process of finding the conditional extremum. The dimension 

problem is withdrawn, but the problem of efficient solving is still actual. In order that the 

procedure (1.12) gives the solution close to the absolute extremum of the main functional 

it is necessary to ensure the consistency of criteria Λ nn, I , ..., J . The criteria 

Λ nn, I , ..., J  are called absolutely consistent if the composition of conventional solutions 

(1.12) leads to the global extremum  . Two functionals neighbouring by level are called 
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locally consistent, if their variation in a limited region of G space of variables of the lower 

level subsystems is similar to: 

                      

1

2

3

4

δΛ( δ ) δ ( δ )

δ (β δβ) δ (β δβ)

δ (β δβ ) δ (β δβ )

δ (β δβ ) δ (β δβ )

f f f f f

nn nn nn nn nnf

u u k I u u ;

I k J ;

J k J ;

J k J .

   


   
  

  


           (1.13) 

If the intersection of regions iG  variables’ existence of the levels i represents a non-

empty set that includes a point determining the global extremum for  , that their multiple 

consistent optimization from nnJ  to   and back from  to nnJ  allows to find the global 

extremum. 

However, it is not easy to achieve it. That is because the functionals can’t be 

optimally built from the top down when optimal values of lower levels of upper functional 

are unknown. Thus, the functional I  of the control u on the object Σ  can’t be 

constructed without knowledge of what mathematical model it will be described with, and 

what level and type of noise is in the estimates obtained according to the filtration 

subsystem and so on.  

It is possible to apply the minimax approach and to build I in order to obtain the 

best guaranteed solution for the worst model (Σ β),  and estimates MX  of the signal. But 

there is an identification subsystem in the general system (fig. 1.1) that always gives 

solutions not worse than the worst as the result of optimization, so on using the minimax 

approach we will lose on the optimality. 

The following algorithm of constructing locally consistent functionals is 

appropriate: 
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1. The elementary subsystems of the initial converters of the evaluation signal X, the 

model ),(   and the optimal control  are accepted on the basis of the prior information 

on the object Σ , the main functional   and existing subsystems’ elements of all levels 

and taking into account the principle of sustainable complications at the first step of the 

multilevel RP. 

2. The selected subsystems of i-level are optimized by brute force of structures and 

by the method of optimization using a priori adopted criterion of subsystems of the  1i   

level: Σnn  by 
fJ , Σ f f( ,OptJ )  by J , Σ( ,Opt )  by I , )(OptI  by  . Since the 

dimensions of these variables are small, then costs for searching are valid. As a result of 

this optimization, we obtain the optimal system of the first approximation. 

3. The consistent criteria nnfI , J , J , J  are designed by the methods of the 

sensitivity theory or simulation and experimental design [18]. 

At first let us consider the approach based on the analytical calculation of the 

functional’s sensitivity. Assume that there is an optimal system of the first approximation, 

in which the real object Σ  is replaced by its model (Σ β), . Let us find the variation of 

the basic functional   relating to its extreme value Λ ( )* *u , which is caused by the 

variation δu  of the optimal control on an object. Assume that 

                                  ( ) ( ) εδ ( )*u t u t u t ,                                     (1.14) 

where ε  -is a  small quantity;
 

1( )

( )

( )m

u t

u t

u t

 
 


 
  
 

 
  

 - is a vector-function of time t. 

Assume that 

                                   

1θ

Λ( )) λ( ( ) δ ( )ε)*u( t u t u t dt,                                 (1.15) 

u
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where 

1θ

 - is an integration operator on the time t interval 1θ ; λ( )  - is a scalar function 

of a vector argument u. 

Let us find the first variation 

1 1 1θ θ θ

λ λ λ λ
δΛ δ

ε ε ε

T T
u

dt dt udt,
u u

       
      
       

    

where 

1

1

λ

ε
λ

ε
λ

ε

m

m

u

u
u

... , ... .
u

u

u

   
        

    
     

   
     

 

Now let us take the second variation: 

               
1

1 1

2
2

2

θ

θ θ

Λ Λ λ
δ Λ δ

ε ε εε

λ λ
δ δ

ε ε

T

TT

udt
u

u
u dt u dt ,

u u u

     
    

     

         
               



                   (1.16)

 

 

where 

2 2

1 1 12

2 2

1

λ λ

λ

λ λ

T

m

m m m

u u u u

u u

u u u u

  
   

   
 
          

   
  

  
     

. 

If   is determined on the x(t), but not on the u(t), so acting by the same procedure, 

we get 

1

2
2

θ

λ
δ Λ δ δT

T
x xdt,

x x




   
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or 

1

2
2

θ

λ
δ Λ δ

T

T

T

x x
u udt ,

u ux x

   
   

   
   (1.17) 

where 

δ δ
x

x u,
u





 

1 1 1

1 21 1

1

1 2

δ ( ) δ ( )

δ δ

δ ( ) δ ( )

m

n m n n n

m

x x x

u u ux t u t
x

x , u ,
u

x t u t x x x

u u u

   
        

    
                  
      
             

    

. 

Comparing (1.16) and (1.17), we see that 

                                 

2 2λ λ
T

T T

x x
.

u uu u x x

    
  

     
                                (1.18) 

The first variation is equal to zero on the extremal    * *x t ,u t , the second 

variation (1.16) or (1.17) determines the etalon surface (for the functional ( )I u ) in the 

functional variations spaceδ ( )u t . Assume δ ( ) 1( )u t t  - is an ordinary vector-function 

from t, then (1.17) is an etalon matrix 1A  of the real numbers for I  

                       
1

2
2

1

θ

λ
δ Λ

T

T

x x
A dt.

u ux x

   
   

   
                                (1.19) 

When constructing the functional I  we will seek the coincidence of the arguments 

of the extremums Λ  and I , and the second variations should be similar. 

Example 1.2. Assume 

                                        

2θ

T TI ( x Gx u Qu )dt  ,                                         (1.20) 

where G, Q – are weight matrices; 2θ - is a control interval. 
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Then 

        

2

2

2

θ

2

2

θ

θ

δ δ δ δ
ε

1
δ δ δ δ

2 ε εε

δ δ

T

T T T T

T

T T

T

T

I x x
u Gx x G u u Qu u Q u dt

u u

I I x x
u G u u Q u du

u u

x x
u G Q udt.

u u

    
     

     

      
     
       

   
  

    







       (1.21) 

The functional (1.20) will be consistent with the main functional for those ordinary 

variations δu  that are in (1.19), if the variations (1.19) and (1.21) are similar: 

                                     

2

1 1

θ

T
x x

G Q dt k A ,
u u

   
   

    
                            (1.22) 

or in a scalar mapping  

                          

2 2

1

1

1 1 θ θ

α 1 ;
n n

i j

ji
ij lk lk

j k

xx
g dt q dt k , l ,k ,m

u u 


  

 
                (1.23) 

where 1k  - is a similarity coefficient; 1αlk
 - is a matrix A element in (1.19); ij lkg , q  - are 

matrix elements G, Q respectively. 

Since 1A  is symmetric, then the total amount of equations (1.23) is 0 5 ( 1), m m , 

and the total amount of the sought coefficients ij lkg , q , is 0 5 ( 1), n n  and 0 5 ( 1), m m  

respectively. This allows them to satisfy the ( 1)m m  requirements of consistency I  to 

Λ  and a series of other requirements which are determined by the optimization system I . 

The tasks of matrices G, Q and the task [4] become much easier while using this approach 

to construct the functional I . 

The next step is to design of the criterion J of the identification subsystem. Assume 

that the functional I  (1.20) which is consistent with  , was obtained at the previous step 

with weight 
*G  and 

*Q  that satisfy the condition (1.23). Let us find the second variation 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%bd%d0%b5%d0%bf%d1%80%d0%be%d1%82%d0%b8%d0%b2%d0%be%d1%80%d0%b5%d1%87%d0%b8%d0%b2%d1%8b%d0%b9&translation=consistent&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%ba%d0%be%d1%8d%d1%84%d1%84%d0%b8%d1%86%d0%b8%d0%b5%d0%bd%d1%82&translation=coefficient&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%ba%d0%be%d1%8d%d1%84%d1%84%d0%b8%d1%86%d0%b8%d0%b5%d0%bd%d1%82&translation=coefficient&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%bd%d0%b5%d0%bf%d1%80%d0%be%d1%82%d0%b8%d0%b2%d0%be%d1%80%d0%b5%d1%87%d0%b8%d0%b2%d1%8b%d0%b9&translation=consistent&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%bd%d0%b5%d0%bf%d1%80%d0%be%d1%82%d0%b8%d0%b2%d0%be%d1%80%d0%b5%d1%87%d0%b8%d0%b2%d1%8b%d0%b9&translation=consistent&srcLang=ru&destLang=en
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I  at parameters β   space of the model  Σ β,  and define it as the standard for the 

functional J:   

2

2

2

θ

1
δ δ δ

2 ε

T

T * *I x x
u G u Q udt,

u u

    
   

     
  

where  

δ δβ
β

u
u ,





    

1 1 1

1 2

1 2

β β β

β

β β β

r

r

r

n n n

u u u

u

u u u

   
     

 
            

  
  
   
    

 ,  

1β

β

βr

 
    
 
  

. 

Then 

2

2

2

θ

2

θ

δ β δβ δβ
β β

δβ δβ δβ δβ
β β

T T

T * *

T T

T * * T

u x x u
I( ) G Q dt

u u

u x x u
G Q dt A .

u u

      
     

        

       
       

          





              (1.24) 

At the functional  

                                                     

3θ

( α)M
ˆJ i x,x , dt                                         (1.25) 

at the point  Mx̂ x , corresponding to the estimate β̂  that is equal to β , the first 

variation J  should be zero, and the second one 

3

2
2

θ

α
δ β δβ δβ

β β

T

T M M

T

M M

x xi( )
J( ) dt

x x

   
   

     
  

is similar to (1.24), viz 

                       

3

2

3 2 2

θ

α

β β

M M

T

M M

x xi( )
A dt k A ,

x x

  
  

   
                      (1.26) 
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where 2A  has 0 5 (  1), r r   of various elements 
2αij . 

The functional (1.25) should contain at least 0 5 (  1), r r   of controlled parameters 

α  in order to satisfy (1.26) the functional (1.25) absolutely. 

Let the model  Σ β,  be presented in the form of  

                                      
1

( ) β ( ) ( )
n

M

i

i ix t W p u t ,


                                  (1.27) 

where  iW p  - are assigned operators from 
d

p
dt

 . 

Assign that is in (1.24) 

2

2 diag αijA .     

From the condition 
2 3

2α αij ijk  , let us find  u t  and present it by the set of 

orthogonal functions  φk t  

                                           
1

( ) α φ ( )
m

k
k ku t t ,



                                        (1.28) 

where m – is the amount of components  φk t , that provide the adequate representation 

 u t  on the identification interval  3θ 0 ;T   φ 1k t , k ,n  - is the system of 

orthogonal functions, for example cosine series 

                                                  
2 1 π

φ ( ) cos
2

k

k
t t.

T

 
  

 
                                (1.29) 

If 
2

0

ε ( )

T

J t dt  , where ε( ) ( ) ( )M
ˆt x t x t  , then in (1.26) there are elements 

 
3

2

2 0

α
α ( ) ( ) ( ) ( )

T
i

i

j
j i jW p u t W p u t dt.

k
      

Let us denote 

( ) ( ) ( ) 1i iW p u t y t , i ,n, 
 

taking (1.28), (1.29) into account 
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1 1

( ) α ( )φ ( ) α ( );
m m

k k

i i ijk k ky t W p t y t
 

    
 

( ) ( )φ ( )ij i ky t W p t .  

Then 

3

1 12 0

1 1 1 10

α
α ( ) α ( )

α α ( ) ( ) α α

T m m

k k

Tm m m m

k q k q

ij

k ik k jk

q qjqk ik k ik

y t y t dt
k

y t y t dt y ,

 

   

  
   

  

 

 

 
 

where 

0

( ) ( )

T

jqik iky y t y t dt   are calculated previously. 

The optimal value α  will be found from the condition  

                      

3

α
12

α
α argmin α α 1

m
i* kq

R
k

j
q ijk y , i, j ,n,

k


                    (1.30) 

where all variables, except α , are calculated previously. If the dimension is equal or 

more than 0 5 (  1), r r  , then the least value of the norm in (1.30) is zero and the 

functionals’ variations J and I  are similar. 

In a similar way to the previous ones, having obtained J and having defined its 

variation from the vector β f
of filter’s parameters, let us select the quality index 

fJ of 

the filter (Σ β )f f,  from the similarity condition (1.24), and the quality index nnJ  of 

primary converters is similar to 
fJ , obtained at the previous step. 

Taking into account the complexity of the analytical solution of the functional’ 

concordance, the approach of planning the experiment will be constructive. 

 

The creation of computer aided design (CAD) of hierarchical systems’ criteria with 

appropriate mathematical software facilitates the issue. The computer consistently issued 

subsystems of the two neighbouring levels, starting from the top; the experiment aimed to 
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determine only the second functionals’ variations relating to their extreme value is 

performed; the additional functional [type (1.30)] is formed, which determines the 

proximity (similarity) of the second variations of given (upper level) and constructed 

(lower) functionals; the additional functional is optimized by adjusting options of the 

lower level subsystem. In order to reduce the options it is appropriate to apply the optimal 

plans of the experiment [14,18]. 

It is necessary and sufficient to perform a "star experiment" in order to determine 

the second variation only if extreme value is known and the experiment is performed to 

study the region of the functional’s extremum. The “star experiment” is a successive 

deviation on the “star shoulder” magnitude α  each of the variables for which the second 

variation of the functional is found. If the coordinates of functional’s extremum are 

unknown, the optimal experiment performed to design the type of quadratic model  

                   

1
2

0

1 1 1 1

( ) α α α α
n n n n

i i j i i

i i ij i j ij iy x x x x x


    

      .                    (1.31) 

(1.31) is Box’s central composite plan [18]. It is possible to perform this plan as 

orthogonal. The normalized variable models (1.31) take five values 0; 1; 1; α; α    . 

The plan of the experiment is as follows: 

1) the complete factor experiment 2
n
or fractional replicas if 5n   [18]; 

2)“star plan” 

3) point in the plan’s center (N experiments only). 

In order to design the orthogonal plan the model (1.31) is transformed to the type 

           
1

2

0

1 1 1

( ) α α α
n n n

i i i

i i ij i j ij iy x b x x x x ,


  

                             (1.32) 

where 

2 2 2 2

0 0

1 1

1
α α ( )

n N

i i i i

i k

ijb x , x x c, c x k ,
N 

       

k –is the number of the experiment. 

The new variables 
2

ix  will be displaced on the value –c. This allows to select α  so 

that all the columns of the experiment matrix become of pairwise orthogonality. 
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For example, for 3n   and the model (1.31) the matrix of the Box’s plan is 

depicted in the table 1.2, where 
15

2 2

1

(1 15)2 ( ) (8 2α ) 15i

k

c / x k /


    for any i. 

The ”star shoulder” α  is selected according to the table 1.2, from the orthogonal 

condition 
2

ix : 

2 2 2 2 2

1

( ) ( ) 8(1 ) 4 (α ) 3 0
N

i j

k

x k x k c c c c .


       

Substituting the expression for c, we get 

α 30 4 1 5, ,    0 83c , .  

The model’s (1.36) coefficients 0 α α αi ij jjb , , ,  are determined by the method of 

least squares independently because of mutual orthogonality. 

From these coefficients it is easy to access the models’ coefficients (1.31) and from 

there – to the models with nonnormalized variables. For this α j  is divided by the modulus 

of variation’s step of the variable i, and αij  is divided by the product of these moduli and 

variables i and j , 1 1i ,n, j ,n,i j.     

If there are functionals’ models (1.31) of the upper and lower levels, the lower level 

is designed on upper by variations of structure and parameters of the lower subsystem 

from the condition of the minimum of the additional functional of the deference between 

coefficients α α αi ij ii, ,   of models (1.31) of two levels. 

The number of different options can be cut on using the experiment planning in 

order to construct the dependence model of this additional functional from structures and 

parameters of lower level’s subsystems. Having made subsystems’ criteria of all levels 

consistent and optimized, we obtain the optimal system of the second approximation. 

Having repeated this procedure of criteria concordance and having optimized them, we get 

the third approximation. The concordance process stops when the results of further 

iterations differ little. 
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                                                                           Тable 1.2  

 Plan’s 

type   

Normalized 

variables 
( )x k

       

 x0 x1 x2 x3 

x1x

2 x1x3 x2x3 
2

1x
 

2

2x
 

2

3x
 

( )y k
 

  1 -1 -1 -1 1 1 1 1-c 1-c 1-c (1)y
 

  1 1 -1 -1 -1 -1 1 1-c 1-c 1-c (2)y
 

  1 -1 1 -1 -1 1 -1 1-c 1-c 1-c (3)y
 

  1 1 1 -1 1 -1 -1 1-c 1-c 1-c (4)y
 

1 1 -1 -1 1 1 -1 -1 1-c 1-c 1-c (5)y
 

  1 1 -1 1 -1 1 -1 1-c 1-c 1-c (6)y
 

  1 -1 1 1 -1 -1 1 1-c 1-c 1-c (7)y
 

  1 1 1 1 1 1 1 1-c 1-c 1-c (8)y
 

  1    0 0 0 0 0            (9)y
 

  1   0 0 0 0 0            (10)y
 

2 1 0    0 0 0 0            (11)y
 

  1 0   0 0 0 0            (12)y
 

  1 0 0    0 0 0            (13)y
 

  1 0 0   0 0 0            (14)y
 

  1 0 0 0 0 0 0          (15)y
 

 

Ensuring criteria’ consistency in theory or by simulative computer modeling brings 

the conditional optimization task into proximity with the task of finding the best solution 

(the determination of the global extremum of the main criterionΛ ). 
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1.4. The Composition of the Subsystems of Different Levels into the Single 

System 

The third and final stage of designing the structure and algorithms of functioning of 

multilevel optimization system close to the optimal at Λ  is the stage of composition of 

individual subsystems into the one complex. 

The formulated definitions of a system, relaxation processes, and the principle of 

the rational complication [43] allow determining the main approaches to the composition: 

 sorting the elements of the models sets and optimization methods; 

 a choice of the first approximation optimal system; 

 an organization of the relaxation processes of complication and 

improvement of certain elements of systems, and perhaps the structure of 

the system itself, beginning with the optimal system of the first 

approximation and ending up with the optimal to Λ . 

The sorting of the subsystems’ elements is implemented by projectors PJ, narrowing 

at the first step the initial set of elements to acceptable subsets, and then to the candidates’ 

subset for the optimal elements. 

For example, the nonlinear identification methods that don’t require the complete 

observability, are acceptable at the incomplete observability of the object Σ . At the first 

level of projectors PJ1 select those elements (methods and models) that can be applied in 

this situation, which is determined by the signals ˆ ˆu, x  under observation and by given 

criteria ΛfJ , J , I , . 

The projectors PJ are multidimensional discriminators that allow outputting those 

elements which properties are fully consistent with the factors, determining the actual 

situation. At the second level projectors PJ2 select two or three candidates for optimality. 

For this in the projector PJ2 there are regressive dependencies of the relevant criteria 

Λf
ˆĴ , ...,  (if criteria can’t be realized a priori) for each element, criteria taken from the 

quantitatively calculated vector of factors θ , characterizing the specific situation.  

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%b4%d0%be%d0%bf%d1%83%d1%81%d1%82%d0%b8%d0%bc%d1%8b%d0%b9&translation=acceptable&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%b4%d0%b8%d1%81%d0%ba%d1%80%d0%b8%d0%bc%d0%b8%d0%bd%d0%b0%d1%82%d0%be%d1%80&translation=discriminator&srcLang=ru&destLang=en
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The factors for the elements-methods of the linear evaluation are the correlation of 

the signal - noise on the amplitude and width of the spectrums, signals correlation, the 

model’s approximation (the value of the final approximation’s error) and so on. Having 

determining several factors that are the most distinctive for the practice of regression 

analysis, we construct the regression dependency of the appropriate criterion ΛfJ , ...,  or 

its estimate Λf
ˆĴ , ...,  from θ .  

Then projector PJ1 determines the region, and the PJ2 determines the criterion value 

for concrete θ  for each element of this region. The task of projectors constructing refers to 

the phase of the design and it requires as much costs as accurate and wider are the regions 

and dimensions of the factors θ . 

The choice of the optimal system of the first approximation was described above. 

The basic process at this stage is the organization of the system’s structure. 

Let us consider the version of the optimization system structure J – the 

identification’s system. In the table 1.1 identification’s subsystems are structurally 

systemized from the simplest to self-organizing structural ones: we get the structure of the 

MAIS as acceptable in order to create the identification subsystem in the multilevel 

optimization system   (if 
*  and

*Opt are prior independent). 

For this identification system, contrary to the simple ones, the closedness at the 

basic criterion I and the nonidentity of the element Σ  are typical (as for mais). Let us 

make up the functional scheme, determining its interconnection with the subsystem of 

upper and lower levels (fig. 1.3). The peculiar parts of the system (subsystem) are 

encircled by a dotted line and numbered: 1 – is the optimization Λ , 2 – is the optimization 

I, 3 – is the optimization J that adds the simplest identification’s system (part 4) to the 

multiadaptive one (parts 3 and 4), 5 – is the optimization 
fJ . 

The part 4 of the system contains the functional 
qkJ , which is determined above, 

the model Σqk
 with the vector βqkn

 of adjusted parameters, the optimizer ( α )qk qkOpt , . 

Here the RP  βqkn  is realized in terms of 
qkJ , using the optimizer ( α )qk qkOpt , . The 
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information on the structures Σqk
 optimal on 

qkJ  and vectors βqk
 of the model’s 

parameters enters the subsystems of the upper levels. 

The part 3 of the system contains three sets  
1

Σqk ,  
1

qkOpt ,  
1

qkI ; the first 

level projectors PJ1 that restrict these sets to subsets  Σqk ,  qkOpt ,  qkI   of feasible 

elements; the second level projectors PJ2 that choose among acceptable candidates on the 

optimal elements. 

For a specific type qI  and required value 
qkI  that is determined above, the 

projectors PJ1, PJ2 define the elements 
qkJ , Σqk

, 
qkOpt , αqk

 of the part 4, where RP 

 βqkn  get the model (Σ β )qk qk,  optimal on 
qkJ  as a result. In the subsystem of the part 

2 the criterion value 
qkI  is estimated on the real object Σ  or its model (Σ β )qk qk, . If it 

does not satisfy the required one, the candidate in one of the projectors PJ2 is substituted. 

The process  βqkn  repeats again for as long as 
qkI  is no worse than required, or until 

the process of sorting all candidates is completed. 

The structure and parameters of the lower level subsystem can be changed while 

changing 
qkJ  in the parts 4 and 5. In the parts 3 and 4 there is the composition of two RPs 

 βqkn   on n and  qkJ  on k that corresponds to the definition MAIS. 

In the part 2 there is a real object Σ , its optimizer q
u

Opt I , the set  qI  and the 

projector PJ that determines (based on values 
qkI  and Λ ) type qI of  the criterion 

qkI . 

The signal x from the object’s Σ  output enters the lower level subsystem. The estimate 

x̂  gets to the system of identification and control from the lower level subsystem’s output. 

The optimizer 
u

qOpt I  based on the information Σ βqk qk qk
ˆ, , I , x , produces the 

control action u, entering on the object or its model (at the stage of searching the optimal 
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system’s elements). If the optimal value qI  on the k does not satisfy the part 1 of the 

system after the completion of RP  βqk , then the projector PJ can receive the command 

from the upper level system to change on the q type of the functional qI . The step on q 

leads to the repetition of the steps on k, next k on n in the MAIS, viz. there is the 

composition of three RPs in the parts 1-4. The composition of three RPs is a self-

organizing system (SOS). 

 

Fig. 1.3 The functional scheme of the multiple adaptive subsystem 

of identification 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%81%d0%b0%d0%bc%d0%be%d0%be%d1%80%d0%b3%d0%b0%d0%bd%d0%b8%d0%b7%d1%83%d1%8e%d1%89%d0%b8%d0%b9%d1%81%d1%8f&translation=self-organizing&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%81%d0%b0%d0%bc%d0%be%d0%be%d1%80%d0%b3%d0%b0%d0%bd%d0%b8%d0%b7%d1%83%d1%8e%d1%89%d0%b8%d0%b9%d1%81%d1%8f&translation=self-organizing&srcLang=ru&destLang=en
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The strong feedback with the criteria from Λ  to I, from I to J, from J to fJ , which 

optimizes and orients the structure and parameters of the all level to the goal, 

accomplishes the regularization in a broad sense. 

The multiple adaptive systems of identification have more opportunities for 

regularization in comparison with conventional ones. 

,minarg

),()(infminarg),,,(inf

J

constOpt

const

uIJuOptI
qq













            (1.33) 

 

The MIAS efficiency is as obvious as far as obvious the inequality 

Σ

inf (Σ α ) β argmin ( ) ( α)

β argmin

q q

const

I ,Opt, ,u J inf I u Opt, const

J ,



  


           (1.33) 

where the right side corresponds to minimization’s systems with a conventional identifier 

(only the part 4 of the scheme in fig. 1.3), the left side corresponds to the systems with 

MAIS- identifier (the parts 2, 3, 4). 

If qI  doesn’t take losses for searching inf qI  into account (as in the example of the 

prognosis), then the inequality is strict. If qI  does take, that the inequality can’t be 

perform for the elements Σ α,Opt,  of large dimensionality and bad sorting by projectors 

PJ1, PJ2. The principle of rational complication is discolated in such systems. The 

complications (the extension of elements’ dimensionality) of multilevel system with 

MAIS- identifier must be that that the inequality (1.33) is not weakened but intensified. 

Only this complication is appropriate. 

 

 

 

 

 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%be%d1%87%d0%b5%d0%b2%d0%b8%d0%b4%d0%bd%d1%8b%d0%b9&translation=obvious&srcLang=ru&destLang=en
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Chapter 2. The Basic Model of the Real Processes and its Derivative Models 

2.1. The Basic Mathematical Models of Real Processes 

The processes that occur in time in real material objects are subjected to the 

fundamental laws of nature. As we said before in the Chapter 1: 

– all processes and their elements as a particle of matter can’t be completely 

autonomous, all is interconnected with everything; 

– there is  no absolute state of rest (statics) in the real objects, all objects are 

dynamic due to the infinity of the material world and the direct or indirect interrelation 

with its components; 

–  the presence of the response rate (for example, the mass in the mechanical 

objects) and real delimitation of the power of control actions on the object do not allow an 

instant change in time of any coordinate of the real world’s object, viz. all variables’ of the 

object’s state are smooth functions of time; 

–  two or more identical objects do not exist in the nature, so an ensamble 

averaging of roughly identical objects does not allow to define accurately their 

characteristics or coefficients, because each object has its own ones; 

–  in the same way the nonstationarity of processes in the real objects makes 

impossible to use the time averaging (Chebyshev’s theorem on the large numbers is 

accomplished only approximately in practice: suppose you toss a coin a hundred times, 

you will change coin’s geometry by fingers’ friction and, as a result, the instantaneous 

average value of the correlation "heads-tails"); 

–  the total interralation of the objects and their natural infinite-dimensionality does 

not allow to construct an accurate finite-dimensional model of any process; that is all 

models are approximate, the task of the researcher is to select the best one for specific 

application (prognosis, control, internal parameters’ control, etc). 

In accordance with fundamental Kalman’s theorem [7], taking the smoothness of real 

processes into account, it can be said: 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%b1%d0%b5%d1%81%d0%ba%d0%be%d0%bd%d0%b5%d1%87%d0%bd%d0%be%d0%bc%d0%b5%d1%80%d0%bd%d1%8b%d0%b9&translation=infinite-dimensional&srcLang=ru&destLang=en
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“For smooth systems, the transition function of which is a mapping 

X,X   it is also a differential equations solution at the same time 

( )x f x,u,t ,  (2.1) 

where x  - is a derivative from x at the time t, T – is an ordered set of time t moments,   - 

is the set of input infuences, X – is the set of states, Ωx X, u , t T   ”. 

Thus, any process that occurs in time 0t , can be represented by the model (2.1) 

exactly (if the dimension x,u  is directed to the infinity) and approximately if their 

dimension is finite in the real world. 

Let us add, that the process can be presented also by the system’s (2.1) solution  x t  

- this is the direct modeling task, or we have the inverse task – the task of the 

identification’s mapping f with samplings  x t   u t , if there are the experimentally 

obtained dependences    x t ,u t  and the function f should be identified (parametrically 

or non-parametrically). We construct the dependence  x t  as the function t or the values 

 x t  that are previous time (as a rule, these are polynomial and autoregressive models), 

not searching for the interconnection of the component ( ) ( ) 1 ( )i j ix t , x t , i, j ,n, x t  

with ( ) 1ku t , k ,m . 

It is clear that for the finite deviations’ values Δ Δ ΔX , U , t  and the acceptable 

approximation’s error ε , the nonlinear non stationary model (2.1) can be represented as a 

linear stationary system: 

                                  1 1( ) ( ) ( )x t Α x t Β u t ,       (2.2) 

where x, x, u  – are  deviations from the basic regime, 
Τ

1( ) [ ( ) ( )]nx t x t , ,x t , 

Τ

1( ) [ ( ) ( )]mu t u t , ,u t ,  1 1

1 1
1 1[ ] [ ]i ,n i ,n

ij j ,n ik k ,mA a , B b 
   . 

For the inverse task the measurements x and u are perturbated by the noise ( )N t , 

which is considered as a random process if the dimensions X , U  and the time’s t interval 

1T  are limited. The presence ( )N t  causes the difficulty of the inverse task: the simpler 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%bf%d0%be%d0%bc%d0%b5%d1%85%d0%b0&translation=noise&srcLang=ru&destLang=en
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model (smaller n and m) is, the greater the error ε  of its approximation of the real process 

will be; but if the model (2.2) is more complex (and potentially more accurate), the 

dimensionality ( mn  ) of the coefficients ij ija , b  in the inverse task is larger, the 

conditionality of the information matrix [1] is worse, and, as a result, the solution of the 

inverse task is less correct: the small perturbations ( )N t  in the measurements  x t  and 

 u t  lead to large errors δ δA, B  in coefficients of matrices A and B of the model (2.2). 

Then we use the property of smoothness for the more accurate solution of the direct 

(simulation) and inverse (identification) tasks. In order to avoid the mentioned 

incorrectness of the inverse problem’s solution, we use the principles of decomposition 

and correct composition in constructing mathematical models of the real processes. For 

this purpose we will divide the infinite large number of variables x, u  interconnected by 

the hypothetical model (2.1) into: 

1. 1 1x , u  - are essential for solving the main task for which the model is 

constructed (their dimensionality is small); 

2. the other variables 2 2x , u  , which are divided into variables 
AF AF

2 2x , u , that 

have the spectrum band close to the band 1 1x , u  ( AF –is an average frequency), and the 

amplitude insignificant towards to 1 1x , u  (power, variance) and the variables, the 

frequency spectrum of which lies on the axis of frequencies above (
HF HF

1 1x , u ) or below (

LF LF

1 1x , u ) of the average frequency band of the significant variables 1 1x , u . 

Then for the simplified model (2.2) the unmeasured variables 
AF AF

2 2x , u  create a 

systematic error ε ( )c t  while determining coefficients of the matrices 1A  and 1B , so far as 

the variables 
AF AF

2 2x , u  can be represented in the basis 2 2x , u  and the orthogonal additive 

0 0

2 2( ) ( )x t , u t : 
AF 0

2 1 1 2 1( ) ( )x k x t k x t ,   
AF 0

2 3 2 4 2( ) ( ).u k u t k u t   

This yields that instead of sought matrices 1 1A , B  at the identification we get their 

estimates: 
1 1 1Â A k ,   1 1 3B̂ B k   shifted on 1 3k , k . But it does not interfere with 
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prognosis and modeling tasks. Instead, the estimates 1 1A , B  take into account the impact 

of variables non-included in the model that correlated with included ones. 

The unaccounted low-frequency components 
LF LF

2 2x , u , which are in the nonlinear 

model (2.1) slowly transfer the mapping point  ux,  in the space  UX  , the point of 

decomposition (2.1) into the series (2.2), from one value to another, slowly changing the 

value of matrices 1 1A , B  at time as derivatives from the basic nonlinearity f of the model 

(2.1): 1

1

[ ] i
ij

j i , j ,n

f
a

x


 
  

  

, 
1

1

[ ] i
ie

e i,e ,m

f
b

u


 
  

 
. 

They create the error ε ( )i t  from the nonstationarity of the coefficients of matrices 

1 1A , B  which in a limited period 
kT  of the time t are taken as stationary: 

1 1( )Â A t ;  

1 1( )B̂ B t .  

However, we can correctly receive the nonstationary model (2.2) based on the 

composition of partial models with constant matrices 
1 1k k
ˆ ˆA , B  while defining 

1 1k k
ˆ ˆA , B  

for certain intervals 
kT  limited in time and further approximation 

1 1k k
ˆ ˆA , B  to the whole 

interval T that consists of subintervals 
kT . 

Finally, the impact of high frequency components 
HF HF

2 2x , u  can be significantly 

reduced both in the direct and in the inverse tasks (modeling tasks and tasks of 

identification respectively) by the averaging (filtering) allowable for spectral band of the 

basic variables 1 1x , u . 

Let us combine the variables 
LF LF AF AF( ) ( ) ( ) ( )x t , u t , x t , u t ,  

HF HF( ) ( )x t , u t  

that are unrecorded in (2.2) and included in the hypothetical exact equation (2.1) with 

unknown final value’s coefficients into one variable-remainder )(t . Let us also denote the 

set ( )X , U  through z, the matrices ( )A, B  through C, x  through y. Then, instead of the 

approximate equation (2.2), we have the hypothetical exact 

                                                             εy z C   .                                                  (2.3) 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%80%d0%b0%d0%b7%d0%bb%d0%be%d0%b6%d0%b5%d0%bd%d0%b8%d0%b5&translation=decomposition&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%bd%d0%b5%d1%81%d1%82%d0%b0%d1%86%d0%b8%d0%be%d0%bd%d0%b0%d1%80%d0%bd%d0%be%d1%81%d1%82%d1%8c&translation=instability&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%be%d1%81%d1%82%d0%b0%d1%82%d0%be%d0%ba&translation=remainder&srcLang=ru&destLang=en
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Hence LSM-estimate Ĉ  [35] of the matrix C 

                                          
Τ 1 Τ( ) ( ε)Ĉ z z z y  ,                                        (2.4) 

will consist of the sought exact value  

                                                       
Τ 1 Τ( )C z z z y                                            (2.5) 

and of the error 

                                                   
Τ 1 ΤΔ ( ) εC z z z  ,                                        (2.6) 

where the scalar product 
Τεz  is non-zero for the nonorthogonal to z components (these are 

AFx  and 
AFu ). Lower-frequency components will be orthogonal to z, if at first we place z 

in the centre that is to take 

                                                           
0z z z  ,                                               (2.7) 

where z  -is value z average for the interval T. Then 
0 НЧ НЧ( ) ( ) 0z x ,u    as 

LFx  and 

LFu  can be considered as constant on the interval T. The high-frequency components are 

orthogonal to z and will affect only on the variance of the LSM estimate [2]: 

                                           Τ 1 Τ Τ 1cov ( ) ( )Ĉ z z z Qz z z  .                                 (2.8) 

If we assume 
HF HFx , u  as “white noise”, that covariance matrix is converted into the 

diagonal: 

                                                     2 Τ 1cov σ ( )Ĉ z z  ,                                     (2.9) 

where 
2σ – is a “white noise” variance. 

