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Abstract The paper is devoted to the games of approach. We consider a controlled 5

object whose dynamics is described by the linear differential system with pure 6

time delay or the differential-difference system with commutative matrices in 7

Euclidean space. The approaches to the solutions of these problems are proposed 8

which based on the Method of Resolving Functions and the First Direct Method 9

of L.S. Pontryagin. The guaranteed times of the game termination are found, and 10

corresponding control laws are constructed. The results are illustrated by a model 11

example. 12

26.1 Introduction 13

We consider the game problems of approach, which are central to the theory of 14

conflict-controlled processes. They were the basis of the emergence of the theory, 15

are the most informative and of considerable interest to researchers. The impetus for 16

their development was given by real applications in economics, space technology, 17

military affairs, biology, medicine, etc. 18

Conflict-controlled processes is a section of the mathematical control theory 19

which is studying the manipulation of moving objects operated under in conditions 20

of conflict and uncertainty. The evolution of an object can be described by 21

systems of difference, ordinary differential, differential-difference, integral, integro- 22

differential equations, systems of equations with distributed parameters, systems 23

of equations with fractional derivatives, impulse influences and their various 24

combinations (hybrid systems). 25

The term differential game is used for games in which the dynamics of an 26

object is described by a system of ordinary differential equations. If the process is 27

described by more complicated equations, possessing the semigroup property, then 28
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the term dynamic games is used. Finally, conflict-controlled processes are the most 29

common term for determining the range of issues relating to game problems. 30

There are two types of dynamic games: games of degree and games of kind (see 31

[1]). On the trajectory of the dynamical system, there is a function that depends on 32

the initial state and on the player’s control. In games of the first type, the goal of the 33

first player is to minimize this function, set on the system trajectories, the purpose 34

of the other one is to maximize it. In games of the second type, this functionality 35

is the time of the exit of the trajectory of an object to a given terminal set, and the 36

problem is to analyze the possibility of the pursuit of a trajectory of a system to a 37

terminal set (the game of approach) or the deviation of the trap escape from this set 38

(the deviation game). 39

The well-known pursuit strategies were mostly designed for military purposes. In 40

practice, the rule of positional pursuit (see Fig. 26.1) and the rule of parallel pursuit 41

(see Fig. 26.2) are widely used. 42

In the theory of differential games, along with the Pontryagin-Pshenichny’s 43

backward procedures (see [2, 3]), Krasovskii rule of extreme aiming (see [4]) and 44

Isaacs’s ideology (see [1]), there exist effective methods that constitutes share a 45

separate direction. 46

Fig. 26.1 Positional pursuit
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Fig. 26.2 Parallel pursuit
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These are the First Direct Method of L.S. Pontryagin and the Method of Resolv- 47

ing Functions (see [5]). They are combined by the general principle of constructing 48

controls of the pursuer on the basis of the Filippov-Castain multidimensional choice 49

theorem (see [6]) and they provide a theoretical justification for the rule of parallel 50

pursuit (see Fig. 26.2). 51

In this paper, the Method of Resolving Functions is chosen as the main tool 52

for research, widely used to study conflict-controlled processes of various nature 53

(see [5, 7]). The processes with fractional derivatives are studied in (see [8]), game 54

problems of successive convergence are discussed in (see [9]), a general scheme of 55

the method of resolving functions is given in (see [7]), the applied problem of soft 56

meeting is solved in (see [10]), the nonstationary problems are considered in (see 57

[11–14]), a variant of the matrix resolving functions are proposed in (see [15]), an 58

approach games problem under the failure of controlling devices are considered in 59

(see [16, 17]), and in (see [18, 19]) the cases of integral constraints on control are 60

examined. 61

The future of many processes depends not only on the present state, but is also 62

significantly determined by the entire prehistory. Numerous problems in the theory 63

of automatic control, engineering, mechanics, radiophysics, biology, economics are 64

described by differential equations with delay. For example, transport delay usually 65

occurs in systems in which matter, energy or signals are transmitted over a distance 66

(see [20]). In control systems, where one of the links is a person, the delay in 67

the reaction of a person is important in constructing a mathematical model of the 68

entire system. Distributed time delay occurs in the modeling of feeding systems 69

and combustion chambers in a liquid monopropellant rocket motor with pressure 70

feeding (see [21]). Great contribution to the development of these directions is made 71

by Bellman R., Cooke K., Lunel S.M.V., Mitropolskii U.A., Myshkis A.D., Norkin 72

