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Laboratory work Ne 1-5_Determination of the
viscosity coefficient using the Stokes' method

Objectives: study of the motion of a material point under the force, which is
proportional to velocity; determination of the glycerin viscosity coefficient.
Materials: glass cylinder with the fluid under the study (glycerol), thermometer,
hydrometer, micrometer, stopwatch, scale ruler, small balls.

Theoretical basis

A moving body in a viscous fluid is affected by the resistance force, which
depends on many factors: the geometric shape of the body, the nature of the flow,
the coefficient of fluid viscosity, etc. The nature of the liquid flow around a body is
determined by the Reynolds number (Re).

If the values of Re are big, the flow becomes turbulent with the specific
formation of vortices behind the body. In the vortex region, the pressure is low,
resulting in pressure difference between the front and back surfaces of the body
which induces the resisting force. Thus, the total resistance force is composed of
frictional resistance and pressure resistance, and their relative contribution is
determined by the value of Re. The flow will be laminar under the following
condition:

Re <Req, (5.1)

whereRe,;, is the critical value of Reynolds number, which may be volatile between
tens and several thousands, depending on the flow pressure. If an infinitely viscous
liquid, the density of which (p;) is flowing around a ball, and the fulfillment of the
following condition takes place

Re=""PL <1 (52
n
then, the resistance force Fc may be determined with the help ofStokes' formula

F.=6zmv, (5.3)

wheren is fluid viscosity coefficient, v is ball velocity, r is ball radius.

Criterion 5.2 is provided not only by the usage of Stokes' formula, but also
by flow laminarity, because in this case, certainly, the condition (5.1) is fulfilled.
Practically, it corresponds to a slow viscous liquid flow around a ball or ball’s slow
motion.



Let’s consider the nature of motion of a ball during a slow fall in an infinitely
viscous liquid. In this case the ball is affected by three forces: force of gravitymg,

Archimedes' buoyant force F, and resistance forceF., as shown on fig.5.1.
According to Newton second law: ma=F_ +F, +mg,

wherea is ball’s acceleration.

Fe
a | mp™
mg

After projecting this equation on acceleration

direction, we will obtain:
do

m—=mg-F,—F.,
dt
orpVv ((jj—l: +67mo =Vg(p-p,), (5.4) 1(5
wherep is ball material density, V — its volume. Fig. 5.1. The ball is affected by
To solve the equation (5.4)let’s rewrite it as three forces
follows:
dv _ 6z {U_ng-pl)} (5.5)
dt pV 6nr
taking into account, that the value
= Ya(PP) (5.6)
67

does not depend on time and has a dimension of velocity. This allows us to rewrite
the equation (5.5) as a differential equation with separated variables

dv-B) _ 6azm,
TR LR (5.7)
or
d(v-B) :_67zrndt (5.8)
v-B v o '

After integrating we obtain
67m
In(b-B)=-——-—t+1InC,(5.9)
pV

where arbitrary constant is written in the form InC.

67m
—t
Finally o(t)=ce *V +B. (5.10)
As a result, the relation between ball motion velocity and time o(t) is defined
67rrn
by the following formula: oty=ce V +Y90P) (517
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An arbitrary constant C is defined by the initial velocity at which the ball is
entering the liquid under the following condition:

v(t=0)=u,, (5.12)(time-
marking, naturally, begins from the moment of ball cutting off piercing the liquid
surface).
Using the general solution (5.11) and the condition (5.12), we determine that
C =y, — V9P (5.13)
67
_Sam,
Finally o(t) = V3@ _{VQ(P'PJ _Uo}e Vo (5.4)
67rm 67rm
) . _ Vglp—-p1) ;
Let’s analyze the solution (5.14). Att = ©,v = vy = T IS the steady-

state motion velocity. The condition t -« from the physical standpoint means that
t>>1, Where t=pV/67nrn is so called relaxation time, in other words, time at which

the motion will reach a steady-state character (a = 0).
Let’s write down the solution (5.14) in a simplified form using the agreed notation:
t

v(t) = vse — (Vse — Vple . (5.15)

The function graph, depicted on fig.5.2, gives a vivid indication of the ball

motion character. Therefore, irrespective of the velocity uvy, at which the ball is

entering the liquid after the timet>><, it is possible to state with the specified
degree of accuracy the steady motion of a ball with the velocity .

AV AL

T 7 T ;
Fig.5.2.
Task 1. Prove that at t=3t the deviation of ball velocity from the steady
velocity is ~ 5%, in other words, calculate?—2C%) considering that the ball is

Ust

entering the liquid at a starting velocity vp=0.

After measuring the steady fall velocity of the ball v and magnitudes r, p,
p1, the code of viscosity of the liquid can be calculated using the following
formula:

=2 grtl (5.16)

Vst

That is the basic idea of the Stokes' method.

The task of this workisto determine the code of viscosity of glycerin.
Glycerin is assigned to that kind of liquid the viscosity code of which depends on
the temperature value when it is close to the room temperature values.



In addition, it is better to use glycerin in real experiments because it adsorbs
the aqueous vapor in the air. The physical presence of water has a significant
impact on its density and viscosity values. Data presented in table 5.1 show the
dependence of viscosity degree on the temperature and glycerin percentage in the
solution. There is no point in measuring glycerin viscosity without knowing its
temperature and density (water-percentage).

Experimental technique

The equipment for the experiment is pretty simple: cylindrical glass
container filled with glycerin. The diameter of the container is ~ 5 cm and the
length = 1 m. The wall of the container is marked and the distance between these
marks | is measured with the help of scale ruler. The marks are applied on the
cylinder wall; the distance between them | is measured with the help of scale ruler.
The upper mark is located slightly lower than the opened glycerin surface. By the
time of the ball passing this mark, its velocity manages to reach a steady value.

Table 5.1
Glycerin water solution
Glycerin Viscosity n, 10°3Pa-s
solution
COTV%?;'QO”’ 200 C 250 C 300 C
percentage
100 1495,0 942,0 622,0
99 1194,0 772,0 509,0
98 971,0 627,0 423,0
97 802,0 521,0 353,0
96 659,0 434,0 295,0
95 543,0 365,0 248,0

The time of ball’s motion between the marks t is measured with the stop-

watch which allows finding the value of v using formula:

l
Vg = - (5.17)

Let’s find out what is the optimal size of the ball for the measurements.

Task 2. Using the Stokes’ formula conditions (5.2) prove that the
measurements can be done with those balls whose radius is:

Pecd L : (5.18)
2 (p-py)p,9

Take the lead pellet for the measurements (p=11,3-10% kg/m?®) with the radius
r=1 mm. Can the viscosity coefficient of 95% glycerin solution be measured with
its help at 20° C? Put p,=1,1x10* kg/m?3.