Considering the total association of variables, it can be argued that with further 

increase of dimensionalities n and m and ( )n m  the functional space of variables ( )z t  

space for z, the condition of the linear independence of components ( )z t  will become 

worse and, consequently, the norm of inverse matrix 
Τ 1( )z z 

 will be increased. This leads 

to the increase of the covariance’s (2.9) estimates (2.5). However, the larger is the 

dimensionality ( )n m  of the model (2.3), the more variables are accounted, the less is 

the remainder ε  and, as a consequence, 
2σ  in (2.9). Thus, it can be said that in the series 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%be%d1%81%d1%82%d0%b0%d1%82%d0%be%d0%ba&translation=remainder&srcLang=ru&destLang=en
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of the models which are ordered by complexity (dimensionalities ( )n m ) there is an 

optimal one on condition that the norm of the covariance matrix (2.8) or (2.9) is minimum 

[37]. 

 

 

2.2. The Discrete Time Mathematical Models that Correspond to the Basic 

Continuous Model Exactly or Approximately (2.2) 

As so far natural is the continuity in time for real processes, so natural is time 

discreteness for real measurements of these processes. Thus, there is the issue: how to find 

out the continuity’s dependence (2.2) using the discrete time measurements 

( ) ( ) 0 1x k ,u k , k , , ,M  and knowing the step constant Δt  or variable Δkt in time. A 

separate issue is to do it in a way that the perturbations ( )N k  influence its solution as less 

as possible. 

The one-valued transition from the continuous model (2.2) with the initial 

conditions 0(0)x x  to discrete one 

                              
0 01

( ) ( ) ( ), ( )k k kx t Ax t Bu t x t x ,


                                 (2.10) 

can be obtained through the system’s (2.2) solution for discretes 
kt  of the time t:  

                            0 0 1

0

( ) ( ) ( ) ( τ) (τ) τ
kt

k kx t Ф t t x t Ф t B u d    ,                      (2.11) 

where ( )Ф   - is the transition (2.2) matrix of the system, which is equal to[16] 

                                            1

1

0

( )
tA

k
k

k

t
Ф t e A

k !





  ,                                          (2.12) 

or through the Laplace transform 
1 1

1 0 1( ) ( ) ( ) ( ) ( )X s s I A x t s I A Bu s       , from 

which 

                                           
1 1

0 1( ) Ζ ( )Ф t t sI A      ,                                 (2.13) 

where s – is a Laplace variable, 1  - is an inverse Laplace transform. 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%be%d0%b4%d0%bd%d0%be%d0%b7%d0%bd%d0%b0%d1%87%d0%bd%d1%8b%d0%b9&translation=single%20valued&srcLang=ru&destLang=en
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If the inverse task is solved, the signal (τ)u  in (2.4) will be represented as a sample 

of measurements (τ )ku , which (for the calculation ( )kx t  in (2.4)) should approximate by 

the analytical dependency. Then the solution (2.4) can be obtained analytically. As it will 

be shown below, in many cases of the inverse problem’s solution, the step of time shift t  

of variables of the difference equation (2.10) is larger than the step t
1

  of the 

discreteness’s measurements. Let us represent within the step t  the experimental 

dependence (τ)u  as a power-polinomial, for example of the third order: 

                                                
3 2(τ) ατ βτ γτ δu     ,                                 (2.14) 

where  τ 0 Δ, t . If the dependence is simpler, then the part of coefficients will be zero. 

According to the scalar recording of the least squares’ method

0

(τ ) τ 0 1 2 3
n

j

k
j jkR u , k , , , ;



    

  

3
1

3
0

α
k

k kD A R



  ,   

3
1

2
0

β
k

k kD A R



  ,  

  

3
1

1
0

γ
k

k kD A R



  ,   

3
-1

0
0

δ
k

k kD A R


  , 

2 3

0 0 0

2 3 4

0 0 0 0
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0 0 0 0
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0 0 0 0
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  
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   

   

 
 
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  

   

   

   

, 

here 0 1 2 3ksA , k,s , , ,  - are algebraic additions of the matrix ][D . 

The matrix recording (2.11) of the vector process ( )kx t  is the sum of the scalar 

processes, which are (depending on the dimensionality of the matrix 1A ) the solutions of 
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the typical differential equations of the corresponding order. Let us consider the series of 

these equations which are ordered by complexity and their analytical solutions. Taking up 

the operator 
dt

d
 as p , we have 

                                                       1 0(τ) (τ)ˆpx b u ,                                           (2.15) 

                                                 0 2 0( ) (τ) (τ)ˆp a x b u  ,                                      (2.16) 

                                           0 3 1 0( ) (τ) ( ) (τ)ˆp a x b p b u   ,                               (2.17) 

                                           
2

1 0 4 0( ) (τ) (τ)ˆp a p a x b u   ,                                (2.18) 

                                    
2

1 0 5 1 0( ) (τ) ( ) (τ)ˆp a p a x b p b u    ,                         (2.19) 

                            
2 2

1 0 6 2 1 0( ) (τ) ( ) (τ)ˆp a p a x b p b p b u     ,                      (2.20) 

where (τ)û  corresponds to (2.14). The analytic solutions of the equations (2.15)÷(2.20) 

are mentioned in the appendix A. 

If the step Δt  is constant, the matrix exponent 1tA
e  in the equation (2.5) can be 

approximated by the linear component of the series 1

0

k
k

k

t
A

k !





  or the derivate ( )kx t  can 

be substituted by the relative difference   1

1( ) ( ) Δk kx t x t t   , and the differential 

equation (2.2) becomes directly difference (2.10), where 

1 1Δ ΔA I t A , B I t B      .  

The discrete models which are the most frequently encountered in the contemporary 

tasks of modeling and prognosis will be discussed in the following sections: 

- autoregressive (AR); 

- autoregression with moving average (ARMA); 

- autoregression with integrated moving average (ARIMA); 

- autoregressive conditionally heteroscedastic model (ARCH); 

- generalized (GARCH). 
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In addition to the models listed above, we obtained and used these combined models 

for prognosis the time series: the aperiodic trend approximated by power-polinomial 

(Taylor series) and the oscillatory components approximated by autoregression. 

 

 

2.3. The Determining the Structure of the Nonlinear Operator f  of the Model 

(2.1) by Composing the Local Models (2.2) into the Global one 

Let us denote the variables ( )x,u,t  which are the argument of the vector function 

f  in (2.1), through β , ix  through J. Then, for i-line of the system (2.1) ix  from x,u, t  

will be represented as (β)J . Next, as we know from Weierstrass theorem, every smooth 

dependency can be represented by Taylor series and, if the region β  is limited, and series 

are endless, that this representation is exact: 

0 0
β β

2

0

1 1 1

1
(β) (β ) Δβ Δβ Δβ

β 2 β β

n n n

i i j

i i j
i i j

J J
J J

  

 
   

  
 

 

                    

0β

3

1 1 1

1
Δβ Δβ Δβ

6 β β β

n n n

i j k

i j k
i j k

J

  


    

  
                         (2.21) 

where 0β  - is a global centre of decomposition, 0Δβ β β  . 

Apart from the global center 
0

  of the region G let us introduce (according to the 

capabilities of the experiment) a number of local centers 0β r  ( 1r ,m ) of the limited 

subregions rG . The dimension G is selected under condition that the dependency )(J
 

with the permissible error δ  is approximated by the linear part of decomposition (2.21), 

and the distance between centers of neighboring subregions is such that (β)J  is 

approximated by the linear-quadratic part series (2.21) with an accurate δ . 

Analogously, the distance between the centers of the groups of neighboring 

subregions should satisfy the conditions of approximation by the first three terms of series 
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(2.21) and so on. Thus, there is a gradual increase of the dimension of the region and of 

the polynomial order (2.21) respectively. In this case the components of series for which 

the coefficients 

0β
β β

p

p

ni

J

 
are insignificant, are automatically discarded at the step p  

( 1 2p , , ). 

This approach enables to determine the final set of coefficients α  at each step using 

the linear model only 

                                                         Δ α Δβy   ,                                                 (2.22) 

where Δy  determines for local subregions r 

                        

0

0

β

Δ Δ α Δβ β β
β

r

r
J

y J , ,


   


;                             (2.23) 

Δy  is to increase the region by combining neighbouring subregions 

             0 0 0

2

0 0Τ

β β β

Δ α Δβ β β
β β β β

p r r

p r
J J J

y , , , p r
  

     
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;      (2.24) 

and so on.  

Genuinely, for local neighboring subregions r the first derivative from J on β  into 

(2.21) is approximately equal to 

                       

0 0 0

2

0 0

1
β β β

(β β )
β β β β

p

n

i i

i
r r

p
j j i j

r
J J J


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  
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 ,                   (2.25) 

this yields the dependence (2.24); 

- for increasing neighboring regions 

                 

0 00

2 2 3

0 0

1
β β β

(β β )
β β β β β β β

k

n

i k i

k
r r

i j i j i j k

r
J J J


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  
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 ,          (2.26) 

and so on. 

If in certain direction l any derivative p is close to zero, the corresponding term of 

the series (2.21) is discarded while determining the coefficients α  of the linear model 
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(2.22). That is, the sought structure of the polynomial (2.21) is automatically found 

without sorting all the options. 

The coefficients α  of the polynomial that is obtained in this way can be specified 

while minimizing of the appropriate norm of the proximity (β)J  and the polynomial 

(α β)J , . Euclidean’s mean square or Chebyshev’s norm of the uniform approximation are 

commonly used. In order to increase the accuracy in the corresponding subregions the 

weighted mean square norm can be used. 

A slightly different approach to the approximation (β)J  by analytical dependence 

arises from the following presentation of Taylor series, which is isomorphic to the 

expression (2.21): 

0 0 0

0

2 3

1 1 1β β β

(β) (β )

1 1
Δβ Δβ Δβ

β 2 β β 6 β β β

n n n

i j k

j ik
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  
,   

                                                                                                                                (2.27) 

or                                                     Δ α(β) Δβy   .                                             (2.28) 

This points out the possibility of defining the unknown structure (β)J  by 

constructing a partial model, if the latest β ( 1)i i   are constant. Next the coefficients 

1α  as functions 2β , are approximated by relevant dependencies 1 2 2α (β α ), , next 2α  as 

function 3β  and eventually we get the sought dependence 1α(β β )n, ,  for the model 

(2.28). 

In this approach the dependencies’ unidimensionality that are approximated simplifies 

the task of selecting the structure of partial models. We can create a database of canonical 

models (the models with minimum dimensionality of the vector α  of the unknown 

coefficients) and arrange it in order by using the table of properties. Then the candidate for 

the best model will be that one, the set of properties of which coincide the most with a 

similar set of properties of the experimental curve. 

The following examples illustrate these methods. 
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The test example. The unknown dependence 
2

1 1 2 2(β) β 0 5β β 0 5βJ . .    defined by 

the table 2.1, 

Тable 2.1 

Region G1 G2 G3 

№ point 1 2 3 4 5 6 7 8 9 

J  0 0.1 0.005 -1 -0.9 -0.945 1 0.61 0.605 

1β  0 0.1 0 -1 -0.9 -1 0 0.1 0 

2β  0 0 -0.1 0 0 -0.1 -1 -1 -1.1 

 

where the total region G consists of three subregions 1 2 3G ,G ,G , each has a centerpoint 1, 

4, 7 respectively, and two points with a deviation of ± 0.1 from the centerpoint. Using the 

equation (2.22) let us determine the first derivatives 

0β
β

r
i

J
,




 1 2; 1 2 3;i , r , ,   next for 

the whole region G – the second derivatives (2.24); having substituted them in the 

equation (2.21), we obtain the model’s equation: 

2

1 1 2 2 2(β) β 0 5β β 0 5β 0 05βĴ . . .      , that coincides with the sought one, after 

discarding the insignificant component which was arisen as a result of substituting the 

derivative by difference . 

The example 2.  The determination of the analytical dependence of the energy of the 

first half-wave of the current discharge to the capacitor C in the circle with the inductance 

L and the resistance R depending on the quality factor β of the contour line of the energy 

converter’s power. 

The current x with the CLR ,, parameters of circle is connected with the equation 

02

2

1 1
0 ( ) (0) βC

d x R dx L
x , x t dt CU ,

L dt LC R Cdt


     ,       (2.29) 

where (0)CU  - are initial conditions for the voltage on the capacitor, (0) 0x  . 

The index 
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1
1

2
2 2

1

0 (0 )

(0)
(β) ( ) ( )ArgSupr

2

t

C

t ,

CU
J Rx t dt , t x t



 

 
  
 

 .                       (2.30) 

The task (2.29), (2.30) was solved by numerical method. The dependence (β)J  was 

obtained where  – is a scalar approximated by fractional rational function from   

(fig.2.1)  

 

 

 

 

 

 

 

 

 

 

Fig.2.1. Dependence (β)J  (a dotted line) and its model  (2.2.31) )(ˆ J (a continuous 

line) 
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    
.                   (2.31) 

Hence the estimate β*ˆ
 of the optimum value * is found under condition 

2

2

(β) (β)
0 0

β β

ˆ ˆJ J
,

 
 

 
. The error 

β β
100

β

* *

*

ˆ
%


  is 0.05%. 

The example 3. The obtaining of the multidimensional nonlinear dependences at 

the power facilities according to the natural experiments’ data. 

The charts of the experimental (β)J  and analytical 1 2(β β )Ĵ ,  dependencies are 

represented in the fig. 2.2. The dependence 1 2(β β )Ĵ ,  is obtained by the approximation of 

the coefficients αi  of the local i- models 
2

1 1 11 2(β ) α β α β 1 6i iĴ , i ,    in terms of the 
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linear functions 2β  2 22 1α (β ) α α β 1 2ij j j , j ,    . The mean square error is 2% from 

maxJ . 

 

 

Fig. 2.2 The dependence 1 2(β β )J ,  (a dotted line) and its model 1 2(β β )Ĵ ,   

                (a continuous line). 

In the fig. 2.2 we see the charts of the experimental 1 2 3(β β β )J , ,  and analytical 

1 2 3(β β β )Ĵ , ,  dependencies, which are obtained in the same way: 

                   
2

1 1 11 2
(β ) α β α β 1 2 3 1 2 3ik ikĴ , i , , ; k , ,    ;                        (2.32) 

                                2

2 2 2α (β ) α β α β 1 2jik jk jk , j ,    ;                              (2.33) 

                                        (1) 2

3 3 3α (β ) α β α βj jjk
   .                                          (2.34) 

Substituting the coefficients (2.34) into (2.33),  (2.33) into (2.32), we obtain 

6 2 2 2 2 2 2 2 2

1 2 3 1 2 3 2 3 1 2 3(β) 0 96 10 β β β 0 61 10 β β β 0 9 10 β β 0 23β β βĴ . . . .            

2 2 4 2 2 5 2 2

1 2 3 2 3 1 2 3 1 2 3 2 30 04β β β 1 72β β 0 24 10 β β β 0 46 10 β β β 0 0232β β. . . . .          

2

1 2 3 1 2 3 2 30 0126β β β 0 133β β β 1 02β β. . .   .  

The approximation error does not exceed 0.5% from the maximum value J. If the 

permissible error is 5%, the expression simplified  

2 2 2 2 2 2 2 2 2

1 2 3 2 3 1 2 3 1 2 3 2 3(β) 0 61 10 β β β 0 9 10 β β 0 23β β β 0 04β β β 1 72β βĴ . . . . .           
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2 2

2 3 1 2 3 1 2 3 2 30 0232β β 0 0126β β β 0 133β β β 1 02β β. . . .     

 

Fig. 2.3 The dependence 1 2 3(β β β )J , ,  (a dotted line) and its model 1 2 3(β β β )Ĵ , ,   

              (a continuous line). 

Thus, the rational use of the mathematical or numerical modeling or experimental 

research and the methods of the identification theory makes it possible to obtain the 

analytical dependence which connects the appropriate parameters of the complex system 

that is tested or designed. Next the obtained analytical dependence )(ˆ J  is used for 

solving tasks of systems’ analysis and synthesis, for interpolation and extrapolation for 

regimes, for which the experimental data are unknown. 

 

 

2.4. The Modeling and Forecasting of the Solution (2.11) of the System (2.1) if 

the Information on the Mapping XΩXΤΤ   is Missed 

Under condition that the information on the mapping of the set Ω  of the controlling 

action ( )u t  and the previous values of the state’s X variables are missed the modeling task 

comes to the approximation task of the data extraction ( ) 0 1 2x k , k , , , ,M , which 

are perturbed by noise ( )N k . The task of identification in order to approximate the 
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aperiodic processes is simple with provision for the fundamental process’s property, its 

smoothness, that is known a priori, and taking into account two Weierstrass’s theorems on 

approximation of the aperiodic processes by Taylor series,  and the periodic processes –  

by Fourier series. 

The other situation is at the approximation for forecasting. Among the model’s set 

which describe the process ( )X k  with a given accuracy you should select one that 

corresponds to the real hidden regularity, because only this can provide the sufficient 

accuracy of the forecasting process ( )X k  in the future. This is especially actual for short 

data ( )x k  extractions [ 1 ]k ,m . 

The example. The unknown solution (2.1) of the unknown system (2.2) for one from 

the coordinates ix  of the vector-function ( )x k  has the unknown type 

                                           0 1 2( ) β β β sinw εi ix t t t    ,                               (2.35) 

where the coefficients 0 1 2

2π
β 2; β 3 ; β 0 7; wt .

T
    , T – is the interval of the 

solution’s observation ( )ix t , which is like an ordinary degree function at the [0 ],T . 

Therefore, as a rule, in these conditions the researcher and automated system will select 

the model ( )x̂ t  as a degree polynomial for the approximation ( )ix t . 

                                
0

( ) β
n

j

j
i j

ˆx̂ t t


  , where 1 2 3n , , .                                  (2.36) 

For the models’ selection (degrees n) it is necessary to use the external criterion, for 

example, the “regularity” criterion 

                   
1

22 2

1 1

( ) ( ) ( )
Npr Npr

k k

pr pr pr
i i i

ˆ ˆI x k x k x k
 

 
  
 
  ,                       (2.37) 

where ( ) 1
pr

prix k , k ,N – are values of the time series ( ) 1ix k , k ,M  selected in the 

checking sequence; ( ) 1
pr

prix̂ k , k ,N – is an estimate’s forecasting ( )ix k  at the 



 67 

checking sequence, obtained on the model constructed at the operating sequence 

prM N  of the points k  ( 1 2 )prk , , ,M N  . 

Let us take 0 τ 1 2j[ ,T ], j , ,   TT 5.0,2.0
21
   as an operating range, 

where we obtain LSM- estimates β j
ˆ  of the model (2.36) for various degrees n. As the 

criterion of "regularity" (2.37) we take the module of the difference of real and forecasting 

values ( )ix t  in the point T: 

                                                         ( ) ( )
pr

i i
ˆ ˆI x T x T  .                                (2.38) 

So far as this is a test task, let us calculate the forecasting accuracy criterion that is 

not physically implemented, 

                                        ( τ ) ( τ )j

pr
i i j

ˆ ˆI x T x T    ,                                (2.39) 

in order to compare it with the physically implemented criterion Î . 

In the table 2.2 there are criterions’ I  і Î  values for τ 0 2. T  and τ 0 5. T , 

numbers of the relevant points of the graph (fig. 2.5) for the models (2.36) of various 

degrees : 1 2 3n , , . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4. The dependence ( )ix t
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                                                                                     Таble 2.2 

The forecasting results 

n τi  Î  №pnt I  №pnt 

1 0.2 0.7 1 1.4 2 

2 0.2 1.8 3 3.6 4 

3 0.2 0.2 5 0.4 6 

3 0.5 5 7 6.2 8 

2 0.5 5 9 6.2 10 

1 0.5 0.2 11 0.3 12 

 

As it follows from the table and figure 2.5, the model (2.36) is optimal for 

τ 0 2. T  in terms of I  and Î  at 3n ; the model (2.36) is optimal for τ 0 5. T  at 

1n  . The proximity of values I  and Î  confirms the validity of the criterion of regularity 

in the forecasting task. Though different models will be optimal for different intervals τ . If 

we use the optimal model for τ 0 2. T  while forecasting at τ 0 5. T  (point 13), the 

error of the forecast increases significantly. Thus, it is desirable that checking and 

forecasting intervals will be the same. The effect of regularization by external criterion 

(2.38) is that for the same data, the larger τ  is, the simpler is the model selected by the 

criterion (2.38): the criterion Î  discarded the models of the second and third orders for 

τ 0 5. T . 

Let us consider the case in which the presence of a periodic component time series 

is obvious, for example, the monthly volume of electric power consumption. Although this 

index varies from year to year, but within each year, that is strictly periodically in time, it 

increases in winter and decreases in summer. In the fig. 2.6 there is the sample at 312 

points of average values of electricity consumption in Ukraine in a period of 26 years 

(1960 ÷ 1986). 
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Fig. 2.5. The graph ( )ix t  and its forecasting models. 

The lack of input variable ( )u t  (mainly of the growth of industrial capacity) makes 

it impossible to construct the model "input-output" or "cause-effect". Analyzing the 

consequence, we have the opportunity to represent it as a homogeneous differential 

equation only 

                                  
2 2

1 2 2( 1)( 2ξ 1) ( ) 0T p T p T p x t    ,                         (2.40) 

(0) 2000x ;  month(0) 70px / , 
d

p
dt

 – is a differentiation’s operator. 

For that time this model corresponds to the growth tendency of the average annual 

consumption ( 1

1

1
p

T
  is the root) and gradual increase of vibrations. 
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Fig. 2.6. The predicted ( )ix̂ k  and measured ( )ix k  values 

                                     of the series, 1 2 3i , , . 

(

2

2 3 2

ξ ξ 1
,p j

T T


  ). 

However, there is the exponential growth tendency for 0 220k , . Next the 

process goes into the stationary mode. Thus, the model with time variant coefficients 

1( )T t  and ξ( )t  will be more accurate, while 2T  is unchanged and equal to 12 months. 

Within that set up the predicted value ( τ)prx̂ T   is calculated by the model (2.40) as its 

solution (2.11) for predicted values 1( τ)T T   and ξ( τ)T  . 

In the fig.2.6 there are measured ( )ix k  and predicted ( )ix̂ k  values of electricity 

consumption for one year to come. The forecast is carried out by the nonstationary 
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difference model in increments of a year (12 months), which was calculated for the 

previous three years 

   0 1 2 3( 12) β ( ) β ( 12) β ( 24) β ( 36)x̂ k x k x k x k x k        .               (2.41) 

This model is a difference equivalent of the continuous model (2.40) with time 

variant coefficients. The estimates β 0 3i , i ,  of the model (2.41) are determined by the 

least squares’ method. 

As it is highlighted in the work [5], the problem of constructing the models with the 

use of the criterion (2.37) is the abnormal criticality of the models to the method of 

selecting points for checking and operating sequences. For greater efficiency of models’ 

selection, the criterion (2.37) is completed with criteria of unbiasedness or balance of the 

variables. This makes it possible to construct models of rather high quality for medium 

term and long term forecasting of time series. 

In general the time series’ models which are uniform differential or autoregressive 

difference equations can be considered as nonuniform ones, where the input variable ( )u t  

is represented by the additional system of differential equations of the order m: 

0(0)u cu, u u  . Then we get the uniform system ( ) ( )Z t DZ t  of extended 

dimensionality n m , instead of the system (2.2) of the order n where ( )Z X ,U , 

( )D D A,B,C . 

It is observed in the description of the time series. Thus, the homogeneous equation 

(2.40) which is artificially extended to the third order due to the lack of controlling action 

( )u t , such as gross domestic product, the total production volume, which creates aperiodic 

(annual average) series’ component; heating costs that make up the vibrational component, 

and their connection with power consumption is noninertial, or it is of the response rate of 

the first order maximum and a nonidentity coefficient of the transfer (due to losses). 

It is obvious that the more accurate are the models that take into account the 

fundamental cause-effect connections in the examined object. If the information on these 

connections is absent, it is necessary to select the models’ structures at the external 

criterion ̂ , beginning with the simplest ones (with minimum dimensionality of the 
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evaluated parameters), but those ones that take into account the geometric properties of the 

approximated time series. Let us give some of these models and their properties 

(characteristics) as an example: 

1 1 2 3β sin(β β )y x   - is a sine wave extracted at 1β   y times, compressed at 2β  x 

times, shifted along the axis at a segment 3 2β β , with a period 22π βT   and has zero 

at the points 
3

2

π β

β

n
x


 ; 

2 1 2 3β tg(β β )y x   has a period 2π β , is discontinuous at the 2y  in the points 

2

( 1) π

2 β

n
x


 ; 

3 1 2β arcsin(β )y x  - increases monotonically from π 2  to π 2 , if x changes 

from 21 β  to 21 β ; 

)(
214
xarctgy   - increases monotonically from π 2  to π 2 , if x changes 

from   to  ; 

2β

5 1βy x  - increases monotonically with acceleration if 2β 1  and with 

deceleration, if 2β 1 ; 

2β

6 1 1 3β β βxx
y e    - increases monotonically from 0 to  , if 2β 0  or 3β 1 , 

decreases monotonically from 0, if 2β 0  or 3β 1 ; 

27 1 β 2β log (β 0)y x   - is a mirror image of 5y  in relation to a line, if 1β 1 ; 

2
2(β )

8 1β
x

y e


  - increases monotonically from 0 to 1β  and decreases from 1β  to 0 

symmetrically in relation to 0x  ; 

2 4β β

9 1 3β β
x x

y e e   - changes the configuration monotonically depending on the 

signs and quantities  1 4β β ; 

2
2 3β β

10 1 6 8β
x x

y e y y


   - is increasing nonsymmetrically, if 3β 0  or decreasing 

to 1β , if 3 2 3β β β 0,  ; 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%b7%d0%b0%d0%bc%d0%b5%d0%b4%d0%bb%d0%b5%d0%bd%d0%b8%d0%b5&translation=deceleration&srcLang=ru&destLang=en


 73 

32 ββ

11 1β 0
x

y x e , x   - is increasing, if 1 2 3β 0 β 0 β 0, ,   , it is 

extreme, convex, nonsymmetric, bell-shaped with the shift of the extremum on the axis 

OX , the shift as large, as larger is 3β . 

Analyzing the examined series with the use of characteristics provided for functions 

1 11( ) ( )y x y x , where x for time series is t, we can select the model that is optimal by 

criterion of minimum complexity. This analysis is easily automated using the standard 

contemporary algorithms of images’ recognition which are based on the theory of fuzzy 

sets and neuron shaped structures or any other statistical methods. 

 

 

2.5. The Modeling, Forecasting and Diagnostics of the Solution (2.11) of the 

System (2.1) if the Information on the Mapping ΩT T X X     is 

Available 

In the section 2.2 we considered the direct modeling and forecasting, under condition 

that the mapping “input – output” is known and using the cubic approximation of input 

signals and analytical calculation of the solution of an appropriate differential equation. 

If the mapping “input-output” is unknown, but input ( )u t  and output ( )x t  variables 

are available, there is an inverse task, viz the task of the identification of mapping 

 f u,x,t  in (2.1). This task is the most complicated, but it is the most important one. 

There are several options: 

1) to determine the linear operator ( , β)W p  at a given point  0 0x ,u , 
d

p
dt

  of the 

dynamic connection of small deviations Δu , Δx , using an input ( )u t , an output ( )x t , 

which are usually perturbated by the noise ( )N t .  It is necessary for the analyzis of the 

object’s stability and the synthesis of the process ( )x t  controlling system. 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%81%d0%b8%d0%bc%d0%bc%d0%b5%d1%82%d1%80%d0%b8%d1%87%d0%bd%d1%8b%d0%b9&translation=symmetric&srcLang=ru&destLang=en
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2) to find out the fundamental (more stable) static, usually nonlinear connection of 

 sustained values u  and x , viz ( )x u  (balancing dependances) from the process dynamics 

for the input ( )u t  and the output ( )x t  perturbated by noise ( )N t . 

3) to determine the shape of the input signal or parametric variable using the output 

( )x t  and the apriori known operator ( , β)W p ; to establish its physical meaning: to 

diagnose the cause of the transition process in the ( )x t  using the methods of expert 

evaluation. This is the task of causes’ analysis. 

Let us illustrate the first two tasks by the previous example of the electricity 

consumption. Let us represent the process ( )x t  as the sum of periodic ( )px t  and 

aperiodic ( )ax t  components of the object’s output which has this structure (fig. 2.7). 

 

Fig. 2.7. The block diagram of the process ( )x t  model. 

Here 1( )T t , changing in time from negative to positive respectively, provides the 

coincidence of aperiodic component ( )ax t  with the current average value ( )x t . The 

operator  
1

2

2  1
–

Т p   is the generator of the sine signal sinωt , where 
2π

ω
T

 , Т = are 

12 months. The signal sinωt  passes through the nonlinear transformer, its output is 

amplified in proportion to the estimate of average ( )ax t , forming a periodic component 

( )px t  of the signal ( )x t . 

The first task is to define 1T  using the window (0)ax  current values, for example, at 

the beginning of each year and reactions ( )ax t  at it within 12 months. 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%83%d1%81%d1%82%d0%b0%d0%bd%d0%be%d0%b2%d0%b8%d0%b2%d1%88%d0%b8%d0%b9%d1%81%d1%8f&translation=sustained&srcLang=ru&destLang=en


 75 

The second task is to find out the nonlinear type, which transforms the sine signal 

into ( )px t . The fundamental (stable) property is found in nonlinearity’s asymmetry: in 

winter the half-wave of oscillations has a larger area than in summer, and depends on the 

oscillation’s amplitude from ( )ax t . 

From the model’s analysis follows that managing impact onto the system of  electric 

power consumption of Ukraine, which will reduce the peak load in winter, may be a 

change of tariffs for industrial power consumption proportionally to ( )px t  (in the peak 

winter months the power is expensive, in summer it is cheaper). This may force the 

company to redistribute capacity at time in order to minimize the cost of the consumed 

energy. As a result the peak winter load decreases. 

As an example of partially the first task and partially  the third task, let us consider 

the schedule curve of the change of the gross national product (GNP) (fig. 2.8).  

 

 

Fig. 2.8. The curve of the gross national product in period 

of “rebuilding” (“perestroika”) and probable controlling actions ( )u t . 
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The sustained value of GNP begins to decrease rapidly in 1989–1990. In 1995 the rate 

drops and in 1997-2000 we have the consistently low level of GNP. Since 2001 to 

nowadays we observe the slow rate of GDP’s growth. In order to determine the reasons for 

such dynamic of GDP, we use classical macroeconomic model of the economy in the 

industrial and technological interpretation (fig. 2.9). 

 

 

Fig. 2.9. The dynamic macroeconomic model. 

 

The production process variables are: 

L –is a labor; К – are capital goods (the main production assets); W – are objects of 

labor which consist of natural resources W and labor object W , returned into production 

as a part of the gross national product. 

The output variables of the production process are: Х –is a gross product, which is 

distributed in the subsystem xP  on the production consumption W and the final product Y. 

Then, in the subsystem of distribution yP  the product Y is divided into the gross capital 

investment I and productive consumption C. The subsystem IP  divides the investments I 

into amortization deductions A and net capital investments. 

 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%83%d1%81%d1%82%d0%b0%d0%bd%d0%be%d0%b2%d0%b8%d0%b2%d1%88%d0%b8%d0%b9%d1%81%d1%8f&translation=sustained&srcLang=ru&destLang=en
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It follows from the scheme (fig.2.9) that +X W Y , Y I C  . Assuming that the 

investment I is used for the increment of growth К of basic productive assets К over the 

same year and also for А, we obtain the discrete model  

                                               Δ μt t tI q K A, A K ,                                  (2.41) 

or 

                                             
1Δ ( μ )tK q I K  ,                                     (2.42) 

where q – is the model’s parameter;  – the amortization factor ; tK  – are basic 

production assets in t - year. 

If instead of the year we take the increment growth per dt, we obtain the continuous 

model of the first order 

                                                
1( μ )

dK
q I K .

dt

                                   (2.43) 

If we assume that production costs W are proportional to the gross domestic product 

X  W aX , t t t t tX W qDK mK C    , then, going to the continuous model, we 

obtain the expression 

                                          
1

1 μ
dK

a X K C .
dt q

                                     (2.44) 

According to the absolute Lavrentiev model, assume that the increment growth the 

gross product 1  t t tDX X – X  (where t – are years) is proportional to the capital 

investments tI , χΔt tI X . 

Then we get the gross product model from the previous equations: 

                                       1χ 1
dX

a X C .
dt

                                              (2.45) 

From the structural scheme (fig. 2.9) and the equation (2.49) it follows that the 

reducing of the investments tI  (t = 1990, ..., 1997) has led to an exponential decrease with 
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a time constant 



q

 of the basic production assets K and as a result, of the gross 

domestic product X. 

For the normal course of economic development   X t  must grow, viz the root 

 1

1 χ 1–Р – а  of the characteristic polynomial  1

1 χ 1 0–Р – а   of the equation 

(2.45) must be positive. But in the period of “rebuilding” the coefficient a exaggerated the 

unit and in the equation (2.45) we have the process x(t) damped in the interval [1990 - 

1997]. Approximately approximating it by the exponent (a dotted line in fig. 2.8), define 

the time constant 
1

1

χ
τ 5

1
P

a

  


 years. 

Thus, the conclusion on both parametric and signal perturbations, which arose in 

1990, follows from the graph (fig. 2.8), the model (fig. 2.9) and the formula (2.45). The 

signal perturbation has the reduction of tW , K, W, L; the parametric one has the change of 

relations of а  (between W and X) and χ  (between tI  and Δ tX ): a increased, χ  

decreased. 

This example does not provide the detailed analysis of all the problems of social 

production, distribution, exchange and consumption, but it confirms the continuity of 

processes in the economy and, consequently, the possibility of presenting their dynamics 

by the continuous or difference equations. 

The presence of inertia, continuity and, consequently, the smoothness of dependences 

of the economic index on the time should be taken into account when planning and 

forecasting its development in time. Otherwise the purpose and the reality will vary 

significantly, for example, as it took place in the program of conserving the primary 

energy resources PER of Ukraine and its implementation (2.10). 
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Fig. 2.10. The costs of PER in Ukraine. 

 

 

 Fig. 2.11. The models of the mappings “input-output”. 