S.B., Hale J.C., Azbelev N.V., Maksimov V.P., Rakhmatulina L.F. and others. 73

In (see [22–25]) the modification of the Method of Resolving Function for 74

the differential-difference pursuit games is described, pursuit differential-difference 75

games of approach with non-fixed time are considered in (see [26, 27]), system 76

with time-varying delay is considered in (see [28]), in (see [29, 30]) the pursuit 77

games with differential-difference equations of a neutral type are studied, an analytic 78

approach based on the Method of Resolving Functions to study the differential- 79

difference games of approach with commutative matrices is suggested in (see [31]), 80

and the differential-difference games of approach for objects with different inertial 81

are proposed in (see [32, 33]). 82

An attractive side of the Method of Resolving Functions is the fact that it allows 83

us to effectively use modern technology of set-valued mappings and their selectors 84

in the substantiation of game constructions and to obtain meaningful results on their 85

basis (see [5]). 86

For dynamical systems whose evolution is described by differential-difference 87

system with a cylindrical terminal set under the condition of L.S. Pontryagin 88

introduces a resolving function, through which the game’s end time is determined. 89

The peculiarity of the basic scheme of the method is the fact that the time of the 90
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end of the game depends on a selector, the choice of which is in the power of the 91

pursuer. 92

The resolving function characterizes the course of the game. When, at some point 93

in time, the integral from it becomes a unit, this means that the trajectory falls onto 94

the terminal set. Sufficient conditions for solvability of the problem of approach 95

with a terminal set are provided. The pursuit process is divided into two stages. 96

On the first one [0, t∗), where t∗ is the moment of switching, the Method of 97

Resolving Functions with using by the pursuer at the time t of the entire run-time 98

control prehistory vt (·) work. When at the instant t∗ the integral of the resolving 99

function turns into unity, the process of pursuit is switched to the First Direct 100

Method of L.S. Pontryagin which is realized within the class of countercontrols 101

in quasistrategy. In other words, from the moment of switching to the calculated 102

moment, the ending of the game “stretches” time, and, in this area, the resolving 103

function is considered to be zero, since it does not make any sense to accumulate it. 104

26.2 Differential-Difference Games of Approach with 105

Commutative Matrices 106

Let Rn be an Euclidean space of points z = (z1, . . . , zn) and K (Rn) be a set of 107

nonempty compacts in R
n. 108

We consider the problem of approach for the system of differential-difference 109

equations of retarded type (see [34–36]): 110

ż (t) = Az (t) + Bz (t − τ ) + φ (u , v) , z ∈ R
n , u ∈ U , v ∈ V , (26.1)

where A and B are square constant matrices of order n; U, V ∈ K (Rn); φ : U × 111

V → R
n, is jointly continuous in its variables; τ = const > 0 . 112

The phase vector consists of geometric coordinates, velocities and accelerations 113

of the pursuer and the evader. 114

Let z (t) be a solution of Eq. (26.1) under the initial condition 115

z (t) = z0 (t) , −τ ≤ t ≤ 0 , (26.2)

where function z0 (t) is absolutely continuous on [−τ , 0] . 116

The piece of the trajectory zt ( · ), where 117

zt ( · ) = { z (t + s) , −τ ≤ s ≤ 0} 118

will be referred to as the state of system (26.1) at the moment t . 119
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Definition 26.1 (See [37, 38]) For each k = 1, 2, . . ., the time-delay exponential is 120

defined as follows 121

expτ {B, t} =

⎧
⎪⎨

⎪⎩

Θ, −∞ < t < −τ ;
I, −τ ≤ t < 0;
I + B t

1! + B2 (t−τ )2

2! + · · · + Bk (t−(k−1)τ )k

k! , (k − 1) τ ≤ t ≤ kτ,

122

where Θ is a zero matrix. 123

Lemma 26.1 (See [37, 38]) Let z (t) be a continuous solution to the system (26.1) 124

with commutative matrices A and B under the initial condition in (26.2). Then, 125

z (t) = exp{A (t + τ )}expτ {B1, t − τ }z0 (−τ )

+
∫ 0

−τ

exp{A (t − τ )}expτ {B1, t − τ − s}[ż0 (s) − Az0 (s)]ds

+
∫ t

0
exp{A (t − τ − s)}expτ {B1, t − τ − s}φ (u (s) , v (s)) ds,

or, in another form, 126

z (t) = F (t) a +
∫ 0

−τ

F (t − τ − s) b (s) ds

+
∫ t

0
F (t − τ − s) φ (u (s) , v (s)) ds,

where we denote 127

a = exp{Aτ }z0 (−τ ) , b (t) = exp{Aτ }[ż0 (t) − Az0 (t)],

and matrix 128

F (t) = exp{At}expτ{B1, t}, t ≥ 0, B1 = exp{−Aτ }B,

is a solution to the similar system 129

ż (t) = Az (t) + Bz (t − τ )

130
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under the initial condition 131

F (t) ≡ exp{At}, −τ ≤ t ≤ 0.