It is also worth measuring how much lower the opened glycerin surface
should be located from the upper mark so that o(t) ~ v by the time it is passed by
the ball (correct to 5%, for instance). To do that, find out which distance S the ball
IS making within time 3t with the starting zero velocity. If we integrate the
equation (5.15) in the range from 0 to 3t, we will obtain:

3T t t 3T 8 _
S(31)=f v(t)dt=vst-r(;—1+e_¥) zszt-Tz—gr4'[)(p—'[)1)
0

0 81 n?

Calculate this distance for the previous example.

Naturally, the following question occurs: how should we carry out the
experiment to determine the viscosity coefficient of an “unknown liquid” if we
have no idea about its viscosity coefficient? As a rule, students accomplish some
series of measurements nsi, 13, ..., and determine the average viscosity coefficient
<n>, not even thinking about the legitimacy of such averaging.

What would be your attitude toward the obtained in such a way experimental
value <n>, when it turns out that in this case Stokes' criterion of applicability is not
fulfilled? Probably - skeptical. This situation may seem strained, but it isn’t. If the
experiment is carried out improperly, the result can be exactly as described above.

What would be your attitude toward this result, when it turns out that the
values ni, Nz, ...nn had systematic dependence (conformity) on the ball radius r, for
instance?

This is the example of an experiment that was carried out inaccurately, even
though all the measurements and calculations were done perfectly. In this case
further measurements should be done, using smaller balls, and increasing the
distance between the upper mark and the opened glycerin surface.

The reliability criterion in this experiment is the absence of systematic
dependence of n on r; this dependence may have only random character, coming
from random errors. Only in such a case it is allowable to average out the results of
the experiment and make conclusions regarding validity of the theorems.

The order of work procedure

1. Take 5-10 balls of different diameter and measure their mean diameters using
micrometer. The values of the balls density p and glycerin p; are indicated on the
desk.

2. If the density p; isn’t indicated, measure it using acrometer, previously mixing
glycerin with the mixer. Also, measure glycerin temperature.

3. Use the data from table 5.1 and analyze the applicability of Stokes’ formula.
Find out at which distance from the opened glycerin surface the upper mark should
be fixed. For your calculations use “the worst” values of r and n, in other words,
maximum value of radius of the balls and 95% viscosity of glycerin solution at
room temperature. If this distance is too small, take into consideration practical
understanding.



4. Take the ball with pincers and carefully put it down in the middle of the
opened glycerin surface. Closely watch its motion and measure the time of this ball
passing between two marks, using the stopwatch. While counting, it is important
that the eye should be at the level of the mark. The distance between the marks
should be measured with the scale ruler. All of the measurements results should be
written down in table 5.2.

5. Determine steady velocity values of the ball and calculate the viscosity
coefficients of glycerin using formula (5.16). Make sure that obtained values of n

don’t show systematic dependence on ball’s radius. Plot a graph n(r) according to
table 5.2.

Table 5.2

d(mm) | t(s) v (M/S) | n(Pa-s) ni - | (ni -

n <n>(Pa:s) | <n>)*(Pa-s)’
1
2
3
4
5
6
7
8
9
10

6. Find the mean value of glycerin viscosity coefficient <n>. Considering ni, 1z,
.. Mn as the results of direct measurements, calculate the value of sample mean

standard S<77>, using table 5.2.
7. Derive formula for systematic error n calculations:

(&jz — 4(&}2 + [&]z + ﬂ + (&]Z + (ﬁjz .
n r g9) (p) \t l
(5.19) Calculate the errors, , using table 5.3.

8. Evaluate the error <n> with dependence on the values s, and s_, . Write down

the final result, indicating density and temperature of glycerin.
9. Using table 5.1 evaluate water percentage in the experimental glycerin.

Calculations parameters:

Density of balls’ matter p=11,3 -10°kg/m?
Glycerin density DI,
Distance between the marks =
Glycerin temperature t=



Write down in table 5.3 values of systematic errors of parameters that are

included in formula 5.19.

Table 5.3
Systematic errors of parameters
o7 (kg/m?) O =eeeennannnn. (mm).
Ot = iriinnnnnnnns (S) Og= veeennnnn (m/SZ)
O =neeuiinnannnnn, (m) Cp=eeenennnn. (kg/m?3)
Calculations formulas:
20 Zni
DY M= (Pa-s) 2)<m>= = (Pa-s)
N , D (=<n>)?
2 — . — 4| d=L — .
3);(ni—<n>) .............. (Pa-s)<4) I T T (Pa-s)
5) 20 100% = .o B)., = e (Pa-s)
n
1

Questions to answer

Laminar and turbulent flow. Reynolds number.
Stokes' formula. Conditions of its use.

HwnN e

liquid.

Obtain its solution v(t) and make the corresponding analysis.

The idea of measuring the liquid viscosity coefficient using Stokes'
Which balls should be used for the measurements?

© N O v

be fixed?
9. What is the reliability criterion in this experiment?
10.How are the errors calculated in this work?

11.Give answers to the questions given in the main text.

Coefficients of viscosity. Newton’s formula for the force due to viscosity.

Derive the differential equation of motion of a ball in an infinitely viscous

method.

At which distance from the opened glycerin surface should the upper mark



Laboratory workNe 1-6.Determination of theratio
between gas heat capacity andits heat capacity
atconstant pressure

Objectives: study the possibility of determination of the ratio between gas heat
capacities at constant pressure and constant volume based on the first law of
thermodynamics

Tools and equipment: oneballoon with two tubes and taps; liquid pressure gage
(manometer), onerubber bulbor pump.

Theoretical basis

Heat capacity C is the ratio between an infinitesimal changeof heat
quantitydQ,obtained by a bodyand the corresponding temperature increment of that
bodydT:

_Q

oT
Heat capacity that is taken relative to the mass unit is called specific heat
capacity; it is designated by letter ¢ (small). But more preferred variable is molar
heat capacity — a heat capacity that is taken relative to the mole of a substance; it is
designated by letter C (capital). Both of the above mentioned heat capacities are
correlated in the following formula:

C (6.1)

C=cu, (6.2)
were L — molar mass.

Gas heat capacity depends on theconditions under which the heat is
transferred to a body. Let’s use the first law of thermodynamics in order to
calculate the value of heat capacity:

0Q=dU+35A= dU+PdV, (6.3)
wheredU — internal energy change, 6A — work executed by a gas, P — gas pressure,
V —gas volume.