 

These objects have the measured input variables U, output variables X, that are 

related to the input ones: 

- by the linear stationary operator  βW p, (fig. 2.11,a); 

- by the linear nonstationary operator   β φW p, (fig. 2.11,b); 

- by the nonlinear stationary Hammerstein’s operator  βW p,   f U  (fig. 2.11,c), 

where β  is the parameters vector, φ  is the variable of the time t or of the input U or of the 

output X,  f U  is the static nonlinear dependence. 
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The variables U, X and the operators W, f can be both vectors and scalars.  

 

 

Chapter 3. The Analysis of the Simplified Methods of the Confluent Analysis 

3.1. The Least Square Method’s Analysis if the Input and Output Signals are 

Noisy 

The setting up of the practical problem contains a substantial proportion of the 

uncertainty of statistical properties of the noises at the measurements of both input X and 

output Y data about the examined object, the model of which can be represented as 

                                                           β ε* * * *Y X   
,                                          (3.1) 

where де ε* * *Y , X ,  
– are accurate output and input variables and deficiency, under 

condition that the estimate β
*

 for these values is obtained by the least square method 

                    
1 1β  ( )  ( )* *Т * – *Т * * * *Т * – *Т *X X X Y С Y , X X X С   .                 (3.2) 

In case of: 

                                                  β argminε ε* *Т *  .                                      (3.3) 

In practice the LSM-estimate is obtained using the perturbated noises xN  and the 

data yN : 

                                        
*

xX X N   ,      
*

yY Y N  ,                              (3.4) 

where                            

1 2

1 2

1 2

(1)    (1)   (1)  (1)

(2)   (2)   (2)  (2)

( )  ( ) ( ) ( )

ni

ni

ni

x x ... x ... x

x x ... x ... x
X

..........................................

x “ x “ ......x “ .....x “

 
 
 
 
 
 

, 

   T  [ 1 2  ( )]Y y  y ... y M ,      
i

*

xi ix j   x j N   j  ,      
i

*

yi iy j   y j N   j  , 

1 .j ,M  
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Then LSM-estimate β̂  of the vector β
*

 is found from the condition (3.3), but for the 

real data (3.4) in the usual 

                           β ( )T Tˆ X X X Y C Y   ,  
T T ( )C X X X                             (3.5) 

or in the recursive type with the initial conditions (0)P , β(0)ˆ  

β( 1) β( ) ( 1) ( ) ( ) ( ) β( )Tˆ ˆ ˆj j P j X j Y j X j j      
  , 

 

      
T 1 T( 1) ( ) ( ) ( ) [ ( ) ( ) ( ) 1 ( ) ( )P j P j – P j X j X j P j X j ] X j P j   .        (3.6) 

If the initial conditions are unknown, we take β(0)=0ˆ ,  
2

β 0
(0)=σP І ,  

2

β 0
σ  . 

In order to simplify the analysis, let us take that noises xN  and yN  are white 

Gaussian noises, and consequently they are auto- and mutually uncorrelated. Let us 

determine the shift    of the estimate (3.5) with respect to the estimate (3.2): 

     

  

   

 
1

1
2

Δβ β β δ ( ε β

δ ( ) β δ ( ) β

β

diagσ β

* * * * *

* * * * * *

*T T *T * *

*T * *T * *

y

x x

i

ˆ ˆM M C C N ) Y N

M C C N Y M C C N Y

X X * M N N X Y

X X M I X Y .





             

          

     
 

        

      (3.7) 

Let us denote 
*T * *X X A ,   δT

x xM N N A , 
*T * *X Y B . Then (3.2) and (3.7) 

are β* * *A B  δ β* *ˆA A B     respectively. Hence  δ β β β  Δβ* * *ˆ ˆ ˆА – А – А   , 

viz  δ β Δβ  Δβ* *ˆ ˆА – А   or 

                                          
1

Δβ δ δ β* *ˆ А А А


     .                                     (3.8) 
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As we can see, the estimate β̂ will be reduced with respect to the true β*
 by the 

value (3.8) if “white noises” xN  and yN  are uncorrelated. Δβ̂  tends to zero if the norm 

δ 0|| А||  and  β̂  tends to β
*

; if the norm δ|| А||  that Δβ̂  tends to β*  and β̂  - to 

zero. 

Under conditions mentioned above and taking that the norm εT

X|| N ||  is much less 

than ε*T|| X ||  or 
T *

X|| N Y || , the estimate (3.5) covariance is approximately equal to  

                        
    

   

1 2 1 2

1 1 2 2

cov β ε ε

ε ε

T

T T T T

x x

x x

ˆ M C C N C C N

C M C C M N N C ,

        
 

      

             (3.9) 

where ε ε*

yN  , 

 

 

1

1

1

2

*T * T *T

*T * T *T

x x

x x

C X X M N N X ,

C X X M N N Y .





   
 

   
 

 

The first component of the expression (3.9) with increasing of the level NX  decreases, 

at the second one – С2 decreases and MNXNX
T
 increases, but С2 enters the expression 

(3.9) quadratically, while MNXNX
T
 does it linearly. 

Then for the “white noise” when   2σT

Nxx xM N N M I   , the estimate β̂  

covariance with the increasing σNx
 will be reduced. 

Thus, LSM has tendency to regularization of the normal system equations, similarly 

to Tikhonov’s regularization [14]. The last one consists in minimization of the ordinary 

quadratic functional ε εTI   with regularizing additive αβ βTˆ ˆ
, where α  - the 

regularization’s parameter. 
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                            

 
1

ε ε ( β) ( β) αβ β

0 2 β αβ
β

β α

T * T * T

*T * *T

*T * *T

ˆ ˆ ˆY X Y X ,

I ˆ ˆX X X Y ,
ˆ

ˆ X X I X Y .


   


  



    

                     (3.10) 

Comparing (3.7) and (3.10) we see that the Tikhonov’s parameter in LSM is 
2diagσi M .  

The characteristic curve of the normed values 
β

β*

ˆ

 and 
covβ

covβ*

ˆ

 (curve a) and 

Δβ

β*

ˆ

 (curve b) is represented in the fig. 3.1. 

Fig. 3.1. The dependence of the shift and the covariance of the LSM-estimates from 

relation “noise-signal” in X. 

 

 

3.2. The Generalized LSM and its Practical Implementation 

In this method LSM-estimates are found using weighted (filtered) data: 

1 -1         =ˆ ˆX U X , Y U Y.  

This is equivalent to minimizing the functional 

                            
2

1

1

0 5 ( ) ( )β
M

j

ˆ, y j x j Q ,



                             (3.11) 

where Q –is the weight matrix of each j measurement: (covβ) TˆQ U  . 

Then, the estimate weighted by weight 
1Q
 of the generalized LSM (GLSM) and 

obtained with minimum (3.11) is equal to 

                                             
1 1 1β ( )T Tˆ X Q X X Q Y    .                              (3.12) 

The estimate (3.12) covariance is 
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1 1 1 1 1 1covβ  ( ) { } ( )T T T T

y y
ˆ X Q X X Q M N N Q X X Q X       .         (3.13) 

The estimates (2.3.12) have the minimal dispersion if 

{ }T

y yQ M N N . 

Then  

                               
1

covβ  { }T T

y y
ˆ X M N N X


    .                                   (3.14) 

For the uncorrelated “white noise” in the measurements Y 
2σ ( )Q y j I . Then the 

recurrent formula of the GLSM coincides with the weighted LSM 

      

       
 

     

                 

2

1
2

1
β 1 β 1 β

σ

1 σ

T

T T

y

y

ˆ j j P j X j y j X j j ,
j

P j P j X j X j P j X j j X j P j .


      

       

  (3.15) 

The inaccuracy of the definition or prior task of the matrix 
1Q
 leads to a significant 

optimality loss of the estimates (3.12) or (3.15). 

This algorithm is not robust [21]: the statistically insignificant inadequacy of the 

covariance matrix Q of noises yN  is dictated, for example, by some failures in the data, 

which form so-called "heavy tails" [21] at the noise yN  distribution law, while estimating 

the vector 


 
by the algorithm (3.12) can lead to a significant error. Thus, the quasi-

optimal GLSM will be more convenient and reliable on implementing: 

- at the first stage there is the quasi-optimal estimation of the signals X, Y by smoothing 

their noisy samples  X j ,  Y j , 1j ,M with the linear filters; 

- at the second stage there is a LSM-estimation of the vector β̂  using estimates X̂  and 

Ŷ  of the accuracy value 
*X , 

*Y signals obtained at the first step. 

For this approach the noises x yN , N  may be mutually correlated. In addition, since 

the model (3.1) is linear, and under condition that all the variables  iX t ,  iY t  are 

filtering by one filter, the non-coincidence of the smoothed values 
*X̂ , 

*Ŷ  to the true 
*X
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, 
*Y  does not lead to the bias of the estimates β̂  with respect to β

*
. Indeed the sign of 

equality in (3.1) is not violated if we act upon its left and right parts by the linear filter 

operator fW : 

               { } { β ε } { } β {ε }* * * * * * *

f f f fW Y W X W X W .                        (3.16) 

The mathematical expectation of the estimation β̂  is 

                            
1

β *T * T * *

x x
ˆ ˆ ˆ ˆ ˆM X X M N N X Y .


    
 

                       (3.17) 

If for simplicity we take that    2diag σT

N̂sx xM N N I ,   and put that matrix 

eigenvalues    
1

2diag σ*T *

N̂i

ˆ ˆX X


  are less than one, then the expression 

   
1

1
2diag σ*T *

N̂i

ˆ ˆI X X


  
  

 can be represented by a series. Then 

     

   

1
1

2

1
2

β diag σ

diag σ

*T * *T * *T *

N̂

*T * *T *

N̂

i

i

ˆˆ ˆ ˆ ˆ ˆ ˆX X I X X X Y

ˆ ˆ ˆ ˆI X X X Y .






      
  

    
  

 

Therefore 

     
1 2

2β diag σ*T * *T * *T * *T *

N̂i

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆX X X Y X X X Y .
 

    

Taking into account that 

   
1 2

β *T * *T * *T * *T *ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆX X X Y X X X Y ,
 

   

we obtain the expression for the shift: 

                           
1

2Δβ β β diag σ β*T * *

N̂i

ˆ ˆ ˆˆ ˆX X .


                                  (3.18) 

So far as the norm Δβ  is not larger than the product of norms of the components of 

the right part of (3.18), we have the inequality 
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                                     
1

2
Δβ

diag σ
β

*T *

N̂* i

ˆ
ˆ ˆX X

ˆ



  .                        (3.19) 

The stronger is filtering X, Y by filter operator fW , the less is the norm of the 

perturbations’ matrix 
2σ
N̂i

. Thus, the filter suppresses noises without violating the 

equation (2.16). Smoothing the components  iX t  of the vector-function  X t  by filter, 

however, reduces their frequency spectra and, consequently, reduces their linear 

independence. The condition number of the matrix 
*T *ˆ ˆX X  reduces and, consequently, 

the inverse matrix  
1

*T *ˆ ˆX X


 norm increases. 

The high-grade picture of the dependence of the normalized  values 
Δβ

β

ˆ

ˆ
 (curve 

a), 

2

2

diagσ

diagσ

N̂

N

i

i

 (curve b), 

 

 

1

1

*T *

*T *

ˆ ˆX X

X X




 (curve c) as the function τ of the filter’ fW  

inertia for a fixed relation of “noise-signal” is represented in fig. 3.2. 

As it follows from the graph, for each case there is an optimal value of the smoothing 

effect of the filter fW , which norm of displacement (3.19) will be minimal. 

The covariance of the estimate β̂  by GLSM method assuming the mutual 

uncorrelated noises, is similar to LSM, but the matrices  ε εTM  ,  T

x xM N N  are not 

diagonal anymore. The further separated are the spectra of signals and noises, the better 

are the estimates of the quasi-optimal GLSM. 
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Fig. 3.2. The dependence of the normalized shift (a), noises’ covariance (b) and the 

information matrix (c) on the parameter τ of the inertial filter. 

 

 

3.3. The Analysis of the Integral-Correlation Criterion and Method of its 

Minimization (the Integrated LSM) 

3.3.1 The Method’s Main Point 

The LSM and GLSM-estimates of the previous methods are found as a minimum 

point coordinate of the corresponding functionals ε εT
 and ε εTˆ ˆ . We take the minimum 

point as a coordinate’s value of zero point of the functional derivative of . So far as the 

functional is averaged on the finite interval T by the value of square ε  or ε̂  which is a 

mixture of useful signal β* *Y – X  and random perturbations βy xN – N , then, it is  not 

accurate as a function of . 

It is known [22] that the operation of differentiation of the noisy function ε εT
 is ill-

posed. It is responsible for the low-precision of the LSM-estimates on the short heavily 

noised data X, Y samples. GLSM slightly improves the accuracy due to the smoothing 

noises at the X, Y. However, the uncertainty of boundary conditions influences on the 

precision of filtration on the short samples. Moreover the smoothing reduces the matrix 



 88 

Tˆ ˆX X  conditionality and that is equivalent to reducing of the functional steepness. Then 

the uncertainty’s region G of the estimate β̂  increases again. 

As it follows from the fig. 3.3, it is desirable to reduce variations the functional’s 

values without reducing its curvature in the extremum’s zone. This can be done for 

unsmoothed X, Y by additional averaging over the set of quasi statistically independent 

functionals that are close to the average quadratic one. 

The average products can be shifted in time t on the interval  by those functionals, 

   
0

1
ε ε Θ

T

t t dt
T

 . Averaging them on the interval  1 1τ τ, , we obtain the sought 

integral-correlation criterion: 

                      
1

1

τ

τ 0

1
η Θ ε ε Θ  Θ

2

T

I t t dt d


   ,                           (3.20) 

where η(Θ)  – is a weight function, unit in the simplest form. 

 

 

Fig. 3.3. The uncertainty’s region G of the optimal value of LSM (a) and GLSM (b) 

of the estimate β̂ . 
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The necessary condition for a minimum I in β  1k
ˆ , k ,n ,  

           

1

1

1

1

0

10

1 1

1

1 ε( ) ε( Θ)
η(Θ) ε( Θ) ε( ) Θ

β 2 β β

η(Θ) ( )) ( Θ) β ( Θ)

( ( Θ)) ( ) β ( ) 0

t T

t

t T n

it

n

i

k k k

i ik

k

I t t
t t dtd

( x t y t x t

x t y t x t







    
    

   

 
      

 

 
     

 

 

 



           (3.21) 

From the expression (3.21) follows the standard equations system: 

                                                         β̂A B  ,                                             (3.22) 

where А – is a matrix n n with elements ika ; В – is a matrix-column n 1 with elements 

kb ; 

                    
1

1 0

η Θ Θ Θ Θ

t T

t

i iik k ka x t x t x t x t dtd ,


                         (3.23) 

              
1

1 0

η Θ Θ Θ Θ

t T

t

k k kb y t x t y t x t dtd .


             (3.24) 

For discretely time t samples let us substitute the integrals by the relevant sums. Then 

                     
1

η
p M

l p j

i iik k ka l x j l x j x j x j l ,
 

                              (3.25) 

                          
1

η
p M

l p j
k k kb l y j l x j y j x j l .

 

                         (3.26) 

The system’s solution (3.22) gives the sought estimate β̂ : 

                                                          
1β̂ A B                                                   (3.27) 

 

 

 

 



 90 

3.3.2. The Analysis of the Method Components 

Let us analyze how this estimate differs from the true β*
 (3.2). For this, firstly we 

consider one from the components of the sum in I, for example, if I m  . There is a 

shift τ Δm t  , where Δt  - is a step of discrete measurements X, Y at time t. Then, 

without considering the weight  η m , where m – is the component of the discrete model 

                                         
1 1

1
η( ) ε( )ε( )

2

p M

l j

I l j j l
 

                                          (3.28) 

of the integral – correlation criterion (3.20) will be equal to 

               

   

 

0 0

0 0 0 0

τ τ τ

τ τ τ τ

1 1
ε ε β β

2 2

1 1 1
β β β

2 2 2

T
T

T T T T T T

m
ˆ ˆI Y X Y X

ˆ ˆ ˆY Y X Y X Y X X ,

  

   

    

   

          (3.29) 

where the index τ  is the shift  ix t ,  iy t  at the τ Δm t : 

   

   

   

 

 

 

1

1

1

τ τ

1                    1 1

2                    2 2
     

                     

   

n

n

n

x x y

x x y
X , Y ,

...

y M mx M m x M m

 

   
   
    
   
   

     

 

   

   

   

 

 

 

1

1

0 0

1

1     1 1

2     2 2
        

                 

            

n

n

n

x m x m y m

x m x m y m
X , Y .

...

y Mx M x M

      
   

      
   
   
    

 

If the shift τ  in (3.29) is larger than correlation time of the noises N and ε , that the 

mathematical expectation mI  will be invariant to those noises. 
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  0 τ

1
ε ε

2

*T *

mM I  . 

The necessary of the minimum mI :  

                  0 0 0 0 2τ τ τ

1 1
( ) ( )β 0

2 2β

T T Tm

T

I ˆX Y Y X X X X
ˆ   


    


.                (3.30) 

The sufficient condition: 

                             0 0τ τ

1
det 0

2

T TX X X X .                             (3.31) 

Contrary to LSM the linear independence of the functions  ix k  is insufficient for 

the positive definiteness of the matrix  0 0τ τ
T TX X X X  . Let us determine the 

upper border τbd  for the shift , for which the inequality (3.31) becomes the equality, viz 

the system becomes degenerate. 

So far as the noise N only improves the conditionality of the matrix 
TX X , we will 

take N=0, 
*X X  while developing τbd . Let us represent Х*-   by Taylor series 

                                     0 0 1 0τ τ ( )* * * *X X X R X ,                                              (3.32) 

where 0
0

*
* dX

X
dt

 , 1 0( )*R X  - the matrix of remainders in the decomposition (3.32). With 

an accuracy to 1 0( )*R X  we have: 

                       

 

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1

τ τ

1 1
( ) ( τ ) ( τ )

2 2

τ τ
Γ Γ

2 2

*T * *T * *T * * * * T *

*T * *T * *T *

X X X X X X X X X X

X X X X X X ,

         

    

          (3.33) 

where Γ , 1Γ  - are symmetric matrices. Γ  is the Gram matrix, that is why it is positively 

identified. 
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It is known [11] that two symmetric matrices, one of which is positive and defined by 

transformation T, can be reduced to the diagonal form so that there are only unity elements 

on the diagonal matrix Γ , there are eigenvalues λ i  of the matrix 
1

1Γ Γ
 (for 2.33 -

1

1

τ
Γ Γ

2


 

) on the diagonal 1Γ : 

                  

11

1

1

1

λ 01 0
τ τ

Γ Γ     
2 2

0 1 0 λ n

T T .

  
           

     

                                    (3.34) 

The border value τbd  of the shift is defined under condition  

1

τ
1 λ 0

2 i

р
imax ,       or

      1

2
τ

λ
i

bd
i

,
max

                                                  (3.35) 

where 1λ i  - are eigenvalues of the matrix 
1

1

τ
Γ Γ

2


. It is clear that the larger τ  is, the worse 

conditioned is the matrix  (the larger 
1Γ

), the larger 1λ
i

imax  and, as a consequence, 

the less possible is the shift τbd . 

 

 

3.3.3. The Definition of the Maximum Shift 

Let us consider how symmetry of the displacement  will affect on the border value 

τbd . Here  

   

      

     

 

0 0

0 0 0

0

τ τ τ τ τ τ

τ τ τ τ τ τ

τ τ

ε ε ε β β

β

β β

T

TT T T

T T T

ˆ ˆY X Y Y X X

ˆY Y Y X Y Y X X Y

ˆ X X X ,

  

  



      

       
 

 

     (3.36) 
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   

   

   

1

0 1

1

1 1

2 2

n

n

n

x m ... x m

X x m ... x m ,

x M m ... x M m

  
 

   
  
 

0

( 1)

( 2)
      

( )

y m

y m
Y

y M m

 
 
 
 
 

 

, 

 

   

   

   

1

1

1

τ

2 1 2 1

2 2 2 2

n

n

n

x m ... x m

X x m ... x m ,

x M ... x M

  
 

   
 
 

τ

(2 1)

(2 2)
      

( )

y m

y m
Y

y M

 
 
 
 
 
 

, 

   

   

   

1

1

1

τ

1 1

2 2

2 2

n

n

n

x ... x

X x ... x ,

x M m ... x M m



 
 

  
  
 

τ

(1)

(2)

( 2 )

y

y
Y

y M m



 
 
 
 
 

 

. 

The necessary condition of the minimum I: 

        

     

   

0 0

0 0

τ τ τ τ τ τ

τ τ τ τ

ε ε ε
β

β 0

TT

TT

X Y Y X X Y
ˆ

ˆX X X X X X ,

  

 

       
 

     
 

         (3.37) 

The sufficient condition: 

        

    
2

0 0τ τ τ τdet 0
β β

TTX X X X X X .
ˆ ˆ  


   

 
         (3.38) 

Analogously to the derivation (3.35) we find the border value τbd . from the 

condition that (3.18) is zero. Let us consider three terms of series (3.32): 

                          

 

 

2

0 0 0 3

2

0 0 0 3

τ

τ

τ
τ τ

2

τ
τ τ

2

* * * * *

* * * * *

X X X X R X , ,

X X X X R X , .


   

    

                               (3.39) 

With an accuracy to  3 τ*R X , , we obtain 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%b2%d1%8b%d0%b2%d0%be%d0%b4&translation=derivation&srcLang=ru&destLang=en
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   0 0

2

0 0 0 0 0 0

2

2

τ τ τ τ

1

4

τ

4

τ
Γ Γ

4

T
*T * * * * *

*T * *T * *T *

,

X X X X X X

X X X X X X

 
   
  

     

 

                 (3.40) 

where Γ  and 2Γ  - are symmetric matrices, Γ  is positively identified Gram matrix. Then, 

as (3.34), the expression (3.40) is given by the transformation T to the form 

                        

2 2
211

2

2

λ     01    0τ τ
Τ (Γ Γ )Τ

0 λ0 14 4 n

,   
     

   
                           (3.41) 

where 2λ i  - are eigenvalues of the matrix 

2
1

2

τ
Γ Γ   ( 1 )

4
i ,n .   

The border value τbd  of the displacement τ  will be defined under condition 

2

2

τ
1 λ 0

4 i

bd
imax   

or 

                                              
2

2
τ

λ
bd

i
i

,
max

                                         (3.42) 

where, contrary to (3.35) for the asymmetric displacement, 2λ
i

imax  is taken over the set 

 2λ i  of the negative eigenvalues of the matrix 

2
1

2

τ
Γ Γ

4


. Continuing the decomposition 

(3.39) and substituting it into (3.38), we see that all odd terms of the decomposition (3.38) 

are cancelled out. 

Thus, for the precise 0

*X , the matrix    0 0τ τ τ τ

T
*T * * * * *X X X X X X     

differs from the matrix 0 0

*T *X X  of LSM by the pairing terms of the decomposition (3.39). 

Considering that  0x t  is smooth, this difference is significantly less than in (3.1) for the 
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precise
*X , so far as all components of the decomposition are present there (3.39). Thus, 

the border value (3.42) is larger than (3.35), and at the same  the index (3.36) at 

inaccurate 
*X X N   is closer to the LSM index (at inaccurate 

*X ) than the index 

(3.29). To confirm this, let us consider the displacement and covariance of the estimate β̂ : 

                              
   

   

1

0 0

0 0

τ τ τ τ

τ τ τ τ

β
TT

TT

ˆ X X X X X X

X Y Y X X Y .



 

 

     
 

    
 

                      (3.43) 

 

 

3.3.4. The Displacement Estimation of the Vector’s β̂  Estimate 

The displacement Δβ̂ : 

          
  



1

0 0

1

0 0 0 0 0 0

τ τ τ τ

τ τ τ τ

Δβ β β ( ) ( )

( ) ( ) ( )

* T

T T *T * *T *

ˆ ˆ ˆM M X X X X X X

X Y Y X X Y X X X Y





 

 

        

      

         (3.44) 

or 

             

 

 

 

1

0 0

-1

0 0 0 0 0 0

0

1

0 0

0 0

0 0

τ τ τ τ

τ τ τ τ

τ τ τ τ

τ τ τ τ

τ τ τ τ

τ τ τ τ

Δβ M{ ( ) ( )

M ( ) ( ) ( )

[ ( ) ( )

M ( ) ( ) ]

[ ( ) ( )

M (ε ε ) ( ) ε ] (

T T

T T *T * *T *

*T * * * * T

T T

T * * * * T

*T * * T

ˆ X X X X X X

X Y Y X X Y X X X Y

X X X X X

N N N N N N

X Y Y X X Y

X X X





 

 

 

 

 

 

      

     

    

    

    

     1

0 0 0 0)*T * * *X X X Y .

        (3.45) 

Using the decomposition(3.39) and the formula (3.40), we obtain 

                     

2 1

2

2

0 0 0 0 0 0

1

0 0ε

Δβ [(4Γ τ Γ ) 4(Μ 2 ) (τ)]

[4 τ ( ) 2(Μ 2 )

( (τ))] Γ

NN

*T * *T * *T *

*T *

X* *

ˆ m R

X Y X Y X Y m

R X Y ,





    

     

 

                (3.46) 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%bd%d0%b5%d1%82%d0%be%d1%87%d0%bd%d1%8b%d0%b9&translation=inaccurate&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%bd%d0%b5%d1%82%d0%be%d1%87%d0%bd%d1%8b%d0%b9&translation=inaccurate&srcLang=ru&destLang=en
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where (τ)NNR  - is the matrix (nn) of correlation functions (τ)
i jN NR   1i, j ,n ; 

ε ( τ)
X* *R   - is the column vector (n1) of correlation functions 

ε
( τ)* *

i jX
R  ,  1i, j ,n . 

It can be shown that the shift Δβ̂  is caused by members (Μ 2 ) (τ)NNm R  and 

ε ε(Μ 2 ) ( (τ)+ (-τ))
X* X** *m R R  . The first one is equal to zero if there is  longer time 

of noises correlation. The second one can be represented as: 

                          

2

ε 0 0 0 0

τ
(M 2 )[ (τ)] ( ε ε )

2

*T * *T *

X* *m R X X ,                             (3.47) 

Тhen  

2
1

2 ε ε

τ
Δβ (2Γ Γ ) (Μ 2 )( (τ) ( ( τ))

2
X* * X* *

ˆ m R R .               (3.48) 

From here we can see, that the displacement Δβ̂  is reduced if 

              
1

2
1

2 1

Μ 2 τ
2Γ Γ 2Γ τΓ

Μ 2

m
.

m



  
    

   
              (3.49) 

 

3.3.5. The Variance Estimation of the Vector’s β̂  Estimate 

The covariance of the estimates β̂   

    cov β M (β M β )(β M β )Tˆ ˆ ˆ ˆ ˆ .    
   

Let us represent β̂  as 

               

0 0

1

0 0 τ

0 0

τ τ τ τ

τ τ

τ τ τ τ

β [ ( ) ( ) 4(Μ 2 ) (τ)

ξ( τ)] [( )( ε )

( ) ( ε )]

*T * * * * T *

NN

* *T T * *

* * T *

ˆ X X X X X X m R

X ,N , X N Y C Y

X N X N Y .





 



 

      

     

    

        (3.50) 

For large M, ignoring the random part and random components 0 τ τ(ε ε )TN  , 

τ τ 0 ( )εN N  of the second order of smallness, denoting 
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1

1 0 0 0

1

1 0 0

1

1 0 0

2 0

τ τ τ τ

τ τ τ τ τ

τ τ τ τ τ

τ τ

1
[ ( ) ( ) 4(Μ 2 ) (τ)]

4

1
[ ( ) ( ) 4(Μ 2 ) (τ)]

4

1
[ ( ) ( ) 4(Μ 2 ) (τ)]

4

1
[ ( )

4

*T * * * * T * *T

NN

*T * * * * T * *T

NN

*T * * * * T * *T

NN

*T * *

C X X X X X X m R X ,

C X X X X X X m R X ,

C X X X X X X m R X ,

C X X X







 

  

 



      

     

     

    1

0 0

1

2 0 0

1

2 0 0

τ τ

τ τ τ τ τ

τ τ τ τ τ

( ) 4(Μ 2 ) (τ)]

1
[ ( ) ( ) 4(Μ 2 ) (τ)]

4

1
 [ ( ) ( ) 4(Μ 2 ) (τ)]

4

* * T * *

NN

*T * * * * T * *

NN

*T * * * * T * *

NN

X X X m R Y ,

C X X X X X X m R Y ,

C X X X X X X m R Y .









  

 

  

      

      

 

we obtain: 

     

       

    

     

1 1 1 0 2

2 2 0 1 1 1 0 2

2 2 0 1 1

1 0 1 1 1 1 0

τ τ τ τ

τ τ τ τ

τ τ τ τ

τ τ τ

1 1 1
cov β M{[ ε ε ε

4 4 4

1 1 1 1
][ ε ε ε

4 4 4 4

1 1
] } M{ ε ε ε ε }

4 16

1 1
M{ ε ε ε } M{ε ε ε

16 16

TT T

T
T

ˆ C C C C N N

C C N C C C C N N

C C N C C

C C C C C

 

 

 



          
 

           

       

         

      

       

   

τ

τ

1

1 1 0 0 1 1 1 1

1 0 1 1 1 1 0 1

1 1 0 0 1 1

τ

τ τ τ τ

τ τ τ τ

}

1 1
M{ε ε } M{ }

16 16

1 1
M{ } M{ }

16 16

1
M{ }

16

T T

T
TT T

T
TT T

T
T

C

C C C C C N N N N C

C N N N C C C C N N N C

C C N N C C .



 

 

 

         

          

     (3.51) 

оr 
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  

   

  

   

τ

τ

5
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τ τ τ τ

τ τ τ τ

τ τ τ τ

τ τ τ τ

1
β [ M{ ε ε ε ε }

16

1 1
M{ ε ε ε } M{ε ε ε }

8 8

1 1
M{ε ε }] [ M{ }

4 16

1 1
M{ } M{ }

8 8

1
M{ }]

4

T

TT

TT T

TT

T T T T

ˆcov C

C C N N N N

N N N N N N

N N C C Q C C F C ,

 

 

 

 

     
 

    

    

    

  

              (3.52) 

where   С1 С1 С1= С5 ,       С2 С2 С2= С6 .  

Considering the correlation (3.49), it can be expected that at the τ 0  

3 5 1C C C  , 4 6 2C C C   while 3 2Q Q , 3 2F F   

due to the fact that in (3.52) there is the correlation of diagonal and nilpotent 

matrices. The displacement and the covariance of the estimates β̂  at  will be less than 

for -  if  are alike. That is to say, the symmetrical displacement moves the criterion 

   0

T ( )   closer to the ideal 0*
Т0*. 

Thus, each m component of the integral-correlation criterion (3.28) within the 

displacement Δ τm t   , which is smaller in magnitude than τbd  (3.42), in its 

minimization gives the estimate β̂  (3.43), that is close to the true β
*
, if the displacement is 

greater than the noises’ correlation time corT  and less than the border τbd . 

Then it is simpler to define the weight function  η Θ  from the condition 

                            
0 Θ τ

η Θ
1 Θ τ

cor bd

cor bd

,T

,T

  
 

 

.                                    (3.53) 

 

If noises xN  are the “white noise”, at the displacement in one step the correlation is 

absent, the errors of the partial estimates β̂  are statistically independent for I component of 



 99 

the criterion (3.28). Then, according to the law of statistics [19], the average value β̂  in p 

partial estimates (the estimate at zero displacement is rejected), will have at p  less 

variation and zero displacement. 

 

 

.3.6. The Recursive Form of Calculations 

The recursive LSM at the normal distribution of prior estimates βa  and noises  

leads to Bayesian estimation [4]. But the presence of noises xN  in X brings a shift into the 

estimates β̂ . Therefore, we consider the recursive form of the calculation for M 

measurements by the step Δt , i.e. Δ    1 Μkt k t , k , :   

       

Μ

2 2

1 1 1

( ) β ( ) ( ) β ( )
n n

k i i

i i i i
ˆ ˆy k x k y k m x k m .

  

   
      

   
                     (3.54) 

From the condition (3.30) we obtain the system: 

             

Μ

1

Μ

1 1

( ) ( ) ( ) ( )

β ( ) ( ) ( ) ( )   1

k

n

i k

j j

i i j j j

y k x k m y k m x k

ˆ x k x k m x k m x k , j ,n,



 

     

      



 

                  (3.55) 

or in a vector form 

                           0 0 0βT T T T

m m m m
ˆX X X X X Y X Y .                                      (3.56) 

let us denote 

                                  
1

2 0 0

T T

m mP X X X X ,


                                                 (3.57) 

then 

                                        2 2 0β T T

m m
ˆ P X Y X Y .                                             (3.58) 

Let us set (3.57) at the bloc type for the (k+1) measurement 
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1

1 0 0

1

0( 1) ( 1) ( 1) 0( 1)

0 0

1

00( 1) ( 1) ( 1) 0( 1) 0

1

0

T T

k k

T T

T T T T

T T T T

k

T

mk mk k

k m k m k k

k mk mk k

k m k m k k mk mk k

k k mk mk

P X X X X

X X X X

x x x x

X X X X x x x x

P x x x x







   



   



    

        
           
                

           

  
1

0

T

k ,


  
  

         (3.59) 

where    1 20
( ) ( ) ( )T

nkx x k ,x k , ,x k ,     

              1 2( ) ( ) ( )T

nmkx x k m ,x k m , ,x k m .     

From (3.59) we find 

                                 
1 1

1 0 0

T T

k k k mk mk kP P x x x x . 


                                   (3.60) 

Then, we obtain β̂  for the k measurement 

      

1 0 0

( 1) 0( 1)

1 0( 1) 0 ( 1)

1

1 0

1 1

1 0 1

β( 1) ( )

( ) ( )

β( ) ( ) ( )

β ( ) ( ) ( )β(

T T

T T

mk

k k mk mk k

m k k
k k k m k

k k k mk

k k mk k k

ˆ k P X Y X Y

Y Y
P X ,x X ,x

y k m y k

ˆP P k x y k m x y k

ˆ ˆ( k ) P x y k m x y k P P k



 

  





 

 

   

    
            

        

     
 

      ) . 
 

       (3.61) 

Considering (3.60), we obtain from (3.61): 

   

1 0

20 0

1 0 0

1 0

β( 1) β( ) [ ( ) ( )

( )β ( )]

β( ) ( ( ) β( )) ( ( ) β( )

β( ) ε( ) ε( )

T T

T T

k k mk

k mk mk k

k k mk mk k

k k mk

ˆ ˆk k P x y k m x y k

ˆx x x x k

ˆ ˆ ˆk P x y k m x k x y k x k

ˆ k P x k m x k ,







     

  

       
 

     

        (3.62) 

where 
1kP
  – is defined with respect to (3.59). 