Let us examine the differential-difference system (see [31]) as an example: 132

ż (t) = Az (t) + Bz (t − τ ) + u (t) − v (t) , z ∈ R
2n,

where 133

A =
(

I 0
0 0

)

, B =
(

0 0
0 I

)

,

0 is a zero matrix, I is a unit matrix of order n, 134

U =
{(

−u (t)

0

)

: u ∈ R
n, ||u|| ≤ 2

}

, V =
{(

0
−v (t)

)

: v ∈ R
n, ||v|| ≤ 1

}

.

The initial condition is equal to 135

z0 (t) =
(
z0

1 (t) , z0
2 (t)

)
, −1 ≤ t ≤ 0. 136

We observe that matrices A and B are commutative, and AB = BA = 137

Θ, An = A, Bn = B. 138

From Lemma 26.1, we see that the functional matrix F(t) is a solution to the 139

similar system 140

(
F11 (t) F12 (t)

F21 (t) F22 (t)

)

⊗ I =
(

I 0
0 0

)

·
(

F11 (t) F12 (t)

F21 (t) F22 (t)

)

⊗ I +
(

0 0
0 I

)

·
(

F11 (t − 1) F12 (t − 1)

F21 (t − 1) F22 (t − 1)

)

⊗ I =
(

F11 (t) F12 (t)

F21 (t − 1) F22 (t − 1)

)

⊗ I

and it satisfies the initial condition F (t) ≡ exp{At}, −τ ≤ t ≤ 0. Since 141

B1 = exp{−A} · B =
(

In − A + A2

2! − A3

3! + · · · + (−1)n
An

n! + · · ·
)

· B = B,

142
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we obtain 143

F (t) = exp{At} · expτ {B, t}

=
(

In + At + A2 t2

2! + A3 t3

3! + · · · + An tn

n! + · · ·
)

·
(

In + Bt + B2 (t − 1)2

2! + B3 (t − 2)3

3! + · · · + Bn (t − (n − 1))n

n! + · · ·
)

= In + Bt + B2 (t − 1)2

2! + B3 (t − 2)3

3! + · · · + Bn (t − (n − 1))n

n! + · · ·

+At + A2 t2

2! + A3 t3

3! + · · · + An tn

n! + · · · =
(

et 0
0 F22 (t)

)

⊗ I,

where 144

F22 (t) = exp1{I, t} = 1 + t

1! + (t − 1)2

2! + (t − 2)3

3! + · · · + (t − (k − 1))k

k! ,

(k − 1) ≤ t ≤ k, k = 0, 1, 2, . . . .

The terminal set has cylindrical form, i.e. 145

M∗ = M0 + M, (26.3)

where M0 is a linear subspace in R
nand M is a compact set from the orthogonal 146

complement of M0 in R
n. 147

The players choose their controls in the form of certain functions. Thus, the 148

pursuer and the evader affect the process (26.1), pursuing their own goals. The 149

goal of the pursuer (u) is in the shortest time to bring a trajectory of the process 150

to a certain closed set M∗; the goal of the evader (v) is to avoid a trajectory of the 151

process from meeting with the terminal set (26.3) on a whole semi-infinite interval 152

of time or if is impossible to maximally postpone the moment of meeting. 153

Now we describe what kind of information is available to the pursuer in the 154

course of the game. 155

Denote by ΩU , ΩV the sets of Lebesgue measurable functions u (t) , v (t), 156

u (t) ∈ U, v (t) ∈ V, t ≥ 0, respectively. A mapping that puts into correspondence 157

to a state z0 ( · ) some element in ΩV is called an open-loop strategy of the evader, 158

specific realization of this strategy for a given initial state z0 ( · ) of process (26.1) 159

is called an open-loop control. In the process of the game (26.1), (26.3), the evader 160

applies open-loop controls v ( · ) ∈ ΩV . 161

Function 162

u (t) = u
(
z0 ( · ) , t, v (t)

)
, 163
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such that v ( · ) ∈ ΩV implies u ( · ) ∈ ΩU is called countercontrol (stroboscopic 164

strategy of Hajek (see [39])) of pursuer corresponding to initial state z0 ( · ) . The 165

game is evolving on the closed time interval [0, T ] . We assume that the pursuer 166

chooses his control in the form 167

u (t) = u
(
z0 ( · ) , t, vt ( · )

