Metadata of the chapter that will be visualized online

Chapter Title	Quasi-Linear Differential-Deference Game of Approach
Copyright Year	2019
Copyright Holder	Springer International Publishing AG, part of Springer Nature
Corresponding Author	Family Name Baranovska
	Particle
	Given Name Lesia V.
	Suffix
	Division Institute for Applied System Analysis
	Organization National Technical University of Ukraine "Kyiv Polytechnic Institute"
	Address Kyiv, Ukraine
	Email lesia@baranovsky.org
Abstract	The paper is devoted to the games of approach. We consider a controlled object whose dynamics is described by the linear differential system with pure time delay or the differential-difference system with commutative matrices in Euclidean space. The approaches to the solutions of these problems are proposed which based on the Method of Resolving Functions and the First Direct Method of L.S. Pontryagin. The guaranteed times of the game termination are found, and corresponding control laws are constructed. The results are illustrated by a model example.

Author's Proof

Chapter 26
 Quasi-Linear Differential-Deference 2 Game of Approach

Lesia V. Baranovska

Abstract

The paper is devoted to the games of approach. We consider a controlled 5 object whose dynamics is described by the linear differential system with pure 6 time delay or the differential-difference system with commutative matrices in 7 Euclidean space. The approaches to the solutions of these problems are proposed 8 which based on the Method of Resolving Functions and the First Direct Method 9 of L.S. Pontryagin. The guaranteed times of the game termination are found, and 10 corresponding control laws are constructed. The results are illustrated by a model 11 example.

26.1 Introduction

We consider the game problems of approach, which are central to the theory of 14 conflict-controlled processes. They were the basis of the emergence of the theory, 15 are the most informative and of considerable interest to researchers. The impetus for 16 their development was given by real applications in economics, space technology, 17 military affairs, biology, medicine, etc.

Conflict-controlled processes is a section of the mathematical control theory 19 which is studying the manipulation of moving objects operated under in conditions 20 of conflict and uncertainty. The evolution of an object can be described by 21 systems of difference, ordinary differential, differential-difference, integral, integro- 22 differential equations, systems of equations with distributed parameters, systems 23 of equations with fractional derivatives, impulse influences and their various 24 combinations (hybrid systems).

The term differential game is used for games in which the dynamics of an 26 object is described by a system of ordinary differential equations. If the process is 27 described by more complicated equations, possessing the semigroup property, then 28

[^0]
Author's Proof

the term dynamic games is used. Finally, conflict-controlled processes are the most 29 common term for determining the range of issues relating to game problems. 30

There are two types of dynamic games: games of degree and games of kind (see 31 [1]). On the trajectory of the dynamical system, there is a function that depends on 32 the initial state and on the player's control. In games of the first type, the goal of the ${ }_{33}$ first player is to minimize this function, set on the system trajectories, the purpose 34 of the other one is to maximize it. In games of the second type, this functionality 35 is the time of the exit of the trajectory of an object to a given terminal set, and the 36 problem is to analyze the possibility of the pursuit of a trajectory of a system to a 37 terminal set (the game of approach) or the deviation of the trap escape from this set 38 (the deviation game).

39
The well-known pursuit strategies were mostly designed for military purposes. In 40 practice, the rule of positional pursuit (see Fig. 26.1) and the rule of parallel pursuit 41 (see Fig. 26.2) are widely used.

In the theory of differential games, along with the Pontryagin-Pshenichny's 43 backward procedures (see [2, 3]), Krasovskii rule of extreme aiming (see [4]) and 44 Isaacs's ideology (see [1]), there exist effective methods that constitutes share a 45 separate direction.

Fig. 26.1 Positional pursuit

Author's Proof

These are the First Direct Method of L.S. Pontryagin and the Method of Resolv- 47 ing Functions (see [5]). They are combined by the general principle of constructing 48 controls of the pursuer on the basis of the Filippov-Castain multidimensional choice 49 theorem (see [6]) and they provide a theoretical justification for the rule of parallel 50 pursuit (see Fig. 26.2).

In this paper, the Method of Resolving Functions is chosen as the main tool 52 for research, widely used to study conflict-controlled processes of various nature 53 (see [5, 7]). The processes with fractional derivatives are studied in (see [8]), game 54 problems of successive convergence are discussed in (see [9]), a general scheme of 55 the method of resolving functions is given in (see [7]), the applied problem of soft 56 meeting is solved in (see [10]), the nonstationary problems are considered in (see 57 [11-14]), a variant of the matrix resolving functions are proposed in (see [15]), an 58 approach games problem under the failure of controlling devices are considered in 59 (see $[16,17]$), and in (see $[18,19]$) the cases of integral constraints on control are 60 examined.

The future of many processes depends not only on the present state, but is also 62 significantly determined by the entire prehistory. Numerous problems in the theory 63 of automatic control, engineering, mechanics, radiophysics, biology, economics are 64 described by differential equations with delay. For example, transport delay usually 65 occurs in systems in which matter, energy or signals are transmitted over a distance 66 (see [20]). In control systems, where one of the links is a person, the delay in 67 the reaction of a person is important in constructing a mathematical model of the 68 entire system. Distributed time delay occurs in the modeling of feeding systems 69 and combustion chambers in a liquid monopropellant rocket motor with pressure 70 feeding (see [21]). Great contribution to the development of these directions is made 71 by Bellman R., Cooke K., Lunel S.M.V., Mitropolskii U.A., Myshkis A.D., Norkin 72 S.B., Hale J.C., Azbelev N.V., Maksimov V.P., Rakhmatulina L.F. and others. ${ }_{73}$

In (see [22-25]) the modification of the Method of Resolving Function for 74 the differential-difference pursuit games is described, pursuit differential-difference 75 games of approach with non-fixed time are considered in (see [26, 27]), system 76 with time-varying delay is considered in (see [28]), in (see [29, 30]) the pursuit 77 games with differential-difference equations of a neutral type are studied, an analytic 78 approach based on the Method of Resolving Functions to study the differential- 79 difference games of approach with commutative matrices is suggested in (see [31]), 80 and the differential-difference games of approach for objects with different inertial 81 are proposed in (see [32, 33]).

An attractive side of the Method of Resolving Functions is the fact that it allows 83 us to effectively use modern technology of set-valued mappings and their selectors 84 in the substantiation of game constructions and to obtain meaningful results on their 85 basis (see [5]).

86
For dynamical systems whose evolution is described by differential-difference 87 system with a cylindrical terminal set under the condition of L.S. Pontryagin 88 introduces a resolving function, through which the game's end time is determined. 89 The peculiarity of the basic scheme of the method is the fact that the time of the 90

Author's Proof

end of the game depends on a selector, the choice of which is in the power of the 91 pursuer.

The resolving function characterizes the course of the game. When, at some point 9 in time, the integral from it becomes a unit, this means that the trajectory falls onto 94 the terminal set. Sufficient conditions for solvability of the problem of approach 95 with a terminal set are provided. The pursuit process is divided into two stages.