For the criterion (3.36) from the minimum condition we obtain the system 
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Μ

1

1

( ( ) ( ) ( ) ( )( ( ) ( ))

β ( ( ) ( )) ( ) ( )( ( ) ( ))

k

n

i

j j j

i i i j i j j

y k m y k m x k y k x k m x k m

ˆ x k m x k m x k x k x k m x k m





         

         





    (3.63) 

or in a vector form: 

                                  0 0 3 0 0β ( )T T T T

m m
ˆX Z Z X X Y Y Z Y ,                             (3.64) 

where m mZ X X  . 

Let us denote 

                                                  
 X Z Z X PT T

0 0

1

3 


.                                         (3.65) 

Then 

                                         3 0 0β ( )T T

m m
ˆ P X Y Y Z Y .                                       (3.66) 

Analogously to (3.59)  (3.61) we obtain 

             

1

1 0 0

1

0( 1) 0( 1)1 1

0 0

1 1

0 0
[ ( ) ( ) ]

T T

T T

T T T TT T

T T

k k k k k

k kk k

mk mk mk mkk k

k k mk mk mk mk k

P X Z Z X

X XZ Z

x x x xx x

P x x x x x x ;







  

 

 

 

    

       
         
               

    

              (3.67) 

 

P P x x x x x xk k k mk mk

T

mk mk k

T



 

     1

1 1

0 0( ) ( ) ;  

 

      

 

   

( ) ( )

,
( ) ( )

,
( )

[ ( ) ( ( ) (

( )

( ) ( ) ( )





k P X Y Y Z Y

P X x
Y Y

y k m y k m
Z x x

Y

y k

P P k x y k m y k

k k

T

mk mk k

T

k

k k

T

k

m k m k

k

T

mk mk

k

k k k

    




  









  
























   

 

 

  

 







1 1 0 0

1 0 1 0

1 1

1

0 1

1

1

0    

      

 



 







m x x y k

k P x y k m y k m x x y k

P P k

mk mk

k k mk mk

k k

)) ( ) ( )]

( ) [ ( ( ) ( )) ( ) ( )

( ) ( )];





1 0

1

1

1

          (3.68) 
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Let us denote 

( ) ( ) ( )u k y k m y k m    , k mk mkz x x


  . 

Then 

         

1 0 0 0

1 0 0

1 0

β( 1) β( ) [ ( ) ( ) ( )β( )]

β( ) [ ( ( ) β( )) ( ( ) β( ))]

β( ) (ε( ) ε( )) ε( )]

T T

T T

k k k k k k k

k k k k k

k k k

ˆ ˆ ˆk k P x u k z y k x z z x k

ˆ ˆ ˆk P x u k z k z y k x k

ˆ k P [ x k m k m z k .







      

     

     

          (3.69) 

The estimation of the recursive integrated LSM is equal to the sum of estimates, 

averaged at 1m ,P . It is possible to use robust algorithms for calculating the mean. For 

example, it is Tukey’s algorithm [12], where we take the distribution median of the values 

βi
ˆ  at m, 1i ,n  instead of the mean. In order to do this the estimates  βi

ˆ m  are ranked 

by value, the lowest and highest values are dropped, the remainders are averaged out. The 

parameters  η Θ , P of the integrated LSM may be optimized by the external criterion 

[Nakhnenko] (stability, forecast accuracy and others). 

 

3.4. The Method of the Auxiliary Variable (MAV) 

3.4.1. The Method’s Main Point 

In the cases when the model accurately reflects the behavior of the examined object 

(process), that ε*
 is insignificant, the noises xN  in the measurements X are significant 

and  ix t , ( 1i ,n ) is alternative, the method of the auxiliary variable Ui, defined as 

sign ( )ix t , can be relatively simple and accurate. In order to reduce partially the noise’s 

NX influence, the function  iU t  are defined as 

                                    
sign ( )  ( ) Δ

( )
0  Δ

ii

i
i

x t , x t i,
U t

, x ( t ) i .

 
 



                          (3.70) 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%be%d0%bf%d1%82%d0%b8%d0%bc%d0%b8%d0%b7%d0%b8%d1%80%d0%be%d0%b2%d0%b0%d1%82%d1%8c&translation=optimize&srcLang=ru&destLang=en


 103 

Then, according to the method of the auxiliary variable there is the estimate β̂  from the 

equation 

                                                         βT T ˆU Y U X  ,                                          (3.71) 

which is equal to 

                                                        
1β ( )T Tˆ U X U Y ,                                      (3.72) 

where 

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

Μ Μ Μ

1 1 1 1 2 1 1 1 1 1 1

1 1 1

Μ Μ Μ

1 2 2 2 2 2 2 2 2 2 2

1 1 1

Μ Μ Μ

1 2

1 1 1

( ) ( ) ( ) ( ), ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
n n n

k k k

T

k k k

k k k

n

n

n n n n n n n n n n

x k U k , x k U k x k U k

U X x k U k , x k U k , x k U k

x k U k , x k U k , x k U k

  

  

  

 
 
 
 





 

  

  

  

,






 

1

1

2

2

2

Μ

1 1 1

1

Μ

2 2 2

1

Μ

1

( ) ( )

( ) ( )

( ) ( )
n

k

T

k

k

n n n

y k U k

U Y y k U k ,

y k U k







 
 
 
 
 
 
 
 
 
  







 

 ik  - is the discrete set, where the condition (3.70) is implemented. 

 

 

3.4.2. The Shift of the Estimates (3.72) 

If the noises xN  are mutually uncorrelated with 
*X , 

*Y  and small, then 

approximately 

( ) sign ( )*

iiU t x t , 
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and the estimate β̂  at ε 0*   remains constant, so far as 

{ }T *TМ U X U X ,        { }T *TМ U Y U Y . 

The shift can take place if ε 0  

                                                
1Δβ ( ) ε*T * *T *ˆ U X U ,                                    (3.73) 

So far as from the condition ε 0*T *X   in a general case does not leak out that 

        ε 0*T *U  . 

In total, the shift (3.73) is less than the shift of LSM estimates due to the noises xN , 

if the influence ε 0  on (3.73) is less than the influence xN  on the shift of LSM 

estimates. 

 

 

3.4.3. The Covariance of the Estimates (3.72) 

cov β M{[β M{β}][β M{β}] }Tˆ ˆ ˆ ˆ ˆ .    
   

Putting the uncorrelatedness of the random errors at  
1

*TU X


 and 
TU Y  and 

decomposing in a series 

               
1 1β M{β}[δ( ) ][ ] ( ) [δ ]T *T * *T * T * *T

y
ˆ ˆ U X U Y U X U Y U N ,           (2.74) 

we obtain: 

        

1 1

1 1

1 1

1 1

1

cov[β] M{[[δ( ) ][ ] ( ) [δ ]]

[[δ( ) ][ ] ( ) [δ ]] }

M{[δ ) ][ ] [[ ] [δ( ) ] }

[ ] M{δ δ }] [δ( ) ] }

[ ] M{δ δ }

T *T * *T * T * *T

T *T * *T * T * T T

T *T * *T * T T T

*T * *T T T T T

*T * *T T

y

y

U X U Y U X U Y U N

U X U Y U X U Y U * N

(U X U Y U Y U X

U X Y U U U X

U X Y U U

 

 

 

 



   

   

  

  

  1

1 1

[( ) ]

[ ] M{ }[( ) ]

*T * T *

*T * *T T *T * T *

y y

U X Y

U X U N N U X U ,



 





         (3.75) 
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where the first and the second components depend on the thresholds Δ i  (3.70), noises xN

, the third one depends on the noises yN . There is an optimal vector Δ*
 of the thresholds 

Δ i , 1i ,n , where the covariance (3.75) norm is minimum. If the noises xN , yN  are 

uncorrelated and ε 0*  , then the estimate (3.72) will be unshifted. The estimation (3.72) 

effectiveness can be optimized by the external criterion by the vector’s selection Δ . 

The estimates (3.72) in MAV can be calculated by a recursive algorithm: 

                          

1

1 1

1

β( 1) β( ) [ ( )ε( )]

[ ( ) ( )]

ε( ) ( ) ( )β( )

k

T

k k

T

ˆ ˆk k P U k k ,

P P U k x k ,

ˆk y k x k k ,



 



  

 

 

                      (3.76) 

where ( )U k  can be not only relay one (3.70), but it can be any system of linearly 

independent, or even orthogonal functions. In order that the estimate (3.76) approximates 

to the optimal (LSM estimate for precise 
*X , 

*Y ), it is desirable that the auxiliary 

variable is close to 
*X . This will provide a positive definition of the matrix 

T TˆU X X X , but smoothing X makes the condition number of the matrix X XT  

slightly worse. Thus, the algorithms of the data X quasidiagonalization are important; they 

will be considered next. 

 

 

Chapter 4. The Increasing of Data Informativeness and, as a 

Consequence, of the Accuracy of the Estimates of Parameters of the 

Examined Objects 

4.1. The Increasing of Informativeness of Data Samples in Terms of the 

Passive Experiment 

If the precise values of 
*X , 

*Y  are powerful not at all sites of the sample and have 

sites with linearly independent components  ix t , 1i ,n , then, with increasing length 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%bf%d0%be%d0%bc%d0%b5%d1%85%d0%b0&translation=disturbance&srcLang=ru&destLang=en
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M of such sample the reducing of covariance covβ̂  , dictated by the noise yN , may be 

irrelevant, and the shift, dictated by the noise xN  may even increase. Therefore, for 

sufficiently large numbers M it is appropriate to conduct the weighing of data in for their 

full or partial orthogonalization. 

 

Fig. 4.1. The informative  1 2 3([0  ]),t , t ,t  and uninformative  1 2 3 4([  ])t ,t , t ,t   sites 

of the sample 1 2 [ ]TX x ,x . 

In the fig. 4.1 it is shown the simplest illustration of the necessity of that weighing of 

samples. If we introduce the weight function 

1 2 3

1 2 3 4

1   [0 ]  [ ]
η( )

0  [ ]  [ ] 

, t ,t , t ,t
t

, t t ,t , t ,t


 


, 

the informative matrix 
TX X  will be diagonal as a result of the orthogonality  1x t  

and  2x t  at the sites where  η 1t  . If you do quite the reverse, the 
TX X  will be 

degenerate. 

Let us construct some algorithms of the quasidiagonalization of the matrix 
TX X . 

The algorithm 1. At the recursive LSM we introduce the weight function that is 

adaptive to the current value X  

                                       

2

1

( )
η ( )

( ) ( )
n

i

j
j

i j

x k
k .

x k x k





                                   (4.1) 
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Then, the measurements weight will increase for those k, where the correlation of the 

diagonal elements of the matrix 
TX X  to the nondiagonal ones is greater. The weighted 

matrix will not be symmetrical, but it will be better determined: 

   
1 1

1 1
β( 1) β( ) ( )ε( )   [ ( ) ( )]T

B B Bk k k
ˆ ˆk k P X k k , P P X k X k , 

 
               (4.2) 

where 1 1( ) [η ( ) ( ) η ( ) ( )]T

B n nX k k x k , , k x k .    

The algorithm 2. You can obtain the more qualitative result, if you introduce the 

weight function  ηi t  from the condition of the maximum accuracy of estimating the i 

parameter β , 1i
ˆ i = ,n . only. Thus, for LSM, GLSM, MAV the estimate βi

ˆ  can be 

presented as a solution of the equation 

                                                     β̂B A  ,                                                   (4.3) 

which is the correlation of determinant Δ i  of the matrix iA  (the matrix A, where the first 

column is substitutes by the vector B) to determinant Δ of the matrix A: 

                                                      
Δ

β
Δ

i
i
ˆ .                                                    (4.4) 

The differential of the expression (4.4) with respect to the accurate values (*) is equal 

to 

 
2

Δ Δ Δ
β

Δ Δ

*

i

*
*

i
i

d dˆd ,


   or  

                                          
β Δ Δ

Δ Δβ
* **
ii

i id d d
.

ˆ
                                               (4.5) 

From here we obtain the expression of the relative variance 

                          

2
2 22
Δ Δ Δδβ Δ

2 2

σ 2σσ σ

(Δ ) (Δ ) Δ Δβ

i ii

* * * **

i ii

.
ˆ

 
    
 
 

                          (4.6) 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%be%d0%bf%d1%80%d0%b5%d0%b4%d0%b5%d0%bb%d0%b8%d1%82%d0%b5%d0%bb%d1%8c&translation=determinant&srcLang=ru&destLang=en
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In order to reduce the variance of the relative error 
δβ

β

i
*

i

ˆ
 in the estimate βi

ˆ , it is 

necessary to maximize not only Δ, but Δ i . From here we obtain the optimal weigh 

function  η
i

* k : 

                               
 η -1,1

η ( ) arg max Δ Δ  1 Μ*
ii

k , k , .


                                      (4.7) 

In other words we add the variables (  η 1
i

k  ) or subtract (  η 1
i

k   ), trying to 

get execution (4.7). The multistep process of defining  η
i

* k  may be constructed using 

the scheme: 

the elements ij ia ,b  of the matrices A and B are calculated in (4.3), next Δ, Δ i  and 

the value Δ Δi  for  η 1*

i
k  , k  1, ; 

for all rows 
1

β
n

j

i ij j
ˆb a



  

of the equation (4.3) consistently on the every k-point all possible combinations are 

sorted from n to 2 (so far as  η 1; 1і    ) of the products    i jx k x k  with a plus 

sign; 

or with a minus sign  η 1   and something is left on the every k-point for which 

(4.7) is maximum, and we do the same for all 1 Μk , ; 

- the process repeats I times until the values Δ Δi  difference on the I and (I-1) steps 

becomes insignificant with respect to Δ Δi . 

Then, the estimate βi
ˆ  is calculated. The process repeats for (i+1) estimation. The 

performance of this algorithm is not high; for it is necessary to count the value Δ Δi  

M 2n
 times. If 

*X , 
*Y  are smooth functions, the enumeration  η

i
k  can be carried out 
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at the intervals     k m , k m    from 2m points. The number of calculations Δ Δi  

reduces to 
Μ

2
2

nl
m
  . 

The algorithm 3. The previous algorithms of diagonalization of the matrix A of the 

system of standard equations do not provide the symmetry A. This algorithm involves the 

invariance of the symmetry of the matrix A at its diagonalization. Assume the system is 

formed as a result of usage LSM, GLSM or MAV 

                                                 β̂B A  ,                                                      (4.8) 

 
Μ

1

1

[ ]  ( )n

i , j

k

ij ij ijA a , a a k



  ,  

where  kija  - is determined depending on the method, for example, for LSM: 

( ) ( ) ( )ij i ja k x k x k ;  1[ ]n
i iB b ,  

Μ

1

( )
k

i ib b k ;


    ( ) ( ) ( )i ib k y k x k .   

Let us introduce the weight function into the system (4.8) 

                     

Μ Μ

1 11 1

η ( ) ( ) β η ( ) ( )
k k

n n

i ij i i
i , j i

ˆk a k k b k .
  

   
    

   
                       (4.9) 

The condition number (condA) of the symmetric matrix A is equal to the ratio of the 

maximum value λ A  of the matrix A to a minimum [14] 

                                         

maxλ
cond

minλ

A

A

A .                                             (4.10) 

For the diagonal matrix A condA = 1, for degenerate one – the infinity. The inequality 

is known [25]: 

                        
21

max λ λ 2 Sp SpT

i j AA A ,
n

                            (4.11) 

where SpA  -is the trace of matrix A, Sp TAA A  - is the Euclidean norm of the matrix 

A, 1  i, j ,n; i j.   



 110 

We see from the expression (4.11), that on minimizing the right part at the limit on 

the trace A: Sp nA C  or on the every element ija  of the trace: 

                           

M

1

η ( ) ( )  1
k

i iik a k C, i ,n,


                                    (4.12) 

if ija  and jia  are symmetrical” 

   
M M

1 1

η ( ) ( ) η ( ) ( )  =1, , 1, ,  
k k

i ij j jik a k k a k , i n j n i j,
 

          (4.13) 

it is possible to provide the minimum λ λi j  at the minimum value λ λ,i j , which is 

fixed due to (4.12), viz. it is possible to provide the minimum condA (4.10). If you put 

C=1, then at the full diagonalization of the matrix A: 

                           
M

1

β η ( ) ( )  1
k

i i i
ˆ k b k , i ,n,



                                        (4.14) 

where  

                
M

1

η ( ) ( ) 0  1  1  
k

i ijk a k , i ,n, j ,n, i j.


                         (4.15) 

 

Thus, it is necessary to execute n conditions (4.12), 
21

( )
2

n n – (4.13) or 

21
( )

2
n n – (4.15), 

21
( )

2
n n  conditions in all, changing M n  of the values η ( )і k  (

1 ; 1 Mi ,n k ,  ). 

So far as M n , the task can be solved. The solution can be simplified if we 

parameterize the functions η ( )і k  

                        
m

1

η ( ) γ φ ( )  1  1 M
l

i il lk k , i ,n, k , ,


                                 (4.16) 

where φ ( )l k  – are basic functions. 
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Then, m n  of coefficientsil are defined by 
21

( )
2

n n  conditions (4.12), (4,13) or 

(4.1). Thus, putting С=1, from (4.12), (4.15) and (4.16) we obtain the system of the 

equations that are linear with respect to γil  

                              

M m

1 1

γ φ ( ) ( ) 1  1
k l

iiil l k a k , i ,n;
 

 
  

 
   

                              

M m

1 1

γ φ ( ) ( ) 0  1 1  1
k l

ijil l k a k , i ,n ; j i ,n;
 

 
     

 
   

or 

                           

m M

1 1

γ φ ( ) ( ) 1  1
l k

iiil l k a k , i ,n;
 

 
  

 
   

                           

m M

1 1

γ φ ( ) ( ) 0  1 1  1
l k

ijil l k a k , i ,n ; j i ,n.
 

 
     

 
   

In the matrix form: 

                                                       γF G                                                 (4.17) 

where  F– is the netting matrix (mn)(mn); γ  – is the vector γil  of dimensionality 

(mn)1;  G – is the vector with single and zero elements. 

The system (4.1) is solved by LSM. LSM-is the solution of the system (4.17): 

                                     
1

γ T Tˆ F F F G


                                                   (4.18) 

will satisfy the conditions accurately (4.12), (4.15), and the estimates βi
ˆ  will be defined 

from (4.14). If т is an even number, you can assume the different numbers im  for 

different i so that 
2

1

0 5( )
n

i

im , n n .


   Then (4.18) will definitely satisfy (4.12), (4.15). 

The matrix 
TF F  is non-degenerate, if ( )ix k  and φ ( )l k  form the systems  ( )ix k , 

 φ ( )l k  of the linearly independent functions. Namely, the matrix A in the (4.8) should 

be non-degenerate. Any system of linearly independent functions, better orthogonal ones, 
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can be defined as  φ ( )l k ; Haar functions [11] and other which take values 1, will be 

convenient for calculating. 

 

 

4.2. The Improving of the Convergence 

This property is characteristic for identification methods: the more uncertain is the 

problem, the easier are the solutions. This is LSM in the algorithms of the chapter 3, where 

β̂  enters linearly; this is the gradient procedure [42] in the algorithms of nonlinear 

estimation at the uncertainty of the statistical characteristics of the surface (β)І : 

                            
(β( ))

β( 1) β( ) λ( )
β

ˆ qˆ ˆq q q .
ˆ


  


                          (4.19) 

For the convergence of the algorithm (3.16) it is necessary that (β)ˆІ  is continuously 

differentiable by Frechet on β̂ : 

                            
Δβ 0

(β Δβ) (β)
lim 0

(β Δβ) β

ˆ ˆ ˆ
,

ˆ ˆ ˆ

  
 

  

I I
                             (4.20) 

and Lipschitz condition is satisfied for the gradient from I: 

                      1 2
1 2

Δβ 0
1 2

(β ) (β )
lim β β

β β

ˆ ˆ
ˆ ˆL ,

ˆ ˆ

 
  

 

I I
                       (4.21) 

where   L 0,  –is a  norm in a Banach space [26]. 

Considering (4.29) we can write: 

                  
(β)

(β Δβ) (β) Δβ ε Δβ
βT

ˆ
ˆ ˆ ˆ ˆ ,

ˆ


   


                     (4.22) 

where 

                                
Δβ

ε Δβ
lim 0  Δβ β( ) β

Δβ

*

ˆ
ˆ ˆ ˆ, q .

ˆ
    

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%b4%d0%b8%d1%84%d1%84%d0%b5%d1%80%d0%b5%d0%bd%d1%86%d0%b8%d1%80%d1%83%d0%b5%d0%bc%d1%8b%d0%b9&translation=differentiable&srcLang=ru&destLang=en
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On performing (4.21), (3.19) there are [11] such λ( )q  in which the algorithm (4.19) 

converges to a stationary point, that is equal to  *  for the strongly convex functional. 

Thus, for the strongly convex functional 

                                 

2

(β( )) Δβ Δβ
β β

Δβ β( ) β

T

T

*

ˆ ˆ ˆq ,
ˆ ˆ

ˆ ˆ ˆq ,


 

 

 

 

taking the derivative on β̂ : 

                                           

2β
Δβ

β β βT

ˆ( ) ˆ ,
ˆ ˆ ˆ

 


  
 

and substituting it in (4.19) we obtain 

                          

2

Δβ( 1) λ( ) Δβ( )
β βT

ˆ ˆq q q ,
ˆ ˆ


  

 
                         (4.23) 

where 

2

β βTˆ ˆ



 
 – is the strongly positive [27] operator. 

Then, there are λ( ) diag{λ ( )}iq q  which are not identically zero, that the system 

(4.23) will be asymptotic stable [42]. In practice the gradient is inaccurately calculated due 

to noises. 

The low rate of convergence in “ravine” situations is a serious weakness of the 

gradient algorithm. The modification of the “ravine method” is proposed for accelerating 

the convergence; it involves the application of n identical models with the initial values 

( )β (0)  ( 1 )lˆ , l ,n  of i-th model parameters that are given in the l-th top of n-dimensional 

cube with the value β
*ˆ  inside of it. Then, the index 

( )

1

l
 with the additive accelerating the 

convergence can be constructed for each l-th model. 

                                   
( ) ( ) ( )

2 1α (Δβ ) Δβl l T l

H H
ˆ ˆ ,                                   (4.24) 

where 1α  – is the algorithm parameter, 
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 
( )( )

( ( )1 1

11

β ββ β 1
Δβ  β β

β β

ll nT
l ) l

H i

l

n n
i

n

ˆˆ
ˆ ˆ, , ,

n 

 
  
 

 – і-th component for the 

l-th model: 

                                   

( )( )( )

( ) ( )

β β

ββ β

lll

l l

ii

ii ii

ˆ
.

ˆ ˆ


 

 
                           (4.25) 

Substituting (4.25) into (4.19), we obtain the gradient algorithms with accelerated 

convergence in “ravine” situations. There is the gradient setting of n models at the 1α 0 . 

Then, taking into account the spread of stationary points between the models we can judge 

about the spread of estimates β̂ : 

                                
2

β β
1

cov β σˆ ˆ
i j

n

i, j

ˆ ˆ ,


   
    

                                 (4.26) 

where 

  2 ( ) ( )

β β
1

1
σ β β β β

1

n
l l

ˆ ˆ

l
i j i i j j

ˆ ˆˆ .
n 

  

  

If 1I  , all n models immediately reconstruct their parameters to the average 

value relative to the initial value, viz to 
0β̂ , of the corresponding center of the initial 

values’ hypercube. It is advisable to set 1α  increasing from zero. Then, at the first steps 

there is the independent motion of the parameters of each model to the “bottom of the 

ravine” and next the contraction of the estimates 
( )β lˆ  on the ravine to the average β , 

which also changes, approximating to the stationary point β
*ˆ . The number of models can 

be both larger and less than n. Thus, applying two models only we can construct the 

algorithm with the desired law of change of the index І at the time t: 

                       (1) (2) (1) (2) (1) (2)

1 1 1α β β β β
T

ˆ ˆ ˆ ˆ .                         (4.27) 

Let us define the desired law 

                                             
( ) 0

d
f t ,

dt
                                                (4.28) 
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where ( )f t – is the desired function of time, for example, the exponent, the constant 

etc. 

Let us substitute from (4.27) the value 
d

dt

I
 into (4.28). Then, we obtain: 

 

(1) (2)(1) (2)

1 1

(1) (2)

(1) (2)
(1) (2)

1

β β
( )

β β

β β
2α β β

T T

T

ˆ ˆd d
f t

ˆ ˆdt dt

ˆ ˆd dˆ ˆ ,
dt dt

    
       

    

 
   

 

 

or 

 

 
    

 

 

 
    

 

1 1
1 21

11

2 2
1 21

12

β
2α β β

β

β
( ) 2α β β

β

T

T

ˆdˆ ˆ
ˆ dt

ˆdˆ ˆf t .
ˆ dt

  
        

  
         

 

Let us denote 

 

 
    

 

 
    

1
1 21

1 11

2
1 21

2 12

2α β β
β

2α β β
β

ˆ ˆA ,
ˆ

ˆ ˆA ,
ˆ

  
        

  
        

 

then, 

             

   

   

1 2

1

1 1 1 2

2 1

1

2 2 2 1

β β

β β

T T

T T

ˆ ˆd d
( A A ) A f ( t ) A

dt dt

ˆ ˆd d
( A A ) A f ( t ) A

dt dt





 
      

 


 
     

 

                (4.29) 

If the functional (4.27) is convex, the algorithms (4.29), constructed under condition 

(4.28), guarantee the convergence not only by the functional (4.27), but also by the 

parameters 
   1 2

β  βˆ ˆ,  to β
*ˆ  at the given law of the reduction 1 . 
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If the signals, noises and parameters are non-stationary, the additional filtering is 

required, for example, by the inertial filter of the first order  
1

( ) α 1fW p p


  , 

where 
d

p
dt

 ,  - is a filter constant. 

Then, the gradient algorithm (4.19) is transformed into the method of “heavy ball” 

[4]: 

                               

2

2

β β (β  )
α λ

β

ˆ ˆ ˆd d , t
,

ˆdtdt


  


                                     (4.30) 

 

in which the parameter  “ball mass” may be adaptive: the “mass” should be that as β̂  is 

smoothly “rolling” down the non-stationary stochastic surface to the minimum. For the 

stationary objects (according to the method of stochastic approximation [24]) we can 

require that α( )t  indefinitely increases. The factor  significantly affects on the 

convergence of the algorithm (4.30). Let us rewrite (4.30) with regard to (4.23) in order to 

get the appropriate choice of its structure: 

 

                        

2 2

2

Δβ Δβ ( )
α λ Δβ 0

β βT

ˆ ˆd d t ˆ ,
ˆ ˆdtdt


  

 
                                (4.31) 

where 

2 ( )

β βT

t

ˆ ˆ



 
 – is the stochastic nonstationary symmetric matrix of instantaneous values. 

The matrix 

2 ( )

β βT

t

ˆ ˆ



 
 should be diagonal. It is the sufficient condition for the system’s 

strength (4.31). In order to do this it is not necessarily to count the matrix 

1
2 ( )

β βT

t

ˆ ˆ


 
 
  

, 

especially as it does not always exist for the non-averaged values. Assume 
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2

1

( )
( ) ( )

β βT

n

ij i , j

t
A t a t ,

ˆ ˆ 


     

 then 

1
2 ( )( )

det ( )β βT

jiA tt
,

ˆ ˆ A t


  

   
    

 where ( )jiA t  – is an 

algebraic addition of the ji-th element of the matrix ( )A t . 

It is enough to set 
1λ α ( ) α detjiA t A A       for the orthogonalization (4.31), then 

                                

2

2

Δβ Δβ
α α det Δβ 0

ˆ ˆd d ˆA ,
dtdt

     

where α– is an algorithm parameter. 

This algorithm is adaptive to the “informativeness”: if the Fisher’s matrix A is not 

informative (degenerate), that det ( )A t  is close to zero and Δβ 0ˆ  (and α const ); 

when the useful information occurs, there is an independent adjustment of each element 

βi
ˆ  of the vector β̂ : 

                              
Δβ (β )

α
β

ij

ˆ ˆˆd I ,t
Â ( t ) ,

ˆdt


     

                                     (4.32) 

The algorithm is realized in practice 

                              
Δβ (β )

α
β

ij

ˆ ˆˆd I ,t
Â ( t ) ,

ˆdt


     

                                     (4.32) 

where 
(β )

 
β

ij

ˆÎ ,t
Â ( t ),

ˆ




 – are the values 

(β )
 

β
ij

ˆI ,t
A ( t ),

ˆ




 smoothed by the filter 

fW . 

The functional diagram of the algorithm (4.32) of the orthogonal setting with 

adaptation to the “informativeness” of the object’s signals is represented in the fig. 4.2. 
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Fig. 4.2. The block diagram of the identification system with 

the gradient algorithm (4.32). 

 

 

4.3. The Increasing of the Informativeness of Data Samples in Terms 

of the Active Experiment 

4.3.1. The Theoretical Argumentation of the Expediency of the 

Coordinatewise Quasi-diagonalization 

If the functional  βI  is of the “ravine” character, viz it is not strictly convex and in 

some ways has very small changes, then, the system, 

                                        (β ) Δβ (β )* *ˆ ,                                           (4.33) 

where – is the second derivative,  – is the first derivative from І  on β̂  in the point 

β*
 , will be ill-conditioned. Then, the solution: 

                                        
1

β (β ) (β )* *ˆ ,


                                           (4.34) 

will be excessively inaccurate as a consequence of the impropriety [46] of calculations 

under the expression (4.34). 
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The significant separation of the matrix spectrum into two groups that correspond to 

the large and small eigenvalues  

                      1 2 1
λ λ λ σλ σλnk k
    ; σ 1                  (4.35) 

is the main condition for the “ravinity”  βI . 

The linear membrane of the eigenvectors that correspond to small eigenvalues can be 

taken as a bottom of the “ravine” Q for the system (3.29). 

 

                   

 
1

1
δ

 0 ( 1 )

λ
 σ

λ

n

i

n

n r

Q x R x x*, u i ,n r ,

Q R ; .
 

      

 
                   (4.36) 

The condition of the “ravinity” (4.35) is realized here. 

The condition number of the matrix (β )*  for the model (4.35) (4.36) of the 

“ravine” functional is defined by the correlation: 

   
1 λ

cond (β ) (β ) β σ 1
λ

* * max

min
( *) .


                  (4.37) 

Moreover, the greatest error of the solution (4.34) is concentrated in the subspace 

spanned on the eigenvectors of the matrix (β )* , that correspond to small eigenvalues. 

Let us show this. 

The lemma. Let the condition (4.35) is implemented for (β )* . Then, the 

solution’s (4.34) errors satisfy the relation 

                  
1Δ σ Δ  σ 1  1 1  i jd d ; ; i ,k ; j k ,n.                               (4.38) 

It is known [33], that the solutions (4.34) of the system (4.33) can be represented as 

Δβ i id u ,   where iu  - are the matrix (β )*  eigenvectors. 

The coefficients id  are equal to 
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 1
λ

i
i

i

C
d , i ,n,   where λ i  – are the matrix (β )*  eigenvalues that correspond 

to the vectors iu ; iC  – are coefficients of the vector’s  βI  decomposition at the basis 

 
1

n

i i
u


. 

Expanding the error δβ  at the same basis 

1

Δβ δβ
n

i

i ia u ,


  
 

where 
Δ Δ λ Δλ

Δ
λ Δλ λ λ Δλ λ

i i i i i i i
i i i

i i i i i i

C C C C C
a d d ,

( )

   
    

  
 we obtain that 

Δ λ Δλ
Δ  1

λ Δλ λ

i i i i
i

i i i

C C
d , i ,n.

( )

  
 

 
 In accordance with (4.36), the eigenvectors ku   

…, nu  set up the ravine’s bottom where the gradient’s (β)  vector norm is defined by 

the small eigenvalues and it is significantly lower than in any other part of the parameters 

 space, then, 

                                  1 1  i jC C ; i ,k ; j k ,n;                                       (4.38) 

at the same time 

                              λ σλ  1 1  i j jC ; i ,k ; j k ,n.                                    (4.39) 

That means we have 
1Δ σ Δ  σ 1i jd d ; .    The lemma is proved. 

It follows from the lemma that the axis of the most rational coordinate system while 

minimizing the quadratic functional ravine structure coincide with the eigenvectors of the 

matrix (β )* . The dependence of the error  on the relative orientation of the 

coordinate and orthonormalized bases is shown in the fig. 4.3 
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Fig. 4.3. The dependence of the error  on the choice of the basis. 

 

If the unit vector coincides with the eigenvector iu , the error 1δβ  of the estimate 
1β̂  

is minimum. In the contrary case, even for large eigenvalues ( 2β  and 2u ) the error 2δβ  of 

the estimate 
2β̂  is significant. The error 3  is maximum for small eigenvalues (3 і u3). 

If the coordinate basis coincides with the orthonormalized basis, the quadratic functional: 

                      
1

(β) (β ) (β ) Δβ Δβ (β ) Δβ
2

* * T *      ,               (4.40) 

takes the separable form 

                                            
1

(β) (β )
n

i

i ,


                                              (4.41) 
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the estimate βi
ˆ  are found independentl and the smallness of the error δβ j  is guaranteed 

for those β j  that have large eigenvalues. 

The task is significantly simpler, if it is required to ensure that the coordinate unit 

vectors βi  coincides with its eigenvector iu . Moreover, the errors δβ j  at other directions 

 ju , i j  have little impact on δβ j . 

The required properties (β)  can be ensured by the appropriate selection of the 

controlling actions, i.e. the active experiment on the examined object. We will prove this 

with the help of the assertion that follows. 

The assertion. Let the matrix (β) A   has structure: 

0ija ,  0   kj jka a ; i, j k   , where k – is the fixed number, 1 k  n, then, 

 λkk ka A  and the eigenvector  ku A  coincides with the coordinate unit vector βk
.  

In accordance with the theorem on the spectral decomposition [42], let us represent 

the matrix А as follows 

                             1 2Λ T T TU AU U AU U A U   ,                                (4.42) 

where  1 2Λ diag λ λ λn, ,..., ; 1 2A A A  , 2A  - is the matrix  n n  in which all 

elements are zero except kka , U – is the orthogonal matrix, the columns of which are the 

eigenvalues of the matrix А. 

So far as the basis is orthogonal 

                       
2 U U diag(0 0)T

kk k k kkU A U a , ,a , ,   ,                (4.43) 

                     
2 1 1 1

diag(λ λ 0 λ λ )T

nk kU A U , , , , , , .
 

              (4.44) 

then, it follows from (4.42) 

                            
1 1 1

Λ diag(λ λ 0 λ λ )nk k, , , , , , .
 

                   (4.45) 

from here 

                                                λk kka .                                                     (4.46) 
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According to a spectral representation of the operator А [21] for any vector β , 

1 1β n nCU C U    there is a relation: 

                     1 1 1

1

β λ λ λ
n

i

n n ni i iA C U C U C U .


                             (4.47) 

Considering (4.46) for the k unit coordinate vector of the matrix A we obtain 

                                        β λkk k k k ka C U .                                           (4.48) 

From here it follows, that the vector βk
 coincides with the vector 

kU . The assertion 

is proved.  