)
, t ≥ 0, 168

where vt ( · ) = {v (s) : s ∈ [0, t] , v ( · ) ∈ ΩV } , and u ( · ) ∈ ΩU. 169

Under these hypotheses, we will play the role of the pursuer and find sufficient 170

conditions on the parameters of the problem (26.1), (26.3), insuring the game 171

termination for certain guaranteed time. 172

Let π be the orthogonal projector from R
n onto the subspace L. Consider the 173

set-valued mapping 174

W (t, v) = πF (t) φ (U, v) , W (t) =
⋂

v∈V

W (t, v) , 175

where F(t) is defined in Lemma 26.1. 176

Condition 1 (Pontryagin’s Condition) The mapping W (t) 
= ∅ for all t ≥ 0 . 177

Remark 26.1 For the linear process (φ(u, v) = u − v) 178

W (t) = πK (t) U
∗− πK (t) V , 179

where
∗− is a geometric subtraction of the sets (Minkowski’ difference) (see [40]). 180

By virtue of the assumptions on the process parameters, the set-valued mapping 181

W (t, v) is continuous on the set [0, +∞)×V in Hausdorff metric. Consequently, 182

as follows from Condition 1, the mapping W (t) is upper semi-continuous and 183

therefore Borel measurable function (see [41]). Hence, there exists at least one 184

Borelian selection g (t) , g (t) ∈ W (t) , t ≥ 0 (see [42]). Let us denote by 185

G = {g ( · ) : g (t) ∈ W (t) , t ≥ 0} the set of all Borelian selections of the 186

set-valued mapping W (t) . For fixed g ( · ) ∈ G we put 187

ξ
(
t , z0 ( · ) , g ( · )

)
=

= πF (t) a +
∫ 0

−τ

πF (t − τ − s) b (s)ds +
∫ t

0
g (s)ds,

and consider the resolving function 188

α
(
t, s, z0( · ),m, v, g( · )

)
= αW(t−τ−s,v)−g(t−τ−s)

(
m − ξ

(
t , z0 ( · ) , g ( · )

))

for t ≥ s ≥ 0, v ∈ V, m ∈ M, x ∈ R
n. 189
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By virtue of the properties of the superposition of set-valued mappings and 190

functions, it is Borel measurable function in s, v (see [5]). Finally, denote 191

α
(
t, s, z0( · ), v, g( · )

)
= max

m∈M
α
(
t, s, z0( · ),m, v, g( · )

)
, 192

and then we obtain the resolving function 193

α
(
t, s, z0( · ), v, g( · )

)
= sup{α ≥ 0 :

[W(t − τ − s, v) − g(t − τ − s)] ∩ α
[
M − ξ

(
t, z0( · ), g( · )

)]

= ∅ }.

(26.4)

Moreover, we also observe that function α
(
t, s, z0 ( · ) , v , g ( · )

) = +∞ for 194

all s ∈ [0 , t] , v ∈ V, if and only if ξ
(
t, z0 ( · ) , g ( · )

) ∈ M. If for some t ≥ 0 195

ξ
(
t, z0 ( · ) , γ ( · )

)
/∈ M, then function (26.4) assumes finite values. 196

Define the function T by 197

T = T
(
z0 ( · ) , g ( · )

)

= inf

{

t ≥ 0 :
∫ t

0
inf
v∈V

α
(
t , s , z0 ( · ) , v , g ( · )

)
ds ≥ 1

}

, g ( · ) ∈ G.

(26.5)

If the inequality in the curly brackets is not satisfied for all t ≥ 0, we set 198

T
(
z0 ( · ) , g ( · )

) = +∞. 199

Theorem 26.1 Let the conflict controlled process (26.1), (26.3) ) with the initial 200

condition (26.2) and commutative matrices A and B satisfy Condition 1, and let the 201

set M be convex, for the given initial state z0 ( · ) and some selection g0 ( · ) ∈ G 202

T = T
(
z0 ( · ) , g0 ( · )

)
< +∞. 203

Then a trajectory of the process (26.1), (26.3) can be brought by the pursuer from 204

z0 ( · ) to the terminal set M∗ at the moment T under arbitrary admissible controls 205

of the evader. 206

Proof Let v ( · ) ∈ ΩV . First consider the case when ξ
(
T , z0 ( · ) , g0 ( · )

)
/∈ M. 207

We introduce the controlling function 208

h (t) = h
(
T , t, s, z0 ( · ) , v ( · ) , g0 ( · )

)

= 1 −
∫ t

0
α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

)
ds, t ≥ 0.

