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ABSTRACT 

Describes the perspective of the use of artificial neural networks in automated thermal non-destructive testing 

and defectometry systems. The influence of backpropagation neural networks architecture on the efficiency of 

defect classification and accuracy of determining their depth and thickness are analyzed. Considered the influence 

of volume and quality of training dataset on the efficiency of defect classification and accuracy of defectometry. 

Performance of neural networks is evaluated by quantitative indicators, such as MSE, relative error and Tanimoto 

criterion. The optimal neural network architecture for using in active thermal testing was established on the basis 

of experimental researches. 
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Introduction. 
Methods of thermal nondestructive testing 

(TNDT) at the present stage of development allow to 

identify hidden defects (flaw detection) and to deter-

mine their size (defectometry). TNDT is used to test the 

quality of a wide range of products with internal tech-

nological defects in the form of cracks, bundles and ex-

traneous inclusions. An active TNDT is of particular 

interest because of its many advantages, which can 

greatly expand the list of possible objects of testing 

(OT). 

A characteristic feature of active TNDT is the cor-

relation of all informative parameters with each other. 

Therefore, to improve efficiency of defect classifica-

tion and accuracy of defectometry, a comprehensive 

analysis of OT thermal fields should be performed. De-

cision to determine defect type is made on the analysis 

of multidimensional space of nonlinearly related diag-

nostic features. In most cases, it is impossible to estab-

lish a unique defect in a particular class by traditional 

methods. Same factors complicate the process of de-

fects depth or thickness accurately measuring. This 

problem requires search for new modern methods of 

data processing. In particular, artificial neural networks 

(NN) are used to automate defects recognition and im-

prove testing and defectometry efficiency, as well as to 

construct thermal tomograms of OT [1]. 

The use of neural-based automated systems can 

solve problems that are difficult or impossible to solve 

by traditional mathematical or statistical methods. At 

the same time, performance of neural network systems 

will depend on the parameters of the networks used, ra-

ther than on predefined analytical rules. 

Problem Statement. 

Dynamic thermal field is described by the function 

T(x,y,τ). By considering the temperature dynamics at 

each point of thermograms (pixels) corresponding to 

coordinates of OT surface, it is possible to construct a 

temperature profile – a graph of temperature changes 

over time for a given area. As a rule, in defect-free areas 

the nature of temperature change is constant and is 

known. It is possible to enter some reference tempera-

ture Tnd(xnd, ynd, τ), which is assumed to be defect-free. 

In the defect zone, regular nature of the thermal field is 

disturbed and local temperature differences Td(x,y,τ) 

occurs, which lead to a change in temperature profile. 

Thus, it is possible to calculate the value of temperature 

difference between defective and defect-free areas: 

( , , ) ( , , ) ( , , )d nd nd ndT x y T x y T x y    
 

The time τopt at which the value of ΔT(x, y, τ) at 

this point of OT becomes maximum is called the opti-

mal testing time: 

( , , ) ( )max max optT x y T   
 

Analyzing the shape, amplitude and time charac-

teristics of temperature profile, as well as the fre-

quency, phase and power characteristics of temperature 

signal, it is possible to make conclusions about the size, 

position and depth of defects. However, results of such 

analysis depend significantly on the quality of recorded 

thermograms, their number, presence of noise, OT 

heating parameters, experience of operator etc. In this 

regard, special methods of digital processing of thermo-

graphic images, such as artificial neural networks, are 

used to improve testing accuracy. 

Using multilayer feedforward backpropagation 

neural networks, it is possible to construct regression 

models of any function. The complexity of function is 

determined by number of hidden layers and number of 

neurons in each of them. Therefore, it is important to 

determine the optimal number of layers and number of 

neurons when building a network model. In thermal 

nondestructive testing, this task is complicated by the 

high level of noise and unpredictability of input data. 

A particularly important step in creation of neural 

network systems is the formation of training datasets. 

The completeness and quality of input vectors dataset 
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for network learning directly depends on its efficiency. 

There is a need to ensure high representativeness of 

training data. Therefore, analyzing the effect of repre-

sentativeness level of training dataset on performance 

of neural networks in thermal testing is an important 

task. 

Recent works review. 

Authors of [2] investigated possibilities of using 

neural networks to test products made of multilayered 

materials. Possibility of using neural network classifi-

ers in active TNDT is noted and proved. Neural net-

work is used to classify defects by depth. The benefits 

of using NN are shown only at a qualitative level. There 

is no study of NN effectiveness in determining depth or 

thickness of defects, impact of network architecture or 

quality of training dataset on the result of its work. 