On the first one $\left[0, t_{*}\right.$), where t_{*} is the moment of switching, the Method of 97 Resolving Functions with using by the pursuer at the time t of the entire run-time 98 control prehistory $v_{t}(\cdot)$ work. When at the instant t_{*} the integral of the resolving 99 function turns into unity, the process of pursuit is switched to the First Direct 100 Method of L.S. Pontryagin which is realized within the class of countercontrols 101 in quasistrategy. In other words, from the moment of switching to the calculated 102 moment, the ending of the game "stretches" time, and, in this area, the resolving 103 function is considered to be zero, since it does not make any sense to accumulate it. 104

26.2 Differential-Difference Games of Approach with Commutative Matrices

Let \mathbb{R}^{n} be an Euclidean space of points $z=\left(z_{1}, \ldots, z_{n}\right)$ and $K\left(\mathbb{R}^{n}\right)$ be a set of 107 nonempty compacts in \mathbb{R}^{n}.

We consider the problem of approach for the system of differential-difference 109 equations of retarded type (see [34-36]):

$$
\begin{equation*}
\dot{z}(t)=A z(t)+B z(t-\tau)+\phi(u, v), \quad z \in \mathbb{R}^{n}, \quad u \in U, \quad v \in V \tag{26.1}
\end{equation*}
$$

where A and B are square constant matrices of order $n ; U, V \in K\left(\mathbb{R}^{n}\right) ; \phi: U \times{ }_{11}$ $V \rightarrow \mathbb{R}^{n}$, is jointly continuous in its variables; $\tau=$ const $>0 . \quad 112$

The phase vector consists of geometric coordinates, velocities and accelerations 113 of the pursuer and the evader. 114

Let $z(t)$ be a solution of Eq. (26.1) under the initial condition 115

$$
\begin{equation*}
z(t)=z^{0}(t), \quad-\tau \leq t \leq 0, \tag{26.2}
\end{equation*}
$$

where function $z^{0}(t)$ is absolutely continuous on $[-\tau, 0]$. 116
The piece of the trajectory $z^{t}(\cdot)$, where 117

$$
z^{t}(\cdot)=\{z(t+s),-\tau \leq s \leq 0\}
$$

will be referred to as the state of system (26.1) at the moment t. 119

Author's Proof

26 Quasi-Linear Differential-Deference Game of Approach

Definition 26.1 (See [37, 38]) For each $k=1,2, \ldots$, the time-delay exponential is 120 defined as follows
$\exp _{\tau}\{B, t\}=\left\{\begin{array}{l}\Theta,-\infty<t<-\tau ; \\ I,-\tau \leq t<0 ; \\ I+B \frac{t}{1!}+B^{2} \frac{(t-\tau)^{2}}{2!}+\cdots+B^{k} \frac{(t-(k-1) \tau)^{k}}{k!},(k-1) \tau \leq t \leq k \tau,\end{array}\right.$
where Θ is a zero matrix.
123
Lemma 26.1 (See [37, 38]) Let $z(t)$ be a continuous solution to the system (26.1) 124 with commutative matrices A and B under the initial condition in (26.2). Then,

$$
\begin{aligned}
& z(t)=\exp \{A(t+\tau)\} \exp _{\tau}\left\{B_{1}, t-\tau\right\} z^{0}(-\tau) \\
& +\int_{-\tau}^{0} \exp \{A(t-\tau)\} \exp _{\tau}\left\{B_{1}, t-\tau-s\right\}\left[\dot{z}^{0}(s)-A z^{0}(s)\right] d s \\
& +\int_{0}^{t} \exp \{A(t-\tau-s)\} \exp _{\tau}\left\{B_{1}, t-\tau-s\right\} \phi(u(s), v(s)) d s
\end{aligned}
$$

or, in another form,

$$
\begin{aligned}
& z(t)=F(t) a+\int_{-_{\tau}}^{0} F(t-\tau-s) b(s) d s \\
& \quad+\int_{0}^{t} F(t-\tau-s) \phi(u(s), v(s)) d s
\end{aligned}
$$

where we denote

$$
a=\exp \{A \tau\} z^{0}(-\tau), \quad b(t)=\exp \{A \tau\}\left[\dot{z}^{0}(t)-A z^{0}(t)\right],
$$

and matrix

$$
F(t)=\exp \{A t\} \exp _{\tau}\left\{B_{1}, t\right\}, t \geq 0, \quad B_{1}=\exp \{-A \tau\} B,
$$

is a solution to the similar system

$$
\dot{z}(t)=A z(t)+B z(t-\tau)
$$

Author's Proof

under the initial condition

$$
F(t) \equiv \exp \{A t\}, \quad-\tau \leq t \leq 0
$$

Let us examine the differential-difference system (see [31]) as an example:

$$
\dot{z}(t)=A z(t)+B z(t-\tau)+u(t)-v(t), \quad z \in \mathbb{R}^{2 n}
$$

where

$$
A=\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right),
$$

0 is a zero matrix, I is a unit matrix of order n,

$$
U=\left\{\binom{-u(t)}{0}: u \in \mathbb{R}^{n},\|u\| \leq 2\right\}, \quad V=\left\{\binom{0}{-v(t)}: v \in \mathbb{R}^{n},\|v\| \leq 1\right\}
$$

The initial condition is equal to

$$
z^{0}(t)=\left(z_{1}^{0}(t), z_{2}^{0}(t)\right), \quad-1 \leq t \leq 0
$$

We observe that matrices A and B are commutative, and $A B=B A={ }_{137}$ $\Theta, \quad A^{n}=A, \quad B^{n}=B$.

From Lemma 26.1, we see that the functional matrix $F(t)$ is a solution to the 139 similar system

$$
\begin{gathered}
\left(\begin{array}{cc}
F_{11}(t) & F_{12}(t) \\
F_{21}(t) & F_{22}(t)
\end{array}\right) \otimes I= \\
\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
F_{11}(t) & F_{12}(t) \\
F_{21}(t) & F_{22}(t)
\end{array}\right) \otimes I+\left(\begin{array}{cc}
0 & 0 \\
0 & I
\end{array}\right) \cdot\left(\begin{array}{cc}
F_{11}(t-1) & F_{12}(t-1) \\
F_{21}(t-1) & F_{22}(t-1)
\end{array}\right) \otimes I= \\
\left(\begin{array}{cc}
F_{11}(t) & F_{12}(t) \\
F_{21}(t-1) & F_{22}(t-1)
\end{array}\right) \otimes I
\end{gathered}
$$

and it satisfies the initial condition $F(t) \equiv \exp \{A t\}, \quad-\tau \leq t \leq 0$. Since

$$
B_{1}=\exp \{-A\} \cdot B=\left(I_{n}-A+\frac{A^{2}}{2!}-\frac{A^{3}}{3!}+\cdots+(-1)^{n} \frac{A^{n}}{n!}+\cdots\right) \cdot B=B
$$