From the definition of time T , there exists a switching time t∗ = 209

t∗ (v ( · )) , 0 < t∗ ≤ T , such that h (t∗) = 0. 210
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Let us describe the rules by which the pursuer constructs his control on the so- 211

called active and the passive parts, [0 , t∗) and [t∗ , T ] , respectively. 212

Consider the set-valued mapping 213

U1(s, v) =
{
u ∈ U : πF (T − τ − s) φ (u, v) − g0 (T − τ − s)

∈ α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

) [
M − ξ

(
T , z0 ( · ) , g0 ( · )

)]}
.

From assumptions concerning the process (26.1), (26.3) parameters, with 214

account of properties of the resolving function, it follows that the mapping U1 (s, v) 215

is a Borel measurable function on the set [0, T ] × V. Then selection 216

u1 (s, v) = lex min U1 (s, v) 217

appears as a jointly Borel measurable function in its variables (see [41]). The 218

pursuer’s control on the interval [0, t∗) is constructed in the following form 219

u (s) = u1 (s, v (s)) , 220

being superposition of Borel measurable functions it is also Borel measurable 221

function (see [41]). 222

The pursuer’s control on the interval [0, t∗) is constructed in the following form 223

u (s) = u1 (s, v (s)) , 224

being superposition of Borel measurable functions it is also Borel measurable 225

function (see [41]). 226

Set 227

α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

)
≡ 0, s ∈ [t∗, T ] . 228

Then the mapping 229

U2 (s, v)

=
{
u ∈ U : πF (T − τ − s) φ (u, v) − g0 (T − τ − s) = 0

}
, s ∈ [t∗, T ] , v ∈ V

is Borel measurable function in its variables, and its selection 230

u2 (s, v) = lex min U2 (s, v) 231

is Borel measurable function also. 232
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On the interval [t∗ , T ] we set the pursuer’s control equal to 233

u (s) = u2 (s , v (s)) . (26.6)

It is measurable function too (see [4, 9]). 234

Let ξ
(
T , z0 ( · ) , g0 ( · )

) ∈ M. In this case, we choose the pursuer’s control 235

on the interval [0, T ] in the form (26.6). 236

Thus, the rules are defined, to which the pursuer should follow in constructing 237

his control. We will now show that if the pursuer follows these rules in the course 238

of the game, a trajectory of process (26.1) hits the terminal set at the time T under 239

arbitrary admissible controls of the evader. 240

By virtue of Lemma 26.1, the Cauchy formula for the system (26.1) implies the 241

representation 242

πz (T ) = πF (T ) a +
∫ 0

−τ

πF (T − τ − s) b (s) ds

+
∫ T

0
πF (T − τ − s) φ (u (s) , v (s)) ds.

(26.7)

First we examine the case when ξ
(
T , z0 ( · ) , g0 ( · )

)
/∈ M. 243

By adding and subtracting from the right-hand side of Eq. (26.7) the value 244
∫ T

0 g0 (T − τ − s) ds, one can deduce 245

πz (T )

=
[

πF (T ) a +
∫ 0

−τ

πF (T − τ − s) b (s) ds +
∫ T

0
g0 (T − τ − s) ds

]

+
∫ T

0

[
πF (T − τ − s) φ (u (s) , v (s)) − g0 (T − τ − s)

]
ds

∈ ξ
(
T , z0 ( · ) , g0 ( · )

)
+

∫ T

0
α
(
T , s, z0 ( · ) , v, g0 ( · )

)
[M − ξ

(
T , z0 ( · ) , g0 ( · )

)
]ds

= ξ
(
T , z0 ( · ) , g0 ( · )

)
+
∫ T

0
α
(
T , s, z0 ( · ) , v, g0 ( · )

)
Mds

−
∫ T

0
α
(
T , s, z0 ( · ) , v, g0 ( · )

)
ξ
(
T , z0 ( · ) , g0 ( · )

)
ds.

(26.8)

246
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By virtue (26.8) and α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

) = 0, s ∈ [t∗, T ] we have 247

the inclusion 248

πz (T ) ∈ ξ
(
T , z0 ( · ) , g0 ( · )

) [

1 −
∫ t∗

0
α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

)
ds

]

+
∫ t∗

0
α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

)
Mds.