Modern methods of digital thermogram pro-

cessing and thermal tomography are also described in 

work [3]. Authors considered the possibility of apply-

ing artificial neural networks in thermal nondestructive 

testing. The efficiency of different architectures of neu-

ral networks in the tasks of thermal tomography is ana-

lyzed. However, the accuracy of defect depth estima-

tion is given only at a qualitative level.  

Work [4] is devoted to optimizing the structure of 

input data for neural networks used to determine depth 

of defects in TNDT. Ten different sets of input data 

have been used for training and verification of the neu-

ral network designed to determine depth defects in in-

frared thermographic nondestructive testing. The input 

data sets include raw temperature data, polynomial fit-

ting, principle component analysis, Fourier transform 

and others. The influence of NN architecture on re-

search results was not analyzed in this paper. 

In work [5] authors propose a fast method using 

artificial neural networks for internal defects depth 

evaluation from the thermal contrast. Influence of dif-

ferent training algorithms on the learning speed and 

root mean square error is considered for aluminum OT. 

The impact of other parameters on accuracy of defect 

depth estimation was not performed.  

Therefore, in existing works, some aspects of the 

use of NN in active TNDT have been investigated. 

However, authors do not take into account the interac-

tion of individual parameters of neural networks on re-

sults of their work. There are no studies on choice of 

the neural networks optimal architecture and their pa-

rameters in tasks of complex analysis of thermal fields 

– simultaneous classification and determination of de-

fects depth and thickness by results of active thermal 

nondestructive testing. 

 

 

 

Aim of research. 

The aim of this research is to determine the opti-

mal neural network architecture and training dataset re-

quirements for use in active thermal testing in defect 

classification and defectometry tasks. Research is 

based on computer simulation data and experimental 

validation. 

Description of the input data. 

Computer simulation allows to estimate the influ-

ence degree of different neural networks parameters 

and training datasets on the performance of complex 

analysis of thermal fields system. By creating appropri-

ate computer models, it is possible to vary such param-

eters of training dataset as its volume, representative-

ness, number of thermograms in a sequence etc. This is 

a significant advantage in absence of a large number of 

physical test specimens. 

During the research, a computer simulation of an 

active TNDT test specimen made of carbon fibre rein-

forced polymer (CFRP) was performed. Each layer has 

a thickness of 1 mm, total thickness of the plate is 5 

mm. Plate has a square shape with 100 mm side. Mod-

els of square shaped artificial defects at depth of 1, 2 

and 3 mm are placed inside the plate. These defects 

have transverse dimensions of 10, 8, 6 and 4 mm and a 

thickness of 1, 2 and 3 mm. The scheme of test sample 

is shown on fig. 1, a. Common models of various defect 

types are air-contaminated, aluminum and paper inclu-

sions. Materials of defects used in model have thermal 

conductivity more (aluminum), less (air) or the same 

(paper) as the OT main material. The standard 

COMSOL Multiphysics libraries were used when cre-

ating the model. 

A two-sided testing scheme is selected for the sim-

ulation. A pulsed heat source with a power density of 

10 kW / m2 is attached to the front surface of OT. Du-

ration of heating pulse was 1 s, the duration of cooling 

stage 14 s. Thermograms were recorded from OT back 

surface during the entire heating / cooling procedure. 

The result of testing is a sequence of 50 thermograms 

with 400 x 400 pixels resolution. The optimal thermo-

gram for defect detection at a depth of 1 mm is shown 

on fig. 1, b. The resulting dataset was exported to 

MATLAB for further processing. 

Three additional computer models of five-layer 

CFRP training models were created to form a training 

dataset for classification, determination of defects 

depth and thickness via NN. Each model of training 

sample has dimensions similar to the test sample model 

and contains artificial defects of a specific type. Defects 

inside one specimen differ in dimensions (10 to 4 mm), 

depth and thickness values (1 to 3 mm). This arrange-

ment of defects allows to expand the variety of training 

dataset. 
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Fig.1. Computer model of testing sample: a) – schema, b) – optimal thermogram 

 

Total number of training pairs in the received set 

of input vectors was 27933. Of these: 14950 examples 

of thermal profiles of air cavities defects, 3123 speci-

mens of defect thermal profiles of aluminum inclu-

sions, 3494 specimens of defect thermal profiles of pa-

per inclusions. Levenberg-Marquart algorithm is used 

for NN training. NN training was conducted on a PC 

with the following characteristics: Intel Core i7 3770k 

3.5GHz processor, 16GB RAM, NVidia GeForce GTX 

760 graphics card. 