Author's Proof

we obtain

$$
\begin{gathered}
F(t)=\exp \{A t\} \cdot \exp \{B, t\} \\
=\left(I_{n}+A t+A^{2} \frac{t^{2}}{2!}+A^{3} \frac{t^{3}}{3!}+\cdots+A^{n} \frac{t^{n}}{n!}+\cdots\right) \\
\left(I_{n}+B t+B^{2} \frac{(t-1)^{2}}{2!}+B^{3} \frac{(t-2)^{3}}{3!}+\cdots+B^{n} \frac{(t-(n-1))^{n}}{n!}+\cdots\right) \\
=I_{n}+B t+B^{2} \frac{(t-1)^{2}}{2!}+B^{3} \frac{(t-2)^{3}}{3!}+\cdots+B^{n} \frac{(t-(n-1))^{n}}{n!}+\cdots \\
+A t+A^{2} \frac{t^{2}}{2!}+A^{3} \frac{t^{3}}{3!}+\cdots+A^{n} \frac{t^{n}}{n!}+\cdots=\left(\begin{array}{cc}
e^{t} & 0 \\
0 & F_{22}(t)
\end{array}\right) \otimes I,
\end{gathered}
$$

where

$$
\begin{aligned}
& F_{22}(t)= \exp _{1}\{I, t\}= \\
& 1+\frac{t}{1!}+\frac{(t-1)^{2}}{2!}+\frac{(t-2)^{3}}{3!}+\cdots+\frac{(t-(k-1))^{k}}{k!}, \\
&(k-1) \leq t \leq k, k=0,1,2, \cdots
\end{aligned}
$$

The terminal set has cylindrical form, i.e.

$$
\begin{equation*}
M^{*}=M_{0}+M, \tag{26.3}
\end{equation*}
$$

where M_{0} is a linear subspace in \mathbb{R}^{n} and M is a compact set from the orthogonal ${ }_{146}$ complement of M_{0} in \mathbb{R}^{n}.

The players choose their controls in the form of certain functions. Thus, the 148 pursuer and the evader affect the process (26.1), pursuing their own goals. The 149 goal of the pursuer (u) is in the shortest time to bring a trajectory of the process 150 to a certain closed set M^{*}; the goal of the evader (v) is to avoid a trajectory of the 151 process from meeting with the terminal set (26.3) on a whole semi-infinite interval 152 of time or if is impossible to maximally postpone the moment of meeting.

Now we describe what kind of information is available to the pursuer in the 154 course of the game.

Denote by Ω_{U}, Ω_{V} the sets of Lebesgue measurable functions $u(t), v(t)$, ${ }^{156}$ $u(t) \in U, v(t) \in V, \quad t \geq 0$, respectively. A mapping that puts into correspondence 157 to a state $z^{0}(\cdot)$ some element in Ω_{V} is called an open-loop strategy of the evader, 158 specific realization of this strategy for a given initial state $z^{0}(\cdot)$ of process (26.1) 159 is called an open-loop control. In the process of the game (26.1), (26.3), the evader 160 applies open-loop controls $v(\cdot) \in \Omega_{V}$.

Function

$$
u(t)=u\left(z^{0}(\cdot), t, v(t)\right)
$$

Author's Proof

such that $v(\cdot) \in \Omega_{V}$ implies $u(\cdot) \in \Omega_{U}$ is called countercontrol (stroboscopic strategy of Hajek (see [39])) of pursuer corresponding to initial state $z^{0}(\cdot)$. The 165 game is evolving on the closed time interval $[0, T]$. We assume that the pursuer 166 chooses his control in the form 167

$$
u(t)=u\left(z^{0}(\cdot), t, v_{t}(\cdot)\right), \quad t \geq 0
$$

where $v_{t}(\cdot)=\left\{v(s): s \in[0, t], v(\cdot) \in \Omega_{V}\right\}$, and $u(\cdot) \in \Omega_{U}$.
169
Under these hypotheses, we will play the role of the pursuer and find sufficient 170 conditions on the parameters of the problem (26.1), (26.3), insuring the game 171 termination for certain guaranteed time.

Let π be the orthogonal projector from \mathbb{R}^{n} onto the subspace L. Consider the 173 set-valued mapping

$$
W(t, v)=\pi F(t) \phi(U, v), \quad W(t)=\bigcap_{v \in V} W(t, v)
$$

where $F(t)$ is defined in Lemma 26.1.
Condition 1 (Pontryagin's Condition) The mapping $W(t) \neq \emptyset$ for all $t \geq 0$.
Remark 26.1 For the linear process $(\phi(u, v)=u-v)$

$$
W(t)=\pi K(t) U \stackrel{*}{-} \pi K(t) V,
$$

where $\stackrel{*}{-}$ is a geometric subtraction of the sets (Minkowski' difference) (see [40]).
By virtue of the assumptions on the process parameters, the set-valued mapping $W(t, v)$ is continuous on the set $[0,+\infty) \times V$ in Hausdorff metric. Consequently, as follows from Condition 1, the mapping $W(t)$ is upper semi-continuous and therefore Borel measurable function (see [41]). Hence, there exists at least one Borelian selection $g(t), \quad g(t) \in W(t), \quad t \geq 0$ (see [42]). Let us denote by $G=\{g(\cdot): g(t) \in W(t), \quad t \geq 0\}$ the set of all Borelian selections of the 186 set-valued mapping $W(t)$. For fixed $g(\cdot) \in G$ we put

$$
\begin{gathered}
\xi\left(t, z^{0}(\cdot), g(\cdot)\right)= \\
=\pi F(t) a+\int_{-\tau}^{0} \pi F(t-\tau-s) b(s) d s+\int_{0}^{t} g(s) d s
\end{gathered}
$$

and consider the resolving function

$$
\alpha\left(t, s, z^{0}(\cdot), m, v, g(\cdot)\right)=\alpha_{W(t-\tau-s, v)-g(t-\tau-s)}\left(m-\xi\left(t, z^{0}(\cdot), g(\cdot)\right)\right)
$$

for $t \geq s \geq 0, \quad v \in V, \quad m \in M, \quad x \in \mathbb{R}^{n}$.

Author's Proof

By virtue of the properties of the superposition of set-valued mappings and 190 functions, it is Borel measurable function in s, v (see [5]). Finally, denote

$$
\begin{equation*}
\alpha\left(t, s, z^{0}(\cdot), v, g(\cdot)\right)=\max _{m \in M} \alpha\left(t, s, z^{0}(\cdot), m, v, g(\cdot)\right) \tag{192}
\end{equation*}
$$

and then we obtain the resolving function

$$
\begin{gather*}
\alpha\left(t, s, z^{0}(\cdot), v, g(\cdot)\right)=\sup \{\alpha \geq 0: \\
\left.[W(t-\tau-s, v)-g(t-\tau-s)] \cap \alpha\left[M-\xi\left(t, z^{0}(\cdot), g(\cdot)\right)\right] \neq \emptyset\right\} \tag{26.4}
\end{gather*}
$$

Moreover, we also observe that function $\alpha\left(t, s, z^{0}(\cdot), v, g(\cdot)\right)=+\infty$ for 194 all $s \in[0, t], v \in V$, if and only if $\xi\left(t, z^{0}(\cdot), g(\cdot)\right) \in M$. If for some $t \geq 0195$ $\xi\left(t, z^{0}(\cdot), \gamma(\cdot)\right) \notin M$, then function (26.4) assumes finite values. 196

Define the function T by 197

$$
\begin{gather*}
T=T\left(z^{0}(\cdot), g(\cdot)\right) \\
=\inf \left\{t \geq 0: \int_{0}^{t} \inf _{v \in V} \alpha\left(t, s, z^{0}(\cdot), v, g(\cdot)\right) d s \geq 1\right\}, \quad g(\cdot) \in G \tag{26.5}
\end{gather*}
$$

If the inequality in the curly brackets is not satisfied for all $t \geq 0$, we set 198 $T\left(z^{0}(\cdot), g(\cdot)\right)=+\infty$.
Theorem 26.1 Let the conflict controlled process (26.1), (26.3)) with the initial 200 condition (26.2) and commutative matrices A and B satisfy Condition 1, and let the 201 set M be convex, for the given initial state $z^{0}(\cdot)$ and some selection $g^{0}(\cdot) \in G 202$ $T=T\left(z^{0}(\cdot), g^{0}(\cdot)\right)<+\infty$.