Let us apply the obtained result. Let us set the criterion of the signal synthesis as any 

matrix norm   of the difference of the optimized (β)  and the wanted А matrices: 

                                  ( (β)) (β) A .                                               (4.49) 

From the inequality [19]  
2

1

1

λ ( ) λ ( )
n

i

iA B A B


    it follows that the 

functional (4.49) with Euclidean norm    minimizes the mean square deviation of the 

eigenvalues . It is convex, monotonous and uniform on the set of the Hesse’s matrices. The 

next conditions are met for this: 

[ (1 ) ] ( ) (1 ) ( )aA – a B a A – a B      ,   0 1a  , 

( )A  ,    A B , 

(α ) α ( )A A    

These conditions are met in accordance with the axiomatics of the matrix norm. 

 α αA B A B , A A .      

If we connect the functional with one k order of the matrix (β)  , then, instead of 

(4.49) we obtain: 

                                       ( (β)) (β)ki kij a ,                                     (4.50) 

where kij  - is an element i of the k row of the matrix (β) , 0ki kka a  , i k . 
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After this optimization of the active identification modes, the minimization task of 

the ravine functional І() becomes the task of coordinate-wise optimization, which is 

represented with respect to β  in the separable form: 

                                   
β β

1

min (β) min (β)
n

i

i ,                                         (4.51) 

where (β) (β β )i i i iC d .   

The matrix
 iC  of the linear restraints has the form  1 0T

niC I , .
   

 

 

4.3.2. The Synthesis of the Testing Input Actions on the Examined Object 

Some assumptions should be taken into account during the synthesis of the optimal 

signals that test the object: 

1. The signals should be physically executed at the object. 

2. They should not introduce the object into the area of emergency operations. 

3. Their amplitude should be such as to meet the requirements for the ratio “signal – 

noise”, but not so large that the phenomena, not provided by the model, appeared at the 

object (nonlinearity, etc). 

4. The signals should provide the optimality of the relevant criterion (4.49) or (4.50). 

The pulse input actions’ sequence can satisfy these restrictions. 
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Fig. 4.4. The testing pulse ( )u t  and its derivative ω( )t . 

 

          

1

1 1 2

1 2 3 4 2 3

1 3 4

4 5

0

μ( )

( ) ( )

μ( )

0

max

max

; t t

t t ; t t t

u t u t ,t ,t ,t U ; t t t

U t t t t t

; t t t




  


   
    


 

                 (4.52) 

or 

                

2 2
1 1

1 1

( ) ( 1) ( 1) ( )k j

k j
j ,ku t S t t 

 

      .                          (4.53) 

The sequence of pulses of trapezoid form (fig. 4.3) is quite simply executed at the 

real objects of technology and economy: 

                                ( ) φ ω( )j ,k j ,kS t t t t ,   
 

                                (4.54) 

                                
0 0

φ( )
0

, x
x ,

x, x


 


                                                    (4.55) 

where ω
du

dt
 – is the slope of signal fronts. 

The sequence of controlling signals of i control is as follows: 

                              
1

1 2 3

1

( ) ( 1) ( )
L

i l i

l , l , l ,

l

u t u t,t ,t ,t .



                               (4.56) 

The derivative of the single pulse 

                         

2 2
1 1

1 1

ω ( 1) ( 1) 1( )k j

k j
jk

du
t t ,

dt

 

 

                                (4.57) 

where 1( )t  – is a single function 
0 0

1( )
1 0

, t
t .

, t


 


 

The limitations to the fronts slope, the length and the amplitude signals are 
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                                                max ω
du

,
dt

 
 

 
                                          (4.58) 

                                             2 1 maxmin j jt t – t t  ,                                    (4.59) 

                                  2 1ω( )max j jU t – t  .                                              (4.60) 

So far as the signals are completely determined by the moments i ,kt  and the fronts 

slope , it is not hard, if it is necessary, to impose the additional restrictions on the relative 

position of signals at their synthesis. The task of synthesis of optimal testing signals is 

formulated as the task of optimal control is that: knowing the required equations of the 

object, 

                                                   x Ax Bu  ,                                            (4.61) 

the class of signals (4.53)–(4.57) and the restrictions (4.58)–(4.60), to find the program 

control at which the functional (4.49) or (4.50) takes the minimum value. The optimization 

of control at the classic functional: 

                            
9

3 ( ) ( ) ( )
kt

t

kI V x t L x t ,u t ,t dt ,                                (4.62) 

where L, V3 -  are set scalar functions of the vector arguments x and u, is complex. This is 

due to high power of sets at the numerical solution of the dual point boundary problem of 

the functional. 

The application of the semidefinite  

 
0 0

1

3

1 1
( ) ( ) ( )

2 2

k kt t

T T

k опт опт

t t

I V x t Q x,t dt U KU U K U dt,             (4.63) 

allows to solve the problem easier and properly. This problem is solved by the method of 

forecasting models for the synthesis of continuous control in the work [13]. 

The solution in this case. We assume the switching points in (4.53) (4.56) as 

components of the generalized object, obtained by association (4.60) і (4.64): 

                             1  1p p ijT U ; T t ; j ,l; i ,m.                                  (4.64) 
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The equation (4.64) describes the restructuring of the j-th switching moment of i 

component of the control vector pT .  

                                           

T

оpt

V
U K ,

T


 


                                          (4.65) 

where 
V

t




– is a partial derivative of scalar function ( )V x,T ,t , satisfies the equation: 

                               ( ) ( )
V V

Ax Bu Q x,t ,
t x

 
   

 
                        (4.66) 

with the boundary condition 3( )kV t V . 

The application of 

                                           
0

M M M

p

x Ax Bu

T

 



,                                        (4.67) 

allows to find the function ( )V x,T ,t  at the point corresponding to the current state τk  of 

the trajectory 

                         

0

τ

3

τ

( τ) ( τ ) ( τ) τ
K

M MkV x,t , V x , Q x , d ,                               (4.68) 

where τ  – is a current time for the models (4.67). 

Substituting (4.68) in (4.65), taking into account the rules of differentiation, we get: 

                

0

0

τ

3

τ

3 3

τ

τ

( τ ) ( τ)

(τ ) ( τ )
(τ )

(τ )

(τ) (τ)
(τ) τ

(τ)

k

k

M M

p

T

M

T T
T

M

k
оpt

p

k k
k

pk

p

dV x , dQ x ,
U k

dT dT

V V x
z

x dT
k ,

Q dQ
z d

x dT

 
    

  

  
 


 

   
  

     





                    (4.69) 

where (τ)
p

x
z

T





 - is the matrix function of sensitivity of the extended object (4.63), 

(4.64), which is obtained by differentiation at the vector Тр: 
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p p p p p

dx d x x u u
z A B Az B

T dt dt T T T T

      
                

  

or  

                                            

p

u
z Az B .

T


 


                                     (4.70) 

The matrix of the partial derivatives 

p

u

T




 with regard for (4.53) 

                                         
( )i

i

p jk

u u t
,

T t

 


 
                                           (4.71) 

where 

                              
( )

ω( 1) 1( )
i

k j i

i jk
jk

u t
t t ,

t


  


                         (4.72) 

1(t) – is the Heaviside function. 

Solving (4.70) relatively to z and simultaneously integrating (4.72), we obtain the 

vector of gradient which allows to determine where to shift the switching points along the 

time axis in order to achieve the functional’s І extremum at the end of one cycle of 

modeling. 

The dimensionality of the vector pT  can be reduced. Thus, if the amplitude of signals 

is fixed, then, the dimensionality pT  is reduced by half. The signal is completely defined 

by the moments 1 3

i i

j jt , t , and the sequence of signals of i control is as follows: 

                                
1

1

( ) ( 1) ( )
iL

i j i

j

i ju t S t t ,



                                         (4.73) 

where iL  - is the number of inclusions of the i-th control organ, and 

( ) φ ω( )i i

i j jS t t t t ,      
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0 0

φ( ) 0 1

1 1

; x

x x; x .

; x




  
 

                                           (4.74) 

The matrix of partial derivatives: 

                 
1( ) 1

ω( 1) 1( ) 1
ω

i
j i i

i j j
j

u t
t t t t .

t

   
          

                (4.75) 

The furthest reducing of the dimensionality of the vector pT  is possible, if the test 

signals have fixed shape. Such signals are completely determined by the moment of their 

injection. It is necessary only to define their relative position at the time axis. The 

sequence of the heteropolar pulses can be described by the equation: 

 

                                  
1

1

( ) ( 1) ( )
iL

i j i

j

i i ju t S t t ,



                                       (4.76) 

where ( ) φ ω( )i i

j jS t t t t ,    

1

1 1 2

2 2 1

2 1

0

φ( )

0

M

M

j

j j

j j

j j

j

; t t

x; t t t c

u c ; t c t t cx .

u x; t c t t c c

; t t c c




  


     


     

   

 

The restrictions on signals are connected with their relative position and duration of 

the experiment: 

                             
1

3  1 i k

; еxpj j kt t c i,k; t t T .                                       (4.77) 

The criterion (4.63) has the terminal component: 

                                           
3[ ] [ (β)]kV t J                                                (4.78) 

and, with the restrictions like (4.58)-(4.60),  it has the integral component: 

                              ( )
α βT

u

c u

c; u G
Q x,t .

t ; u G


 

 
                                    (4.79) 

Then, 
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0( )

α

u

up

; u GQ x,t
,

; u GT


 

 
                                        (4.80) 

where  – is the vector of coefficients, the value of which depends on the restriction.  

The designed method of synthesis of test signals allows to construct the gradient 

algorithm of the correction of the switchings vector Тр: 

                                   
0 0  0p p kT T ( t ), k ,                                                  (4.81) 

that allows to identify the local extremums of the functional (2.64) in the space of 

controlled variables. The condition for stopping may be the demand for the relative or 

absolute accuracy: 

                                  1 2α αend k kI I I ,                                             (4.82) 

where 1, 2 – are set values of the relative and absolute accuracy of the optimum’s 

localization on the functional.  

It is necessary to carry out the check-ups on the argument at the slow approximating 

to the extremum 

                                  
1

1 2ε εk k k

p p pT T T .                                           (4.83) 

 

Due to the multiple experimental properties of the functional (4.78) in the space of 

controlled variables pT , it is possible to have a case where the localized extremum of the 

functional does not provide the significant improvement of the identification conditions. In 

case that computations stop, it is required to verify the condition 0Ф Фk   and repeat the 

searching for the optimal pT  at other starting conditions 
0

pT . 

 

The algorithm of optimization: 

1. The initial conditions are formed for (4.67), (4.70) 
0( ) ( )pu t u t ,T , 

0

p pT T , 0( )  0z t  , where 
0

,p pT T  - are the initial conditions for the switching points 

and the sensitivity function. 
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2. The object’s movement is modeled using (4.67), and simultaneously the matrix 

equation of sensitivity is integrated using (4.70). 

3. Using the results of modeling with the help of (4.69) we define the gradient of the 

minimized functional by the controlled variable pT . We obtain the algorithm of correction 

of the vector pT  component on the iteration j: 
1j j

p p jT T kv  , experimentally 

selecting the value of k in (4.65). 

4. If the rule of algorithm stopping is not executed, that we should move to p.2 for the 

next iteration of search pT . The rule of stopping: 

1 1 2 2 1 21 1 1 1ε ε  ε εj j j j j jA , A T T T ,                

 where 1ε , 2ε  -are the predefined small numbers. 

5. The condition j def   is verified, if it is implemented, that should move to p.1 

with the formation of new initial conditions. 

 

 

4.4. The Method of the Separate Estimation of Static 

Nonlinear and Dynamic Linear Components of the 

Hammerstein’s Model 

Hammerstein’s model describes the real system at the input  inx  - output  outx  by 

the combination of linear dynamic operator 

      1 1 0β β ( ) γ γ γ ( )
n m

in in
inn m

out out
n out m

d x dx d x dx
x t x t

dt dtdt dt
              (4.84) 

with the static nonlinear  f u  that is decomposed by the system of linearly independent 

(preferably orthogonal) functions  φk u : 

                                        
1

φ
r

k
k kf u l u



  .                                            (4.85) 
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According to the non-linearity’s position (fig. 4.5), denoting the operator
i

i

i

p
dt

d


,
 

 

 

 

 

 

 

and substituting the decomposition (4.85) and dynamics (4.84) into the corresponding 

structures (4.5), we obtain the model for the variants of 
of the a) nonlinearity at the input: 

                        
1 0

β ( ) ( ) γ α φ ( )
m r

i

i k

i k kp y t p u
 

 
    

 
                                        (4.86) 

we obtain the model for the variants of the nonlinearity b) at the output: 

                             
0 0

β α φ ( ( )) γ
n r

i

i k

i k kp y t p u t ,
 

 
   

 
                             (4.87) 

where β ( ) β β 1n

n ip p p ,         0γ( ) γ γ γm

m ip p p .     

Then, the (n+m+r+2) parameters αi , βi , γi  are determined in the identification task. 

The parameters γi , αk  are the part of the model (4.86) as a set their products, and the 

parameters βi , αk  are the part of the model (4.87) as a set of their products too. This 

complicates the solution of the estimation’s problem. Moreover, if  u t  that provides the 

orthogonality   φk u t , that is difficult to implement, the orthogonality is discolated as a 

result of differentiation of functions   φk u t  in time. 

For example, if φk  is sine-cosine series, then, the first derivative from φk  will be 

linear dependent function from 1φk . Using the exponential polynomial: 

                                     
0

( ( )) α ( )
r

k

k
kf u t u t



 ,                                             (4.88) 
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Fig. 4.5. Hammerstein’s models: а) – the nonlinearity at the input,    

                                                    b) – the nonlinearity at the output. 
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does not creates the orthogonality. All this worsens the practical application of the models 

(4.86), (4.87), especially in the noisiness of signals, which have to be differentiated. 

 

Therefore, putting the limitations of the band of the signals spectrum  inx t ,  outx t  

and assuming the finite error  of the approximation of the differential equation (4.84) by 

the equation 

               1β β ( ) ( ) Δ( )
n

n

out out
n out in

d x dx
x t x t t ,

dtdt
                      (4.89) 

we obtain the simplified Hammerstein’s models: instead of (4.86), we obtain the model: 

                                 
0

β( ) ( ) α φ ( )
r

k

k
kp y t u ,



                                              (4.90) 

instead of (4.87) we obtain the model 

                            
0 0

β α φ ( ( ))
n r

i

i k

i k kp y t u t .
 

 
 

 
                                     (4.91) 

The last model may be represented as (4.90), if we consider the inverse dependence 

 u y  instead of direct one  y k . 

 
)(ty

f
–1

(y)  
)(tz

)(

)(

p

p



 
 
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Fig. 4.6. The model that is inverse to the model (4.87). 

 

Then, the task of identification of both models is reduced to the identification task of 

the model (4.90) with the n+r+1 unknown variable. Further simplification of the task is 

accomplished by taking into account the fundamental laws of smooth mappings, namely 

 f u . 

The criteria of approximation, that take into account the smooth of sought 

dependence 

The root-mean-square criterion of proximity, provided by Legendre-Gauss in 1806-

1809, makes it possible to get the best approximation to the mathematical expectation of 

the sought dependence, if noises are normally distributed, and the data sample is large 
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enough. If the data samples are not sufficient and the normality of the law of data 

distribution is broken, this method loses its actuality [22]. 

The situation may be improved, if we take into account the additional information: 

– we discard the anomalous data 

– we control the nature smoothness of the sought dependencies 

The anomalous data are discarded or corrected at the stage of robust filtering of 

signals, and the property of smoothness was first taken into account when determining the 

models of technological processes in the work [23]. Instead of a minimum of the mean 

square error, it is offered to minimize the mean square value of r+1 finite difference 
1Δ εr

 

according to the standard procedure: 

                                    
1 2(Δ ε)r min,                                              (4.92) 

where, if r=1, then, the approximation of smoothness takes place, if r=2, – the 

approximation on curvature and so on . 

The generalization criterion is proposed in the [23], where instead of the square, any 

degree is taken. Taking into account the demand of robustness [22], it is not advisable to 

increase the degree. The order of the difference r+1 is set a priori, if the model’s order  is 

known(4.85), or it is gradually sought, starting with r=1. 

The method of determining the smooth static nonlinearity from the dynamic of control 

Let the dynamic of the object be described by the linear differential equation 

                                       
 

 
0

n kn

n k n k
k

d y t
a f x t

dt



 


    ,                             (4.93) 

where  ( )f x t  - is the static nonlinearity, on the input of which the testing signal ( )x t  

arrives; the output of this nonlinearity influences on the dynamics of the object, the model 

of which is the transfer function ( )W a, p . 

The task is to recover (estimate) the static nonlinearity and therefore to offset its 

impact on the dynamics of the object, taking into account the measured noisy values of the 

output )( kŷ t . 
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The classical methods of solving problems of this involve applying of method of least 

squares (LSM) for estimating parameters of the model of the object’s dynamic (parameters 

of the transfer function). 

The unknown nonlinearity as a function of the input exposure  ( )f x t is 

approximated by the polynomial: 

                    2

0 1 2( ) m

mf x t b b x t b x t ... b x t     .                        (4.94) 

the discrepancy is formed: 

                                    
 

 
0

ε

kn

k k
k

d y t
t a f x t

dt

                                   (4.95) 

and the  functional is minimized 

 2

0

1
ε

T

J t dt
T

  .      (4.96) 

The parameters 1 1k kb ,k ,m; a ,k ,n   are estimated under condition of the 

minimum of this functional: 

                                                0;
J

b





 0

J
.

a





                                          (4.97) 

The practice of application of the least squares method to solve such problems shows 

that it is characterized by fairly significant weaknesses, connected with the high 

requirements for testing (input) signal, and the low accuracy of the estimates of parameters 

of the nonlinear dynamic model as a result of the inadequacy of the model structure of the 

control object, that restrict the application of the classical least squares method for solving 

those tasks. 

The attempts to improve the adequacy of the model by increasing its order lead to the 

sharp increasing of estimation’s time, which is generally unacceptable in a limited time of 

the control (especially while solving problems in a real time) and the noisiness of the 

measured output data. This leads to the systematic errors that significantly limit the 

application of the classical LSM. 
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Having regard to the above, the problem of finding methods of estimation of the static 

nonlinearities which affect on the dynamic of the control object  and estimation of 

parameters of model of the transfer function of the control object is important and relevant. 

In order to determine the nonparametric model  ( )f̂ x t  of the static nonlinearity 

 ( )f x t , let us define the compensated output of the control object define as: 

                            
   2

1 2 2
β βcor

ˆ ˆdy t d y t
ˆy t y t

dt dt
   ,                          (4.98) 

where parameters 1 2β β,  are determined under condition of the mean square r of the 

derivative from  ŷ t  on x,  

                          
 

1 2

1

β β argmin
N

k

r
cor k

r

d y t
,

dx

  .                                   (4.99) 

Taking into account the discreteness of measurements of the output value y instead of 

the y r-th derivative we can use the appropriate discrete sequence ( )kx t  which is measured 

with a constant time step Δt  at the sequence with the constant increment Δx , but with the 

variable time-step. This task can be solved in this way. 

Firstly we should smooth of noisy input and output sequences of the measurements. In 

order to solve this task the smoothing of the measured values is performed by using by 

smoothed splines. 

Then, we sort the value of the input variable ( )kx t  in ascending order. Next in order 

to determine the values jt  that correspond to the input variable, that are changed with the 

constant step, let us perform the interpolation of the obtained sequence using the 

interpolation splines. 

              
2

2 k k k k kS t x m t t c t t     , 
1k kt t , t


   .                    (4.100) 

We find the values jt  that correspond to Δj x  by solving the equation spline 

                           21
4 Δ

2
j k k k kk

k

t t m m jc x
c

     ,                        (4.101) 
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where 1 kj ,l ,    1
Δk k kl x t x t / x


    . 

Having determined all jkt  we count the values ( ) ( )jk jk
ˆ ˆy t , dy t / dt  . 

So far as the finite differences are used instead of the derivatives, we have 

                    

2

1 2 2

( ) ( )
Δ Δ ( )-β βr r

cor

ˆ ˆdy t d y t
ˆy y t

dt dt

 
  

 
.                       (4.102) 

In particular, for 2r   we have 

                 
22

2 1
Δ 2 Δcor cor cor cork k ky y t y t y t / x

 
     .        (4.103) 

For 3r  : 

          
33

3 2 1
Δ 3 3 Δcor cor cor cor cork k k ky y t y t y t y t / x

  
      .  (4.104) 

Thus, the minimization of the functional is in solving this system of linear equations 

with respect to 1 2β β,  

2

1 22
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1 22 2
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N N
r r r r

k k

k k k
k

k k k
k

ˆ ˆ ˆdy t d y t dy t
ŷ t ,

dt dtdt

ˆ ˆ ˆdy t d y t d y t
ŷ t .

dt dt dt



 

 
  

 

  
   

   



 

        (4.105) 

Having identified the parameters 1 2β β,  , we define the value of the smooth static 

nonlinearity by the formula: 

                        
2

1 2 2

( ) ( )
( )-β β

ˆ ˆdy t d y t
ˆf x t y t

dt dt
    .                          (4.106) 

 The algorithm of smoothing the experimental data. 

Let the value of the function ( )f x  be obtained as a table for values of the argument 

 1 2

T

nx x ,x ,...,x  as a result of observations. The process of smoothing is used in order 

to reduce the random errors and obtain the smooth function. The process of smoothing is in 

replacing the values that are obtained as a result of observations, by the values that are 

obtained as a result of the smoothing treatments. 

The problem of smoothing is formulated that way. 
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It is necessary to find the function  2( )* nf x L a,b  in order to achieve the 

minimum of the functional: 

                       
2

0

bn
n

i i i

i a

J t p y f x p f t dt


         ,                       (4.107) 

where 0p   - is an auxiliary parameter, ip  - are given numbers (weight coefficients).  

If 0p   the task is reduced to the task of approximation at LSM. Having all 0p   

the task turns into the task of interpolation. 

The smoothing spline is sought in the form 

   
3

3 1
0

α β
i i

i
k k kS x x c x , x x x




         (4.108) 

In order to construct a smoothing spline and to specify the system of equations, it is 

necessary to apply the additional conditions at the sites of “stitching” of splines. These 

additional conditions are commonly called boundary conditions. They depend on the nature 

of the data that are measured, and on the conditions that should be satisfied at points of 

“stitching”. While smoothing we distinguish: the frequency terms and the conditions for 

the first or the second derivatives at these points [11]. 

There is a system for the definition of the coefficient of smoothing spline in the 

nonperiodic case 

0 0 0 1 0 2 0
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2 2 1 1 1

2 3 2 2

1 2 1 1
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 
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   

     

   

  

     (4.109) 

The coefficients of this system are determined by formulas 

 
2

1 1 12 2
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1 1 1 1 1
1 2

2
k k k k k

k kk k

a b h p p ;k ,N
h hh h
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

 
        

 
; 
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2
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                                             (4.110) 

If the spline that smooths, satisfies the boundary conditions ( ) ( ) 0S a S b   , then 

0 0 0 1 1 01 0N N N Na a ; b c b c g g .          

In the periodic case the system of the equations has the form  

2 2 1 1 1 2k k k k k k k k k k kc M b M a M b M c M g
          , 1k ,N .    4.111) 

where the matrix coefficients are determined by formulas (4.110) for all k. 

The systems of equations listed above are solved by the method of non-monotonic 

sweep. After determining the parameters 
kM  , the value 

kz  are determined by correlations 

                                     
0 0k k k kz z p D ,k ,N    .                                 (4.112) 

Moreover 

 0 1 0

0

1
D M M

h
  , 

   1 1

1 1
1 1k k k k k
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D M M M M ,k ,N
h h

 
      , 

 1

1

1
N N N

N

D M M
h





  .                                                                       (4.113) 

In the periodic case 0 0 1 1; ;N N Nh h M M M M    , all value kD  are determined 

by formulas (4.113) for 1k ,N . 

The determination of the weight parameters 
kp  is the most important aspect while 

constructing a smoothing spline. The errors of the determination of the magnitude 
0
kz  are 
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usually known in practical applications, viz δk k kz z   are known, where kz  - are the 

exact values of the measured value. In this situation it is natural to demand that the 

smoothing spline satisfies the conditions 

                                     
0 δ 0k k kz z ,k ,N   ,                                       (4.114) 

or the conditions 

δ 1k k kp D ,k ,N  . 

These restrictions are used to calculate the weighting factors 
kp . Let us construct the 

iterative process, the implementation of which will provide us with the unknown factors 

kM  and multipliers 
kp . 

                                
     06 6
m mTA HR H M Hz  .                              (4.115) 
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  (4.116) 

where m – is the number of iteration. 

The matrices А, Н are 
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where  1
1k k kr h h


   
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 
 


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.                                  (4.118) 

The connection 
kM  with kz  is defined by the matrix equation 

                                                   6AM Hz .                                            (4.119) 

As an initial approximation we take 
0

0 0p   that corresponds to the interpolation 

spline with the values (0)

kD D . The iterative process continues until the value of spline 

kz  does not appear in the “corridor”. 

 

The Algorithm of Interpolation by Parabolic Splines 

Let    ;na,bf ( x ) C , a,b R a b,    and two sets of knots Δ Δn n,   are presented  

                        0 11 1Δ :n nx a x ... x b
      .                                    (4.120) 

Assume that 1 1i i ix x x , i ,n    . The function 2 ( )S x; f  is the interpolation 

parabolic spline for the function ( )f x  if 

   12 2; 1i iS x P x x ,x ; i ,n   ; 

 
 

 1

2 a,b
S x C ; 

   2 iS x f x .                                                                                       (4.121) 

The numbers ix  are knots of spline, and ix  are knots of interpolation. The knots of 

spline are the points of a possible gap of the senior derivative (in this case - the second 
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one). The spline 2 ( )S x; f  depends on 3n  parameters, thus, it contains two free 

parameters. Therefore, two additional restrictions are imposed on the parabolic 

interpolation spline. 

If the function ( )f x  is ( )b a  periodic, we require the spline to be ( )b a  also 

periodic and to have the continuous first derivative, and the point 0x a  don’t be the knot 

spline. 

                                      
       
2 2

1 2
i i

S a S b , i ,  .                             (4.122) 

 

Generally, the following conditions are the most widespread: 

                                          
2 2

' '
n nS a a ; S b b  ;                             (4.123) 

                                         
2 2

' '
n nS a A ; S b B  ,                             (4.124) 

where n n n na ,b , A , B  - are given real numbers. 

The particular choice of these numbers depends on the task under solution. For 

example, if the function has corresponding derivatives, we can put 

)(),(),(),( bfBafAbfbafa
nnnn

  or replace them by the appropriate 

approximated values of the derivatives (the finite differences). If the choice of boundary 

conditions is difficult we can require the spline to have the continuous second derivative, 

viz 

                        
2 2

0 0 ; 1' '
iS z S z z x , i ,i n                          (4.125) 

at the points 1 nx ,x . 

Let 
2 1 2( ); 0 ; ( )i i im S x i ,n M S x    . So far as 2 ( )S x - a piecewise constant 

function, that  

                             12 ;( )= 0i ii iS x M x x x , i ,n    .                             (4.126) 

 Let us denote 

1 1 1 0 1,i i i i i ih x x h x x , i ,n        ; 
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   1 1σi i i i i i if x f x h y h y     ; 

1 γ;i i i i i i i iu h h h h h h    ; 

1 ; ; ;1ν γ ν ν γ 0 1i i i i i i i i iih h h u u i ,n     .                               (4.127) 

Then, for 
1k kx x ,x


    we have 

                   
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2 1i i i i i i iS x y m x x c x x d x x        .           (4.128) 

We will require that 
2 1 1
( ) ( )k kS x f x

 
  and 2 1 1

( ) 0 2. k kS x m ,k ,n
 

    . Then, 

for the coefficients 
k kc ,d  we obtain  

             
σν ν1 11 ν

2 2

i i
i

i i

m m
i i ic

i h h h h h
i i

   
        

   
   

,                        (4.129) 

                         1
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γ

2
i

i

i i i
i i i

h m
d m y y

h




 
   

 
.                                 (4.130) 

So far as the equality 2 1 2 1( 0) ( 0)k rS x S x 
     should be implemented in the 

point 1ix   we obtain the equality 1k k kc d c    or  

1 2
11 1 1

γ1 1 1

γ γ

k k

k k k k

k
k k k

k k k k

h h
m m m

h h h h h h
 





  

 
     
 

 

1

1 1

σ σ
2 2k k

k k kh hh



 

 


.                                                                            (4.131) 

In the periodic case 0 2k ,n  , at this 0 nm m ;  1 1nm m  ; 0 1 1n nh h , h h  , 

that we have the system of equations from n unknown 1 2 nm , m , ..., m . 

0 nm , m  are known in the case of boundary conditions (4.111), thau, the system 

(4.123) contains ( 1)n  the equation with ( 1)n  unknowns. For the boundary conditions 

(4.131) we have 

0 1 12 2 2n n n nc A , c d B    . 

For the boundary conditions (4.125): 
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0 1 0nd d   ; 

1

1
12 σ 2ν γ σ ; 1 1k k

k k k k k k k
k k

h h
d e u k ,n

h h



     .                       (4.132) 

In the periodic case the system of equations (4.131) relatively to 
km  takes the form 

 1 1ν 1 σ 1;k k k k k k k ku m u m m g k ,n       .                              (4.133) 

0 nm m ;  1 1nm m  ; 
0 0n nh h , h h  . 

For the boundary conditions (4.123) the system of equations takes the form  

                                                                Am g,                                       (4.134) 

                                    1 2 1nm m ,m ,...,m  ;    

                     1 1 2 3 2 1 1n n n n ng g u a ,g ,g ,...,g ,g v b     .                    (4.135) 

For the boundary conditions (4.124) the system of equations takes the form  

 0 0
0 1 0 0 0

0 0

2 2σ n

h h
m m A h h

h h

 
     

 
; 

 1 1ν 2 ν 1;k k k k k k k ku m u m m g k ,n       ;                            (4.136) 

1 1
1 1 1

1 1

1
2σ

γ

n n
n n n n

n n

h h
m B h

h

 
  

 


   . 

 

The Least Squares Method 

The minimization of the criterion (4.104) is the determination of the estimates of the 

parameters kb , 1k ,m  and ia , 1i ,n , and it is implemented by solving the system of 

linear algebraic equations 

   
1 1 1

1 1 1

0

0

im n N
i l l

i
i i k

i l lm n N
i

i i l l
i i k

k
i ik k k k

k k k
ik k

d y
b x a x y x , l ,m;

dt

d y d y d y
b x a y , l ,n;

dt dt dt

  

  

   
    

   

   

    
   

  

  

              (4.137) 
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Let us denote 

       
T
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1
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k ke y x , l ,m;
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   
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lN

l l
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k
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d y
e y , l ,n;

dt

        (4.138) 

11,d N , 
1

N
j l

j ,l l , j

k
k kd d x x



  , 0l ,m ; 

                                
1

1

jN
l

l ,m j j
k

k
k

d y
d x ;
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





 0l ,m , 0j ,n ;                      (4.139) 

1

1

lN
j

l m, j l
k

k
k

d y
d x ;

dt







 0l ,m ; 0j ,m ; 

1

j lN

l m, j n j l
k

k kd y d y
d ;

dt dt
 



  0l ,n ; 0j ,n . 

Then, the system of linear algebraic equations for determining the unknown 

parameters 
kb , 1k ,m  and ia , 1i ,n , has the “classic” form 

                                                        Dc e .                                               (4.140) 

 

The example. The definition of the nonlinearity automated electric drive 

In order to control the stability and accuracy of the automated electric drive it is 

necessary to determine the size and asymmetry of the dead zone, the slope and the levels of 

saturation of the nonlinear dependence of the rotational speed of the output shaft of the 

system on the voltage aU  at the shaft of the armature of the DC motor in the reverse mode, 

viz the speed of transition from Ωmax  to Ωmax  [38]. The differential equation 

corresponds to dynamics of this process: 

                 
   

   
2

2 12

Ω Ω
Ω a

d t d t
a a t f U t

dtdt
      ,                       (4.141) 

where aU  changes at the interval from maxU  to maxU , it is stepwise: 

   
1

1
1 1 Δ

2

q

k

a maxU t U k t
q / 

 
    

 
 , 
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where 16q ;   
1 Δ

1
0 Δ

, t k t;
t

, t k t.


 


 

The values of parameters 1 2a , a  are unknown. The parameters of testing impact are 

equal to 120BmaxU  , Δ 1t c.  The initial condition: Ω(0) Ω 300max     rad/s, 

Ω(0)/ 0d dt  . 

In order to model the process, let us take the nonlinear dependence as 

      Ω 3 60sin 0 065a a aU t U t , U t        , 

that corresponds to the condition of smoothness of dependence with dead zones and 

saturation zones. The measurements of the output signal of the drive are executed with the 

step Δ 1t c  at  200N  , 16q  . 

So far as the measurements of the output variable are performed under the influence of 

interference measurements, for the process modeling we impose a 10% error of 

measurements in the form of “white noise”, that is the random normal process with zero 

mean and unit variance. 

The process modeling includes the following steps: 

1. Smoothing of the input  aU t  and output 
kŷ , 1k ,N  values that are 

measured. 

2. Sorting the values  aU t  in the order of their increasingness. 

3. The interpolation of the values using the interpolation splines. 

4. The determination of the values 
kjt  that correspond to the uniform change 

 a kU t  with the constant step ΔU . 

5. The calculation of the values 
kjŷ( t ) and derivatives of the first and the second 

order from these values (the finite differences). 

6. The minimization of the functional (4.96) by composing and solving the 

systems of the equations (4.140). 
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The simulation of the process of determination of the static nonlinearity is performed 

for several values m  in order to define the optimal order of the polynomial 

dependence of the static nonlinearity on the input influence. In the fig. 4.7 we see that 

the optimal value is 5m  . The mean square error is 5ε 26 72, . 

 

Fig. 4.7. The estimation of the nonlinearity for 2 3 4 5m , , ,  by LSM. 

 

Let us solve the same task applying the method of compensation of dynamics of the 

control object. 

The first three steps are the same. Having performed the steps 4 and 5, viz the the 

definition of time intervals  that correspond to the constant increment of the values of the 

testing signal and determination of the values of the output signal that correspond to the 

value of time 
kjt ,  instead of the step 5 we do 

7. The minimization at 1 2β β,  of the functional (4.99) in this form 

 
 1

min min

rN

r
k

cor k
cor

ŷ t
J

U t

 
  

  
 , 
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provides the estimates 
1 2β 0 0196   β 0 000134ˆ ˆ, , , .   Then, the sought nonlinearity is 

defined as follows: 

2

2

( ) ( )
( ) ( )-0,0196 0 000134a

dy t d y t
f U t y t ,

dt dt

 
  

 
. 

 

Fig. 4.8. The estimation of the static nonlinearity by the method of 

compensation of dynamics for 1 2r ,  and 3r  . 

 

The results of modeling for 1 2 3r , ,  are represented in the fig.  4.8. 

The final error is the least for 2r   and is equal to 2ε 3 067,  , that is less than 

0,5%. 