Influence of the number of neurons in hidden 

layers. 

Only a small amount of works is devoted to re-

search on the choice of optimal NN architecture in ac-

tive TNDT. This is due to fact that the network archi-

tecture may differ for each specific task. To formulate 

recommendations for choosing NN architecture, it is 

necessary to set initial conditions in the form of OT pa-

rameters and testing conditions. In the following, influ-

ence of different NN architectures on the data pro-

cessing results obtained from computer simulation is 

considered. 

According to the results of previous studies, it was 

found that the use of NN architecture with two hidden 

layers is optimal for active TNDT tasks [3]. This deep-

ens the overall properties of network, making it more 

versatile. At the same time, it is proved that excessive 

increase in the number of hidden layers does not in-

crease the efficiency of NN. On the contrary, too com-

plicated architecture can lead to retraining, which will 

impair the approximate properties of network [6]. 

To research the optimal number of neurons in the 

hidden layers choice for NN in the active TNDT, sev-

eral NN architectures with different numbers of neu-

rons in hidden layers were implemented and trained, re-

sults of which are shown in Table 1. In the table, Np1 – 

number of neurons in first hidden layer, Np2 – in 2nd 

hidden layer.  

Table 1. 

Efficiency of NN depending on the number of neurons in two hidden layers 

Criterion 
Np1 = 3 

Np2 = 1 

Np1 = 6 

Np2 = 2 

Np1 = 12 

Np2 = 4 

Np1 = 18 

Np2 = 6 

Np1 = 24 

Np2 = 8 

Training time, min 47 164 219 732 993 

Classification network MSE 0,0730 0,0214 0,0070 0,0068 0,0069 

Temperature profiles classification error, % 48,05 23,15 10,52 9,47 10,08 

Tanimoto criterion, % 62,95 74,52 89,48 89,95 89,69 

Depth estimation training time, min 5 108 140 538 742 

Depth estimation network MSE 0,162 0,084 0,052 0,050 0,052 

Depth estimation relative error, % ±24,19 ±13,60 ±5,07 ±4,96 ±5,31 

Thickness estimation training time, min 16 93 142 631 864 

Thickness estimation network MSE 0,065 0,057 0,037 0,041 0,039 

Thickness estimation relative error, % ±5,05 ±4,69 ±2,41 ±3,63 ±3,12 

 

As can be seen from Table 1, the complexity of 

defect classification NN architecture allows to improve 

its efficiency only to a combination of Np1 = 12 and Np2 

= 4. Further increase in the number of neurons in layers 

does not significantly improve accuracy and reliability 

of classification. At the same time, the complexity of 

architecture significantly increases training time. 

For depth and thickness estimation NN, the results 

are similar. Increasing the number of neurons in the 

hidden layers has a significant effect on training time, 

but can improve accuracy of defectometry only to ar-

chitecture Np1= 12 and Np2 = 4. Further increase in the 

number of neurons is impractical because it does not 

significantly reduce measurement errors. 

Influence of volume and quality of the training 

dataset. 

An important step in the creation of neural net-

work systems is optimal formation of training dataset. 

The number of training pairs corresponding to different 

types of defects or samples of signals from one defect 

has a direct impact on the representativeness of training 

dataset. In examples considered, the temperature pro-

files of all points of artificial defects embedded in train-

ing specimens of five-layer CFRP were used to train 

NN for relevant tasks. However, due to generalizing 

properties of NN, there is no need to represent abso-

lutely all received training signals to network during the 

training [7]. 
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Table 2 summarizes the NN training results using 

different number of training samples Ns. The principle 

of representativeness was maintained during formation 

of the training dataset. Only the number of temperature 

profiles that described defects of each type with each 

depth and thickness value was reduced. 

Table 2. 

Efficiency of NN depending on the volume of training dataset 

Criterion Ns = 27933 Ns = 7000 Ns = 350 Ns = 140 

Training time, min 219 52 4 1 

Number of epochs for defects classification NN 413 161 104 70 

Classification network MSE 0,0070 0,0079 0,0081 0,0668 

Number of detected defects 12 12 12 9 

Area estimation relative error, % 11,74 16,46 29,69 45,39 

Temperature profiles classification error, % 10,52 14,32 23,44 52,44 

Tanimoto criterion, % 89,48 81,93 76,83 60,86 

Depth estimation training time 140 min 28 min 0 min 44 s 0 min 12 s 

Number of epochs for depth estimation NN 823 370 181 84 

Depth estimation network MSE 0,052 0,053 0,052 0,110 

Depth estimation relative error, % ±7,97 ±22,71 ±24,53 ±42,97 

Thickness estimation training time 142 min 20 min 0 min 45 s 0 min 4 s 

Number of epochs for thickness estimation NN 870 306 195 50 

Thickness estimation network MSE 0,037 0,041 0,052 0,106 

Thickness estimation relative error, % ±2,41 ±3,11 ±4,37 ±10,09 

 