By substitutingusing(6.3) in (6.1) we obtain:

du dv

C=—+P—
o e ©4)

or considering the fact that for a mole of an ideal gas
[
U=_RT (6.5)
we obtain:

10



[ av
C=—R+P—
2 dT - (6.6)
Where R=8,314 J/(mol*K) — universal gas constant, and i — the number of degrees
of freedomof a gas molecule. For a monoatomic gas i = 3, for a diatomic gas i=5
and for a triatomic gas i= 6. In this case for a diatomic and a triatomic gas a strong
bonding between the atoms in the molecule is assumed to be.

From the equation (6.6), taking into consideration the Clapeyron-
Mendeleev equation, we can derive equations for the ideal gas heat capacity at a
constant volume and at a constant pressure:

c [ c I+ 2
= — R’ = R
Vo, P 5 (6.7)

The ratio of specific heats (heat capacities at a constant pressure and

P

C

\

volume) Y= plays a key role in thermodynamics. In particular,besidesit is a

part of Poisson's equation, which governs the adiabatic expansion of gas (the one
that occurs without heat exchange with the environment).

PV 7Y =const. (6.8)
For an ideal gas y can be easily derived from (6.7):
142
Y=—". (6.9)

i
However, the chemical composition of a gas isn’t always identified, which
means that the value of iis unknown in sucha case. Due to this fact such

C
experiments that allow to define the ratio %V for any gases that are close to the

ideal gas by their properties are currently central. One of the easiest ways to

C
determine the ratio %V is the Clement and Desormes' method. In this method

the adiabatic expansion and compression of gas areused.

A gas that was placed into a vessel is experiencing three states consequently.
Each of those states is thus characterized by pressure P,volume Vand temperature
T. The first state has parametersP,, Vi, T1, second — P2, Vy, T2, third — Ps, V3, Ts.

The first state stands for a gas placed in a closed glass vessel; it has room
temperature T; and pressure P; that is slightly greater than atmospheric pressure.

If we combine the vessel with an atmosphere for a short period of time the
adiabatic expansion of gas will take place. The gas pressure will become equal to
atmospheric pressure P,, and temperature T, will decrease due to the rapid gas
expansion. This transition follows the Poisson's equation (6.8), which with the help

11



of Clapeyron-Mendeleev equation can be transformed to the following equation

form
P\ Y
(E) = (T—z) . (6.10)
Because of the heat exchange with the environmentthe gas in a closed vessel
will transfer from the second state to the third. As this occurs, the temperature of

gas and room temperature will become equalized Ts= T;, volume will remain
constant, and pressure P will increase. Such a transition follows the Charles law:

P3_Ts_Tg (6.11)
P, T2 T»
After solving both (6.10) and (6.11) we obtain:
:M_ (6.12)
Inp.—Inp,

In the formula (6.12) according to the conditions of the experiment P, is
atmospheric pressure, and pressures P; and P are greater than P, correspondingly
by a value of hydrostatic pressurein a manometer with the height of h; and h,, so
that P, =P,+pgh; and P3; =P, + pgh,, where p is liquid density.

Since pgh; and pgh; are small values compared to P, then the logarithms of
pressures may be expressed as:

In(p, +pgh1):1nP2(1+p—ghl)zlnP2 +P9ny 6.13)
2 2
In(PZ+pgh2):1npz(l+%;‘2)zlnpz+Pgh _ (6.14)
2 2
After having substituted (6.13) and (6.14) in (6.12), we will obtain:
Y- f}h . (6.15)

Instrument description

The instrument used in this experiment is a glass balloon (fig.6.1) filled withair
and tightly corked. The size of the balloon should be big enough to neglect the
value of changes in the gas volume in the leg of manometer. Two tubes pass
through the cork: one of them is connected to the liquid pressure gage, in other
words — manometer (the liquid inside the manometer is water), another tube is
connected to the combined tap. In one of the orientations (K) the volume of the
balloon is connected to the environment, in another orientation — it is connected to
the rubber bulb or pump. The apertures in the tap and tube connected to the tap K
should allow a quick air-out, as otherwise the process can’t be considered as
adiabatic.

12



The order of work procedure

1. While studying the instrument composition a lot of attention should be
paid to tapK. At the beginning, the tap is in such position that the volume of the
balloon is isolated from the atmosphere and connected to the pump.

2. Using the pump, inflate the air until the difference between pressure inside
manometer h reaches 7-8 cm. Due to the work of compression, caused by
external force, the temperature inside the balloon will slightly increase.
Compressed and heated air inside the balloon will start to cool down to the room
temperature. Within 3-5 minutes, at the moment when liquid levels inside the
manometer will stop changing, write down the difference between liquid levels
inside manometer h.

3. Quickly, using the tap, connect the volume of the balloon to the atmosphere
andcover the exit to the atmosphere at the moment when the levels of liquids inside
the manometer will become equal. If you perform all of the steps quickly, the heat
exchange between the air inside the balloon and the surrounding air won’t occur.
Thus, the adiabatic expansion of air will take place here. The air inside the balloon,
while expanding,does work against the pressure of external forces through its
internal energy. After some time, the air inside the balloon will warm up to the
room temperature and its pressure will increase.Duetothis, the liquid column inside
the manometer attached to the balloon will start to decrease.

4. After the changes in levels of liquid inside the manometer stabilize, calculate
and write down the difference between these levels h,.Repeat the experiment
(pointl1-3) 8 times. Write down the results of measurements in table 6.1.

5. Usingformula (6.15), calculatey for each of the experiments and find their

mean value.
6. Calculate the value of standard deviationS-,~ and relative error . Write
down the results in table 6.1.

7. Write down the final result as the following Y:<Y> * ta,nS<y> ; 0=0, 8.

8. Take thevalueof Student's coefficient U, for a=0,8from the table in the

“Supplement” to work 1.1.

13



Table 6.1

Difference between
N levels inside the (y-<v>)
manometer Y
h, cm h-.,cm
1
2
3
4
5
6
7
8
Lo = 3y,- S(y-<y > -
8 8 2
€= ) . 100% = Zyi ?Y.*Y >)
(1) Nisre L T

The net result:

...................

Answer the following questions:

1. What is the connection between the specific heat capacity and molar heat

capacity?

2. Howmuchgreateris the molar heat capacity at a constant pressure than

molar heat capacity at a constant volume?
3. Explain the first law of thermodynamics.
4. Give a definition of the terms “equilibriumisoprocess” and

process”. Depict them on a thermodynamic diagram.

5. Derive ratio 6.10from ratio 6.8.

“adiabatic

6. How will the late covering of tap K exit influence the result of the

experiment?

14



7. Howdoesthe presence of water vapor in the air inside the balloon influence
the result of the experiment?

Laboratory workNe 1-7. Study of gas laminar flow
through thintubes

Objectives:experimental check of Poiseuille equation; determination of air
viscosity coefficient.