Then a trajectory of the process (26.1), (26.3) can be brought by the pursuer from 204 $z^{0}(\cdot)$ to the terminal set M^{*} at the moment T under arbitrary admissible controls 205 of the evader.
Proof Let $v(\cdot) \in \Omega_{V}$. First consider the case when $\xi\left(T, z^{0}(\cdot), g^{0}(\cdot)\right) \notin M .207$ We introduce the controlling function

$$
\begin{gathered}
h(t)=h\left(T, t, s, z^{0}(\cdot), v(\cdot), g^{0}(\cdot)\right) \\
=1-\int_{0}^{t} \alpha\left(T, s, z^{0}(\cdot), v(s), g^{0}(\cdot)\right) d s, \quad t \geq 0
\end{gathered}
$$

From the definition of time T, there exists a switching time $t_{*}=209$ $t_{*}(v(\cdot)), \quad 0<t_{*} \leq T$, such that $h\left(t_{*}\right)=0 . \quad 210$

Author's Proof

Let us describe the rules by which the pursuer constructs his control on the so- 211 called active and the passive parts, $\left[0, t_{*}\right)$ and $\left[t_{*}, T\right]$, respectively.

Consider the set-valued mapping

$$
\begin{aligned}
& U_{1}(s, v)=\left\{u \in U: \pi F(T-\tau-s) \phi(u, v)-g^{0}(T-\tau-s)\right. \\
& \left.\in \alpha\left(T, s, z^{0}(\cdot), v(s), g^{0}(\cdot)\right)\left[M-\xi\left(T, z^{0}(\cdot), g^{0}(\cdot)\right)\right]\right\} .
\end{aligned}
$$

From assumptions concerning the process (26.1), (26.3) parameters, with 214 account of properties of the resolving function, it follows that the mapping $U_{1}(s, v) 215$ is a Borel measurable function on the set $[0, T] \times V$. Then selection

$$
u_{1}(s, v)=\operatorname{lex} \min U_{1}(s, v)
$$

appears as a jointly Borel measurable function in its variables (see [41]). The 218 pursuer's control on the interval $\left[0, t_{*}\right)$ is constructed in the following form

$$
u(s)=u_{1}(s, v(s))
$$

being superposition of Borel measurable functions it is also Borel measurable 221 function (see [41]).

The pursuer's control on the interval [$0, t_{*}$) is constructed in the following form

$$
u(s)=u_{1}(s, v(s))
$$

being superposition of Borel measurable functions it is also Borel measurable 225 function (see [41]).

Set

$$
\alpha\left(T, s, z^{0}(\cdot), v(s), g^{0}(\cdot)\right) \equiv 0, \quad s \in\left[t_{*}, T\right] .
$$

Then the mapping

$$
=\left\{u \in U: \pi F(T-\tau-s) \phi(u, v)-g^{0}(T-\tau-s)=0\right\}, \quad s \in\left[t_{*}, T\right], v \in V
$$

is Borel measurable function in its variables, and its selection

$$
u_{2}(s, v)=\operatorname{lex} \min U_{2}(s, v)
$$

Author's Proof

On the interval $\left[t_{*}, T\right]$ we set the pursuer's control equal to

$$
\begin{equation*}
u(s)=u_{2}(s, v(s)) . \tag{26.6}
\end{equation*}
$$

It is measurable function too (see $[4,9]$).
Let $\xi\left(T, z^{0}(\cdot), g^{0}(\cdot)\right) \in M$. In this case, we choose the pursuer's control ${ }^{235}$ on the interval $[0, T]$ in the form (26.6).

Thus, the rules are defined, to which the pursuer should follow in constructing 237 his control. We will now show that if the pursuer follows these rules in the course 238 of the game, a trajectory of process (26.1) hits the terminal set at the time T under ${ }^{239}$ arbitrary admissible controls of the evader.

By virtue of Lemma 26.1, the Cauchy formula for the system (26.1) implies the 241 representation

$$
\begin{gather*}
\pi z(T)=\pi F(T) a+\int_{-\tau}^{0} \pi F(T-\tau-s) b(s) d s \tag{26.7}\\
+\int_{0}^{T} \pi F(T-\tau-s) \phi(u(s), v(s)) d s .
\end{gather*}
$$

First we examine the case when $\xi\left(T, z^{0}(\cdot), g^{0}(\cdot)\right) \notin M$.
By adding and subtracting from the right-hand side of Eq. (26.7) the value 244 $\int_{0}^{T} g^{0}(T-\tau-s) \mathrm{d} s$, one can deduce

$$
\begin{gathered}
=\left[\pi F(T) a+\int_{-\tau}^{0} \pi F(T-\tau-s) b(s) \mathrm{d} s+\int_{0}^{T} g^{0}(T-\tau-s) \mathrm{d} s\right] \\
+\int_{0}^{T}\left[\pi F(T-\tau-s) \phi(u(s), v(s))-g^{0}(T-\tau-s)\right] \mathrm{d} s \\
\in \xi\left(T, z^{0}(\cdot), g^{0}(\cdot)\right)+
\end{gathered}
$$

$$
\int_{0}^{T} \alpha\left(T, s, z^{0}(\cdot), v, g^{0}(\cdot)\right)\left[M-\xi\left(T, z^{0}(\cdot), g^{0}(\cdot)\right)\right] \mathrm{d} s
$$

$$
=\xi\left(T, z^{0}(\cdot), g^{0}(\cdot)\right)+\int_{0}^{T} \alpha\left(T, s, z^{0}(\cdot), v, g^{0}(\cdot)\right) M \mathrm{~d} s
$$

$$
\begin{equation*}
-\int_{0}^{T} \alpha\left(T, s, z^{0}(\cdot), v, g^{0}(\cdot)\right) \xi\left(T, z^{0}(\cdot), g^{0}(\cdot)\right) \mathrm{d} s \tag{26.8}
\end{equation*}
$$

Author's Proof

By virtue (26.8) and $\alpha\left(T, s, z^{0}(\cdot), v(s), g^{0}(\cdot)\right)=0, s \in\left[t_{*}, T\right]$ we have 247 the inclusion

$$
\begin{gathered}
\pi z(T) \in \xi\left(T, z^{0}(\cdot), g^{0}(\cdot)\right)\left[1-\int_{0}^{t_{*}} \alpha\left(T, s, z^{0}(\cdot), v(s), g^{0}(\cdot)\right) \mathrm{d} s\right] \\
+\int_{0}^{t_{*}} \alpha\left(T, s, z^{0}(\cdot), v(s), g^{0}(\cdot)\right) M \mathrm{~d} s
\end{gathered}
$$

Since $\int_{0}^{t_{*}} \alpha\left(T, s, z^{0}(\cdot), v(s), g^{0}(\cdot)\right) \mathrm{d} s=1$ and the set M is convex then 249 $\pi z(T) \in M$. Then, applying the rule of the pursuer control for the case when 250 $\xi\left(T, z^{0}(\cdot), g^{0}(\cdot)\right) \in M$, we obtain the inclusion $\pi z(T) \in M$. The proof is 251 therefore complete.