Since
∫ t∗

0 α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

)
ds = 1 and the set M is convex then 249

πz (T ) ∈ M . Then, applying the rule of the pursuer control for the case when 250

ξ
(
T , z0 ( · ) , g0 ( · )

) ∈ M, we obtain the inclusion πz (T ) ∈ M. The proof is 251

therefore complete. 252

Corollary 26.1 Assume that the differential-difference game of approach (26.1), 253

(26.3) is linear (φ (u, v) = u − v) , matrices A and B are commutative, Condition 1 254

holds, there exists a continuous positive function r (t) , r : R → R, and a number 255

l ≥ 0 such that πF (t) U = r (t) S, M = lS, where S is the unit ball centered at 256

zero in the subspace L. 257

Then when ξ
(
t, z0 ( · ) , g ( · )

)
/∈ lS, the resolving function (26.4) is the 258

largest root of the quadratic equation for α > 0 259

∥
∥
∥πF (t − τ − s) v + g (t − τ − s) − αξ

(
t, z0 ( · ) , g ( · )

)∥
∥
∥ =

= r (t − τ − s) + αl.

(26.9)

Proof By virtue of the assumptions of Corollary 26.1, we conclude from expres- 260

sion (26.4) that the resolving function α
(
T , s, z0 ( · ) , v, g ( · )

)
for fixed values 261

of its arguments is the maximal number α such that 262

[r (t − τ − s) S − πF (t − τ − s) v − g (t − τ − s)] ∩
α
[
lS − ξ

(
t, z0 ( · ) , g ( · )

)]

= ∅.

The last expression is equivalent to the inclusion 263

πF (t − τ − s) v + g (t − τ − s) − αξ
(
t, z0 ( · ) , g ( · )

)
∈

[r (t − τ − s) + αl)] S.

Due to the linearity of the left-hand side of this inclusion in α, the vector 264

πF (t − τ − s) v + g (t − τ − s) − αξ
(
t, z0 ( · ) , g ( · )

)
lies on the boundary 265

of the ball [r (t − τ − s) + αql] S for the maximal value of α. In other words, the 266

length of this vector is equal to the radius of this ball that is demonstrated by (26.9). 267

The proof is complete. 268
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26.3 Differential-Difference Games of Approach with Pure 269

Time Delay 270

We consider the problem of approach, which is described by the system of 271

differential-difference equations with pure time delay (see [38, 40, 41]) 272

ż (t) = Bz (t − τ ) + φ (u, v) , z ∈ R
n, u ∈ U, v ∈ V, t ≥ 0, (26.10)

with the initial condition (26.2). 273

Lemma 26.2 (See [43]) Let z (t) be a continuous solution to the system (26.10) 274

under the initial condition (26.2). Then, 275

z (t) = expτ {B, t}z0 (−τ ) +
∫ 0

−τ

expτ {B, t − τ − s}ż0 (s) ds

+
∫ t

0
expτ {B, t − τ − s}φ (u (s) , v (s)) ds.

The terminal set has the cylindrical form (26.3). Function 276

u (t) = u
(
z0 ( · ) , t, v (t)

)
, 277

such that v ( · ) ∈ ΩV implies u ( · ) ∈ ΩU is called countercontrol stroboscopic 278

strategy of Hajek (see [39]) of pursuer corresponding to initial state z0 ( · ) . The 279

game is evolving on the closed time interval [0, T ] . We assume that the pursuer 280

chooses his control in the form 281

u (t) =
{

u1
(
z0 ( · ) , t, v (t)

)
, t ∈ [0, t∗) ;

u2
(
z0 ( · ) , t, v (t)

)
, t ∈ [t∗ , T ] ,

282

where [0, t∗) is the active interval time, [t∗ , T ] is the passive one, and t∗ = 283

t∗ (v ( · )) is the moment of switching from the Method of Resolving Functions 284

in first interval time to the First Direct Method of L.S. Pontryagin in the second one. 285

We introduce set-valued mappings 286

W̄ (t, v) = πexpτ {B, t}φ (U, v) ,

W̄ (t) =
⋂

v∈V

W̄ (t, v) ,

Condition 2 The mapping W̄ (t) 
= ∅ for all t ≥ 0. 287
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The mapping W̄ is upper semi-continuous and therefore Borel measurable 288

function (see [43]). Hence, there exists at least one Borelian selection g (t) , g (t) ∈ 289

W̄ (t) (see [43]). Denote by G = {g (t) : g (t) ∈ W̄ (t) , t ≥ 0} the set of all 290

Borelian selections of the set-valued mapping W̄ (t) . For fixed g ( · ) ∈ G we put 291

ξ
(
t , z0 ( · ) , g ( · )

)
=

= πexpτ {B, t}z0 (−τ ) +
∫ 0

−τ

πexpτ {B, t − τ − s}ż0 (s)ds +
∫ t

0
g (s)ds,

and consider the resolving function 292

α
(
t, s, z0( · ), v, g( · )

)
= sup{α ≥ 0 :

[
W̄ (t − τ − s, v) − g(t − τ − s)

] ∩ α
[
M − ξ

(
t, z0( · ), g( · )

)]

= ∅ }.