Equipment: capillary, gas meter (flow meter), dehumidifier (desiccator, desiccant),
manometer, stopwatch.

Theoretical basis
Let us consider some steady flow of viscous incompressible liquid (gas) along

the linear cylindrical tube with radius R. Under the small flow velocities we can
observe laminar (layered) flow: the liquid is seemed to be divided into some
layersthat are sliding (slipping) passing each other without intermixing. In this case
the layers are the set of indefinitely thin cylindrical surfaces inserted one into
another with the same axis, and this axis coincides with the tube’s axis.Under the
condition of incompressibility we can assume that the velocity of each layer is
constant. Thus, liquid (gas) flow velocity ©can only depend on the distance r
from the tube’s axis.

Now let’s define hypothetical cylindrical volume of liquid with radius r
andlengthL,as shown on Pic.7.1. The pressure at its ends will be correspondingly
marked as P1iP,. Under the condition of steady flow the force of pressure on the

cylinder F=(P, - P, )7zr2 is balanced by the force of internal friction F, that effects

on the side surface of the cylinder from the external layers of the liquid. Thus, the
condition of the stationarity of the defined (chosen) flow volume is the following:

F- I:mp =0. (7.1)

The internal friction force is calculated (determined) according to the
Newton’s formula:

d_u
dr

Fop =01—/[S, (7.2)

Ywith the view of more evidence we examine liquid while derivation Poiseuille equation, though

all the given above can be applied to the gas flow as well.

15



do
Where:n-liquid (gas) viscosity coefficient);a— velocity (speed) module

gradientthat definesvelocity (speed) changes in directionr (tube radius); S — the
square of the surface of contacting liquid layers.

Pic. 7.1

Velocity (speed) o(r)falls off while distancing from the tube’s axisthat is

do
W < 0,thus force quantity:

do
F =—2zmL|| —2
mp ﬂ-n‘(drj

In this case the condition of stationarityhas the following characteristics (Pic. 7.1):

zr?(P,—P,)+2zmL(dv/dr)=0. (7.3)

P-PR)r?
—( i) +C
4ln ’
where C — integration constant that are calculated (determined, found) by the
boundary conditions of the problem. It is worth mentioning that the velocity must

If we integrate this equation, we can find U(f) =

be equal zero when I' = R |as the liquid ‘sticks’ to the tube’s side; it allows us to
determine C .At the result we have:

u(r):%(Rz—rz)_ (7.4)

Thus, liquid velocity (speed) changes in the squared numbers with the radius
P—P
ant it has its maximum on the tube’s axis where it equalstov(r =0) = ﬁ R?.
Now let’s determine liquid consumptionQ that is the volume which every
second flows through the diametrical (transversal) cross-cut of the tube. The
circular square of the internal radius r and external r + dris flowed every second
by the liquid flow with the volume of dQ = 2zrdro(r). Then the consumption of the

liquid will be:

16



ot n < -
0 2nL

_ Pl_PZ
orQ = el

Formula 7.5 is calledPoiseuille equation and it allows us to experimentally
determine the liquid viscosity (gas).

Poiseuille equation was derived proceeding on the assumption that the flow
of the incompressible liquid (gas) is laminar.But when the flow speed accelerates,
the movement becomes turbulent and the layers migrate. Under the condition of
turbulent movement, the velocity and direction at every point change very quickly
and only the average velocity is kept the same.

The movement character of liquid or gas in the pipe is defined by the
dimensionless Reynolds number:

R* (75

Re =<u>@, (7.6)
N

where <0 >is the average flow velocity, p is the liquid or gas density. In smooth
pipes with the round cut the change from the laminar to the turbulent flow takes
place when Re,,~ 1000.That is why, if we want to apply Poiseuille equation, first
of all, it is necessary to have enough margin for solving inequality Re<
1000.Besides, the experiment should be conducted in such a way that the gas
compression can be neglected. As for the liquid, as a rule,this assumption always
works,but for the gas it is correct only whenpressure differential along the tube
(pipe) is significantly lower than the pressure itself. In our case the gas pressure is
equal to the atmospheric one (103%smwg.)and the pressure differential is ~ 10
smwg., that is ~ 1% of the atmospheric one.

Equation 7.5 is valid for those sections of the tube where flow is steady with
the characteristic (typical) law of speed (velocity) distribution (7.4) along their cut.
Laminar movement of the gas while going from the wide vessel to the tube is set
up not at once but when the gas has passed the following distance:

a~0,2R ‘Re. (7.7)

Poiseuille equation gives reliable results only when the tube’s length is

L >>a. To satisfy this condition we must (have to) use extremely thin tube —
capillary.

To check experimentally Poiseuille equation it is necessary to study
dependence of consumption Q from AP =P, — P, .As a rule for measuring pressure

difference U-like manometer is used. In this case AP =p,gAh, where p,is liquid

17



density in the manometer; Ahis the difference of its levels in the manometer’s
legs.
Having applied Poiseuille equation we will have:

R4
= Ah
Q (ﬂpog 8nLj : (7.8)gas

As we can see in case of laminar flow dependence Q(Ah)has linear
character.Whenturbulenceoccurs, the linearity is disturbed (broken down): pressure
differentialthat is proportional to Ahrises quicker than the consumption (pic.7.2).

The angular coefficient of the linear section of the graph:
4

R
k = _
7TPy9 8nL (7-9)

By this coefficient we can define gas viscosity n.The point of the graphic bend

gives the critical meaning (value) of numberRe,, ,which corresponds to the
transition from laminar to turbulent flow. If on the section of flow laminarity the

experimental values (Q,Ah)(taking into account the experiment error) fall on a
straight line, then this proves the validity of Poiseuille equation.

Q #
o,
e
h: >
|
|
|
|
|
|
Jlaminapua Teyis Typ6ynenrna Tevin Ah
(Re < 1000)
Pic 7.2

Experimental installation description

Gas (flow) meter used in this work is a glass vessel (pic.7.3) partially filled
with water and thoroughly covered. Water from the gas meter can flow (flows) into
measuring glass 2 after turning on tap K. Air in the gas meter combines with the
atmosphere by means of capillary tube 3. Pressure differential AP at the capillary
tube ends is measured by manometer 4 filled with water.

The order of work fulfillment ‘%{ v

[ ||

|
I1l|I|I
L

Yo
|
?

