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Abstract. The analytical approach for solution of pursuit differential-difference

games with pure time-lag is considered. For the pursuit local problem with the
fixed time the scheme of the method of resolving functions and Pontryagin’s

first direct method are developed. The integral presentation of game solution

based on the time-delay exponential is proposed at first time. The guaranteed
times of the game termination are found, and corresponding control laws are

constructed. Comparison of the times of approach by the method of resolving

functions and Pontryagin’s first direct method for the initial problem are made.

1. Statement of problem. Conflict-controlled processes is a section of the mathe-
matical control theory studying the manipulation of moving objects operated under
conditions of conflict and uncertainty. We consider the game problems of approach,
which are central to the theory of conflict-controlled processes. The evolution of an
object can be described by systems of difference, ordinary differential, differential-
difference, integral, integro-differential equations, systems of equations with dis-
tributed parameters, systems of equations with fractional derivatives, impulse in-
fluences and their various combinations (see [1, 2]). In this paper, the Method of
Resolving Functions is chosen as the main tool for research, widely used to study
conflict-controlled processes of various nature (see [3, 4]). The processes with frac-
tional derivatives are studied in (see [5]), the general scheme of the method of re-
solving functions is given in (see [4]), the applied problem of soft meeting is solved
in (see [6]), the nonstationary problems are considered in (see [7, 8, 9]), a variant
of the matrix resolving functions are proposed in (see [10]), an approach games
problem under the failure of controlling devices are considered in (see [11, 12]), and
in (see [13]-[15]) the cases of integral constraints on control are examined.

Denote by 2R
n

a set of all subsets of space Rn, by K (Rn) a set of all nonampty
compacts in Rn, and by coK (Rn) a set of all nonempty convex compacts in Rn. By
a set-valued mapping is meant a mapping acting from Rn to 2R

n

and transforming
each element x ∈ Rn into a set in Rn.

Consider a controlled object whose dynamics is described by the linear differential-
difference system with pure time-lag τ = const > 0 in an Euclidean space Rn
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ż (t) = Bz (t− τ) + φ (u , v) , z ∈ Rn , u ∈ U , v ∈ V , (1)

where B is a square constant matrix of order n; U, V ∈ K (Rn); φ : U × V → Rn is
jointly continuous in its variables; u and v are the control parameters of the pursuer
and the evader; z is the state vector, involving geometric coordinates, velocities,
accelerations of the pursuer and the evader.

The initial condition

z (t) = z0 (t) , −τ ≤ t ≤ 0 (2)

is absolutely continuous on [−τ , 0] .
Permissible controls u(s), v(s) are the Lebesgue measurable functions that take

values from compacts U and V , respectively. Denote

ΩU = {u (s) : u (s) ∈ U, s ∈ [0, +∞)},
ΩV = {v (s) : v (s) ∈ V, s ∈ [0, +∞)}.

Function u ( · ) ∈ ΩU (v ( · ) ∈ ΩV ), chosen by the pursuer (evader) on the basis
of knowledge of the initial condition, will be called an open-loop control of the
pursuer (evader). The function vt ( · ) = {v (s) : s ∈ [0, t] , v ( · ) ∈ ΩV } , will be
called a prehistory of the evader’s control at time t, t ≥ 0.

We define a qusistrategy of the pursuer as a mapping U
(
t, z0 ( · ) , vt ( · )

)
. To

each moment of time t ≥ 0, initial condition (2) and arbitrary prehistory vt ( · ) of
evader’s control it assigns a Lebesgue measurable function u (t) = U

(
t, z0 ( · ) , vt ( · )

)
,

t ≥ 0, taking its values in control domain U .
Strobostrophic strategies (see [16]) is a special case of quasistrategies. To define

them rigorously it suffices to substitute U
(
z0 ( · ) , v (t)

)
for U

(
t, z0 ( · ) , vt ( · )

)
in the definition of quasistrategy with appropriate modifications. The pursuer’s
countercontrol is constructed on the basis of information on the initial state z0 ( · )
(2) of the process (1) and the instantaneous value of the evader’s control u (t) =
U
(
z0 ( · ) , v (t)

)
, t ≥ 0. The evader’s counter-strategy is defined in a similar way.

If in the course of the process (1) the information on a state vector z (t) at the
current time t is available to the pursuer we shall speak about positional strate-
gies and control (see [17]). Let us identify positional strategies with the functions
u (z) , v (z) , u (z) ∈ U, v (z) ∈ V . The players’ controls selected in the form of
the functions u (z, v) , v (z, u) will be called the positional countercontrols. In this
case the functions u (t, z) = u (z, v (t)) ∈ U , v (t, z) = v (z, v (t)) ∈ V should be
measurable in time.