 

Chapter 5. Constructing of the Models of the Deterministic Processes, the 

Measurements of which are Perturbated by Random Interferences 

5.1. Modeling, Identification and Forecasting of Economy Performance 

by Methods of the Simplified Confluent Analysis 
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The indicators of the economy (power industry, etc) as a function of time may have 

the most diverse structure, longitude of a range, accuracy, the type of hidden conformity of 

development (change) in time, the step in time, the interval of the forecast, etc [26]. 

The elements that make up the model of time series can be analytic functions of time 

t  (degree: 
jt , j ; periodic trigonometric:  sin ω φt  ; combined: 

 sin ω φi t   and other exactly given functions:  f t ) or suspended in the time t values 

of the series  y t  (  y t T ,0 kT t  , where kt  - the finite value of time). As a rule, 

the time t , represented by the discretes kt , k=0,1,2,…, is not always the uniform step. 

If the structure of the model of series is unknown, we can choose the best structure 

from the different variants of structures constructed on these elements (according to the 

main criterion I (the criterion of the accuracy of forecast)). The models with the 

exponential elements are generally better used for the short series and the autoregressive 

models are used – for the long ones (where the uncertainty does not influence much on the 

initial conditions). 

Let us represent the index I of the forecasting accuracy (which is physically realized) 

as the weighted sum of the partial indexes iI  (i = 1,2,3) that are responsible for the quality 

of individual properties of the model of the series. The index 1I  

                          1

β β1
tr diag

β

e o
i i

i

ˆ ˆ

I ,
ˆn

 
 
 
 

   ;,1 ni                                      (5.1) 

where βe
i
ˆ , βo

i
ˆ  and βi

ˆ  - are the estimates of i parameters of the model, that are received by 

sorting even, odd, and all discrete k of the time kt ; it is so called the parametric index of 

regularity. 

The index 2I  : 

                                                 
1

2 ε εT TI x x


  ,                                            (5.2) 

   ε ε 1 εT ,..., M    ,    1Tˆ ˆ ˆx x ,...,x M    , 
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where ε( )k  - is an error of approximation of signal  x k  by the corresponding model in 

the k point of series; it is the signal indicator of the unbiasedness or the accuracy of the 

series simulated by the model. 

The index 3I : 

         3 1I K ,           1

1 1

η ( ) ( )

η ( ) η ( )

L

i

L L

i

i i

i

i

ˆx M i x M i

K .

ˆx M i x M i



 

  



  



 

                 (5.3)  

Here ηi  - is the coefficient of distribution of the desired accuracy of forecast by the L 

last points of sampling 
1

( ) 1 η 1
L

i

ix k , k ,M ,


  ; ( )x̂ M i  - is a predictive value 

( )M i , received from the model that is constructed on a shortened L of the last points of 

the sample 1k ,M L.   

Since it is considered that the estimated number ( )x k  consists of the hidden 

determinate component which is smoothed in time and the random component that is close 

to the Gaussian “white noise”, then, in the variation series of models that are ordered by 

complexity (the dimensionality of the vector β  of unknown parameters), the indexes 1I  

and 3I  restrict the dimensionality n of the vector β , while the index 2I  decreases with the 

increasing n. Depending on the purpose of identification the coefficients of the weight ig  

of the weighted sum of these three indicators vary: 

          
3 3

1 1

1 0
i i

,i i i iI g I g , g
 

    .                               (5.4) 

For the task of the control of parameters βi  of the model of the known structure, the 

maximum weight is 1g ; for the task of the accurate approximation of series ( )x k  by the 

model ( )x̂ k , the maximum weight is 2g ; for the forecasting task, the maximum weight is 
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3g . The set of indexes 1I , 2I , 3I  provides the compromise between the stability of the 

model’s estimates, the accuracy ε εT
 of approximation and the accuracy of forecast. 

As an example of the real time series that have 43 discretes ( )x k  with a uniform step 

Δ 4t   months (one of the indexes in power industry of Ukraine), the fig. 5.1. and the 

table. 5.1., let us consider the solution of the forecasting task ( )x k , 1 37k ,  for the last 

6 points, taking them as unknown. This formulation of the problem makes it possible to 

implement the objective index I of relative accuracy of the forecast for these 6 points that 

was physically unimplemented in the forecast for the future: 

                                
   
   T

T

xxxx
I

)43(),...,38()43(),...,38(

)43(),...,38()43(),...,38(




  ,                               (5.5) 

viz the relative mean square deviation ε( ) ( ) ( ) 38 43ˆk x k x k , k , ,    of the 

forecasting values ( )x̂ k  from the known ( )x k . In the criterion we have 
1 1

η
6

i .
L

   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1. The time series of one economic indicator in the energy sector of 

Ukraine. 
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The weight coefficients in the generalized criterion (5.4) are 1 0 9g , ; 2 0 4g , ; 

3 0 4g , . 

 

 

 

 

                         Тable 5.1  

The dependence ( )x k  on k 

k X k x k x k x 

1 10550 12 13600 23 59250 34 57800 

2 47070 13 14550 24 16850 35 49630 

3 47350 14 49900 25 17830 36 18780 

4 11500 15 56750 26 54800 37 16000 

5 10900 16 16050 27 50700 38 53950 

6 54700 17 14680 28 14150 39 57500 

7 50000 18 59300 29 13550 40 22000 

8 14320 19 57700 30 47430 41 19650 

9 12900 20 15500 31 56350 42 59900 

10 51650 21 13350 32 19450 43 57550 

11 50740 22 55600 33 17600   

 

The mean value of series is 35100, the mean square deviation of series from the mean 

is 19550, the coefficient of variation is 0,55. The various mathematical models were 

associated with the series that are represented in the table 5.1. 

1) the models as a different order of the degree polynomial from t, viz from the 

discretes k of time: 

                                                       0 1( ) β βx̂ k k ,                                              (5.6) 

                                                
2

0 1 2( ) β β βx̂ k k k ,                                          (5.7) 

                                        
2 3

0 1 2 3( ) β β β βx̂ k k k k    ,                                   (5.8) 
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11 1 3

34 2 2
0 1 2 3 4( ) β β β β βx̂ k k k k k     ,                           (5.9) 

                                       
1 3

0 1 2 3( ) β β β βx̂ k k k k     ,                                 (5.10) 

2) the autoregressive model from k with the constant and variable step: 

                                           0 1( ) β β ( 1)x̂ k x k ,                                              (5.11) 

                                     0 1 2( ) β β ( 1) β ( 2)x̂ k x k x k ,                                 (5.12) 

                          0 1 2 3( ) β β ( 1) β ( 2) β ( 3)x̂ k x k x k x k ,                         (5.13) 

                                             0 1( ) β β ( 4)x k x k ,                                       (5.14) 

        0 1 2 3 4( ) β β ( 1) β ( 2) β ( 3) β ( 4)x̂ k x k x k x k x k ,               (5.15) 

                                0 1 2( ) β β ( 1) β ( 4)x̂ k x k x k     ,                          (5.16) 

                      0 1 2 3( ) β β ( 1) β ( 4) β ( 8)x̂ k x k x k x k ,                      (5.17) 

3) the combined polynomial autoregressive models: 

                                      )1()(ˆ 210  kxkkx ,                                      (5.18) 

                                     )4()(ˆ 210  kxkkx ,                                     (5.19) 

                            )4()1()(ˆ 3210  kxkxkkx .                            (5.20) 

The efficiency of application of the physically realizable criterion (5.4) in terms of its 

proximity to the physically unrealizable criterion (5.5) was tested at a set of structures 

(5.6) ÷ (5.20) of the models of time series (table 5.1.) and a set of methods (LSM, GLSM, 

ILSM, ) that were suggested in the previous chapter for the forecasting tasks. Here, the 

efficiency should be read as a right choice of the best method by the criterion (5.5) that is 

selected by the criterion (5.4). 

The results of numerical simulation are represented in the table .2., where 15 lines of 

the table represent: 

in columns 

1 –the types of models (degree (5.6)-(5.10), autoregressive (5.11)-(5.17), combined 

(5.18)-(5.20)); 

2 –the relative mean-square error of simulation of series by corresponding model in 

its 37,1k  identification by LSM; 
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3 –the physically unrealizable ideal criterion (5.5) by LSM; 

4 –the physically realizable criterion (5.4) in the identification of the model by LSM; 

5 –the best (by criterion (5.4)) method of identification for the model that 

corresponds to the row; 

6 –the value of the ideal criterion (5.5) for chosen by real criterion (5.4) for the 

appropriate method to model line; 

7 – the value of the criterion (5.4) for the best method of identification, chosen with 

its help for appropriate to row model; 

8 –the best method of identification the appropriate to row model, chosen by the ideal 

criterion (5.5); 

9 –the value of the ideal criterion (5.5) for the best method of identification the model 

of appropriate row, chosen by this criterion; 

10 –the value of the real criterion (5.4) for the best method of identification of model 

the appropriate row, chosen by this criterion (5.5). 

Тable 5.2.  

The results of modeling 

№ 1 2 3 4 5 6 7 8 9 10 11 

1 5.6 0,49 0,47 0,25 GLSM 0,41 0,242 MAV 0,363 0,26 1,3 

2 5.7 0,484 0,593 0,26 ILSM 0,415 0,223 ILSM 0,415 0,223 1,43 

3 5.8 0,476 0,883 0,41 ILSM 0,38 0,2 ILSM 0,38 0,2 2,32 

4 5.9 0,485 0,593 0,27 GLSM 0,43 0,226 ILSM 0,365 0,235 1,62 

5 5.10 0,488 0,49 0,25 ILSM 0,45 0,23 GLSM 0,425 0,237 1,15 

6 5.11 0,49 0,435 0,24 GLSM 0,42 0,235 GLSM 0,415 0,235 1,05 

7 5.12 0,62 0,58 0,28 GLSM 0,56 0,262 GLSM 0,558 0,262 1,04 

8 5.13 0,123 0,143 0,04 LSM 0,143 0,04 MAV 0,096 0,048 1,49 

9 5.14 0,133 0,1 0,03 LSM 0,1 0,03 MAV 0,088 0,126 1,13 

10 5.15 0,113 0,122 0,037 MAV 0,092 0,03 MAV 0,092 0,03 1,33 

11 5.16 0,131 0,103 0,034 MAV 0,091 0,031 MAV 0,091 0,031 1,13 

12 5.17 0,087 0,092 0,015 MAV 0,063 0,011 MAV 0,063 0,011 1,46 

13 5.18 0,488 0,47 0,245 MAV 0,489 0,225 GLSM 0,411 0,237 1,14 

14 5.19 0,132 0,108 0,035 LSM 0,108 0,035 MAV 0,081 0,038 1,33 

15 5.20 0,131 0,111 0,036 LSM 0,111 0,037 LSM 0,111 0,037 1 
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Let us analyze the results of calculations: 

The autoregressive model (5.17) with the variable delay at k-1, k-4 and k-8 steps is 

the best one by the ideal criterion (5.5) at a set of 15 structures and 4 methods of 

identification for specific row (table 5.1); the best method is MAV. The same result is 

obtained by the real criterion (5.4). 

Generally, the optimal method of identification by the real criterion (5.4) was 

selected correctly (rows 2, 3, 6, 7, 10, 11, 12, 15, the table 5.2) in 8 of 15 considered cases, 

viz it coincided with the method selected by the ideal criterion. In other 7 cases (rows 1, 4, 

5, 8, 9, 13, 14) the ideal index (5.5) for the method, selected by the real index (5.4), is 

slightly worse than this index for the optimal method by the ideal index (columns 6,9, 

fig. 5.2). 

  

Fig. 5.2. The dependence of the ideal index 
*I  (5.5), obtained for the optimal method 

of identification on the same index for the optimal method of identification by the real 

index Î . 

 

The conclusion that there is a strong correlation of indexes (5.4) and (5.5) and, as a 

consequence, the possibility of the effective application of the physically realizable 

criterion (5.4) clearly follows from the fig. 5.2. 

With the complication of the models (5.6) (5.7) (5.8), that are degree series, the index 

(5.2) (the column 2 of the table 5.2) of the mean square error of approximation of the 
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series (the table 5.1) by models (5.6)÷(5.8) decreases. It follows from the first Weierstrass 

theorem [11] on the approximation by degree polynomials (Taylor series). 

At the same time the ideal criterion (4.5) of the forecasting accuracy at the 

complication of models worsens (rows 1,2,3 of the third column in the table 5.2). This 

confirms the biased nature of the internal approximative criterion (5.2) and the 

incorrectness of its application for the task of forecast. 

Another situation occurs for autoregressive and mixed autoregressive polynomial 

models (5.11)÷(5.20). Here due to the regularizing properties of the LSM, when variables 

are noisy, the internal criterion (5.2) of the mean-square measure of the proximity in the 

area of approximation and the external one, both ideal (5.5) and actual (5.4), criteria are 

rather strongly correlated (the fig. 5.3). 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3. The regressive dependence J  (5.2) on I  (5.5). 

 

In other words, the application of the approximative criterion (5.2) for this class of 

models in the forecasting task to the points (38÷43) at the noisy data in the points (1÷37) 

is less critical. We have the self regularization here. The more complex is the 

autoregression, the worse is the conditionality of the information matrix LSM for the 

accurate data. But for the data, noisy by the uncorrelated obstacle, the diagonal elements 

of this matrix increase and, as a result, the LSM-estimates of the coefficients of the model 

reduced (by the module), thus simplifying the model (regularizing by Tikhonov [14]). 
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Let us compare the value of ideal criterion (5.5) for the models, obtained by the LSM 

(the column 3) and one of the proposed methods (the column 6), with the optimization at 

the real criterion (5.4). The index (5.5) is slightly lower only for the model (5.18) from 

these 15 models. Thus, only here the MAV was mistakenly selected by the criterion (5.4) 

instead of the LSM. In other 14 cases the method, that was found at a condition of 

minimum of the physically realizable criterion (5.4) of the forecast accuracy, gives better 

results than the LSM or it gives the same results if in (5.4) the LSM was selected as the 

best one (the columns 6 and 3 of the table 5.2). 

Within the framework of one method of identification, for example, the MAV (the 

column 6, the lines 10 ÷ 13), the dispersion of the ideal criterion (5.5), depending on the 

structure of the model, is from 0.063 to 0.489, that confirms the relevance of the choice of 

the model’s structure. 

Within the framework of one model (5.17), for example, optimal by the criterion 

(5.5), the optimization of the solution at a set of four methods (LSM, MAV, GLSM, 

ILSM) gives the gain of 1.5 times (0.092 - 0.063 for the LSM and 0,063 for the MAV, as 

the best method). 

In the large, the optimization at a set of methods and models gives significant gains in 

the accuracy of forecast. Let us define this gain as the ratio criterion (5.5) for the model 

with the coefficients that are determined by the LSM (the column 3, the table 5.2), to the 

value of the same criterion (5.5) for the same model, with the coefficients that are defined 

by the optimal (5.5) method (the column 9, the table 5.2). The column 11 of the table 5.2 

represents the ratio that lies between 1 to 2.32. Upon the average it is 1.33. 

 

 

5.2. The Numerical Modeling of the Task of Active Identification of the Parameters 

of Discrete Dynamical Systems 

The theoretical principles on the advantages of the method of active experiment with 

the coordinate-wise optimization, discussed in the section 5.1, were also confirmed by the 

numerical simulation that is considered below. As it is known, the continuous system 
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1 1( ) ( ) ( )X t A X t BU t   that describes the dynamics of the real process (the 

electromechanical object) at a set of the discretes of time kt , provided with the uniform 

step Δt, can be displayed by the discrete system: 

                     ( 1) ( ) ( )X k AX k BU k   , ( ) ( ) ( )Y k X k N k  ,                (5.21) 

where 1 ( )k ,M ; X k  - are the variables of the state,  U k  -are the control 

influences; ( )N k  - are the errors of measurements of ( )Y k  of variable ( )X k . In the 

example below ( )X k , ( )Y k , ( )N k - are three-dimensional vector functions from k , 

1 300k , ;  U k  - are two-dimensional functions k ; ( )N k  - the sequence of “white 

noises”, the ratio of “noise – signal” is10%. The scalar form of the equation (5.21): 

                

3 2

1 1

( 1) ( ) ( ) 1 2 3
j l

i ij j il lx k a x k b u k , i , ,
 

                          (5.22) 

The numerical value of the coefficients of the mathematical model (5.21) of the 

electromechanical object is shown in the table 5.3. 

Table 5.3.  

The numerical value of the coefficients 

 
ija  

ilb  

1j   2j   3j   1l  2l  

1i   -1,27 0,01 0,05 -1 0,8 

2i   -0,34 -0,13 1 -0,01 -12,5 

3i   -16 -3 0,18 -1 0 

 

We should find the estimates of parameters ija , ilb , ( 1 2 3i , , , 1 2l , ) using the 

integrated method of the least square (ILSM), the methods of synthesis of the optimal 

testing signals  1U k ,  2U k  and the technology of the coordinate-wise optimization of 

the plan of experiment that were discussed in the section 4.3. 
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The identification is performed row by row. But for each i-th row of the system 

(5.22) the matrices of the second derivatives of the minimized functional are the same and 

form the information matrix ILSM: 

                       
τ

τ

τ τ τ τ

TTM F F F F F F ,


   



    
                       (5.23) 

where F  - [3005] is the matrix of the plan of experiment, τF  -is the same matrix, 

shifted in time to the discrete k, 1 2 3k , , . 

Each of the testing signals  1U k  and  2U k  is defined as a sequence of two 

heteropolar pulses of the same form. At this the first pulse on the time axis was fixed, but 

the position of the last three pulses varied discretely. The dependence of the functionals 

jF , 1 5j ,  of the coordinate-wise optimization (4.46) on the number of the variant of the 

plan of experiment (8 options are taken) is presented as an example in the fig. 5.4 for the 

coefficients of the first row of the table 5. 

 

Fig. 5.4. The graphs of the change of functionals jF  of the coordinate-wise 

optimization on the number k of the plan of experiment. 
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As it is shown in the figure, the maximums of the functionals of optimization ijF  and 

D-criterion [44], viz the normalized determinant of the matrix (5.23), are significantly 

different for all i , except i = 1. This confirms the effectiveness of the algorithm of the 

coordinate-wise optimization. 

The estimates of the parameters ijâ , ilb̂  of the model (5.22) are shown in the table 

5.4. They are obtained by the ILSM using the results of the experiment which is optimal 

by D-criterion. Let us compare these estimates with the true values of the coefficients ija , 

ilb  (the table 5.3). As it follows from the comparison, the optimality by D-criterion does 

not guarantee the equivalence on accuracy for each of the ratios. 

 

Table 5.4  

The numerical values of the estimates of the coefficients for the optimal plan 

by D-criterion 

 
ijâ  

ilb̂  

1j   2j   3j   1l  2l  

1i   -1,38 0,007 0,063 -0,99 0,83 

2i   -0,3 -0,17 0,93 -0,011 -12,52 

3i   -16,24 -3,63 0,179 -1,04 0,0014 

 

The estimates of the coefficients 11 12 13 21 22 23, , , , ,a a a a a a , 32 32,a b are significantly 

different. 

The estimates of the parameters of the model (5.22), obtained by the ILSM as the 

results of the active experiment on using the coordinate-wise optimization procedure are 

represented in the table 5.5. These estimates ijâ , ilb̂  are the best approximated to the 

precise (table 5.3) values of the coefficients. 
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                                                                             Table 5.5 

The numerical value of the estimates of the coefficients for the plan of 

coordinate-wise optimization 

 
ijâ  

ilb̂  

1j   2j   3j   1l  2l  

1i   -1,28 0,008 0,052 -0,99 0,83 

2i   -0,32 -0,14 0,99 -0,011 -12,52 

3i   -15,8 -3,28 0,1804 -1,03 0,0013 

 

Several algorithms have been tested when optimizing the information matrix M 

(5.23) by the methods of nonlinear programming. The working of the gradient algorithm 

with simultaneously descent in all directions and the constant step is presented in the 

tables 5.6, 5.7. The same algorithm is presented in the table 5.8, but the length of step 

changes when the sign gradient changes. The table 5.9 presents the working of the 

algorithm with the constant small step in all directions. 

The same algorithm is presented in the table 5.10, but with the shifting of the initial 

conditions for one of the coordinates. The convergence to the local extremum is obvious. 

If we substantially change the initial conditions in the same coordinate, then there will be 

the convergence to another local extremum (the table 5.12). The algorithm of the gradient 

descent is presented in the table 5.13. The working of the gradient algorithm is illustrated 

in the table 5.14, where the length of step is taken as a proportion to the gradient with the 

integrated limit ( )= TQ x x x . The working of the gradient algorithm of the minimization of 

criterion coordinate-wise in the form 
2

1

n

j

i ijФ a ,


   for maximum (the table 5.15) and 

minimum (the table 5.16) diagonal elements of the matrix M (5.23) is represented in the 

tables 5.15 and 5.16. 

The results of the simulation of the gradient algorithms of optimization of the plan of 

experiment showed the efficiency of the gradient procedures. For further practical 

application it is reasonable to use the algorithm with the simultaneous descent in all 
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directions with the small constant step of descent. However, it is necessary to take into 

account the possible multiexperimentality of the functional. In order to find the global 

extremum we should carry out the gradient process several times with the different initial 

conditions. 

 

 

 

 

 

Таble 5.6 

The optimization of the determinant of the information matrix 

for different initial conditions 

№ Gradients Control Det (M) 

V1 V2 V3 k2 k3 k4 

1 2 3 4 5 6 7 8 

1 0,0567 0,0341 0,0522 100 50 200 0,96 

2 0,1702 0,1268 0,1304 88 38 188 3,67 

3 0,2610 0,0648 0,1628 76 26 176 10,17 

4 0,3110 0,2027 0,2587 64 14 164 16,05 

5 - 0,2111 0,4469 0,1051 52 2 152 20,21 

Remark: 1. The algorithm is stopped due to the approximation of the moment of the 

pulse delivery before starting the counting time; 2. The step of the algorithm is ∆=12. 

 

                                                                                                Таble 5.7 

1 2 3 4 5 6 7 8 

1 0,0556 0,0424 0,0530 100 150 200 0,74 

2 0,1189 0,1118 0,0976 88 138 188 2,16 

3 0,1721 0,0880 0,1083 76 126 176 5,16 

4 0,2496 0,1994 0,2089 64 114 164 8,571 

5 0,4569 0,2179 0,0068 52 102 152 9,43 

 

                                                                         Таble 5.8 
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№ Gradients Control Det 

(M) V1 V2 V3 k2 k3 k4 

1 -0,0031 -0,0059 0,0117 150 50 180 0,221 

2 0,6150 -0,0700 0,0865 162 62 168 1,789 

3 0,2020 0,1567 0,0485 156 74 156 4,354 

4 0,1548 -0,0269 0,1320 150 68 144 4,425 

5 0,0805 -0,2831 -0,0888 144 71 132 4,611 

6 -0,2769 -0,2932 0,0875 138 74 138 5,450 

7 -0,0070 -0,0331 0,0244 141 77 135 5,743 

 

                                                                              Таble 5.9 

№ Gradients Control Det (M) 

V1 V2 V3 k2 k3 k4 

1 -9,271 5,980 -5,511 80 50 150 4,679 

2 -8,829 6,707 -7,953 82 48 152 5,443 

3 -7,962 7,708 -11,26 84 46 154 6,366 

4 -6,216 8,931 -14,81 86 44 156 7,389 

5 -3,083 10,325 -19,29 88 42 158 8,440 

6 2,022 11,855 -24,45 90 40 160 9,322 

7 -0,104 11,730 -29,16 89 38 162 12,32 

8 4,359 11,851 -33,95 90 36 164 13,88 

9 1,379 9,683 -37,23 87 32 166 17,19 

10 -7,088 5,565 -39,01 87 32 166 21,61 

11 -2,009 2,709 -39,98 88 30 170 22,68 

12 10,768 -0,216 -12,48 90 28 172 24,98 

           

                                                                            Таble 5.10 

№ Gradients Control Det (M) 

V1 V2 V3 k2 k3 k4 

1 14,919 11,328 -12,94 100 50 150 0,532 

2 9,335 8,416 -10,144 98 48 152 1,120 

3 8,479 9,184 -12,180 96 46 154 2,170 

4 7,548 10,442 -15,618 94 44 156 3,834 
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5 5,552 11,480 -19,849 92 42 158 6,211 

6 2,022 11,855 -24,444 90 40 160 9,322 

7 -3,208 11,252 -28,978 88 38 162 13,09 

8 0,564 11,197 -33,632 89 36 164 14,76 

9 -2,855 9,977 -36,938 88 34 166 18,16 

10 8,322 7,118 -39,551 89 32 168 19,48 

11 -2,009 2,709 -39,983 88 30 170 22,68 

12 4,487 -1,057 -39,169 89 28 172 23,22 

13 2,132 3,100 -36,107 88 29 174 23,41 

 

 

                                                                       Таble 5.11 

№ Gradients Control Det (M) 

V1 V2 V3 k2 k3 k4 

1 -2,615 1,559 1,452 160 50 200 0,523 

2 -3,439 1,646 1,514 162 48 198 0,714 

3 -5,011 2,057 1,786 164 46 196 1,09 

4 -7,485 2,685 2,114 166 44 194 1,78 

5 -10,92 3,428 2,334 168 42 192 2,83 

6 -15,25 4,128 2,207 170 40 190 4,35 

7 -20,30 4,577 1,471 172 38 188 6,37 

8 -25,30 4,539 -0,121 174 36 186 8,89 

9 -28,94 4,253 2,037 176 34 187 10,23 

10 -32,39 3,114 1,263 178 32 186 12,62 

11 -34,37 0,866 -2,306 180 30 184 15,60 

12 -34,01 -1,32 0,964 182 28 185 16,62 

13 -29,58 1,925 0,164 184 29 184 16,84 

14 -23,78 0,317 -5,117 186 28 182 17,47 

                                                                                     Таble 5.12 

№ Gradients Control Det (M) 

V1 V2 V3 k2 k3 k4 

1 14,919 11,328 -12,940 100 50 150 0,536 

2 4,114 5,283 -5,681 96 50 150 0,957 
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3 0,967 4,836 -4,988 92 50 150 1,593 

4 -2,064 5,051 -5,025 88 50 150 2,435 

5 -2,563 6,242 -7,423 88 46 150 3,721 

6 -3,344 6,652 -10,304 88 42 150 5,559 

7 4,499 5,500 -13,337 88 38 150 8,007 

8 -6,071 2,331 -16,991 88 34 150 11,01 

9 -8,036 -2,769 -18,621 88 30 150 14,39 

10 -8,084 -2,548 -25,424 88 30 154 16,85 

11 -7,642 -2,010 -31,784 88 30 158 19,08 

12 -6,674 -1,082 -36,878 88 30 162 20,903 

13 -4,927 0,382 -39,883 88 30 166 22,13 

 

                                                                     Таble 5.13 

The optimization of the trace of the information matrix 

                                                                        

№ 

Gradients Control Det (M) 

V1 V2 V3 k2 k3 k4 

1 -0,132 0,332 0,139 100 50 150 39,34 

2 -0,090 0,257 0,174 102 44 148 42,84 

3 -0,047 0,176 0,203 103 39 145 45,44 

4 -0,020 0,120 0,242 103 36 141 47,85 

5 0,007 0,078 0,279 103 34 137 49,32 

6 0,042 0,055 0,314 103 33 132 51,66 

7 0,106 0,045 0,330 103 32 126 54,67 

8 0,165 0,096 0,337 101 32 120 58,10 

9 0,224 0,148 0,339 98 31 114 62,23 

10 0,269 0,188 0,340 94 29 108 67,31 

11 0,280 0,206 0,339 89 26 102 73,37 

12 0,268 0,182 0,317 84 22 96 79,62 

13 0,207 0,200 0,246 79 19 90 84,86 

14 0,148 0,141 0,213 75 15 86 88,35 

15 0,137 0,138 0,116 73 13 82 90,19 

16 0,098 0,112 0,088 71 11 80 91,23 

17 0,098 0,112 0,088 71 11 80 91,23 
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                                                                                  Таble 5.14 

№ Gradients Control Det (M) 

V1 V2 V3 k2 k3 k4 

1 0,018 -0,003 0,014 160 40 180 0,757 

2 1,048 -0,006 0,019 162 38 182 1,102 

3 0,089 -0,006 0,022 164 36 184 1,562 

4 0,146 -0,004 0,016 166 34 186 2,132 

5 0,218 -0,010 -0,004 168 32 188 2,769 

6 0,267 -0,002 0,003 170 30 187 2,718 

 

 

                                                                  Таble 5.15 

1 0,041 0,002 -0,038 100 3 150 8,006 

2 0,006 0,001 -0,005 102 32 148 9,123 

3 0,006 0,001 -0,004 104 34 146 10,084 

4 0,005 0,001 -0,002 106 36 144 10,809 

5 0,003 0,001 -0,001 108 38 142 11,242 

6 0,000 0,000 -0,001 110 40 140 11,357 

 

The surface of the functional J = detM, as a function of the other two control actions (

1Δ  and 2Δ  -are the displacement of the control pulses in time) is shown in the fig. 5.5 for 
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clarity at a fixed value of the third control action.  The surface has the multimodal 

character: the largest maximum detM =12 takes place at the origin of coordinates ( 1Δ 0  

and 2Δ 2 ), next the local maximum detM =12 for 1Δ 4 5,  and 2Δ 2 , then we have 

the less extremum detM =1 for 1Δ 7 , 2Δ 1 . As it follows from the fig. 5.5, at 

8.2)0(1  , the algorithm (4.66) leads to the first maximum; at 12 8 Δ (0) 5 8. .   it 

leads to the second one; at 8.5)0(1   it leads to the third maximum. Therefore, in 

general, the problem of optimization of the index (4.46) or D-criterion should be 

performed for different initial conditions.  

 

 

Fig. 5.5 The dependence detM on 1Δ  and 2Δ  at 3Δ const . 

 

 

Chapter 6. The Unity and Difference of the Signal and Parametric Identification 

of Real Objects [26] 
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The emergence of the theory of identification as a mathematical formalization of 

cause-and-effect relationship in the objects of the real world has a long history. The peak 

of its development is the second half of the XXth century, the period of the emergence and 

rapid development of means of computerization and the automation of experimental 

researches. But now it cannot be said that this theory is finally formed and that its 

application to the real-world objects is always correct [26]. According to the basic 

categories of philosophy, real world is infinite dimensional, everything is interconnected 

directly or indirectly. Conventionally, it can be represented by the equation 

                                                      X f X   ,                                         (6.1) 

where X  - is the infinity dimensional vector-function of the variables, X  -is the speed 

of change X  in accordance with a function of total interrelation f . By reason of the 

total interrelation f  is the component ix  of the infinite dimensional vector function, the 

system (6.1) is unstable (the matter and the motion are unified), and the total interrelation 

f   (even if it is sustainable) is unknowable. 

 

 

6.1. The Statement of the Problem 

On restricting the space-time area of the change X  by the small area, only the 

projection X  to the finite number n  of coordinates is considered [2]: 

                                                               X f X ,                                       (6.2) 

where  X t  - is n -dimensional vector-function of time, X  -is its derivative in time t. 

We proceed to the linear stationary model 

                                               Δ Δ ΔX A X B U  ,                                        (6.3) 

with the certain degree of accuracy ε , continuing to narrow the area, 
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where the significant variables of the real object, marked in the model (6.3), are divided 

into causal U  and consequential X  and taken in the deviations Δ ΔX , U  from any center 

 0 0X ,U  of the region G  [35]. 

The model as an operator that connects the conditionally accepted inputs ΔU  and 

outputs ΔY  of the object  

                                                    Δ ΔY W U  ,                                             (6.4) 

where ΔY , ΔU  and W may be the functions of time or Laplace’s complex variable. 

The unaccounted subset  X X   of variables of the real world determines the 

proximity of the models (6.3) (6.4). The error ε  goes to zero only at narrowing the region 

G  to the point. But the ratio of “noise  X X  - signal  ΔY t ” infinitely increases. 

Thus, the model (6.2) (6.3) (6.4) and the methods of their identification cannot to be 

accurate: the fast (relatively X ,U ) variable components of the rejected subset, perceived 

as a random process  1N t  influence on the small samples; the boundary theorem of 

Chebyshev does not work for the large samples because of the influence of the slow 

variable components  2N t  of this subset, that contribute the non-stationarity into the 

average characteristics of the random process (the process is not ergodic). 

Then, from the variety of similar models the best one will be the model by means of 

which the main objective,for which the model is determined, is achieved [9]. For example, 

these objectives may be the optimal control, the forecast of the behavior or the control of 

specific physical parameters of the object. According to the main objectives we distinguish 

two fundamentally different approaches to the problem of identification. 

The first approach is the signal identification, if for a given set of input signals  U t  

it is necessary to choose the mapping that is random by its structure  U t  in order that 

any rate of the error ε  is less than the desired Δ : 

                                                        ε Δ .                                                 (6.5) 
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Thus, the signal  Y t  is approximated with an accuracy to Δ  in the basis of signals 

 U t ; 1i ,n  that are converted by the operators iW . The second approach is the 

parametric identification, if at a set of signals ΔX  or ΔY  it is necessary to define (for the 

given point  0 0 0X ,U ,t  of these region) the structure and/or parameters of the matrices 

 A, B  of the model (6.3) or the operator W  of the model (6.4), which would correspond to 

the essential correlation of the variables of the real object. The signal identification must 

be used for the goal orientation of the models to the tasks of control and forecast, the 

parametric identification is used for the diagnosis and monitoring of specific, but not 

directly measurable, parameters of the real object. 

 

 

6.2. The Strategy of the Signal Identification and the Invariance of the Adaptive 

Control (an Example of the First Approach) 

Let us represent the model of the real object in the limited region as 

                                1 2Δ Δ Δ ΔY W U W F W N      ,                               (6.6) 

where ΔF  - is the vector of controlled perturbations, ΔN  -is the  vector of uncontrolled 

perturbations, 1 2W ,W ,W  - are corresponding operators. 

It is necessary to construct the invariant optimal (in terms of the functional that is 

quadratic by ε  and ΔU ) regulator: 

                                         Δ ( ) (ε( β))pU t W t, ,                                             (6.7) 

where β  is the unknown vector of parameters of the operators W  and 1W  of the model 

(6.6). 

The error in (6.7) is equal to 

                                                 ε Δ Δt Y t Y t  ,                                  (6.8)  

where  ΔY t
 - is the desired optimal trajectory of the motion of the aircraft (AC). 

The operator pW  of regulator is linear in the absence of restrictions 
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                                      1 2Δ ε Δp pU t W t W F t    .                              (6.9) 

Substituting the control (6.9) into the model (6.6), we obtain the expression for the 

closed system: 

 

 ΔY t   

         
1

1 1 2 1 2Δ Δ Δp p pW W I W W Y t W W W F t W N t


            
 

.        (6.10) 

The condition of the invariance of its access to the controlled perturbation  ΔF t : 

                                              
1

2 1pW W W  ,                                               (6.11) 

where W  and 1W  are the unknown operators of the model (6.6) of the object. 