1. Prepare the installation for the
measuring procedures. While turning on tap K
slowly, watch carefully the manometer’s

T
lll!ﬂ .n‘I
i
~

{
I||

IJ

IS
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indicators. Adjust the water run-off from the gas meter by tap K in such a way that
Ah =1cy . Measure air discharge (consumption) Q .To do this you have to measure
time t by the stopwatch V=250mlwater. Air discharge (consumption) you have to

define according to equationQ =\%. It is better to measure volume Vnot at once

but in some time after the beginning of water running-out when the difference of
liquid levels in the manometer’s leg becomes stable. Pic.7.3

2. Deliver the same measuring gradually increasing the pressure differences.
For example with the step of 0,5 cm.w.t., that is define the experimental

dependence Q(Ah), thatmust have not less than 10 —15 experimental points. Then
write down the results in table 7.1
3. Write down the equipment parametersR, L ,p,indicated atthe working

place as well as the air temperature in the room. Air density p = 1,293 kg/m®.

Experiment data analysis
1. On the squared paper build dependence graph Q(Ah).

2. According to angular coefficientkzp .of the linear section of the graph define air

viscosity 1 (equation 7.9).
3. With equation 7.6 determine the value of number Refor the air of transition
between laminar and turbulent flows. The average flow speed is determined by the

following equation:<v>=Q/S, . Where Siisthe square of the capillary

diametrical cut. Compare your result with the critical value of Reynolds
numberRe,,given above.
4. Deliver the correlation analysis (processing) of those experimental dataQ(ah)

thatcorrespond to the laminar flow section (Appendix "Correlation analysis").
Draw the conclusion on the correctness of Poiseuille equation based on the

laboratory work results. Compare values of angular coeﬁicientkepreceived
graphically with the result obtained under the calculation using the method of the

smallest squares k,@p .Define M using k,@p :

Questions for self-control
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1. Viscosity coefficient. Explain Newton’s formula for the internal friction force.

2. Draw out Poiseuille equation.

3. Laminar and turbulent flow.Reynolds number.

4. Analyze the conditions of the Poiseuilleequationcorrectness.

5. In which way (How) can we support the experimental check of Poiseuille
equation?

6. How are air viscosity coefficient and critical value of Reynolds numberdefined
in this laboratory work?

7. Experimental equipment, what the elements are used for, measurement
techniques (methods)?

Calculations parameters

Capillary radiusR = ...........ccoe.ee, CapillarylengthL =.......c..cc.co.....
Water densitypy = ...cooveeveennnnene, Air temperature'[i C=in,
TaoOmumsa 7.1

Test t, s Q, ml/s Q, mds Ah, m
number

1

2

3

4

5

6

7

8

Angular coefficients K.,Takx,p calculation (defining).a) According the graph
0) According MHK

kzp = AQ/[A(Ah)] T kKOp PP
(We designate) Let’s designate tp,gR* /8L = const =

.............................................

Calculation of viscosity coefficient n

1)with the graph angular coefficient 2) with correlation coefficientk; .
N =const/Ky =i N =const/Kys =i
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Calculation (Determination) of Reynolds humber
Re=<0>Rp/M=(Q/S,) X (RP/M) Zrreiiririiiiirsrrs s

Appendix
Correlation analysis.The smallest squares method.

While solving numerous scientific and technical problems it often turns out to
be important to describe some functional dependence between two measured
quantities x, y. If values)x, yare measured accurately enough, then each value
xcorresponds to only one (practically completely defined) value y, so in such a
case experimental measurement gives us some random data about the dependence
under the consideration.

Then for the description we can use some methods of mathematical analysis.
For example, we can buildinterpolating Lagrange polynomial. It acquires in the
determined pointsx; (i = 1, 2,n- measurement numbers) determined values yiand
thus we can try to approximatethe dependence under the consideration by the
power function or the exponential one, the cosine function, etc.

But in practice we sometimes encounter the situation when experimental data
have considerable uncontrolled variations, and consequently we cannot state that
each value of xcorrespond only one determinedvalue of y.This spread can be the
result of the measurement errors or can be caused by the statistic nature of the
phenomenon under the study (the classical example is the measuring of the
radioactive background intensity).

In some cases the spread is so considerable that
44 i o the displacement of points Ai(x; yi)on the plane
L e X,yseemto be absolutely chaotic. But this does not
exclude that the displacement of points4;hassome
regularity. Let’s consider as an example Pic. 1. The
points shown in this picture are dispersed almost
uniformly in some rather wide area. But it can be easily
seen that in average bigger x;are corresponded to
bigger yi.
This trend is depicted by the solid line on the same
picture.Obviously, this line explainsthe correlation
between xandyabstracting the details of A points displacement. These average
dependences are called statistic or correlational contrary to the mentioned above
functional ones.
The description of such dependences needs solving of two problems:
1) to define the degree of dependence, 2) to determine the force power
betweenxandy. We are not going to consider in details the first question, we will
assume that we have managed to find some functiony =f (x)thatcan be applied for
the description of correlation between xandy. In this
case it is often worth linearize the proposed
ti dependency y =f (x), that is to bring it to the linear one.

/?‘/l/t In simple functions it is quite easily to do it.For
B
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example, to do the degree function y =ax"linear you have to logarithm it with any
basis(for example €), then this dependence will be of this kindlny = Ina + nelnx,
linearrelatively to the variables Inyandinx.Indicating (indicated) dependence y =
ca“is also linearized with the help of taking logs: Iny = InC + xInaand we receive
the linear dependency in variables Inyandxetc. Now let’s consider that the
initialvariables x, yare already modified in such a way that the dependence under
measurement has linear form:
y=kx+Db. (1)

But our choice of dependence in the form of 1 does not determine its values of
parameters k,b. It is obviously desirable to select parameters K,bin
themostoptimalway, and thus they will provide the best adjustment of correlation
dependence 1 to points Puc.2 Ai (Xi,yi). To do this, as a rule, the
method of the smallest squares (MHK) is used. According to this methodthe sum of
distances squares (on the vertical) of Aipoints from the straight line (Pic.2) is taken
as the Fdeviation of Aipoints from the straight line (1):

F=X | AiBi |2 =X [yi- (kxi+ b)]?

(here and later signZmeansadding for ifrom 1ton). ValueFis function of k, b:
F=F(k, b).

Parameters kandbare selected with value Fto beminimal. Writing down the
conditions of function F(k,b)extremum it is easy to prove that this extremum

corresponds to the minimum: % =2k) X+ 20 X - 20X, Y, =0;

oF
szkzXﬁan—zZyi:o.