Let z (t) be a solution of equation (1) under the initial condition (2). It is known
(see [18]) that if z0 (t) ∈ C0 [−τ , 0] , φ ∈ C0 [0, +∞), then the Cauchy formula for
the system (1) implies the representation

z (t) = z0 (0)K (t) +B

∫ 0

−τ
K (t− τ − s) b (s) ds

+

∫ t

0

K (t− s)φ (u (s) , v (s)) ds

where K (t) is a matrix-valued function which satisfies such properties:
1) K (t) = Θ, t < 0, Θ is the null matrix of order n;
2) K (0) = I, I is the unit matrix of order n;
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3) K (t) is continuous in [0, +∞);
4) K (t) satisfies the equation

K̇ (t) = BK (t− τ) , t > 0. (3)

The method of resolving functions for the pursuit problem (1), (2) was developed
in (see [19]-[28]).

However, in practice the solution of the equation by the methods of sequential
integration and mathematical induction is very stiff. Therefore, the question arises
of finding another way to solve systems, perhaps for a narrower class of problems.

It is known that the solution of the system of the linear homogeneous differential
equations with constant coefficients

ż (t) = Az (t) , z ∈ Rn, t ≥ 0, z (0) = z0

can be represented in the form of matrix exponential z (t) = z0exp(At),

exp (At) = I +A
t

1!
+A2 t

2

2!
+ · · ·+An

tn

n!
+ . . . .

Consider the linear system of homogeneous differential equations with constant
coefficients and the one constant pure time-lag

ż (t) = Bz (t− τ) , z ∈ Rn, t ≥ 0 (4)

with the initial condition

z (t) = z0 (t) , −τ ≤ t ≤ 0. (5)

Here B is the quadratic matrix of order n with the constant elements; τ =
const > 0; z0 (t) is absolutely continuous vector function.

Definition 1.1. (see [29]-[31]). For each k = 1, 2, . . . the time-delay exponential is
defined as follows

expτ{B, t} =


Θ, −∞ < t < −τ ;
I, −τ ≤ t < 0;

I +B t
1! +B2 (t−τ)2

2! + · · ·+Bk (t−(k−1)τ)k

k! , (k − 1) τ ≤ t ≤ kτ.
(6)

Lemma 1.2. (see [31]). Let z (t) be a continuous solution to the system (4) under
the initial condition (5). Then,

z (t) = expτ{B, t}z0 (−τ) +

∫ 0

−τ
expτ{B, t− τ − s}ż0 (s) ds.

Consider the nonhomogeneous system with pure time-lag

ż (t) = Bz (t− τ) + φ (u , v) . (7)

The solution to the system (7) under the initial condition (5) consists of the
sum of the solution x0(t) of the homogeneous system under the initial condition (5)
and the solution zh(t) of the nonhomogeneous system under the initial condition
z(t) = Θ, −τ ≤ t ≤ 0.
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Lemma 1.3. (see [31]). Let zh (t) be a continuous solution to the system (7) under
the initial condition z(t) = Θ, −τ ≤ t ≤ 0. Then,

zh (t) =

∫ t

0

expτ{B, t− τ − s}φ (u (s) , v (s)) ds

for t ≥ 0.

Lemma 1.4. (see [31]). Let z (t) be a continuous solution to the system (7) with
pure time-lag under the initial condition (5). Then,

z (t) = expτ{B, t}z0 (−τ) +

∫ 0

−τ
expτ{B, t− τ − s}ż0 (s) ds

+

∫ t

0

expτ{B, t− τ − s}φ (u (s) , v (s)) ds.

2. Outline of method. We consider the conflict-controlled processes (7), where
z ∈ Rn; U, V ∈ K(Rn).

The terminal set has cylindrical form, i.e.

M∗ = M0 +M, (8)

where M0 is a linear subspace in Rn, and M ∈ K (L), L is the orthogonal comple-
ment of M0 in the Rn.

The goal of the pursuer (u) is in the shortest time to bring a trajectory of the
process to a certain closed set M∗; the goal of the evader (v) is to avoid a trajectory
of the process from meeting with the terminal set (8) on a whole semi-infinite
interval of time or it is impossible to maximally postpone the moment of meeting.

The game is evolving in the closed time interval [0, T ], T is a moment when a
trajectory of the process brings to a terminal set (8), T > 0 such that z(T ) ∈ M∗
or πz(T ) ∈M , where π is the orthogonal project, π : Rn → L.

If the game occurs on the interval [0, T ], then, according to the method of
resolving functions (see [3], [4]), the interval is divided into two intervals and the
pursuer chooses a control of the form

u (t) =

{
u1

(
z0 ( · ) , t, v (t)

)
, t ∈ [0, t∗) ;

u2

(
z0 ( · ) , t, v (t)

)
, t ∈ [t∗ , T ] ,

where t∗ = t∗ (v ( · )) is the moment of switching from one law of choosing a counter-
control to another, depending on the history of the running of the evader. We will
play the role of the pursuer and find sufficient conditions on the parameters of the
problem (7), (8), insuring the game termination for certain guaranteed time.