Corollary 26.1 Assume that the differential-difference game of approach (26.1), 253 (26.3) is linear $(\phi(u, v)=u-v)$, matrices A and B are commutative, Condition 1254 holds, there exists a continuous positive function $r(t), r: \mathbb{R} \rightarrow \mathbb{R}$, and a number 255 $l \geq 0$ such that $\pi F(t) U=r(t) S, \quad M=l S$, where S is the unit ball centered at 256 zero in the subspace L.

Then when $\xi\left(t, z^{0}(\cdot), g(\cdot)\right) \notin l S$, the resolving function (26.4) is the 258 largest root of the quadratic equation for $\alpha>0 \quad 259$

$$
\begin{gather*}
\left\|\pi F(t-\tau-s) v+g(t-\tau-s)-\alpha \xi\left(t, z^{0}(\cdot), g(\cdot)\right)\right\|= \tag{26.9}\\
=r(t-\tau-s)+\alpha l .
\end{gather*}
$$

Proof By virtue of the assumptions of Corollary 26.1, we conclude from expres- 260 sion (26.4) that the resolving function $\alpha\left(T, s, z^{0}(\cdot), v, g(\cdot)\right)$ for fixed values 261 of its arguments is the maximal number α such that

$$
\begin{gathered}
{[r(t-\tau-s) S-\pi F(t-\tau-s) v-g(t-\tau-s)] \cap} \\
\alpha\left[l S-\xi\left(t, z^{0}(\cdot), g(\cdot)\right)\right] \neq \emptyset .
\end{gathered}
$$

The last expression is equivalent to the inclusion

$$
\begin{gathered}
\pi F(t-\tau-s) v+g(t-\tau-s)-\alpha \xi\left(t, z^{0}(\cdot), g(\cdot)\right) \in \\
[r(t-\tau-s)+\alpha l)] S .
\end{gathered}
$$

Due to the linearity of the left-hand side of this inclusion in α, the vector 264 $\pi F(t-\tau-s) v+g(t-\tau-s)-\alpha \xi\left(t, z^{0}(\cdot), g(\cdot)\right)$ lies on the boundary 265 of the ball $[r(t-\tau-s)+\alpha q l] S$ for the maximal value of α. In other words, the ${ }_{266}$ length of this vector is equal to the radius of this ball that is demonstrated by (26.9). 267 The proof is complete.

Author's Proof

26.3 Differential-Difference Games of Approach with Pure

We consider the problem of approach, which is described by the system of 271 differential-difference equations with pure time delay (see [38, 40, 41])

$$
\begin{equation*}
\dot{z}(t)=B z(t-\tau)+\phi(u, v), \quad z \in \mathbb{R}^{n}, \quad u \in U, \quad v \in V, \quad t \geq 0, \tag{26.10}
\end{equation*}
$$

with the initial condition (26.2).
Lemma 26.2 (See [43]) Let $z(t)$ be a continuous solution to the system (26.10) 274 under the initial condition (26.2). Then,

$$
\begin{aligned}
z(t)= & \exp _{\tau}\{B, t\} z^{0}(-\tau)+\int_{-\tau}^{0} \exp _{\tau}\{B, t-\tau-s\} \dot{z}^{0}(s) d s \\
& +\int_{0}^{t} \exp _{\tau}\{B, t-\tau-s\} \phi(u(s), v(s)) d s
\end{aligned}
$$

The terminal set has the cylindrical form (26.3). Function

$$
u(t)=u\left(z^{0}(\cdot), t, v(t)\right)
$$

such that $v(\cdot) \in \Omega_{V}$ implies $u(\cdot) \in \Omega_{U}$ is called countercontrol stroboscopic 278 strategy of Hajek (see [39]) of pursuer corresponding to initial state $z^{0}(\cdot)$. The 279 game is evolving on the closed time interval $[0, T]$. We assume that the pursuer 280 chooses his control in the form

$$
u(t)= \begin{cases}u_{1}\left(z^{0}(\cdot), t, v(t)\right), & t \in\left[0, t_{*}\right) \\ u_{2}\left(z^{0}(\cdot), t, v(t)\right), & t \in\left[t_{*}, T\right]\end{cases}
$$

where $\left[0, t_{*}\right)$ is the active interval time, $\left[t_{*}, T\right]$ is the passive one, and $t_{*}=283$ $t_{*}(v(\cdot))$ is the moment of switching from the Method of Resolving Functions 284 in first interval time to the First Direct Method of L.S. Pontryagin in the second one. 285

We introduce set-valued mappings 286

$$
\begin{gathered}
\bar{W}(t, v)=\pi \exp _{\tau}\{B, t\} \phi(U, v), \\
\bar{W}(t)=\bigcap_{v \in V} \bar{W}(t, v),
\end{gathered}
$$

Condition 2 The mapping $\bar{W}(t) \neq \emptyset$ for all $t \geq 0$.

Author's Proof

The mapping \bar{W} is upper semi-continuous and therefore Borel measurable 288 function (see [43]). Hence, there exists at least one Borelian selection $g(t), g(t) \in 289$ $\bar{W}(t)$ (see [4]). Denote by $G=\{g(t): g(t) \in \bar{W}(t), \quad t \geq 0\}$ the set of all 290 Borelian selections of the set-valued mapping $\bar{W}(t)$. For fixed $g(\cdot) \in G$ we put 291

$$
\begin{gathered}
\xi\left(t, z^{0}(\cdot), g(\cdot)\right)= \\
=\pi \exp _{\tau}\{B, t\} z^{0}(-\tau)+\int_{-\tau}^{0} \pi \exp _{\tau}\{B, t-\tau-s\} \dot{z}^{0}(s) \mathrm{d} s+\int_{0}^{t} g(s) \mathrm{d} s
\end{gathered}
$$

and consider the resolving function

$$
\begin{gather*}
\alpha\left(t, s, z^{0}(\cdot), v, g(\cdot)\right)=\sup \{\alpha \geq 0: \\
\left.[\bar{W}(t-\tau-s, v)-g(t-\tau-s)] \cap \alpha\left[M-\xi\left(t, z^{0}(\cdot), g(\cdot)\right)\right] \neq \emptyset\right\} \tag{26.11}
\end{gather*}
$$

The function $\alpha\left(t, s, z^{0}(\cdot), v, g(\cdot)\right)$ is summable for $s \in[0, t]$ (see [5]).
We introduce the function (26.5). The value $T=T\left(z^{0}(\cdot), g(\cdot)\right)$ for the 294 initial state $z^{0}(\cdot)$ of the system (26.10) and some selector $g^{0}(\cdot) \in G$ is the 295 guaranteed moment of capture by the pursuer of the evader according to the Method 296 of Resolving Functions.