Thus, we have the system of two equations relatively to k, b, from which we
will find

k= ”Z Xi yi N (Z Xi)(z y,) ,
Y X - (X))

b 9 X.z)(z yl) QX)X Y.) ()
Ex)-E x)

: : : )
If we introducedesignations _ ___ Iy <Y =23y, = x’ =13

n

2

1 1 > 2
<y2>:EZyi2 : <Xy>:HZXiyi’ Si=<x>—<x> ,

Sl=<y’s-<y > ©, Sxy:<xy>—<x><y>,

Then equation 2for parametersk, bandequation 1 can be written in this
symmetricalform:
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S S<y>—s.<x> = (3)
s S:

y—<y>:&(x—<x>)' ()
S

Now let’s consider the question of force ordegree of density dependence (1).
This notion is illustrated by pic.3.It is obvious that in pic.3a the linear dependence
between xandyis maximally dense (functional); inpic.38 the points spread
ischaoticand there isno obvious connection between xandybecause the dependence
force presented as the straight line equals to zero; in pic.36 the intermediate case is
depicted.

Thus, the degree of correlation density is an important quality that definesthe
practical value of dependence: if the correlation density is big, then applying it we
can assumeyof the given xquite accurately; otherwise, the accuracy of the
assumption (prognosis) is not so important and we can assume according to the
given xonly the average value of y.

In mathematical statistics the degree of correlation density is usually
characterized by correlation coefficient which is defined by the following:

= 2% (5)

Sxy
whereris dimensionless value. We can demonstrate that rchanges in the limits from
—1 to +1. Ifx;andy:are connected by the linear dependence (1), then/r/ =1 (prove
this independently, without assistance). If xandyare statistically independent, then
while calculating the average <xy>, values xandycan be averaged independently
and we will have:
<XYy>a<X><y>, 5,20, r=0.

r

|)=1 0<|t|<4
AH .

e
e

N .25 TR
Q) &)
Puc. 3.
If ngoes toamthenthese approximate equalities become accurate and
thecorresponding rational correlation coefficient

riem=limrwhennapproachingeo,turns into zero. In the intermediate case
whenx;andy:are bound by the nonlinear dependence or when we have some data
spread, then coefficientrhas the intermediate value: 0</r/<l (seepic. 3). Thus,
Ir/isthe proof of how much the correlation between xandyis close to the linear: both
in relation to the degree of data spread and to the nonlinearity of this correlation;
the closer /r/ tol, the closer is the connection between xandyto the linear.
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Let’s determine which value /r/is to be considered sufficient for the
statistically proved derivation on the existence of the linear correlation dependency
between xandy. For this we will consider the so-calledstatistical hypothesis Ho:
riem.=0, it means that we study hypothesis assumption that ri.».=0.Performing this
assumption means that xandyare not bound by the correlation dependency, and its
refutation means that there is no proof to neglect the existence of such
dependence.Thus while analyzing experimental data, as a rule, it is known not
riemOUt ONly optional correlation coefficient r ; with this optional coefficient we
can examine performing or not performing hypothesis Hoonlystatistically, that is
with some predetermined probability confidence o (most often it is taken a= 0,95).
For this it is necessary to know the statistic distribution of value r. As it is shown
vn-2
V1-22
Student’s spread with n-2degrees of freedom (seeitems1-4 in Literature). From this
we can conclude that under the predetermined probability of confidence value
RiemiS In the interval Riem = RE to; n2. We are interested in value Rien = 0 (that
corresponds tori.»= 0). It enters this interval under the fulfillment of the
condition/R/<t,; »-2. If the opposite condition is fulfilled /R/>t,; »-2, the true value
Ricm(consequently rien as well) under the determined degree of confidence
probability it is impossible to consider it equal to zero and hypothesis Ho should be
neglected. Value 1-o0 = 0,05is called error probability or significance degree, and
o=0,95 is called statistic trustworthiness. So, if we use inequality /R/>ty; s-2
,thenwith the statistictrustworthiness0,95 (or 95%) we can state that xandyare
bound by the correlation dependence. To simplify the examination of this
inequality it is convenient to include intermediate value Randto apply it in the form
of inequality for value r (do these calculations yourself); then we will have:

in mathematical statistics, correlated with it value R=r

Is described by

tO 95;n—-2
Iy 1> ey = =, T = FT7:m
r rn rﬂ ’1+T2 n _ 2
Necessary for calculating values tcoefficient valuesy . are given in table 1.

Table 1
Numbern 5 6 7 8 9 10 11 12

t0,95;n—2

3,18 2,78 257 1245 236 [231 |226 |[2,23
Numbern |13 14 15 17 18 20 30 o0

220 (218 |216 |213 212 (2,10 |2,04 |1,96

t0,95;n—2

Notice, that in the given Appendix the simplest scheme of correlation analysis is
given. For more accurate analysis systematic errors should be taken into account
calculating § , § , § _according to theequations of the selected average (that is

fromn-1 instead ofnunder the sign of square root)etc. But all these complications
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are either not so important in most physical or engineering spheres of correlation
analysis application, or their description would be inappropriate in these
methodological instructions.

And finally, we give the short scheme of the correlation analysis of
experimental data.
With the experimental values of . and ¥y, the following values are calculated:

-1 _ 1 _ 1
<x 2T S22 X Sy 2T QY <x'>= HZXiZ’
2 _ 1 2 1 .
<y >= XY, <xy > XY Si=<xo<x>

2
Si:<y >_<y>2’ Sxy=<xy>_<x><y>'
1. Parameters of correlation dependence and correlation coefficient are

determined:
S, Si<y>-S,<x> S,
kogr D S’ T ss)

2. According to the table ¢ . isdetermined and value ;. is defined:

—_ T e — t0.95;n—2

N N
3. Inequality performance / r/ >rjis checked. Under the condition of this
inequality fulfillment it is concluded that there is the existence of (with 95%

probability)the linear dependence between xand j, . When it is not fulfilled
we conclude that there is no linear dependence.While calculating it is helpful

to use table 2:
Table 2.

2 2

Xi

Vi

<x>=

<X>=

<Xy >=

<y>=

<y >=
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Laboratory workNe 1-9. StudyofBoltzmann
distribution

Objectives: experimental verification of Boltzmann distribution for small particles
weighed in liquid and evaluation of Boltzmann constant.

Tools and equipment:narrow cylindrical vessel with transparent liquid inside; small
particles, weighed in that liquid; light source; photodetector; photocurrent meter;
scale ruler.

Theoretical basis

At the thermal equilibrium state distribution of equal particles by velocity
and coordinates is determined only by particles’ energy E and system’s temperature
T (where T is absolute temperature, measured in Kelvin). In order to write down
this distribution, which is called Maxwell-Boltzmann distribution, let’s introduce a
system of coordinatesx, y, z, that provides the basis for determination of particle’s
position. We will define the particle’s velocity by componentsv,, vy, v.and axes x, y,
Z.