As can be seen from table 2, reducing the training 

dataset size by 4 times (to the number of training pairs 

Ns = 7000) leads to a slight deterioration in accuracy of 

defect area estimation (with a relative error of 16.46%) 

and accuracy of temperature profiles classification 

(with an error of up to 14, 32%) compared to the basic 

training dataset. Further decrease in the volume of 

training dataset leads to a significant deterioration of all 

indicators of the network. At the same time, training 

time is also rapidly decreasing. 

Similar are the results for defects depth and thick-

ness estimation NN. For the depth estimation network, 

reducing the number of training samples by 80 times 

does not increase network MSE, but it significantly af-

fects the value of depth estimation relative error, which 

increases by 3 times (from ± 7.97 % to ± 24.53 %). For 

the defect thickness estimation network, results are 

similar. 

The representativeness of training dataset has a 

significant impact on NN effectiveness. In the exam-

ples described above, temperature profiles of all 12 ar-

tificial defects, which were laid in OT, as well as de-

fect-free sections, were used to train defect classifica-

tion, depth and thickness estimation NN of defects of 

five-layer CRFP specimen. However, the generic prop-

erties of NN allows training on a limited number of 

sample signals. In this case, the representativeness of 

sample dataset become worse. But no quantitative stud-

ies on the effect of training dataset quality on results of 

thermogram sequence processing have been performed 

to date. 

For purpose of conducting relevant research, five 

NN models were built and trained, then the best of them 

selected. The representativeness of training dataset was 

varied by selecting the number of defects Nd, the sam-

ples of temperature profiles of which were included in 

training dataset. A value of Nd = 2 means that samples 

of temperature profiles from two defects of each type 

are included in training dataset. Accordingly, at Nd = 1, 

samples from one defect of each type are included in 

the training dataset. Results are summarized in Table 3. 

Table 3. 

Efficiency of NN depending on the representativeness of training dataset 

Criterion All defects Nd = 2 Nd = 1 

Training time, min 219 121 65 

Number of epochs for defects classification NN 413 390 256 

Classification network MSE 0,0070 0,0077 0,0081 

Number of detected defects 12 11 10 

Area estimation relative error, % 11,74 17,03 23,44 

Temperature profiles classification error, % 10,52 15,71 19,09 

Tanimoto criterion, % 89,48 86,94 80,96 

Depth estimation training time 140  103 80 

Number of epochs for depth estimation NN 823 847 869 

Depth estimation network MSE 0,052 0,054 0,050 

Depth estimation relative error, % ±7,97 ±12,19 ±14,14 

Thickness estimation training time 142  81 40 

Number of epochs for thickness estimation NN 870 754 421 

Thickness estimation network MSE 0,037 0,042 0,028 

Thickness estimation relative error, % ±2,41 ±5,95 ±13,24 
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As can be seen from Table 3, with the decrease in 

representativeness of training dataset, error in deter-

mining defects area and temperature profiles classifica-

tion error increases. At the same time, MSE of defect 

detection and classification network increases slightly 

from 0.0070 to 0.0081. With the worsening of repre-

sentativeness, the number of detected defects de-

creases. 

For depth and thickness of defects estimation net-

works, reducing the representativeness of training da-

taset does not lead to a clear increase in network MSE. 

However, the error in determining these parameters in 

this case increases (for depth estimation network from 

± 7.97 % to ± 14.14 % in case Nd = 1; for thickness 

estimation network from ± 2.41 % to ± 13.24 % in case 

of Nd = 1). For all networks with a decrease in repre-

sentativeness, the training time is also reduced, because 

training dataset volume decreases. In general, deliber-

ate reduction of training dataset representativeness is 

not recommended, as errors in determining defect pa-

rameters increase markedly with decreasing learning 

time. 

Experimental validation. 

In order to conduct experimental validation, two 

training and one test specimens of multilayered fiber-

glass were developed. This material is used as a con-

struction material for manufacture of parts responsible 

for high strength. Developed specimens are square 

plates of five layers of fiberglass. Total thickness of 

each sample is 5 mm, thickness of one layer is 1 mm. 

The plate is 100 mm side. Artificial defects of various 

types and sizes were laid in test specimen at depths of 

1mm, 2mm and 3mm. Scheme of location of defects is 

shown in fig. 2, a. 