On the other hand, we set

$$
\begin{gather*}
P\left(z^{0}(\cdot), g(\cdot)\right) \\
=\min \left\{t \geq 0: \pi \exp _{\tau}\{B, t\} z^{0}(-\tau)+\int_{-\tau}^{0} \pi \exp _{\tau}\{B, t-\tau-s\} \dot{z}^{0}(s) \mathrm{d} s\right. \\
\left.\in M-\int_{0}^{t} \bar{W}(t-\tau-s) \mathrm{d} s\right\} . \tag{26.12}
\end{gather*}
$$

Let us show that the quantity (26.3) is the guaranteed moment of the end of 299 the game of approach according to the First Direct Method of L.S. Pontryagin (see 300

Tredrem 26.2 Let the conflict controlled process (26.10), (26.3) with the initial 302 condition (26.2) satisfy Condition 2, the set M be convex, $P\left(z^{0}(\cdot)\right)<+\infty$, зоз when $P\left(z^{0}(\cdot)\right)$ is defined by formula (26.3).

Then a trajectory of the process (26.10), (26.3) can be brought by the pursuer 305 from $z^{0}(\cdot)$ to the terminal set M^{*} at the moment $P\left(z^{0}(\cdot)\right)$.

Author's Proof

26 Quasi-Linear Differential-Deference Game of Approach
Proof For simplicity of presentation, denote $P_{0}=P\left(z^{0}(\cdot)\right)$. We have the ${ }_{307}$ following inclusion

$$
\begin{gathered}
\pi \exp _{\tau}\left\{B, P_{0}\right\} z^{0}(-\tau)+\int_{-\tau}^{0} \pi \exp _{\tau}\left\{B, P_{0}-\tau-s\right\} \dot{z}^{0}(s) \mathrm{d} s \\
\in M-\int_{0}^{P_{0}} \bar{W}\left(P_{0}-\tau-s\right) \mathrm{d} s .
\end{gathered}
$$

Since, there exist point $m \in M$ and selection $g(\cdot) \in G$ such that

$$
\begin{gathered}
\pi \exp _{\tau}\left\{B, P_{0}\right\} z^{0}(-\tau)+\int_{-\tau}^{0} \pi \exp _{\tau}\left\{B, P_{0}-\tau-s\right\} \dot{z}^{0}(s) \mathrm{d} s \\
=m-\int_{0}^{P_{0}} g\left(P_{0}-\tau-s\right) \mathrm{d} s
\end{gathered}
$$

Consider the set-valued mapping

$$
\begin{align*}
& U(s, v)=\left\{u \in U: \pi \exp _{\tau}\left\{B, P_{0}-\tau-s\right\} \phi(u, v)\right. \\
& \left.\quad-g\left(P_{0}-\tau-s\right)=0\right\}, \quad s \in\left[0, P_{0}\right], \quad v \in V \tag{26.13}
\end{align*}
$$

The mapping $U(s, v)$ and selection $u(s, v)=\operatorname{lex} \min U(s, v)$ are Borel 311 measurable functions in its variables.

We set the pursuers control equal to

$$
u(s)=u(s, v(s)), \quad s \in\left[0, P_{0}\right]
$$

where $v(s), v(s) \in V$, is an arbitrary admissible control of the evader, and it will 314 be a Borel measurable function of time.

From the relation (26.13) with (26.3) we obtain

$$
\begin{gathered}
\pi z\left(P_{0}\right)=\pi \exp _{\tau}\left\{B, P_{0}\right\} z^{0}(-\tau)+\int_{-\tau}^{0} \pi \exp _{\tau}\left\{B, P_{0}-\tau-s\right\} \dot{z}^{0}(s) \mathrm{d} s \\
\quad+\int_{0}^{P_{0}} \pi \exp _{\tau}\left\{B, P_{0}-\tau-s\right\} \phi(u(s), v(s)) \mathrm{d} s=m \in M .
\end{gathered}
$$

This means that $z\left(P_{0}\right) \in M^{*}$. The proof is therefore complete.
Theorem 26.3 Let the conflict controlled process (26.10), (26.3) with the initial 318 condition (26.2) satisfy Condition 2.

Author's Proof

Then the inclusion

$$
\begin{gathered}
\pi \exp _{\tau}\{B, t\} z^{0}(-\tau)+\int_{-\tau}^{0} \pi \exp _{\tau}\{B, t-\tau-s\} \dot{z}^{0}(s) d s \\
\in M-\int_{0}^{t} \bar{W}(t-\tau-s) d s, \quad t \geq 0,
\end{gathered}
$$

holds if and only if a selection $g(\cdot) \in G$ exists, such that $\xi\left(t, z^{0}(\cdot), g(\cdot)\right) \in M .321$ Proof Letting

$$
\begin{gathered}
\pi \exp _{\tau}\{B, t\} z^{0}(-\tau)+\int_{-\tau}^{0} \pi \exp _{\tau}\{B, t-\tau-s\} \dot{z}^{0}(s) \mathrm{d} s \\
\in M-\int_{0}^{t} \bar{W}(t-\tau-s) \mathrm{d} s .
\end{gathered}
$$

There exist point $m \in M$ and selection $g(\cdot) \in G$ such that

$$
\begin{gathered}
\pi \exp _{\tau}\{B, t\} z^{0}(-\tau)+\int_{-\tau}^{0} \pi \exp _{\tau}\{B, t-\tau-s\} \dot{z}^{0}(s) \mathrm{d} s \\
=m-\int_{0}^{t} g(t-\tau-s) \mathrm{d} s,
\end{gathered}
$$

which is equivalent to $\xi\left(t, z^{0}(\cdot) g(\cdot)\right)=m \in M$. 324
Using the reverse line of reasoning we come to the required result. The proof is 325 therefore complete. 326

Theorem 26.4 Let the conflict controlled process (26.10), (26.3)) with the initial condition (26.2) satisfy Condition 2, and let the set M be convex, for the given initial state $z^{0}(\cdot)$ and some selection $g^{0}(\cdot) \in G T=T\left(z^{0}(\cdot), g^{0}(\cdot)\right)<+\infty$. ${ }_{329}$

Then a trajectory of the process (26.10), (26.3) can be brought by the pursuer ${ }_{330}$ from $z^{0}(\cdot)$ to the terminal set M^{*} at the moment T.

Proof Let $v(s), v(s) \in V, s \in[0, T]$ be an arbitrary Borel measurable function. First, consider the case when $\xi\left(T, z^{0}(\cdot), g^{0}(\cdot)\right) \notin M$. We introduce the ${ }^{33}$ controlling function

$$
h(t)==1-\int_{0}^{t} \alpha\left(T, s, z^{0}(\cdot), v(s), g^{0}(\cdot)\right) d s, \quad t \geq 0
$$

From the definition of time T, there exists a switching time $t_{*}={ }_{335}$ $t_{*}(v(\cdot)), \quad 0<t_{*} \leq T$, such that $h\left(t_{*}\right)=0$. ${ }_{336}$

Let us describe the rules by which the pursuer constructs his control on the so- ${ }^{337}$ called active and the passive parts, $\left[0, t_{*}\right)$ and $\left[t_{*}, T\right]$, respectively. 338

Author's Proof

Consider the set-valued mapping

$$
\begin{aligned}
& U_{1}(s, v)=\left\{u \in U: \pi \exp _{\tau}\{B, T-\tau-s\} \phi(u, v)-g^{0}(T-\tau-s)\right. \\
& \left.\quad \in \alpha\left(T, s, z^{0}(\cdot), v(s), g^{0}(\cdot)\right)\left[M-\xi\left(T, z^{0}(\cdot), g^{0}(\cdot)\right)\right]\right\} .
\end{aligned}
$$

It follows from assumptions concerning the process (26.10), (26.3) parameters, with account of properties of the resolving function, that the mapping $U_{1}(s, v)$ is a 341 Borel measurable function on the set $[0, T] \times V$. Then selection

$$
u_{1}(s, v)=\operatorname{lex} \min U_{1}(s, v)
$$

appears as a jointly Borel measurable function in its variables (see [43]).