In this case the distribution can be written as:

_E
dNyy.z, v, v, = A8 ¥Tdx dy dz dv,dv,dv. (9.2)
wherednxly,zlvx,vy,vZ —

amountofthoseparticleswhosecoordinateslieintherangefromx, y, ztox+dx, y-+dy,
z+dz, andvelocitycomponentslieintherangefromv. , v, , v.tov. + dv., v, + dv,,

v, +dv,.4— normalizingmultiplier (the typeofwhichwewon’tspecify), k— constant,

which is termed as Boltzmann constant, in the Si-system, k= 1,38-102% J/K, E-
particle’s energythat depends on its coordinate and velocity.
Ifweareinterestedinthe distribution dn)gy,Z ofparticlesonlybytheircoordinates,

while their velocities aren’t significant to us, we will have to integrate the equation
(9.1)with respect to the velocities. Inordertoperform this task, weshould
assumethatexternalforces,  whichaffect  the  particles,  areconservative.
Let’swritedownenergyEasasum of kinetic and potential energies:
E =Esvov,v)+Ei(X%Y.2)

and insert (plug) this distribution into the formula (9.1), after splitting up those
terms of this equation that depend on the coordinates and velocity components:

_Ei (x,y,2) _Ee(vkvyvz)
~Ae KT dx dy dz-e KT dv, dvy dvs

Let’s perform the integration with respect to all of the velocities. In other words,
let’s take a triple integral with respect to v., v, , v. in the range from -«t0 +o:

AN,y zvvy.v
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dnx,y,z :J T Idnx,y,z,vx,vy,vz =
'e)

_ |( y _EBa(vx,vy.vz)

= Ae dxdydz I I I e KT dv,dv,dv,.

Thetripleintegralfromtherightsideofthisformuladoesn’t dependoncoordinates;
so let’s introduce it to the normalizing multiplier (constant) 4and rewrite the
integration result as:

B (x,y.,2)

dn,,,=A-e ¥ dxdydz. 9.2)

where4®— new normalizing constant that equals to:
Ee (Vx,Vy,Vz)

=Aj[j e K dv.dv,dv.
andgn, ,, stands for the amount of particles with random velocities. The

coordinates lie in the range fromx, y, zto x+dx, y+dy, z+dz The distribution
expressed in formula (9.2) is called Boltzmann distribution. Let’s apply the
distribution (9.2) to an ensemble of equal particles with mass mweighed in liquid
at temperature T. Let’s assume, that the liquid is poured into a narrow vertical

sz vessel. We will mark the position of particle in the liquid
- column by height hcounted from the vessel’sbottom. Let’s
h place the origin of Cartesian coordinate system X, y, z at the

< ™> vessel’s bottom. Also, let’s direct axis zupward vertically (z

= h), while axes x and y will be directed horizontally, as
shown in fig. 9.1.
The particles are affected by the force F = FT — FA,

which equals to the difference between the force of gravity
and Archimedes' force:
F, =mg=ptg. (o — particle’s density, T - particle’s volume, g - acceleration
of gravity);
F,-p'tg (p*- density of the liquid).

Aslongasforce F’ isconstant, it is conservative and corresponds to the
potential energy:

E, =F-z=1(p-p")gh

Thus, distribution (9.2) will acquire the following form:

Puc. 1

dn X,V,Z A e dX dy dZ - (9.3)
Boltzmanndistributionistrueforanyparticles, thus,

itcanbeappliedtoheavyparticlesaswell. Ifwetakegrainsofsandin the capacity ofas
suchparticles, obviously, theywillplacethemselvesinacertainlayer near the vessel’s
bottom. That would This will be the resultof Boltzmann distribution, because
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heavy particles mean high level of potential energy. The value of this potential
energy would be will be so big (E; >>KkT ), that the exponent index in formula

(9.2) will change very rapidly with the height, and beyond the layer of sand grains
the distribution function (9.2) almost equals to zero.

In order to elude precipitation of heavy particles at the bottom of vessel and
to achieve distribution of heavy particles within a thick layer, it is required that
their potential energy must be quite small. It can be achieved by placing those
particles in a liquid with such density that is close to the density of particles’
material. To make this effect noticeable, one should take small-sized particles.

Let’s introduce a variable n, which stands for volumetric density of particles

and equals to the amount of particles per unit volume or to the ratio dnxyy%v :

between the amount of particles dn,,, in an elementary volume

dV = dxdydzand the value of this volume. In this case, formula 9.3 after

dividing by /7 can be rewritten in this form:
_t(p-pH)gh
n(h) = A'e KT (9.4)
Let’s find the value of A4'. In order to do that, let’s introduce a value no— the
density of particles near the bottom of vessel. If we consider that in formula 9.4
h=0,we will obtain 4=n,_Thus, the distribution of particles density with height h

should be written in the final form:
_T(p-phgh

nth) =nee kT . (9.5)
ThisformulaisthedirectcorollaryofBoltzmanndistribution, thus,
itsconfirmationwill ~meanthe experimental confirmation of Boltzmann
distribution.Inordertoperformsuchconfirmation,  weoughttouseoneoftheparticles’
density determinationmethodsand examine the measured density height-
dependency.

In this laboratory work the optical method is used to determine particles’
density. The principle of this method lies in the fact that the more particles there
will be in a certain liquid, the less the intensity of light, that passes through a
transparent layer of this liquid with opaque particles inside
will be. This happens due to the absorption and dispersion o~

of light by the particles. Thus, through this decrease of = g
light intensity we can identify particles’ density. Due to ol

the fact, that this particles density determination method is =

indirect (we don’t determine the density itself, instead we T -
determine the light intensity, which is connected to the W
density) we require a certain formula, that depicts the 0 £ fxdt L

connection between the particles’ density nand the light

intensity / . For this purpose, let’s have a look at fig.9.2a. In this picture we can see
a parallel light beam passing through a flat layer of liquid with particles inside. The
layer itself is located between two transparent walls.
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CBiTJ‘IaI 'T'V\-r ,
a) S D b)
4 Fig.9.2
PiAMHA 3 YacTMHKaMV I imp standsfortheintensityoflight
thatis impinging, / stands for the intensity of

light, that passed through. First of all, the light has to pass through the first wall;
afterwards its intensity decreases due to the partial retro reflection (reflection in
backward direction), possible dispersion in different directions and some
absorptionby material in wall. Let’sintroducevalueo;, whichwillstandforthe
correspondent attenuation coefficient; then, the intensity of light, that entered the

liquid, will be equal to a - ]imp. In order to calculate the attenuation coefficient in

the liquid let’s introduce coordinate £ , which we will count following the normal
line from the first wall to the second wall (fig.9.2, b). Let’s regard the light