In order to indentify these operators W  and 1W , let us consider the model: 

                                 1Δ β Δ β Δˆ ˆˆ ˆ ˆY W U W F    .                                    (6.12) 

The vector β̂  of parameters of the model (6.12) is estimated from the conditions of 

the minimum of some index I  of the proximity Δ ( )Y t  and Δ ( )Ŷ t : 

                                           β Δ ( ) Δ (β )ˆ ˆˆI Y t Y ,t  .                                (6.13) 

In this case we have the signal identification: the faster is determined the vector β̂  of 

parameter of the operator Ŵ  і 1Ŵ  from the conditions of the minimum I  and the wider 

is the basis approximating functions ΔY , the closer  are ΔŶ  to ΔY . Thus, the impact of 

the uncontrolled slow perturbations 2 ( )N t  is indirectly compensated (due to the 

operational adjustment β̂ ).  

In the asymptotic behavior the system has the invariance [9] to change the parameters 

of the object, and controlled ΔF  and uncontrolled low frequency perturbations. The high 

frequency component 2N  of the perturbations is usually smoothed by the nature of the 

object, and influences on the minimal time of the identification of the model. The 

complexity of the model’s structure (6.12) can adapt to the pace of nonstationarity of 



 172 

characteristics of the random process  N t . It is appropriate to apply the orthogonal basis 

or the nonius approach [35] in order to adapt the base dimensionality to the non-

stationarity. 

The simple nonstationary model, where  ˆ t  changes in the rate of processes, 

providing the proximity ΔŶ  to ΔY  of the object (the parametric feedback) and the 

hypothetical complex stationary model (6.1) are theoretically extreme in the series of 

complexity. There are the quasi-stationary models (6.12), the complications of which 

should help to improve the accuracy in terms of the index (6.13) and quasi-stationarity of 

the vector β̂  of their parameters and, consequently, the degrees of optimality of the 

controlled object. In this case the account of the physical processes in the object is not 

required. The estimate β̂  may not have the physical meaning. The strict convexity and the 

unimodality of the index (6.13), as a function, is not required either. 

 

 

6.3. The Strategy of Parametric Identification (an Example of the Second 

Approach the Evaluation of the Aerodynamic Coefficients β̂  of the Aircraft) 

When selecting the structure of non-linearity in the model (6.12), the matrices A, B 

in the model (6.13) or the operator W  in the model (6.14), it is necessary to take into 

account the “physics” of processes in AC. The models (6.13) and (6.14) are the 

linearization of the model (6.12). The linearization is allowed through the smoothness of 

nonlinearity f  (in nature, due to the power of systems, the ideal jumps are absent). 

It is necessary to ensure the strict convexity of the index (6.13) and, if it is possible, 

the autonomy for the unaccounted subsets  X X   of the variables by special planning 

of the nature experiment in order to obtain the unambiguous and objective estimate β̂  of 

the physical parameters β  of the object, for example, AC. It is also desirable that the 

estimate β̂  linearly goes into the expression of the mistake (6.18) and n of its components 
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are the coefficients at the linearly independent functions of the sensitivity of error (6.8) on 

βi
ˆ . 

For this purpose we take the minimum of the left and the right sides of the 

incoherence of each row of the equation (6.13) instead of the minimization of the index 

(6.13) as the difference of outputs of the object and the model. Then the estimation β̂  is 

reduced to the one-step solution of the minimization problem of the strictly convex 

quadratic indicators. The estimation is single, and at the relevant approaches [35], it is 

statistically unbiased and effective. 

However, there is its displacement due to the proximity of the models (6.12), (6.13), 

(6.14). The proximity tends to zero if the region G  of the change of variables collapses to 

the point  0 0 0X ,U ,t . With the decrease of Δ  ΔX , U , the ratio of “noise – signal 

 ΔX t ” increases. This leads to the loss of effectiveness of the estimate β̂ . The method 

that allows getting the accurate and unbiased estimate at the point  0 0 0X ,U ,t  is 

proposed in [37]. 

In order to do this it is required to accomplish the sequence of similar (but of diverse 

deviations’ amplitude X ) active experiments at the object, each of which provides the 

convexity of the index (6.13) for the linear basis of the model. The sufficiently effective 

estimates, shifted as a result of ignoring the nonlinearity, are found. The unbiased estimate 

is determined using the regression dependence, that is constructed for each βi
ˆ  at a set of 

amplitudes ΔX  and taken at the point where ΔX  is zero. 

Test example. The accurate nonlinear model: 

                            

3 3

1 1

( ) ( ) ( ) ( )
j j ,q , j q

qj jy k x k x k x k
  

   ,                           (6.14) 

with single coefficients for four samples of different amplitude is approximated by its 

linear part for those signals 

   
1

1
( ) ( )sin π

1
max

k
x k x l ,

M

 
  

 
 2

1
( ) ( )sin 2π

1
max

k
x k x l ,

M

 
  

 
  

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%b0%d0%bf%d0%bf%d1%80%d0%be%d0%ba%d1%81%d0%b8%d0%bc%d0%b8%d1%80%d0%be%d0%b2%d0%b0%d1%82%d1%8c&translation=approximate&srcLang=ru&destLang=en
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3

1
( ) ( )cos 2π

1
max

k
x k x l

M

 
  

 
, 1 1 4k ,M , l ,  .                               (6.15) 

The estimates β ( 1 2 3)j
ˆ , j , ,  are counted by the least square method (LSM). Here 

the index (6.13) of the error of approximation by the linear model 

1 1 2 2 3 3( ) β ( ) β ( ) β ( )ˆ ˆ ˆy k x k x k x k    was by 2 orders less than the magnitude of the 

similar norm Δy . Thus, the approximation problem is solved on rather high quality level 

in the sense of (6.13). But the coefficients βi
ˆ  are significantly shifted. 

  

 

 

 

 

 

 

 

 

 

Fig. 6.1. The dependence Δβ( )maxx . 

 

The linear regression dependences of the shifts Δβ j  (j = 1,2,3) from ( )maxx l , (l = 

1,2,3,4), agree at zero amplitude maxx  to zero; the estimates β j
ˆ  coincide with true β 1j 

, respectively. 

If we take the complete model (6.14), then, with Tikhonov’s regularization (the index 

(6.16) of the LSM-estimation of coefficients of the complete model (6.14) ) we obtain the 

near-zero index (6.13), because the convexity of the index (6.13) is not strict, as a function 

β̂ . 

The regularized index 
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                             (β α) Δ ( ) Δ (β ) α β βapr
ˆ ˆ ˆˆI , Y y Y ,t     ,                   (6.16) 

where α  is the parameter of regularization, βapr  - is the vector of parameters, given 

apriori. 

Here the near-zero meaning (6.13) is achieved at a variety of meanings βapr . The 

estimate β̂  is close to βapr , and not to the actual unit. 

To be more illustrative, we consider the two-dimensional problem when the object 

and the model are  isomorphic 

                                         1 1 2 2( ) β ( ) β ( )y k x k x k  ,                                   (6.17) 

Here 1( )x k  and 2 ( )x k  are strongly correlated. Therefore, the functional (6.13) (the 

dashed lines in fig. 6.2) as a function β̂ , is strongly convex for the first and the third 

quadrants of the plane  1 2β β,  and slightly curved (the “furrow”) for the second and the 

fourth quadrants. 

 

 

Fig. 6.2. The exact value β  and its estimate β̂ , obtained from the condition of 
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minimum of the functional (6.16) for the various aprior meanings βapr . 

 

The regularizing one-in-ten addition ˆ
apr    of the functional (6.16) (the circles in 

the fig.6.2) is strongly convex and, consequently, makes the functional (6.16) convex. 

The process of minimization of the functional (6.16) is shown by the arrows, the 

aprior estimate β̂  is obtained from the aprior estimate βapr  as result of the process of 

minimization. 

 

 

                                                                            Таble 6.3. 

1βapr  
1β̂  2βapr  

2β̂  Δ ( ) Δ ( )

Δ ( )

ˆY t Y t

Y t


 

1 1 1 1 0 

-1 0.904 -1 0.904 0.0091 

-2 0.857 -2 0.857 0.0091 

-3 0.809 -3 0.809 0.036 

2 1.048 2 1.048 0.0023 

3 1.095 3 1.095 0.0091 

1 1.9 -1 0.0015 0.0045 

2 2.85 -2 -0.95 0.011 

3 3.8 -3 -1.9 0.0226 

-1 0.0015 1 1.9 0.0045 

-2 -0.95 2 2.85 0.011 

-3 -1.9 3 3.8 0.0226 

 

As it follows from the table 6.3 and the fig. 6.2, the estimates β̂  coincide with the 

region that is close to the actual value, when βapr  is in the first and the third quadrants 

(closer or farther on β  depending on the distance βapr  from the β ). If βapr  is in the 

second or the fourth quadrants, the estimates, as a result of minimization of the regularized 
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functional (6.61), are not far away from the aprior ones and find the point of compromise 

between the increasing addition α β βарr
ˆ   and the decreasing value of the norm 

Δ ( ) Δ (β )ˆY t Y ,t . 

At the same time the ratio of this norm to the similar norm Δ ( )Y t does not exceed 

2.26%. Thus, the quality of the signal identification is high, while the parametric 

identification is not correct: 2β̂  goes away from 2βapr  in the opposite side from 2β̂  in the 

second quadrant, similarly, in the fourth quadrant 1β̂ . In general, for n variables, the 

function (β)I  (6.13) can have several “furrows” of minimal or even zero slope, which 

complicates the task much. 

The real example. The seven modes of the change of the handlebar of height, the 

angle of attack α( )t  and the angular velocity 
1

ω ( )Z t  of the aircraft M-17 in the short-

periodic longitudinal motion are represented in the fig.6.3. It ensures the non-interaction 

concerning the unaccounted multitude of variables (the lateral-directional motion is 

absent, the velocity, the height, the configuration of the aircraft and other variables are 

practically constant). 

The complete model of the dependence 
1

ω ( )Z t  on δ ( )H t , α( )t  and 
1

ω ( )Z t  is 

similar to the model (6.14). The estimates of the coefficients β 1 2 3j
ˆ , j , , . , shifted due to 

the approximation of the models, were determined in each from these seven modes. The 

specific physical parameter was calculated using them: the distance between the center of 

mass and the aerodynamic focus of the plane, normalized by the mean aerodynamic chord 

of the wing, viz the reserve σnˆ  of the aperiodic stability at the vertical overload [39]. 
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Fig. 6.3. The oscillograms of the modes of the change of handlebar of height, the 

angle of attack and the angular velocity. 

Next the reserve was approximated by the linear dependence in the function Δα  

(the fig. 6.4): 

                                        σ Δα 0 22 0 075 Δαˆ , , .                               (6.18) 

 

Fig. 6.4. The dependence of the estimate σnˆ  on α . 
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The forecasting in Δα 0  value σ (0)nˆ  is in the region of the real value σn . The 

unbiased estimate is obtained by the linear approximation of the dependence (6.18) and the 

calculation of its value at the point where the deviation is zero. The simple averaging of 

the results will give the significantly shifted estimate (the underestimate) σ 0 188nˆ , . 

The further clarification σnˆ  can be achieved by approximating the estimates σ (0)nˆ  by 

regression smooth dependence on the other flight parameters (the velocity, the altitude, 

etc.). 

The linear regression dependence of the aerodynamic coefficients (ADC) on the 

initial angle of attack α  and its derivative, which determines the pace of implementation 

of dynamic modes in the short-periodic longitudinal motion of the aircraft, are given in the 

table 6.4. The appropriate ADC are given in the first column of the table, next 1 2 3a , a , a  - 

are the coefficients of regression, next there is the mean square error (ASE) of 

approximation of the appropriate ADC, next the mean value ADC and its mean square 

deviation. As we can see, taking into account only α  and α  allowed increasing the 

accuracy at the average of 2 times. 

Таble 6.4 

The dependence of the estimates of ADC on α  and α . 

АDC 
1a  

2a  
3a  ASD apr. Average ASD aver. 

 -8.54 -0.2289 -0.0112 0.01 -10.61 0.02 


zm  -0.0092 0 0 0.007 -0.0091 0.007 

в
zm
  -0.0161 -0.0012 0 0.003 -0.02 0.009 

yC

zm  -0.0873 -0.0029 0 0.004 -0.0928 0.006 


yC  0.1068 -0.003 0 0.001 0.0979 0.003 

в
yC


 -0.01 0.0012 0.0001 0.431 0.0028 0.923 

n  -0.2301 0.0071 0.0001 0.001 -0.2119 0.002 

 

The data, summarized for different types of the aircrafts, supporting the effectiveness 

of clarification, in particular, the stability margin σn  by approximation by linear 

z
zm

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regressive dependence on various flight parameters, are given in the table 6.5. The 

dimensionality was changed from 2 to 6 and the number of modes was changed from 15 to 

190 for different aircrafts.  

Таble 6.5 

The comparison of the simple averaging and the regressive approximation σn from 

the parameters of flight 

№  Тype of 

the aircraft 

AQD % Dimensionality 

ΔX  

Number of 

modes Models Average 

1 АН-72 5 102 6 190 

2 ИЛ-86 7 31 2 25 

3 Ту-154 4 13 4 70 

4 Миг-29 7 50 4 50 

5 М-17 0.5 1.5 2 15 

 

The conclusions. In order to set the problem of identification correctly, we should 

clearly distinguish the signal and parametric approaches. Their generality is in the 

minimization of an error (6.18); their difference is in the models (abstract and “physically” 

adequate) and in the requirements to the functional (6.13), as a function of the estimate β̂  

(nonstrict and strict convexity respectively). Unfortunately, the signal identification is 

sometimes used in practice of flight test of the aircraft for the estimation of parameters, by 

putting the coefficients that are not objectively accurate apriori (using the calculation or 

the results of insufflation in the wind tunnel) in the model (6.13) and then adjusting them 

from the condition of minimum of the functional (6.16). The apparent adequacy of the 

model is achieved here: the error (6.18) is rather small, the estimates β̂  are close to the 

aprior ones. But the latter may significantly differ from the actual physical parameters that 

could then lead to a decrease of safety of flights due to the incorrect evaluation of the 

aerodynamic coefficients of the aircraft which determine their stability and control. 

 

 

 

Chapter 7. The Integration of Methods and Models [29] 
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The stability of dynamic systems is one of the most important characteristics, 

especially if they are non-stationary, not fully known and prone to random noises in the 

measurement channels of the state variables. These systems include the aircraft, in 

particular, with its stability in the longitudinal short-period motion [41]. In terms of the 

variables (the angle of attack, the angular velocity and the handlebar of height) this motion 

is described by the system of equations of the first order  

                                        
1 11 1 12 2 13

2 21 1 22 2 23

β β β

β β β

x x x u,

x x x u





  

  
,                                 (7.1) 

for the small deviations of variables of the balancing mode (the constant altitude and the 

speed in the vertical plane), where 1 2 ,x x  – are the derivatives of time from 1x  і 2x ; βij , 

( 1 2 1 2 3i , ; j , ,  ) – are the aerodynamic coefficients.  

The transfer functions that reflect the input signal u  into the output 1Mx  or 2Mx , for 

example u  to 2Mx : 

                
 

   
2 23 23 11 13 22

2
11 22 11 22 12 21

β β β β β
( )

β β β β β β

x
u

p
W p

p p

 


   
.                  (7.2) 

are the equivalents to the system (2.7). 

The coefficients  11 22 1β β a    and  11 22 12 21 0β β β β a   of the 

denominator determine the oscillatory and aperiodic stability of the reserve respectively. 

Multiplying these coefficients by 1

11β
z

a

J

qSb
 (where 

1z
J  - is the moment of inertia, q  - 

is the dynamic pressure, S  - the area of the wing, ab  - is the mean aerodynamic chord of 

the wing), we obtain the appropriate reserve of stability in the fraction 

 11 22 12 21 0β β β β a   from ab . The coefficients 13 23,   determine the effectiveness 

of the handlebar of height, 12 22,   - are the damped forces and moments. The evaluation 

of the coefficients βij  of the aircraft (AC), which determine the stability and control of the 

aircraft, is an actual task of the flight tests (FT). 
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7.1. The Formulation of the Problem 

The estimates β βij ij
ˆ  cannot be obtained with the relatively high accuracy from the 

measurements ix̂ ,û  that are noisy by the interference, because of the limited cost of the 

nature experiment, the transience of time of the experiment and the nonlinearity of the 

range of changes of variables. For these reasons, the practice of FT is limited by rather 

approximate estimates of the stability and controllability AC [41]. We can increase the 

accuracy of the evaluation of the aerodynamic coefficients (ADC) without increasing the 

time, using the statistical modeling of the interferences.  

In order to do this, it is enough to perform the filtering of noises and obtain the 

approximate implementation of the interference as a difference of the filtered and output 

signals, taking into account the information on the spaced spectra of signals and 

interferences (interferences are more high frequency). Then we should determine the 

statistical characteristics of these implementations and generate m  statistically similar 

implementations of interferences for each variable ix ,u . Adding these implementations up 

with the relevant filtered signals we get m  pseudosamples of data of FT. Having m  

statistically identical samples, the p identification methods and the q models of the aircraft, 

we can use their redundancy in order to obtain more accurate estimates of ADC [29]. 

 

 

7.2. The Methodology of the Research 

With regard to the problem of determination of the ADC AC in the longitudinal 

short-periodic motion, let us consider three models  3q  : the models (7.1), (7.2) and 

the model, that leaks out from the first two: 
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   

 

2 11 22 2 11 22 12 21 2 23

23 11 13 22 1 2 0 2 2 3

β β β β β β β

β β β β

x x x u

u a x a x a u a u.

     

      
                (7.3) 

The number p  of methods for determining the ADC is defined by the number of 

functionals of proximity in the space 2L  [6] of variables AC and its models (7.1), (7.2), 

(7.3). The optimal estimates β  of the ADC are defined from the condition of the minimum 

of these functionals: 

                           
2

2

3
β 1

β argmin β β
ij

*

j

ij i ij j i
ˆ ˆˆx x U



   ,                              (7.4) 

where 1 2i , ; 1 2j , ; ix̂ , jx̂ , Û  – are the variables, smoothed by filter. 

                                        2

2 2argmin
i

*

i M
a

a x x  ,                                    (7.5) 

                    
2

2 1 2 0 2 2 3argmin
i

*

i
a

ˆˆ ˆ ˆa x a x a x a U a U     .                      (7.6) 

In order to avoid the methodological error in the linear equation (7.1), (7.3) AC, all 

variables are smoothed by the same filter. The other methods of identification that give the 

unbiased evaluation ADC under noisy conditions can be applied [35]. 

Next for each from the algorithms (7.3), (7.4), (7.5) at a set of m implementations, for 

each implementation we define the optimal values  β*

ij ,  *

ia , their average values for m 

implementations  β*

ij ,  *

ia , the estimates of their own 
2

β ( )
σ *

ij k
ˆ , 

2

( )
σ *

ia k
ˆ  and mutual 

2

β ( )β ( )
σ * *

ij ijk l
ˆ , 

2

( ) ( )
σ * *

i ia k a l
ˆ  variances, where 1 2 3k , , ; 3p  ; 1 2 3l , , ; k l . Let us 

denote the elements of sets  ij ,  ia  by means of  i  for brevity sake. Then we search 

for the best estimate *

i  at a set of three methods–models in the form 

         
3 3

1 1

α α ( ) 1*

i

k k

ik kC k , C
 

   .                                 (7.7) 

The coefficients kC  are determined from the condition: 
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                       1 2 31C C C   ;         

2

α
σ

0i

k

ˆ

C





,     2 3k , ,                       (7.8) 

 

where 

 
2

3
2

1 1
α

1
σ α ( ) α ( )

1i

m

j k

i ik
ˆ C k , j k , j

m


 

 
    

  
   

3 3
2 2 2

1 1
α ( ) α ( )α ( )σ σ

i i i

T

k k ,l
k l

k k k l k l
ˆ ˆC C C C AC.

 


     

For brevity sake let us denote 
2 2

α ( )σ σ
i k k

ˆ ˆ , 
2 2

α ( )α ( )σ σ
i i lk l k

ˆ ˆ , then  2 3

TC C ,C  

   

   

2 2 2 2 2 2 2

1 2 12 1 23 13 12

2 2 2 2 2 2 2

1 23 13 12 1 3 13

σ σ 2σ σ σ σ σ

σ σ σ σ σ σ 2σ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ
A

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

     
 
     
 

. 

Now the condition (7.8) is equivalent to the system 

                                                             AC B ,                                          (7.9) 

where 

                              

2 2

1 12

2 2

1 13

σ σ

σ σ

ˆ ˆ
B

ˆ ˆ

 
  

 
, 

2

3

C
C

C

 
  
 

.         

The solution 
1C A B  of the system (7.9) is single if matrix A is positively defined. 

The less correlated are errors in the evaluation of αi  by different methods (7.7) (7.8) (7.9), 

the closer is the matrix A to the diagonal one. Since the norms of proximity (7.4) (7.5) 

(7.6) are taken in the space of variables x , x , x , it is possible to expect the weak 

correlation in errors of estimates αi  by different methods–models (7.4), (7.5), (7.6). 

Substituting the optimal values 2C , 3C , and  also 1 2 31C C C   , found from the 

system (7.9), in the equation (7.7), we obtain the optimally weighted estimate α*

i   of the 

coefficient αi  (under good conditioning of the matrix A and a small error of the estimates 

2σiˆ , 
2σijˆ  of the variances 

2σi , 
2σij ). In other case in order to guarantee the non 
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deterioration of the result of weighing of estimates α*

i  we should use the minimax 

approach. 

If we assume that the errors of the estimates ( )i k  are distributed under the normal 

law, the estimates
2σiˆ , 

2σijˆ , calculated by the m generated sample of data, have errors with 

2χ - distribution. The true values 
2σi , 

2σij  for the given level of authenticity are in the 

range  
1 21 γ σiˆ


 ,  
1 21 γ σijˆ


  or approximately  
1 21 γ σi


 ,  

1 21 γ σij


 , where γ  is 

a fractile of distribution, γ 1 . 

Let  2 2σ σ 1 γi iˆ   for  11i I ,n  ,  2 2σ σ 1 γj jˆ   for  1 1j J n ,n   . 

Then  2 2σ σ 1 γij ijˆ   for i, j I ;  2 2σ σ 1 γij ijˆ   for i, j J ;  2 2 2σ σ 1 γij ijˆ   for 

i I , j J   or i J , j I  . The evaluation of the variance of the weighted estimate α*

r  

r-th ADC: 

        

     

     

2 2 2 2 2 2

α

2 2 2 2 2

σ σ 1 γ σ 1 γ σ 1 γ

σ 1 γ σ 1 γ σ 1 γ

*
r

i i i i i j ij

i I j J i j
i , j I

i j ij i j ij i j ij

i j i I i J
i , j J j J j I

ˆ ˆ ˆ ˆC C C C

ˆ ˆ ˆC C C C C C .

  


  
  

      

     

  

  
       (7.10)   

The expression (7.10) is taken L times for all possible combinations  2σ 1 γijˆ  , 

1 3i , . For each of j-th combination from the condition (7.8) we obtain the system that is 

similar to (7.9), and solving it, we find the optimal ξ - th vector (ξ)*C  

                        
       1 2 3ξ ξ ξ ξ

T
* * * *C C ,C ,C    , ξ 1,L                         (7.11)  

and calculate  2

α
σ (ξ)*

r

*S ,C , ξ 1,L , 1S ,L . 

The minimax estimate 
*C  is determined from the condition 

                                
   

 
2

ξ 1 1

αargminmaxσ (ξ)*
r

* *

,L ,S ,L

C S,C
 

 .                               (7.12) 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%ba%d0%b2%d0%b0%d0%bd%d1%82%d0%b8%d0%bb%d1%8c&translation=fractile&srcLang=ru&destLang=en
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That is, each vector (7.11) is substituted in each case of the variance (7.10) and we 

accept as 
*C  that one, the greatest value of which is the lowest (7.10) in all variants 

among the greatest values of other vectors (7.11). 

The example. For clarity we consider the two-dimensional case ( 2p  ). Let 
2

1σ 1

, 
2

2σ 9 ; 
2

12σ 2 8, , γ 0 1, . The possible combinations are represented in the table 7.1. 

 

 

 

 

Таble 7.1. 

The multipliers of possible deviations of the estimates of variances. 

 

№ of variant 

Multipliers for 

2

1σ  
2

2σ  
2

12σ  

1 1 γ  1 γ  1 γ  

2 1 γ  1 γ  1 γ  

3 1 γ  1 γ   21 γ  

4 1 γ  1 γ   21 γ  

 

The estimate (7.7): 

                                        α α (1) (1 )α (2)*

i i iC C   .                                 (7.13) 

The variance (7.10): 

                         2 2 2 2 2 2 2 2

1 2 12 12 1 2α
σ σ σ 2σ 2 σ σ σ*

r

C C      .                  (7.14) 

Substituting four variants of their evaluation from the table 7.1 instead of variances 

and executing the operations (7.8) (7.9), we obtain the set (7.11) for 4 variants (7.14): 

2 2

1 12

2 2 2

1 2 12

σ σ
(1) (2) 1 41

σ σ 2σ

* * ˆ ˆ
C C ,

ˆ ˆ ˆ


  

 
; 
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 

   

2 2 2

2 12

2 2 2 2

1 2 12

σ 1 γ σ 1 γ
(3) 1 465

σ 1 γ σ 1 γ 2σ 1 γ

*
ˆ ˆ

C ,
ˆ ˆ ˆ

  
 

    
; 

 

   

2 2 2

2 12

2 2 2 2

1 2 12

σ 1 γ σ 1 γ
(4) 1 361

σ 1 γ σ 1 γ 2σ 1 γ

*
ˆ ˆ

C ,
ˆ ˆ ˆ

  
 

    
. 

The value  2

α
σ (ξ)*

r

*S ,C  is represented in the table 7.2. 

 

 

 

Таble 7.2 

The optimal values of variances. 

 2

α
σ (ξ)*

r

*S ,C  

№ of 

variant 

1 2 3 4 

1 0,290 0,290 0,304 0,300 

2 0,236 0,236 0,249 0,245 

3 0,327 0,327 0.316 0,354 

4 0,232 0,232 0,275 0,218 

 

If 
2

1σ 1 ; 
2

2σ 9 ; 
2

12σ 2 8, ; γ 0 1, , then (1) (2) 0 756* *C C ,  ; 

(3) 0 737*C , ; (4) 0 737*C , . The table 7.3 іs similar to the table 7.2. 

 

Таble 7.3. 

The optimal values of variances. 

 2

α
σ ξ*

r

*S ,C ( )  

                 

S                       

1 2 3 4 
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ξ  

1 0,081 0,081 0,089 0,087 

2 0,067 0,067 0,073 0,071 

3 0,082 0,082 0,078 0,099 

4 0,076 0,076 0,094 0,070 

 

Consequently 
   

 2 2

ξ 1 4 1 4 α α
minmax σ σ (ξ) 0 082* *

r r

*

, ,S ,
ˆ ˆ S ,C ,

 
  , 0 756*C , , 

 1 0 244*C ,  . If we assume that 
2 2

1 2σ σ , for different values of the correlation ratio 

2

12
12

2 2

1 2

σ

σ σ
r   and the interrelation 2

12

1

σ

σ
F   , we obtain the family of graphs 12( )*C r ,F  

(the fig. 7.1). 

1,5

2 3 4 5

1

0,5

1

F12

C
*

r12=0 0,25
0,5

0,75 0,85 0,95

 

Fig. 7.1. The dependence of the optimal weight 
*C  on 

the degree of correlation and noisiness of estimates 

 

For 12 1F  , 0 5*C ,  for any 12r ; at 12F  , 1*C  ,  1 0*C  , that 

means that the inefficient method is eliminated. It is characteristic that for the same 
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2 2 2

1 2 12σ σ σ, ,  the value 
2

α
σ *

r

ˆ  depends on the sign 
2

12σ  (for the positive one it is 0,316, for 

the negative one it is 0,082). Thus, the weighing two methods with the negative 
2

12σ  

provides the better result. In this example for 
2

12σ 0  the variance 
2

α
σ 0 9*

r

ˆ , .  

It is much greater than the minimax values of variances at 
2

12σ 2 8,   (0,316 and 

0,082 respectively). The mutual correlation allows increasing the accuracy of the minimax 

estimate. 

Thus, the application of several isomorphic models of the object of identification and 

several different methods of parametric estimation together using the technology of 

statistical modeling of interferences we can significantly improve the accuracy of the 

estimates of parameters ADC of the aircraft without increasing the length of the data 

sample of the nature tests. Moreover, so far as there is the nonstationarity of the object of 

identification, the samples cannot be arbitrarily large. In the [40] it is considered how to 

ensure the unbiased estimation by ignoring really existing nonlinearity. 

 

 

Chapter 8. The Multilevel Systems with the Identifier of the Controlled 

Object 

8.1. The System Approach 

Let us return to the content of the section 1.1. The system of identification is a set 

 Σ β α, ,Opt , ,Y ,I ,T  at which the relaxation (optimization) process  kQ  is realized 

relative to F, where     Σ β αkQ , ,Opt, ,F Y ,I   is such that 
1

1 2k kF F ,k , ,...

   

The content of the components of the system are as follows: 

 Σ  –  is a set of models’ structures; 

 β  –a set of vectors of the models’ parameters; 

 Opt  – a set of methods of the parameters β  estimation; 
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 α  – a set of parameters of the methods Opt ; 

 Y  – the functional of the identification quality; the elements  Σ β,  of the model 

and  αOpt,  of the identification method are found under condition of the extremum Y

;  

 I  - the functional (index) of quality of the goal achievement, for which the 

problem of identification is solved. 

There are such classes of the identification systems (IS), depending on the elements 

that are in kQ  і kF : the single-level IS in a narrow sense (sis), the single-level IS in a 

broad sense (SIS), the single-level adaptive in a narrow sense (sais) and in a broad sense 

(SAIS), the two-level adaptive in a narrow sense (tmais) and in a broad sense (TMAIS), 

the three-level (ThMAIS).  

The structure of the set kQ , that optimize the indices kF  for the appropriate 

identification systems are represented in the table 8.1. 

Таble 8.1 

The classification of the identification systems. 

№  Class of 

the 

system 

 kQ   kF  

β  Σ  α  Opt Y I Λ 

1 sis  βk   Σk  α  Opt Y 0 0 

2 SIS  βk  Σ  α  Opt Y 0 0 

3 sais  βk   Σk   αk  Opt Y 0 0 

4 SAIS  βk  Σ   αk  Opt Y 0 0 

5 tmais  βk   Σk   αk   kOpt   kY  0 0 

6 TMAIS  βk   Σk   αk   kOpt   kY  0 0 

7 ТhMAIS  βk   Σk   αk   kOpt   kY   kI  Λ 
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The identification task is in the optimization of the internal criterion J in the single 

level IS. That is the identification problem is not enclosed by the main (external) criterion 

(goal). In the two level IS there is the process of finding the best set of those and other 

elements by the main criterion I. The criterion I is subordinate to the goal of higher level, 

which is defined by the criterion Λ in the three level system. Let us represent the content 

of the best IS (the 1st row in the table 8.1) and the most perfect IS (the 7th row in the table 

8.1). 

The first row: the single level identification system in a narrow sense (sis) is the 

relaxation process  βk  [16] relative to J if Σ α,Opt,  is constant and the set I is empty. 

For example, the vector β  of the equation of regression βy x , where y  - is a vector of 

measurements of the dependent variable, x  - is the matrix of independent variables, is 

determined by the least square method. Here the functional βTJ E E, E y x   , the 

structure Σ  of the model is given, the parameter   and the criteria I  and Λ are absent. 

The seventh row: the three level multi adaptive IS (ThMAIS) is the relaxation process 

 Σ β αk k k k k k k, ,Opt , ,Y ,I ,T  relative to the index of the third level. 

This process is the composition of three processes: 

a)  β 1 2gkn ,n , ,...  (g and k is constant) relative to gkJ  to the stationary point 

 β argextr β Σ α arg *

gk gk gkn gk gk gk gkJ , ,Opt , J  ; 

b)  β Σ α 1 2gk gkn gk gk gkJ , ,Opt , , k , ,...  (g is constant) relative to gJ  to the 

stationary point    β Σ α argextr arg* * *

g g g g g g g ggkI I , ,Opt , I Y I   ; 

c)    β Σ α 1 2k

g g g g gkI Y , ,Opt , , g , ,...  relative to the index   of the third 

level of the system to the stationary point argextrΛ argΛ* *

gI ( I )  . 
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For example, there is the task of improving of the automated control of the 

technological process:   - is the production quality;    1 2gI I ,I , where 1I  - is the 

quality index of stabilization of technological parameters (variables X  of the process), 2I  

- is the products quality index,  gkJ  - is the set of indices of the identification quality of 

the dynamic models,  1 1Σ βg g,   - the mapping of the control variables U in the state 

transition ( 1)X k   and the regression models;  2 2Σ βg g,  - is the mapping of the 

variables X  in the index 2 ( 2)I k  . At the first stage of automation ( 1nI I ) on 
1kJ  

the local models  1 1
Σ βk k,  of the object are determined by the methods  1 1

αk kOpt , . 

The local regulators, stabilizing the variables X  close to the set values 0x  of the 

extremum 1I  conditions, are synthesized. According to the items a) and b) the ThMAIS 

determination, the element  1 1 1 1β Σ α* * * *, ,Opt , , optimal on 1I , is defined, next we 

construct the model  2 2Σ β,  of dependence 2I  on X  after having stabilized x  around 

0x  by planning the experiment in deviations 0Δx x x  . 

The setpoints 0x  of the operating modes are refined with the help of this model: 

0 0

*x x . Then the optimal (on 2I ) element  2 2 2 2Σ β α* * *

* , ,Opt ,  is determined as a result 

of the relaxation process according to the items a), b). The transition from 1Σ  to 2Σ  leads 

to the change of the indicator 1I  to 2I  , in accordance with the item c), thereby optimizing 

the index   of the third level system, for example, the production efficiency. 

 

 

8.2. The Reconciliation of the Quality Indicators 

The convergence of the relaxation processes of optimization in two- and three-level 

identification systems can be significantly improved by conducting the specifically 
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planned active experiment, which would ensure the similarity of variations of the 

functionals of the related levels (J and I or I and  ) in the space of the varying parameters 

β . 

Obviously, if I as a quality indicator of the solution of the main problem at the object 

with the help of the model, is very sensitive to the errors in the evaluation of the i-th 

component βi  of the vector β  of the model parameters and little sensitive to the j-th (β j ), 

it is desirable to have the evaluation βi  more accurate than β j . The extreme values 
*I  

and 
*J  must meet the same value β

*
. Considering that the first variations of J and I in the 

extreme point β
*

 is zero, we obtain the variation of the second order: 

                                         

2

β
δ (δβ) δβ δβ

β β
*

T

T

I
I ,


  

 
                          (8.1) 

                                         

2

β
δ (δβ) δβ δβ

β β
*

T

T

J
J .