The pursuer's control on the interval $\left[0, t_{*}\right.$) is constructed in the following form

$$
u(s)=u_{1}(s, v(s)),
$$

being a superposition of Borel measurable functions it is also Borel measurable 347 function (see [43]).

Set

$$
\alpha\left(T, s, z^{0}(\cdot), v(s), g^{0}(\cdot)\right) \equiv 0, \quad s \in\left[t_{*}, T\right]
$$

Then the mapping

$$
=\left\{u \in U: \pi \exp _{\tau}\{B, T-\tau-s\} \phi(u, v)-g^{0}(T-\tau)\right.
$$

is Borel measurable function in its variables, and its selection

$$
u_{2}(s, v)=\operatorname{lex} \min U_{2}(s, v)
$$

is Borel measurable function as well.
On the interval $\left[t_{*}, T\right]$ we set the pursuer's control equal to

$$
\begin{equation*}
u(s)=u_{2}(s, v(s)) . \tag{26.14}
\end{equation*}
$$

It is measurable function too.
Let $\xi\left(T, z^{0}(\cdot), g^{0}(\cdot)\right) \in M$. In this case, we choose the pursuer's control ${ }^{357}$ on the interval [$0, T$] in the form (26.14).

Thus, the rules are defined, to which the pursuer should follow in constructing 359 his control. We will now show that if the pursuer follows these rules in the course

Author's Proof

of the game, a trajectory of process (26.10) hits the terminal set at the time T under 361 arbitrary admissible controls of the evader.

By virtue of Lemma 26.2, the Cauchy formula for the system (26.10) implies the 363 representation

$$
\begin{align*}
\pi z(T)= & \pi \exp _{\tau}\{B, T\} z^{0}(-\tau)+\int_{-\tau}^{0} \pi \exp _{\tau}\{B, T-\tau-s\} \dot{z}^{0}(s) \mathrm{d} s \tag{26.15}\\
& +\int_{0}^{T} \pi \exp _{\tau}\{B, T-\tau-s\} \phi(u(s), v(s)) \mathrm{d} s .
\end{align*}
$$

First, we examine the case when $\xi\left(T, z^{0}(\cdot), g^{0}(\cdot)\right) \notin M$.
By adding and subtracting from the right-hand side of Eq. (26.15) the value ${ }^{366}$ $\int_{0}^{T} g^{0}(T-\tau-s) \mathrm{d} s$, one can deduce

$$
\begin{gathered}
\pi z(T) \in \xi\left(T, z^{0}(\cdot), g^{0}(\cdot)\right)\left[1-\int_{0}^{t_{*}} \alpha\left(T, s, z^{0}(\cdot), v(s), g^{0}(\cdot)\right) \mathrm{d} s\right] \\
+\int_{0}^{t_{*}} \alpha\left(T, s, z^{0}(\cdot), v(s), g^{0}(\cdot)\right) M \mathrm{~d} s
\end{gathered}
$$

Since $\int_{0}^{t_{*}^{*}} \alpha\left(T, s, z^{0}(\cdot), v(s), g^{0}(\cdot)\right) \mathrm{d} s=1$ and the set M is convex then 369 $\pi z(T) \in M$. Then, applying the rule of the pursuer control for the case when 370 $\xi\left(T, z^{0}(\cdot), g^{0}(\cdot)\right) \in M$, we obtain the inclusion $\pi z(T) \in M$. The proof is ${ }_{371}$ therefore complete.

Corollary 26.2 Let the conflict-controlled process (26.10), (26.3) with the initial 373 condition (26.2) satisfy Condition 2.

Then for any initial state $z^{0}(\cdot)$ there exists a selection $g^{0}(\cdot) \in G$ such that

$$
T\left(z^{0}(\cdot), g^{0}(\cdot)\right) \leq P\left(z^{0}(\cdot)\right)
$$

The effectiveness of the Method of Resolving Functions, sufficient conditions
modern techniques of set-valued mappings and their selections, prove the relevance of this method for solving differential-difference games that are of great practical importance.

Acknowledgements The author is grateful to Academician Zgurovsky M.Z. for the possibility of 382 the publication and to professor Kasyanov P.O. for assistance in publication this article.

Author's Proof

26 Quasi-Linear Differential-Deference Game of Approach

Abstract

References

1. Isaacs, R.: Differential Games: A Mathematical Theory with Applications to Warfare and 385
Pursuit, Control and Optimization. Wiley, New York (1965) 386
2. Pontryagin, L.S.: Selected Scientific Works, vol. 2. Nauka, Moscow (1988) 387
3. Pshenitchnyi, B.N., Ostapenko, V.V.: Differential Games. Naukova Dumka, Kyiv (1992) 388
4. Krasovskii, N.N.: Game-Theoretical Control Problems. Springer, New York (1988). https:// 389
doi.org/10.1007/978-1-4612-3716-7 390
5. Chikrii, A.A.: Conflict-Controlled Processes. Springer, Dordrecht (2013) 391
6. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Sides. Nauka, Moscow 392
(1985) 393
7. Chikrii, A.A.: An analytical method in dynamic pursuit games. Proc. Steklov Inst. Math. 394
271(1), 69-85 (2010) 395
8. Chikrii, A.A., Eidelman, S.D.: Generalized Mittag-Leffler matrix functions in game problems 396 for evolutionary equations of fractional order. Cybern. Syst. Anal. 36(3), 315-338 (2000) 397
9. Chikrii, A.A., Kalashnikova, S.F.: Pursuit of a group of evaders by a single controlled object. 398
Cybernetics 23(4), 437-445 (1987) 399
10. Albus, J., Meystel, A., Chikrii, A.A., Belousov, A.A., Kozlov, A.J.: Analytical method for 400solution of the game problem of softlanding for moving objects. Cybern. Syst. Anal. 37(1), 40175-91 (2001)402
11. Baranovskaya, L.V., Chikrii, A.A., Chikrii, Al.A.: Inverse Minkowski functional in a nonsta- 403
tionary problem of group pursuit. J. Comput. Syst. Sci. Int. 36(1), 101-106 (1997) 404
12. Chikrii, Al.A.: On nonstationary game problem of motion control. J. Autom. Inf. Sci. 47(11), 40574-83 (2015). https://doi.org/10.1615/JAutomatInfScien.v47.i11.60406
13. Pepelyaev, V.A., Chikrii, Al.A.: On the game dynamics problems for nonstationary controlled 407 processes. J. Autom. Inf. Sci. 49(3), 13-23 (2017). https://doi.org/10.1615/JAutomatInfScien. 408 v49.i3.30 409
14. Kryvonos, I.Iu., Chikrii, Al.A., Chikrii, K.A.: On an approach scheme in nonstationary game 410problems. J. Autom. Inf. Sci. 45(8), 41-58 (2013). https://doi.org/10.1615/JAutomatInfScien. 411v45.i8.40412
15. Chikrii, A.A., Chikrii, G.Ts.: Matrix resolving functions in game problems of dynamics. Proc. 413
Steklov Inst. Math. 291(1), 56-65 (2015) 414
16. Chikriy, A.A., Baranovskaya, L.V., Chikriy, Al.A.: An approach game problem under the 415
failure of controlling devices. J. Autom. Inf. Sci. 32(5), 1-8 (2000). https://doi.org/10.1615/ 416
JAutomatInfScien.v32.i5.10 417
17. Baranovskaya, L.V., Chikriy, A.A.: Game problems for a class of Hereditaly systems. J. Autom 418 Inf. Sci. 29(2-3), 87-97 (1997). https://doi.org/10.1615/JAutomatInfScien.v29.i2-3.120 419
18. Chikrii, A.A., Belousov, A.A.: On linear differential games with integral constrains. Trudy 420
Instituta Matematiki i Mekhaniki UrO RAN 15(4), 290-301 (2009) 421
19. Bigun, Ya.I., Kryvonos, I.Iu., Chikrii, Al.A., Chikrii, K.A.: Group approach under phase 422
constraints. J. Autom. Inf. Sci. 46(4), 1-8 (2014). https://doi.org/10.1615/JAutomatInfScien. 423
v46.14.10 424
20. Elsgolts, L.E., Norkin, S.B.: Differential Equations with Deviating Argument. Nauka, Moscow 425
(1971) 426
21. Kolmanovskii, V.B., Richard, J.P.: Stability of some linear systems with delays. J. IEEE Trans. 427 428 Autom. Control. 44(5), 984-989 (1999) Autom. Control. 44(5), 984-989 (1999)
22. Baranovskaya, L.V., Baranovskaya, G.G.: On differential-difference group pursuit game. 429
Dopov. Akad. Nauk Ukr. 3, 12-15 (1997) 430
23. Baranovskaya, G.G., Baranovskaya, L.V.: Group pursuit in quasilinear differential-difference 431games. J. Autom. Inf. Sci. 29(1), 55-62 (1997). https://doi.org/10.1615/JAutomatInfScien.v29. 43211.70433