intensity as a coordinate function — 7 (£ ). Obviously,/ (0) = as-limp. On a short
path length from ¢ to ¢ + d/¢ the light disperses on particles that are located
within a volume, shown by hatching (fig. 9.2, b). The size of this volume equals
S - dv (S- cross-sectional area of the light beam), and the amount of particles,
located within this volume equals toz - .S g¢ ; this amount is pretty small due to
the small value of ¢/ . During the light dispersion over a single particle its intensity
I decreases by a small portion, which we will express withjJaser. Thus, the
intensity of dispersed light will be equal to /¢ it is obvious, that during the light
dispersion by nSd/ particles, that scarcely overlap each other in layer ¢¢ (due
to the fact that the amount of particles is quite small), the total intensity of
dispersed light will be equal to the result of multiplication of light intensity,

dispersed by a single particle, by the amount of particles: To-nSdl. This
value is nothing but a decrease of light intensityon the interval J¢ :

dl = —IonSd/t, (9.6)
(sign “minus” is present here because / decreases with the increase of £, in other

words,dI < 0, if d¢ > 0). Ratio (9.6) is a differential equation with variables / f
These variables are easy to separate. In order to do that, let’s divide both parts of

ratio (9.6) by / :
dl
By,
] V4

where ¥ =omS.

After integrating both parts of this equation we will obtain:
Inl =—yl+C,
where C is integration constant. From here we find the dependency of / on /:
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2()=Nt-e 2, C' =e".
Under the condition /(0) = ¢/ imp, while ¢ =0 we find that C' = ¢ Jimp, and
from here we obtain:
I1(0)=alme?.
This formula governs the exponential attenuation of light intensity during its

passage through a liquid. Let’s use this formula in order to determine the light
intensity near the inner edge of the second wall. In this case/ = L (L - liquid

layer thickness): I(L)=aylimp e~ 2.
The light needs to pass through the second wall as well; upon that, the light

loses some of its intensity again. Let’s express the correspondent attenuation
coefficient through ¢, and, with that, obtain the final equation for the intensity of

light that passed through: I =coalime™
Let’s express this formula through the dependency of 7 on n:
2=2 /N 9.7)
0 , :

where? | =, at,? imp, ﬂ = aSL.The physical sense of value I, isn’t hard to
determine: if we consider that in this formula n=0,

. 1 we obtain I, = 1(0). Therefore, |, stands for the
e intensity of light that passed through a layer of pure
M (particle-free) liquid.

. In order to measure the intensity of light, that
» passed through, we can use light emission photo

: . detector, connected to a measuring instrument, for
Lo .~ instance, micro ammeter (fig. 9.2 a). Let’s consider
¢ y poa1] instrumental indication Iproportional to the light
o Puc. 3 intensity / . Let’s introduce a correspondent
' conversion coefficientd .
Fig. 9.3

If Io—al,, I=al- instrumental indications, that correspond to the
intensities 2_and /. After multiplying both sides of equation (9.7) by @, we will

obtain the final formula, that connects Iand n:
I=1,e " (9.8)
From here we obtain the following ratio:

_1,.1,.
n_Bén I

If we put n in formula (9.5), we obtain:

_1(p-pH)gh
kT

Lo _ Bnge

fnT
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This dependency can be easily expressed in the form that is linear in h. In
order to do that, let’s take the logarithm of this ratio:

énénLIlzéano —ﬂp—l'(pT—lm. (9.9)

I
Therefore, the graph representing dependency of /n/n —= on h (fig.9.3) should
I

take the form of a straight line with a slope ratio y:g%'_‘l?—llg. After determining

Y, as shown in fig.9.3, we can find Boltzmann constant:

K :i%-%llg_ (9.10)

Experimental apparatus description

A simplified scheme of the apparatus is shown in fig.9.4.

m/z»
|l
. { 7
] by
- Il
T P S '
1 1l IT e
1L(% W g ) )‘A
. y; I' ;.L T '/ L
N L L
] 1 ﬁlE
1 - - |
17 N I I A
1
R GRS Puc. 4

Fig.9.4

1- vessel filled with liquid, that contains small particles inside, 2-micrometer
screw, 3 - handle for micro meter screw rotation, 4-scale, 5 - pointer, 6 - light
source, 7 - photo detector, 8 - metallic frame, b - power source.

Light source and photo detector (in order to simplify the scheme, photo
detector is shown as a photocell) are fixed on the metallic frame 8. During the
rotation of handle 3 for micro meter screw 2 — metallic frame dislocation occurs.
During this process we can examine the dependency of photocurrent 7 on height h.
Height h should be measured with the help of scale 4 against pointer 5. At the top
of the vessel the particles are nearly absent, which allows to detect 7,, which is
proportional to the intensity of light that passed through the layer of pure liquid.

The order of work procedure

1. Turn on and adjust the experimental apparatus. Carry out all of the
measurements, indicated in the instructions, which are located on the work table.
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2. Write down the results of measurements in table 9.1. Also, write down in the
protocol record the temperature of surrounding environment t° (in °C) and

experimental apparatus parameters: liquid density p', particles density © and
particles diameter d.

Data analysis

1. Calculate the double natural logarithm of I%. Write down the calculation

results in table 9.1. 1, — the biggest value of current I .
2. Using data in from table plot a graph (on a cross-section paper), that depicts the
dependency of |nIn I% on h. In other words, plot the experimental points and,

using a ruler, draw a straight line as close as possible to all of the experimental
points.
3. Calculate the value of the slope ratio Y of a straight line using formula 9.10 and

find the value of Boltzmann constant (T =t° + 273 K, g = 9,8 m/s?).

4. Apply the formulas from the supplemental document “correlation analysis”
(laboratory work 1-7) to the experimental data obtained in this laboratory work and
make conclusions about the validity of Boltzmann distribution.

Questions to answer

1. What is the particle coordinates and (or) velocity distribution function? Indicate
the dimension of this distribution function.

2. Write down Boltzmann distribution.

3. Derive the formula for the distribution of particles’ density with height.

4. Derive the law for the decrease of light intensity in an opaque liquid.

5. What is the main point of the liquid density determination method used in this
laboratory work?

6. How is Boltzmann distribution verified in this laboratory work?

7. How can Boltzmann constant be determined using experimental data from this
laboratory work?

8. Explain, why we should use small particles, the density of which is close to the
liquid density in order to verify Boltzmann distribution.

9. Derive the formula for the height h, at which particles density decreases by

(@) - 50%; (b) - 95%; (c) - 99,9% compared to n, In case (b) calculate the mass and
size of sand grains in water, considering p=2p", needed to obtain the column of

weighed particles with the height h= 10 cm.

Table 9. 1.

Height h, 10°m
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