(26.11)

The function α
(
t, s, z0( · ), v, g( · )) is summable for s ∈ [0, t] (see [5]). 293

We introduce the function (26.5). The value T = T
(
z0( · ), g( · )) for the 294

initial state z0( · ) of the system (26.10) and some selector g0 ( · ) ∈ G is the 295

guaranteed moment of capture by the pursuer of the evader according to the Method 296

of Resolving Functions. 297

On the other hand, we set 298

P
(
z0 ( · ) , g ( · )

)

= min

{

t ≥ 0 : πexpτ {B, t}z0 (−τ ) +
∫ 0

−τ

πexpτ {B, t − τ − s}ż0 (s)ds

∈ M −
∫ t

0
W̄ (t − τ − s)ds

}

. (26.12)

Let us show that the quantity (26.3) is the guaranteed moment of the end of 299

the game of approach according to the First Direct Method of L.S. Pontryagin (see 300

[42]). 301

Theorem 26.2 Let the conflict controlled process (26.10), (26.3) with the initial 302

condition (26.2) satisfy Condition 2, the set M be convex, P
(
z0 ( · )

)
< +∞, 303

when P
(
z0 ( · )

)
is defined by formula (26.3). 304

Then a trajectory of the process (26.10), (26.3) can be brought by the pursuer 305

from z0 ( · ) to the terminal set M∗ at the moment P
(
z0 ( · )

)
. 306
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Proof For simplicity of presentation, denote P0 = P
(
z0 ( · )

)
. We have the 307

following inclusion 308

πexpτ {B,P0}z0 (−τ ) +
∫ 0

−τ

πexpτ {B,P0 − τ − s}ż0 (s)ds

∈ M −
∫ P0

0
W̄ (P0 − τ − s)ds.

Since, there exist point m ∈ M and selection g ( · ) ∈ G such that 309

πexpτ {B,P0}z0 (−τ ) +
∫ 0

−τ

πexpτ {B,P0 − τ − s}ż0 (s)ds

= m −
∫ P0

0
g (P0 − τ − s)ds.

Consider the set-valued mapping 310

U (s, v) = {u ∈ U : πexpτ {B,P0 − τ − s}φ (u, v)

−g (P0 − τ − s) = 0} , s ∈ [0, P0] , v ∈ V.
(26.13)

The mapping U (s, v) and selection u (s, v) = lex min U (s, v) are Borel 311

measurable functions in its variables. 312

We set the pursuers control equal to 313

u (s) = u (s , v (s)) , s ∈ [0, P0] ,

where v (s) , v (s) ∈ V, is an arbitrary admissible control of the evader, and it will 314

be a Borel measurable function of time. 315

From the relation (26.13) with (26.3) we obtain 316

πz (P0) = πexpτ {B,P0}z0 (−τ ) +
∫ 0

−τ

πexpτ {B,P0 − τ − s}ż0 (s)ds

+
∫ P0

0
πexpτ {B,P0 − τ − s}φ (u (s) , v (s))ds = m ∈ M.

This means that z (P0) ∈ M∗. The proof is therefore complete. 317

Theorem 26.3 Let the conflict controlled process (26.10), (26.3) with the initial 318

condition (26.2) satisfy Condition 2. 319
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Then the inclusion 320

πexpτ {B, t}z0 (−τ ) +
∫ 0

−τ

πexpτ {B, t − τ − s}ż0 (s)ds

∈ M −
∫ t

0
W̄ (t − τ − s)ds, t ≥ 0,

holds if and only if a selection g ( · )∈G exists, such that ξ
(
t, z0 ( · ) , g ( · )

)∈M. 321

Proof Letting 322

πexpτ {B, t}z0 (−τ ) +
∫ 0

−τ

πexpτ {B, t − τ − s}ż0 (s)ds

∈ M −
∫ t

0
W̄ (t − τ − s)ds.

There exist point m ∈ M and selection g ( · ) ∈ G such that 323

πexpτ {B, t}z0 (−τ ) +
∫ 0

−τ

πexpτ {B, t − τ − s}ż0 (s)ds

= m −
∫ t

0
g (t − τ − s)ds,

which is equivalent to ξ
(
t, z0 ( · ) g ( · )

) = m ∈ M. 324

Using the reverse line of reasoning we come to the required result. The proof is 325

therefore complete. 326

Theorem 26.4 Let the conflict controlled process (26.10), (26.3) ) with the initial 327

condition (26.2) satisfy Condition 2, and let the set M be convex, for the given initial 328

state z0 ( · ) and some selection g0 ( · ) ∈ G T = T
(
z0 ( · ) , g0 ( · )

)
< +∞. 329

Then a trajectory of the process (26.10), (26.3) can be brought by the pursuer 330

from z0 ( · ) to the terminal set M∗ at the moment T . 331

Proof Let v (s) , v (s) ∈ V, s ∈ [0, T ] be an arbitrary Borel measurable function. 332

First, consider the case when ξ
(
T , z0 ( · ) , g0 ( · )

)
/∈ M. We introduce the 333

controlling function 334

h (t) == 1 −
∫ t

0
α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

)
ds, t ≥ 0.