Author's Proof

24. Baranovskaya, L.V., Chikrii, Al.A.: On one class of difference-differential group pursuit 434 games. In: Multiple Criteria and Game Problems under Uncertainty. Proceedings of the Fourth 435 International Workshop, September 1996, Moscow, vol. 11, pp. 814 (1996)
25. Chikrii, A.A., Baranovskaya, L.V.: A type of controlled system with delay. Cybern. Comput. 437 Technol. 107, 1-8 (1998)
26. Baranovskaya, L.V.: About one class of difference games of group rapprochement with unfixed 439
time. Sci. World 1(2(18)), 10-12 (2015) 440
27. Baranovska, L.V.: The group pursuit differential-difference games of approach with non-fixed 441
time. Naukovi Visti NTUU KPI 4, 18-22 (2011) 442
28. Liubarshchuk, I.A., Bihun, Ya.I., Cherevko, I.M.: Game problem for systems with time-varying 443
delay. Problemy Upravleniya I Informatiki 2, 79-90 (2016) 444
29. Baranovskaya, L.V.: A method of resolving functions for one class of pursuit problems. East.- 445
Eur. J. Enterp. Technol. 74(4), 4-8 (2015). https://doi.org/10.15587/1729-4061.2015.39355 446
30. Kyrychenko, N.F., Baranovskaya, L.V., Chyckrij, Al.A.: On the class of linear differential- 447
difference games of pursuit. Dopov. Akad. Nauk Ukr. 6, 24-26 (1997) 448
31. Baranovska, L.V.: On quasilinear differential-difference games of approach. Problemy 449
upravleniya i informatiki 4, 5-18 (2017) 450
32. Baranovska, L.V.: The modification of the method of resolving functions for the difference- 451
differential pursuit's games. Naukovi Visti NTUU KPI 4, 1420 (2012) 452
33. Baranovskaya, L.V.: Method of resolving functions for the differential-difference pursuit game 453
for different-inertia objects. Adv. Dyn. Syst. Control. 69, 159-176 (2016). https://doi.org/10. 454
1007/978-3-319-40673-2 455
34. Bellman, R., Cooke, K.L.: Differential-Difference Equations. Academic, Cambridge (1963) 456
35. Osipov, Yu.S.: Differential games of systems with delay. Dokl. Akad. Nauk 196(4), 779-782 457
(1971) 458
36. Khusainov, D.Ya., Benditkis, D.D., Diblik, J.. Weak delay in systems with an aftereffect. Funct. 459
Differ. Equ. 9(3-4), 385-404 (2002) 460
37. Diblk, J., Morvkov, B., Khusainov, D., Kukharenko, A.: Delayed exponential functions and 461
their application to representations of solutions of linear equations with constant coefficients 462
and with single delay. In: Proceedings of the 2nd International Conference on Mathematical 463
Models for Engineering Science, and Proceedings of the 2nd International Conference on 464
Development, Energy, Enyironment, Economics, and Proceedings of the 2nd International 465
Conference on Communication and Management in Technological Innovation and Academic 466
Globalization, 10-12 December 2011, pp. 82-87 (2011) 467
38. Khusainov, D.Ya., Diblik, J., Ruzhichkova, M.: Linear dynamical systems with aftereffect. In: 468
Representation of Decisions, Stability, Control, Stabilization. GP Inform-Analytics Agency, 469
Kiev (2015) 470
39. OR O.: Pursuit Games: An Introduction to the Theory and Applications of Differential 471 Gamms of Pursuit and Evasion. Dover Publications, New York (2008) 472
40. Diblk, J., Khusainov, D. Y.: Representation of solutions of linear discrete systems with constant 473
coefficients and pure delay. Adv. Differ. Equ., 1687-1847 (2006). https://doi.org/10.1155/ 474
ADE/2006/80825 475
41. Baranovska, L.V.: Method of resolving functions for the pursuit game with a pure time- 476
lag. In: System Analysis and Information Technology: 19th International Conference SAIT 477
2017, Kyiv, Ukraine, 22-25 May 2017. Proceedings ESC IASA妄 NTUU Igor Sikorsky Kyiv 478
Polytechnic Institute, p. 18 (2017) 479
42. Nikolskii, M.S.: L.S. Pontryagins First Direct Method in Differential Games. Izdat. 480
Lomonosov Moscow State University (Izdat. Gos. Univ.), Moscow (1984) 481
43. Joffe, A.D., Tikhomirov, V.: Theory of Extremal Problems. North Holland, Amsterdam (1979) 482
44. Pshenichnyi, B.N.: Convex Analysis and Extreme Challenges. Nauka, Moscow (1980) 483
45. Aubin, J-P., Frankovska, He.: Set-Valued Analysis. Birkhause, Boston (1990) 484

Author's Proof

AUTHOR QUERIES

AQ 1 . Please check the presentation and placement of the following text "The author is grateful to Academician..." and correct if necessary.
AQ2. References [44, 45] are not cited in the text. Please provide the citations or delete them from the list.

[^0]: L. V. Baranovska (\boxtimes)

 Institute for Applied System Analysis, National Technical University of Ukraine "Kyiv
 Polytechnic Institute", Kyiv, Ukraine
 e-mail: lesia@baranovsky.org