During the experiment, a scheme of two-sided ac-

tive TNDT was used. The power of infrared heating 

source is 1 kW. To minimize the effects of heat radia-

tion from the heating source, a steel shield plate that 

contains hole and fixtures for OT is provided. OT plate 

is located 100 mm from the heater. The distance from 

OT to the Testo 876 infrared camera is 400 mm. 

Sequence containing 20 thermograms obtained in 

the result of experiment. Obtained results reflect the 

process of thermal field of OT changing at the stage of 

heating. Recorded thermogram sequences were ex-

ported to a PC. Initial processing of thermograms was 

carried out using proprietary Testo IRSoft software. 

Resolution of each obtained thermogram is 320 x 240 

pixels. Thermograms are saved as images and corre-

sponding arrays of pixel temperatures. Thermogram of 

test specimen at the optimal testing time is shown in fig. 

2, b. 

 

 
Fig.2. Experimental testing sample: a) – schema, b) – optimal thermogram 

 

In order to form a set of training vectors for NN, 

two training specimens were developed and manufac-

tured. Material, structure and geometric dimensions of 

the training specimens correspond to the same parame-

ters of test specimen. The first training specimen con-

tains only artificial defects in the form of air cavities. 

The second training specimen contains examples of ar-

tificial defects in the form of aluminum and paper in-

clusions. The total volume of training vectors set is 

6545 training pairs. 

The NN architecture with two hidden layers with 

the number of neurons in first hidden layer Np1 = 12 

and in second hidden layer Np2 = 4 was initially se-

lected. This architecture was determined to be the most 

optimal by results of computer simulation. However, 

network with specified architecture showed low results 

in processing of real experimental data. This can be ex-

plained by the presence of high noise level and imper-

fection of measuring equipment. Therefore, additional 

research was conducted to select the architecture of 

neural networks for defects classification and depth and 

thickness estimation. 

Five NN of different architectures were trained for 

each task, of which the best by network MSE were cho-

sen. Training results of NN with different architectures 

to process the thermograms of test specimen are shown 

in Table 4. 
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Table 4. 

Efficiency of NN depending on architecture for experimental data 

Criterion 
Np1 = 12 

Np2 = 4 

Np1 = 24 

Np2 = 8 

Np1 = 30 

Np2 = 12 

Np1 = 35 

Np2 = 15 

Np1 = 40 

Np2 = 18 

Training time, min 17 21 28 31 45 

Number of epochs for defects classification NN 156 138 141 121 172 

Classification network MSE 0,0754 0,0059 0,0049 0,0022 0,0023 

Depth estimation training time, min 9 14 14 18 27 

Number of epochs for depth estimation NN 187 239 214 247 285 

Depth estimation network MSE 0,1120 0,0893 0,0731 0,0590 0,0587 

Thickness estimation training time, min 7 13 18 19 31 

Number of epochs for thickness estimation NN 183 231 209 262 306 

Thickness estimation network MSE 0,0873 0,0630 0,0236 0,0124 0,0131 

 

Based on the data in Table 4, it be can concluded 

that the most optimal NN architecture for processing 

thermograms sequences of test specimen is Np1 = 35 

and Np2 = 15. Further architecture complication does 

not show a significant improvement in results, but leads 

to training time increase. The use of less difficult archi-

tecture increases network errors. 

Conclusions. 

As a result of researches, high efficiency of NN in 

tasks of active TNDT is proved. According to computer 

simulations, NN architecture with two hidden layers 

and number of neurons in them Np1 = 12 and Np2 = 4 is 

the most optimal set of parameters compared to other 

architectures considered. However, experimental re-

sults have shown that in real conditions the architecture 

should be complicated to Np1 = 35 and Np2 = 15 neu-

rons. Results are reliable in tasks of testing and defec-

tometry of multilayer composites specimens in the la-

boratory. For other tasks, the NN architecture may dif-

fer and must be empirically determined. 

Influence of training dataset volume on the effec-

tiveness of NN has been investigated. It is proved that 

with a significant decrease in sample size, performance 

of NN deteriorates in proportion to volume changes. At 

the same time, training time is significantly reduced. It 

is found that with decreasing representativeness all per-

formance indicators of NN deteriorate except training 

time, which is reduced slightly. 

The main focus for further research is determina-

tion of NN architecture, which will be the most versa-

tile for use in various thermal testing tasks. An im-

portant problem is also the pre-processing and optimi-

zation of input data for NN. This is especially true in 

terms of a limited number of training specimens. 
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