  

 
                            (8.2) 

The conditions of similarity of the variation (8.1), (8.2): 

                                        

2 2

β β β βT T

I J
K

 
 

   
.                                      (8.3) 

The ellipsoids of scattering δβ  will be similar to the fixed values δI , δJ , that is the 

surface of the equal value of variations δI , δJ . The coefficient K in (8.3) depends on the 

informativeness of the experiment. For the ergodic process, the greater is the time of the 

experiment, the more accurate is the estimates β  and, consequently, the less is K. 

Let us denote 

2

ββ β
*T ij

J
a




 
,   1 2i, j , ,..n . 

The coefficients ija  are functionals of the vectors of testing influences δ ( )U t  and 

the parameters  , which are optimized under the following condition: 

                                        
a

(δ ( ) α ) argmin [Δ ]*

dU,
ijU t , a  ,                           (8.4) 
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where Δ (δ ( ) α) *

ij ij ija K a U t , a    . 

For example, let the model of dynamic of object be the weighted sum of operators 

( α)iW p, , reflecting the input testing influence δ ( )U t  into the output signal ( )y t : 

                        
1 1

( ) β ( α ) δ ( ) β ( )
n n

i i

i i i i jŷ t W p, U t x t .
 

                            (8.5) 

where 
d

p
dt

  ,    
1

δ ( ) γ φ ( )
m

k
k kU t t



   ,                                                             (8.6) 

φ ( )k t - is the system of ortogonal functions. 

If 
2

0

ε ( )

T

J t dt ,   where ε( ) ( ) ( )ˆt y t y t  , then 

2

[ ], 1
β βT ij

J
a i, j ,n


 

 
 , 

wherе 

0

[ ( α ) δ ( )] [ ( α ) δ ( )]

T

ij i i j ja W p, U t W p, U t dt    . 

Or taking into account (8.5) and (8.6) 

1 10

γ ( ) γ ( )

T m m

k k

ij k ik k jka x t x t dt
 

   
     

   
   

             
1 1 1 10

γ γ ( ) ( ) γ γ

Tm m m m
kq

k q k q

q q ijk ik jk kx t x t dt X
   

     ,                 (8.7) 

where 

0

( ) ( )

T

kq

ij ij ikX x t x t dt   - are calculated separately. 

The expression (8.4) is defined with the accuracy to the coefficients γ γ, qk , selected 

under condition of the minimum of the norm [Δ (γ γ )]ij k ka , , 1i, j ,n  with restrictions 

in order that δU  (8.6) does not extend out of the zone of permissible values, as a function 

γk . The greater is the time T, the less is К in (8.3), the more accurate is the estimate β̂  

and, consequently, the less is the variation (8.1) of the main index. 
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Let us show the conditions of conformity of the functionals І і J and  hence the 

conformity of their variations (8.1), (8.2) for specific cases. 

The functional І is the unimodal function of the scalar β . Its allowable variation 

Δ *І І І С    is composed  by the deviation of the estimate β̂  from β ,  βinf β*І I , 

β  is a scalar. The evaluation β̂  with the certain probability is in the range  1 2β β,  of 

length L. L is the distance between the points of the intersection  βI  and 
*І І С  . 

Then there are two obvious statements. 

The statement 1. From all the uncertainty intervals of length L of the evenly 

distributed evaluation β̂  the     
1 2

1 2
β β

min max β β
K

I ,I  is achieved under condition that 

*K K , where    1 2β β β β* *K    ,    1 2β β β β* * *ˆ ˆK    . 

Indeed, any shift of the interval  1 2β β,  increases     
1 2

1 2
β β

max β βI ,I . 

The statement 2. The value 
*K K  ensures the minimum of losses, i.e. 

                                                 
1

1
1

β

β
β

min β β

ˆL

I d



 .                                           (8.8) 

Genuinely, any shift of the interval  1 2β β,  relative to 1 2β βˆ ˆ, 
 

 increases the area, 

viz the integral  
1

1

β

β

β β

ˆL

I d



 . 

The example:   2

2 1 2β β β 0I a a , a .    Let us find β
*

: 

 
2 1

β
0 2 β

β

I *a a


  


 , 1

2

β
2

* a

a
  . 

Solving the equation 
2

2 1β β 0a a C    for the variation C, we find 1β̂ , 2β̂ : 

                                2

1 2 1 1 2 2β 4 2,
ˆ a a a C / a    .                               (8.9) 
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Therefore, we find the dependence C on L - 
2 2 2

2 1 2( ) 4C a L a / a   and substitute it 

in the expression (8.9), considering that 
2 1β βˆ ˆ L  : 

1
1 2

2

β 2 β 2
2

*

,

aˆ L / L /
a

     . 

It follows from the statement 1 that 

                                          2 2 1*K L / L /  .                                  (8.10) 

Using the statement 2, we show that (2.8.10) is optimal 

1

1

β

2 3 3 2 2

2 1 1 2 1 1 1 1 1

β

( β β) β (β ) [( β ) β ] 3 [( β ) β ] 2

L

a a d Q a L / a L /



        . 

2

2 1 1

1

( 2 β )
β

dQ
a L L a L

d
    , 

2

22

1

2 0
β

d Q
La

d
  . 

From the condition 

1

0
β

dQ

d
  we find 1

2

2

β 2
2

aˆ L /
a

   . 

Then 1
2 1

2

β β 2
2

aˆ ˆ L L /
a

     ,    2 2 1*K L / L /  , viz we obtain the 

ratio (8.10). 

Let us consider the two-dimensional case: the vector β  has two components 1β , 2β . 

We find the projection ΔI C  on the plane  1 2β β,  under the same assumptions about 

 βI  and  βI . Let the area of this figure be equal to S. Let it be the ellipse F with 

parameters a and b and the area πS ab . Let the evaluation β̂  with a certain probability 

be in the ellipse of scattering with its parameters p and q of the same area πab . Then we 

have the following statement. 

The statement 3. From all the ellipses of scattering F of the area πab  of the evenly 

distributed evaluation β̂  the  
βÎF

min max ( )
p,q

I p  is achieved under condition that p a , 

q b , i.e. 
*F F . 
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The proof of the statement is similar to the proof of the statement 1: for any point N 

of the arbitrary ellipse, which lies outside the ellipse–projection 
*F  the value  I N  is 

larger than С, therefore the ellipse should not have the points N, that lie outside the ellipse-

projection 
*F  for which min max { (β)}

β
I

p,q F
 is achieved  

The statement 4. The ellipse-projection 
*F  provides the minimum of the loss 

function, viz 1 2 1 2(β) β β (β) β β
F

F F

min I d d I d d  .  (8.11) 

The proof of the statement is similar to the proof of the statement 2: the loss function 

for two-dimensional β  is the volume of the body, bounded at the top by the surface  βI , 

at the bottom – by the ellipse on the plane  1 2β β, . The ellipse F is the generator of 

cylindrical body. Comparing two volumes V of cylindrical bodies, the generators of which 

are the ellipses F and 
*F , it is easy to see that 

                                      

0 1 1

0 1 2

1 0

( ) ( )

( ) ( )* `

`

V F V S I M ,

V F V S I M ,

S S S ,

  

  

 

                               (8.12) 

1 0 0

1 2

0

( )> ( )

`S S S ,

I M I M ,

  
 

0

` *S F F   - is the generator of cylindrical body, which is the common part of both 

volumes; 1M  і 2M  – are the inner points, such that 
2

*M F , 1

*M F , 1M F , 

2M F .Then    *V F V F . 

The illustrative example. 

2 2

1 2(β) (β β )I / R.   It is clear, that the minimum  βI  will be for β 0 . Let us 

intersect the paraboloid  βI  by the plane I R . The circumference 
2 2

1 2β β R   with 

the radius R  will be the intersection. The same circumference with the area 
2πR  will be 

its projection on the plane  2 2

1 2β β . 
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Let us take the random ellipse F 

2 2

1 2

2 2

β β
1

a b
   on the plane  2 2

1 2β β  with the area 

πab . Let us show that the minimum loss function is achieved if a=b=R. We calculate the 

integral: 

 
2

2 4
2 2 2

1 1 2 2 2

β

4 π
( ) β β β β

16

b

`

a

R R
J a d d a

R a

 
    

 
  , 

where 
2 2 2 2

2 1β β( R / a ) a  . 

The condition of the minimum J оn а: 

2 4

3

π
2 2 0

16

dJ R R
a

da a

 
   

 
. From here 

a=R. From the condition 
2π πab R  we obtain 

2b R / a R  . So a=b=R which was to 

be proved. 

The statements 3 and 4 can be generalized in the case of n-dimensional vector β  and 

n-dimensional ellipsoids of scattering that correspond to it. 

The statement 5. From all the ellipsoids of scattering of the given volume 
 1

S  the 

evenly or symmetrically distributed evaluation β̂ , the minimum of the loss function and 

also { (β)}I  are achieved if 
 1

F F , where 
 1

F  is the ellipsoid with volume 
 1

S , 

similar to the ellipse–projection 
*F . 

The overall conclusion. For the consistency of the quality functionals of the 

multilevel system it is preferably to maintain their similarities in the space of the estimated 

parameters β . Then, under the boundedness condition of the accuracy of calculations of 

functionals, that ellipsoids of scattering of the estimates β̂  will be similar too, viz the 

errors δβi  ( 1i ,n ) of the estimates β̂  of component of the vector β  are distributed 

among themselves in order that the variation of the main index δІ(δβ) in the two-level 

system or δΛ(δβ) in the three-level system will be minimum. 
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8.3. The Recursive Bayesian Estimate of the Vector β  

In probability sense, Bayes method that comes out of the equation for the appropriate 

densities of distribution, gives the most complete and accurate solution in order to obtain 

the estimate β̂  of the parameters β  of the object under examination: 

                 ( β) (β) ( β) (β ) ( )P y / P P y, P / y P y    ,                          (8.13)  

( β)P y / , (β)P , (β )P / y , ( )P y  - are densities of probability measurements У, priori 

values β , posteriori values β  (that depends on (β)P  and У), measurements of У for all 

possible β . 

From the expression (8.13) we determine the a posteriori density of probability of the 

unknown vector β : 

                                        
( β) (β)

(β )
( )

P y / P
P / y

P y


 .                               (8.14)  

The loss function С  which is goaloriented to the main index І, is given: 

                                        

2

β(δβ) δβ δβ
β β

T

T

I
C


 

 
 ,                            (8.15)  

where І – the main index of the system quality. 

We write the expression for the average-risk R under condition of statistically 

representative sample [ ( ) ( )]Y y i , ,y m  , viz the vector Y must be considered as a 

deterministic one, then 

                                           (δβ) (β ) βnR c P / y d  ,                              (8.16)  

where (β )P / y  is determined by the expression (8.14), in which a priori density (β)P  is 

the regularizing multiplier for (β )P / y . In most practical problems (β)P  and ( β)P y /  

can be considered as normally distributed: 
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   

   

1

1 0 0 0

1

2

1
(β) β β β β

2

1
( β) β β

2

T

T

P C exp P

P y / C exp Y X Q Y X ,





 
    

 

 
    

 

               (8.17)  

where 1C , 2C  – are the normalizing multipliers, that provide the condition 

(β) β ( β) 1P d P Y / dY ,

 

 

    саме    
1 1

2 22 2
1 0 22π 2π

n m

C P ,C Q ;
 

    

2

2

{ε (1)} {{ε(1)ε( )}

{εε }

{ε( )ε(1)} {ε ( )}

T

M ...M M

Q M

M M ...M M

 
 

   
 
 

, 

β εY X   – the discrepancy between Y and its model βX . 

The density of distribution ( )P y  (taking into account that β εY X  ) will also be 

normal with the expectation 0βx  and the dispersion matrix 0

TP xP x Q  : 

                 1

3 0 0

1
( ) β β

2

T
P y C exp Y X p Y X 

    
 

,                      (8.18) 

   
11
222 2

3 02π 2π [ ]
m m

TC P xP x Q
 

   . 

Then the posterior density of the estimate β  distribution (β )P / y  takes the form 

  
   

     

1

0 0 0

4

1 2

0 0

1
β β β β

2(β ) exp

β β β

T

TT

P
P / y C

Y X Q Y Y p Y X



 

 
    

  
     

,     (8.19)  

nC  –is the normalizing constant. 

After the appropriate transformations, the expression (8.19) takes the form: 

                       
1 1(β ) exp β β β β

4 2

T
ˆ ˆP / y C p

     
 

.                 (8.20)  

Hence the estimate β̂  and its covariance matrix Р are equal to [35]: 
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1

0 0

1 1 1

0

β β ( β )

( )

T

T

ˆ PX Q Y X ,

P P X Q X .



  

  

 
                                   (8.21)  

For the symmetric loss function (8.15) minimum average risk (8.16) is achieved 

under condition β β̂ , viz the estimate (8.21) is Bayesian. 

On the other hand, if 0β  and 0P  are the estimates, obtained in the previous (m-the) 

step, β̂  and Р in (m-1)-th step (by adding (m+1)-th measurement), then the formula (8.21) 

implements the recursive method of Bayesian estimation of the vector β  and its 

covariance matrix Р. 

Taking into account the symmetry of the matrices 0P  and Q, the expression (8.21) 

can be simplified for P: 

                        
2

0 0 0 0[ ]T TP P P X Q XP X XP .                                   (8.22)  

If  ε k  is nonstationary “white noise”, that 
2σ 1 2 1kQ I , k , ,...,m,m ,...,     

and some vectors are replaced by the scalars 

1( 1) ( 1) [ ( 1) ( 1)]T

nY y m , X m x, m ,...,x m ,Q      , 
2

1( 1) 1 σmm / .   

Under these conditions, the method of recursive Bayesian estimation β  degenerates 

into the weighted recursive least squares method: 

        
2

2 1

1
β( 1) β( ) ( ) [ ( ) ( )β( )],

σ

( 1) ( ) ( ) ( )[ ( ) ( ) σ ] ( ) ( )

T

T T

m

m

ˆ ˆm m x m y m X m m

P m P m P m X m X m P m X m P m ;

   

   

   (8.23) 

and under condition of the stationary white noise (
2σ const ) the expression (8.23) is 

simplified to the ordinary recursive least squares method: 

1

β( 1) β( ) ( )[ ( ) ( )β( )]

( 1) ( ) ( ) ( )[ ( ) ( ) 1] ( ) ( )

T

T T

ˆ ˆm m x m y m X m m

P m P m P m X m X m P m X m P m .

   

   
    (8.24)  

If at the time of calculation there is the whole data sample  y k ,  X k , 1k ,m , 

the estimates (8.23), (8.24) are calculated applying the ordinary least squares method: 
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1

2 1

β ( )

covβ σ ( )

T T

T

ˆ X X X Y ,

ˆ X X .








                                  (8.25) 

The series of methods of the unbiased evaluation β , when У and X are measured with 

the errors are considered in [9]. Obviously, the wider is the set of elements 

{   β  α}J , , ,opt,  and more perfect is the algorithm for searching the element optimal on 

I, the better is solved the optimization problem of the main index І. 

 

8.4. The Identification and Optimization of the Technological Process 

Parameters [30] 

In order that Ukrainian products come to the world market and be competitive to the 

foreign standards, it is necessary not only automate the process of its production, but 

implement the most effective control principles such as adaptation of control systems to 

the controlled object, based on the correct methods of its identification; adaptation of the 

process of identification to the non-stationarity of stochastic processes that happens in the 

controlled object; adaptation of the reference models; optimization of setpoints and the 

process of stabilization of the appropriate variables of the object. 

Let us consider the application of these principles by the example of the automated 

technological process control system of drawing the quartz tube of the specified diameter 

intd  and wall thickness δw  from the glass block with external extD  and internal intD  

diameters (fig. 8.1). 
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Fig. 8.1. The area of the block where the tube is formed. 

 

The block is warmed up to the temperature 
0t  of softening, it is spun out into the 

tube under effort extF  and pressure ntP  from the inside. If the speed of the block’s feeding 

is blU , and the speed of drawing the tube is tU , then if the mass is unchangeable, we 

obtain the relation: 

                                     

2 2

2 2

ext int t

ext int bl

D D U

Ud d





                                                 (8.26) 

or using the wall thickness δw  

                           2 2δ 2 δ bl
w w extint int

t

U
d D D

U
   .                              (8.27) 

The equation (8.27) indicates the relation intd  and δw . Therefore, the controlled 

object should be considered as a multidimensional one with cross-connections: in order to 

ensure the stability intd  and δw , it is necessary to change the pressure ntP  and the speed 
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blU  of drawing the tube simultaneously. Moreover it is required to stabilize the speed of 

the block feeding, its temperature 
0t , the viscosity η  of the heated glass mass or the 

drawing force (the moment  ηM ).  

The physical and chemical instability of the block acts as a stochastic perturbation, 

thus, the automatic control system aims to compensate its effect. 

 

 

8.4.1. The Mathematical Model of the System in the Mode “Working” 

The nonstationary nonlinear stochastic process that takes place in the object, can be 

represented by the stationary vector-matrix differential operator for the bounded deviations 

from the nominal mode and the interval of time: 

                                                
~

BL t X t L t U t                                  (8.28) 

or by the matrix transfer function  W s  if using the Laplace transform 

                                               OX s W s U s  ,                                    (8.29) 

where OX  is the vector–function of the output values of the object, namely δw , intd , blU

, 
0t ,  ηM ;  U s , the input values: tU , ntP , 

*

blU , the current I  of the block heater.  

In the fig. 8.2 it is shown the structure which has the cross-connection of the first and 

the second channels (the transfer functions 12W  and 21W ). The impact of other channels on 

these ones are taken into account by the parametric perturbations ξ  acting on ijW , 

1 2i, j , , in addition there are the signal perturbations caused by the instability δ *

blU  of 

speed 
blU  and the influence 

0t  on  ηM . 

For their compensation the system has the PI-regulators on separate channels and the 

diagonalizer  gW s  is additionally enabled for decoupling the first and the second 

channels. Then, provided that 
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                                            diaggW s W s W s  ,                              (8.30) 

the operators 
g

ijW  of the diagonalizer are determined: 

               1

12 12 11

gW s W W s   ,               1

21 21 22

gW s W W s   .               (8.31) 

The dynamics of each channel is close to dynamics of the reference model (the 

fig. 8.3) by setting the parameters and Ik  of the PI-regulator. In order to do this the 

appropriate channel of the object of inertial channel of the first order is approximated (the 

fig. 8.4) using the principle of minimal complexity. The coefficients of the PI-regulator are 

determined under condition of the equivalence of the reference model (the fig. 8.3) and the 

automation control system of i-th channel. 

                            
1 τn em ii iik k k    ;  1

I em kkk k k   .                               (8.32) 

The block  εI  controls the quality of the output product (the deviations of diameter 

and thickness of the tube) and if the quality decreases, the system goes into the mode 

“Training” (the fig. 8.5). 
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Fig. 8.2. The block diagram of the control system in the mode “Working”. 

 

 

Fig. 8.4. The automation control system with the PI-regulator. 

 

 

Fig. 8.3. The reference model. 
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8.4.2. The Mathematical Model of the System in the Mode “Training” 

 

 

Fig. 8.5. The block diagram of the system. 

 

Switching from the mode “Working” to the mode “Training” is done by closing the 

key 3 and opening other keys (fig. 8.5). Then the object is subjected by the program’s 

influence 0U  and by test influence δU . The object’s model  MW s  is defined in the 

block 7 and, in accordance with its parameters, the blocks 8, 9 adjust the diagonalizer 

 gW s  by the algorithm (6) and PI-regulators  pW s  - by the algorithm (7). 

The mode “Training” always takes place at the beginning of the process of drawing 

the tube, and it also can occur while drawing, if  ε ΔI  . 

As an example, let us consider the identification process of direct 11W , 22W  and cross 

12W , 21W , operators of the object at the beginning of tube drawing process. Depending on 

the sign deviations
.внd  and 

.ст  from the nominal values ranging from plus or minus, the 

block ID feeds mutually independent sequence of steps ΔP  and Δ tU , the amplitude of 

which gradually decreases (fig. 8.6). 
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Fig. 8.6 The graphs of transients on intd  and δw . 

 

Within each step the transition process  Δ intd t  and  Δδw t  nearly ends and is 

described by the exponent. Then the estimate of the coefficient ijk


, 1 2i ,  is defined as 

the ratio of the increment of the output variable of the j -th channel to the increment of the 

appropriate input Δ iU ; the evaluation of the time constant τij



 is determined by the robust 

Tukey’s algorithm as a median of series  τij k , ordered by value: 

                                                τ Me τij ij k


 ,                                        (8.33) 

where  

 
 
 

τ
Δ

1
Δ

k
ij

j k

nj

t
k

x t
ln

x t

 



, 
 

0k ,n  - is the discrete time of the particular area  1l lt ,t  , 0 5l ,  (see the fig. 8.6). 

The further refinement of the estimates ijk


, τij



 is achieved by their linear 

approximation as functions of amplitude of the testing signal: 
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,                     (8.34) 

*

ijk  and τ*

ij  will be the sought ones. Having defined the object parameters on all channels, 

the settings of diagonalizer and regulators are adjusted, the keys 1,2,4,5 are opened and the 

key 3 connects ACS to the object, viz the system goes into mode “Working”. 

 

 

8.4.3. The Working of the System in the Mode of Nonius Refinement of the 

Object’s Model and Control Algorithm 

If the functional  εI  (fig. 8.5) in the mode “Working” is significantly smaller than 

Δ  and the control actions vary slightly, then the information about 
*U , which specifies 

the modes’ flow chart viz the ratio between the nominal values of the input and output 

variables of the object, comes to the subsystem “Technologist”. Then at these values
*U , 

the commutator 3 (fig. 8.5) is opened again, and the others are closed and the system 

switches to the mode of nonius refinement of the object’s model. 

In order to do this, the mutually correlated and  autononcorrelated pseudorandom 

binary sequences of testing signals are fed from the block 8 (fig. 8.5)  to the appropriate 

channels (fig. 8.7) and the parameters ijk , τij  of basic models are specified by the least 

squares method for the smoothed data; the approximation error of object by basic models 

is defined, next the parameters of refining operators of the nonius models are evaluated 

applying the same method, if the basic operator is already known. For example, the inert 

differential operator of the channel of temperature stabilization: 

                                               4

4

1

τ 1
y

T s
W s .

s





                                          (8.35) 

 



 210 

 

Fig. 8.7. The correlation function (a) of the signal (b). 

 

Then the nonius model is 

                                       
4 4

4

44

1

τ 1τ 1

*

M *

k T s
W .

ss


 


                                     (8.36) 

In order that dynamics correspond to the reference one, the control algorithm is 

corrected by connecting to the PI-regulator of compensating operator  yW s  of the level 

1( )yW s
 (fig. 8.8). 

 

Fig. 8.8. The nonius correction of the stabilization 
0t  channel. 

 

In the process of the nonius identification the index  εI  value is controlled and, if it 

is close to Δ , the system switches to “Working” with the model that is succeeded to 

identify. Thus, the adaptability to non-stationary perturbations is achieved: the more 

b) 

a) 
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stationary is the process, the more accurate is the model and the less is the value  εI . 

But even under condition of non-stationarity the system succeeds to construct the simple 

base model and provide stability and quality of the control process. 

Besides, if  ε ΔI  , the system can reduce the inertia of the reference models and, 

consequently, the channels of the stabilization of process parameters. 

 

 

8.5. The Identification and Optimization of the Process of Self-Study with the 

Electronic Simulator 

8.5.1. The Introduction 

The process of self-study occupies an important place in the electronic teaching 

resources of the discipline (ETRD) [27, 31, 32]. An electronic simulator is one of means of 

self-study. The electronic simulator should provide the optimal process of transmission of 

information to the person who studies in order to approach the level of direct 

communication “teacher – student”. 

The optimality of the process of the information transfer is understood as a 

minimization of the loss of information when transferring it from the “teacher” to the 

learner (pupil, student, etc.) and the assimilation of this information as well. Such 

electronic simulator as part of the ETRD and also the teacher and the learner create the 

two-level automated control system of learning process. The teacher (the upper level) 

defines the way (count) of passing the required sections of the discipline, the weight of 

these sections in the overall assessment of the level of the learner’s knowledge.  

The electronic trainer and the learner create the lower level of the system where the 

learner is the controlled object and the simulator is the regulator of the learning process of 

this object. The teacher and the learner can plan the overall pace and the duration of 

studying the discipline and the desired rating (score) of learning. The simulator must 

provide the control influence that is adaptive (preferably optimal) to the student’s 

parameters. The controlling variables of the system are: 
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1.  the average rate of information (time interval between classes); 

2.  the trajectory of moving forward from section to section and, if necessary, 

returning back to course modules that have been already passed, based on the information 

of the current student testing; 

3.  the volume of motivational information. 

The returning to the previous modules as a controlling influence is required at the low 

index of current control (i.e., understanding) of knowledge; the motivation is required as 

the impact on the quality of learning.  

Thus, having the sufficient level of formalization and capabilities to control the the 

current parameters of the model of the object of training, the learning process on an 

electronic simulator can  to be submitted (with the appropriate degree of approximation) as 

the automatic control system (ACS) with the identifier and the synthesizer of the optimal 

mode. 

 

 

8.5.2. The Description of the Elements of the System of Automatic Control of 

Training 

The teaching material of the relevant subject is divided into thematically coherent 

blocks, that are of the same volume, the classes’ duration is 75 15 minutes. 

The material of each n -th block is divided into informative  I n  and motivational 

 M n components of the subject matter. There are several levels of incentives depending 

on the student’s success rate  k n . For n -th block the rate is set based on the results of 

current monitoring of individual microblock within the limits of n -th and final monitoring 

for the whole n -th block. 

The control in the microblocks is exercised by representing the material in the 

interview mode: 30 seconds of language and appropriate on-screen information, the 

question and 3 answers: surface, normal, and profound. The student, opting for one of 

them, gains a certain number of points, and the trainer, having received this information by 
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the feedback channel, corrects the further way of giving teaching material: the skip to the 

next microblock or return to the microblocks which have been already passed, and which 

are logically associated with the current one. 

On completion the process of submitting the information  I n  of the n -th block, the 

final control is made for the n -th block by the index  K n , the decision is accepted 

depending on the actual and the desired level (specified by the program path  *KV n  of 

the accumulation of rating): 

If    minK n K n , then, after having the desired pause, there is the transition to (

1n )-th block; if    minK n K n , then there is the repeat of n -th block without 

pause with the increase of the motivational component  M n . 

At the beginning of each n -th class, the student undergoes the control of residual 

knowledge at the ( 1n )-th block-lesson and gets his rating  KV n , depending on the 

level, then he goes to the assimilation of n -th block in accordance with  KV n  the level 

of motivation or he returns to re-studying the ( 1n )-th block. The total rating 

 
n

KV n  is considered as a function of time t  and adjusted by the automation control 

system by changing the pauses nT  between the blocks-lessons. The sequence of actions at 

one lesson is represented in the fig. 8.9. 
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Fig. 8.9. The components of the n -th lesson. 
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For the successful operation of the automatic control system it is required to build the 

structure of the learner’s model as the controlled object and to define the current values of 

the parameters: 

                             0 M rK n K K M n K R n ,                               (8.37) 

                    τ
n

r
n

T
KV n K n exp KV R n     

  
,                        (8.38) 

where 0   i M rK , K K  – are coefficients of the linear stochastic model of the dependence 

 K n  on the level of motivation  M n  and incidental  R n ,  R n  - is the Gaussian 

noise with the unit variance, τn  -is the time constant of exponential forgetfulness of 

information of the ( 1n )-th lesson at the n -th lesson: 

                                     
 

 

1τ n n
n

t t

K n
ln

KV n




 
 
 

.                                       (8.39) 

The exponential process of knowledge accumulation within one lesson is given by 

the linear model (8.37) due to the short time of one session; the process of information 

forgetfulness in a pause nT  between classes is taken as exponential. 

The desired optimal trajectory  
1

 1
n

K

j

jKV * t , n ,n


  of knowledge accumulation 

at the time jt  is given on the basis of psychological aspects of training by a teacher or a 

student, depending on the planned level of knowledge and time reserves. 

The task of the simulator as a system of automatic process control is to provide the 

closeness of the real trajectory  
1

n

j

jKV t


  to the desired  
1

n

j

jKV * t


  that minimizes 

the functional error  ε n : 

                                        ε *n KV n KV n  ,                                     (8.40) 
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1 kn ,n , where kn  - is the number of finitesimal lesson. This problem will be solved 

using the proportional  Pk  and integral  Ik  regulator [20] of the interval Δ nT  between 

n -th and m -th lessons: 

          
 

 
1

ε
εΔ Δ 1

Δ
2 2 ε ε

n

j

P I
maxmin

n
max max

j
nT T

T K K


 
 


   
 
 
 


,               (8.41) 

where Δ minT , Δ maxT – are restrictions on the smallest and the largest interval. The model 

of discrete ACS with frequency-pulse modulation, identification and adaptation to the 

controlled object corresponds to the process of training on a simulator (fig. 8.10): 
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Fig. 8.10. The functional diagram of the ACS of training. 

 

The control of motivation  M n  is exercised during the n -th lesson depending on 

the quality  K n,i  of learning of the i -th lesson. The increase of  M n,i  leads to (at a 

fixed time ΔT T  of the n -th lesson) reduction of the number of т microblocks in the n

-th block. Then the regulator  Δ ε τT , ,n  reduces the break between classes in order that 

 KV n  approaches to  KV * n . 
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8.5.3. The Numerical Modeling of the Process 

The simulation of automatic control of training (fig. 8.10) is carried out in such 

modes using MATLAB: 0r rK KV  ),  ΔT n const  is determined (the perfectly 

concentrated student), viz the system (fig. 8.10) is disconnected and as a result the 

trajectory  KV n  is slightly ahead of the optimal  KV * n  (fig. 8.11); there is 

the same student, but ACS is locked and has the PK  - regulator (fig. 8.12); there is the 

same system with proportional  PK  and integral  IK  regulating law  ΔT n  from 

 ε n  (fig. 8.13). 

As we see in the case (fig. 8.12) the mean square error of tracking the desired 

trajectory of training is minimal; if the random component is not zero 0 2rKV ,  in the 

model (8.38) (the non-ideal student), then the error for the system (fig. 8.13) and the 

number of lessons slightly increase (the error is from 1,62 tо 3,67; the number of lessons is 

from 39 to 58). 

 

 

Fig. 8.11. The open-loop control system of the ideal student. 
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Fig. 8.12. The closed loop automatic control system with the proportional regulator 

(the ideal student). 

 

 

 

Fig. 8.13. The closed loop automatic control system with the integro-proportional 

regulator (the ideal student). 
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Fig. 8.14. The closed loop automatic control system with the integro-proportional 

regulator (the real student). 

 

Thus, the standard proportional and proportionally integral control laws provide 

tracking the optimal trajectory with the error of 1.57 - 3.77 units with total maximum 

rating of 68 units, i.e. with the error 2 – 6 %. 

For the further improvement of the process of training the real student  0 2rKV , , 

let us consider the possibility of constructing the optimal adaptive (to the student) control 

law instead of the standard proportional and integral one. Let the total current rating of the 

student, after executing the input control of residual knowledge of the  1n  -th lesson 

  1KV n  , be  
n

KV n  at the end of the n-th lesson (fig. 8.9, the time 2nt ). The 

total of estimates of the current control on m micro blocks of the n-th lesson is  K n .  
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Fig. 8.15. The optimal system of automatic control of training process (the ideal 

student). 

  

 

Fig. 8.16. The optimal system of automatic control of training process (the real 

student). 
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The optimal (desired) value of the total rating is known at the time 1nt , this is 

 
n

KV * n . Taking into account that the level of student’s knowledge exponentially 

decreases (the time constant τn ) at the beginning of the  1n   lesson, then for the 

moment  1  1,nt  , the forecasting rating of student is determined by the expression: 

        11 ,2

1  1 ,2 ,21    exp
τ

,

,

n n

n n
n n n

n

t t
KV n , t KV n, t K n, t





 
     

 
  .   (8.42) 

Having equated the expression (8.42) to the optimal rating  1
n

KV * n  , we 

obtain the expression for determining the optimal time 11,nt   to start the  1n  -th lesson: 

       11 2

2 2

,
, ,  exp 1

τ

,

n

n n
n n

n

t t
KV n, t K n, t KV * n

  
    

 
  .  (8.43) 

From here the optimal time 11,nt   to start the  1n  -th lesson is 

 
   

 
2

11 2

2

1
τ

,

, ,

,

n
n n n

n

KV * n KV n,t
t t ln

K n,t


 
 

 
   (8.44) 

As we can see, the time constant τn  and the indicators of total  2,nKV n,t  and 

current  2,nKV n,t  ratings have influence upon the 11,nt  . On the right side of the 

expression (8.44) all components are known, with the exception of the time constant τn . It 

can vary from lesson to lesson depending on the state and degree of student’s motivation. 

Therefore, in order to solve the equation (8.44) it is required to set τn . The easiest way to 

do this is to assume that 1τ τn n  , where 1τn  is found from the previous lesson from the 

expression (8.42), if taking n instead of  1n   and  1n  , instead of n: 

      1 -1,2

 1 -1,2 -1,2

1

 1  1  exp
τ

,

,

n n

n n
n n n

n

t t
KV n, t KV n , t K n , t



 
      

 
  ;(8.45) 

from here 
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The more accurate forecasting value τn  is determined (if n>3) by the linear 

approximation  τ t  and by the forecast to the interval  11 2, ,n nt t  : 

                               1
1 11 2

1 1 2

τ τ
τ τ , ,

, ,

n n
n n n n

n n

t t
t t


 




      

.                        (8.47) 

The computer modeling of the optimal ACS, as a mean of ETRD, is conducted under 

the same conditions as the ACS with the proportionally integral control law: 0 0 6k , ; 

0 2MK , ; the number of blocks 68N  , the number of weeks – 17, 0 2rK ,  (the real 

student). The result of the simulation of the optimal mode of training is shown in the 

fig. 8.15, 8.16. Comparing the ACS with the regulator (5) (fig. 8.15) and the optimal 

regulator (8.44) with the additional restrictions on a break nT  between lessons 

 n n nmaxT T minT  , due to the fact that the expression (8.44) is adjusted by the 

restrictions on the length of the pause, we can conclude that at nearly the same number of 

lessons (58 and 57) under condition of the optimal regulator, the trajectory of 

accumulation of student’s rating is much closer to the desired one (the mean-square error 

is 2,23). 

Thus, we have the possibility to automate and optimize the process of training under 

condition of its appropriate formalization, based on a systematic approach with the 

appropriate degree of adequacy. 

We believe that the quality of education process will increase significantly and reach 

the level of direct communication between the teacher and the student, if the material is 

submitted by micro-blocks (the student is not distracted for 30 seconds) with the questions 

at the end of each micro-block and three correct answers of different degree of 

understanding the question. The student chooses the best one for him, the teacher-trainer 

changes the contents of the next micro block depending on the answers selected by 
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student. Such dialogue with the initial and current motivation and control at the end of the 

lesson can dramatically improve the training process. 
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