From the definition of time T , there exists a switching time t∗ = 335

t∗ (v ( · )) , 0 < t∗ ≤ T , such that h (t∗) = 0. 336

Let us describe the rules by which the pursuer constructs his control on the so- 337

called active and the passive parts, [0 , t∗) and [t∗ , T ] , respectively. 338
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Consider the set-valued mapping 339

U1(s, v) =
{
u ∈ U : πexpτ {B, T − τ − s}φ (u, v) − g0 (T − τ − s)

∈ α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

) [
M − ξ

(
T , z0 ( · ) , g0 ( · )

)]}
.

It follows from assumptions concerning the process (26.10), (26.3) parameters, 340

with account of properties of the resolving function, that the mapping U1 (s, v) is a 341

Borel measurable function on the set [0, T ] × V. Then selection 342

u1 (s, v) = lex min U1 (s, v) 343

appears as a jointly Borel measurable function in its variables (see [43]). 344

The pursuer’s control on the interval [0, t∗) is constructed in the following form 345

u (s) = u1 (s, v (s)) , 346

being a superposition of Borel measurable functions it is also Borel measurable 347

function (see [43]). 348

Set 349

α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

)
≡ 0, s ∈ [t∗, T ] . 350

Then the mapping 351

U2 (s, v)

=
{
u ∈ U : πexpτ {B,T − τ − s}φ (u, v) − g0 (T − τ − s) = 0

}
, s ∈ [t∗, T ] , v ∈ V

is Borel measurable function in its variables, and its selection 352

u2 (s, v) = lex min U2 (s, v) 353

is Borel measurable function as well. 354

On the interval [t∗ , T ] we set the pursuer’s control equal to 355

u (s) = u2 (s , v (s)) . (26.14)

It is measurable function too. 356

Let ξ
(
T , z0 ( · ) , g0 ( · )

) ∈ M. In this case, we choose the pursuer’s control 357

on the interval [0, T ] in the form (26.14). 358

Thus, the rules are defined, to which the pursuer should follow in constructing 359

his control. We will now show that if the pursuer follows these rules in the course 360
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of the game, a trajectory of process (26.10) hits the terminal set at the time T under 361

arbitrary admissible controls of the evader. 362

By virtue of Lemma 26.2, the Cauchy formula for the system (26.10) implies the 363

representation 364

πz (T ) = πexpτ {B, T }z0 (−τ ) +
∫ 0

−τ

πexpτ {B, T − τ − s}ż0 (s)ds

+
∫ T

0
πexpτ {B, T − τ − s}φ (u (s) , v (s))ds.

(26.15)

First, we examine the case when ξ
(
T , z0 ( · ) , g0 ( · )

)
/∈ M. 365

By adding and subtracting from the right-hand side of Eq. (26.15) the value 366
∫ T

0 g0 (T − τ − s) ds, one can deduce 367

πz (T ) ∈ ξ
(
T , z0 ( · ) , g0 ( · )

) [

1 −
∫ t∗

0
α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

)
ds

]

+
∫ t∗

0
α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

)
Mds.

368

Since
∫ t∗

0 α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

)
ds = 1 and the set M is convex then 369

πz (T ) ∈ M . Then, applying the rule of the pursuer control for the case when 370

ξ
(
T , z0 ( · ) , g0 ( · )

) ∈ M, we obtain the inclusion πz (T ) ∈ M. The proof is 371

therefore complete. 372

Corollary 26.2 Let the conflict-controlled process (26.10), (26.3) with the initial 373

condition (26.2) satisfy Condition 2. 374

Then for any initial state z0 ( · ) there exists a selection g0 ( · ) ∈ G such that 375

T
(
z0 ( · ) , g0 ( · )

)
≤ P

(
z0 ( · )

)
. 376

The effectiveness of the Method of Resolving Functions, sufficient conditions 377

that are easily verified, the ability to quickly build the resolution function, using the 378

modern techniques of set-valued mappings and their selections, prove the relevance 379

of this method for solving differential-difference games that are of great practical 380

importance.AQ1 381
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