Consider the set-valued mapping

W̄ (t, v) = πexpτ{B, t}φ (U, v) ,

W̄ (t) =
⋂
v∈V

W̄ (t, v) .

Condition 1 (Pontryagin’s condition). The mapping W̄ (t) 6= ∅ for all t ≥ 0.
By virtue of the assumptions on the process parameters and of the continu-

ity function expτ{B, T}, the set-valued mapping W̄ (t, v) is continuous on the set
[0, +∞) × V . Consequently, as it follows from Condition 1, the mapping W̄ (t) is
upper semi-continuous and therefore Borel measurable function (see [32]). Hence,
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there exists at least one Borelian selection g (t) , g (t) ∈ W̄ (t) (see [33]). Denote
by G = {g (t) : g (t) ∈ W̄ (t) , t ≥ 0} the set of all Borelian selections of the
set-valued mapping W̄ (t) .

By virtue of Lemma 3, the Cauchy formula for the system (7) implies the repre-
sentation

z (t) = expτ{B, t}z0 (−τ) +

∫ 0

−τ
expτ{B, t− τ − s}ż0 (s) ds

+

∫ t

0

expτ{B, t− τ − s}φ (u (s) , v (s)) ds.

(9)

For fixed g ( · ) ∈ G we put

ξ
(
t , z0 ( · ) , g ( · )

)
=

=πexpτ{B, t}z0 (−τ) +

∫ 0

−τ
πexpτ{B, t− τ − s}ż0 (s)ds+

∫ t

0

g (s)ds.

Let X ∈ (Rn) and 0 ∈ X. Consider the Minkowski function (see [3], [34])

µX (p) = inf{µ ≥ 0 : p ∈ µX}
and the function inverse to it

αX (p) = sup{α ≥ 0 : αp ∈ X}, p ∈ Rn.

Denote

α
(
t, s, z0( · ), v, g( · )

)
= αW̄ (t−τ−s,v)−g(t−τ−s)

(
m− ξ

(
t, z0( · ), g( · )

))
for all t ≥ s ≥ 0, v ∈ V , g( · ) ∈ G, m ∈M , x ∈ Rn.

By virtue of the properties of the superposition of set-valued mappings and func-
tions, it is Borel measurable function in s, v (see [22]).

Finally, denote

α
(
t, s, z0( · ), v, g( · )

)
= max
m∈M

α
(
t, s, z0( · ),m, v, g( · )

)
and then we obtain so-called resolving function

α
(
t, s, z0( · ), v, g( · )

)
= sup{α ≥ 0 :[

W̄ (t− τ − s, v)− g(t− τ − s)
]
∩ α

[
M − ξ

(
t, z0( · ), g( · )

)]
6= ∅ }.

(10)

It is easy to see that since 0 ∈ W̄ (t − τ − s, v) − g(t − τ − s) for all t ≥ s ≥ 0,
v ∈ V , then if ξ

(
t, z0( · ), g( · )

)
∈ M then function α

(
t, s, z0( · ), v, g( · )

)
= +∞. If

ξ
(
t, z0( · ), g( · )

)
/∈M , then the resolving function (10) takes finite values, and it is

uniformly bounded jointly in s ∈ [0, t], v ∈ V .

Lemma 2.1. (see [3]). Let the conflict-controlled process (7), (8) satisfy Condi-
tion 1 and for some t > 0, z0( · ) ∈ Rn, g( · ) ∈ G ξ

(
t, z0( · ), g( · )

)
/∈ M . Then

the resolving function (10) is Borel measurable function jointly in s, v, and upper
semicontinuous in v, s ∈ [0, t], v ∈ V .
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3. Basic results. Consider the function

T = T
(
z0 ( · ) , g ( · )

)
= inf

{
t ≥ 0 :

∫ t

0

inf
v∈V

α
(
t , s , z0 ( · ) , v , g ( · )

)
ds ≥ 1

}
, g ( · ) ∈ G.

(11)

Notice, that if inequality in curly brackets fails for all t ≥ 0, then we set T
(
z0 ( · ) , g ( · )

)
=

+∞. If ξ
(
t, z0( · ), g( · )

)
/∈ M , then the function inf

v∈V
α
(
t , s , z0 ( · ) , v , g ( · )

)
is

measurable in s, and it is summable on the interval [0; t]. If ξ
(
t, z0( · ), g( · )

)
∈M ,

t > 0, then inf
v∈V

α
(
t , s , z0 ( · ) , v , g ( · )

)
= +∞ for s ∈ [0, t], and it is natural

to set the integral equal to +∞. Then the inequality (11) automatically holds.
The value T = T

(
z0 ( · ) , g ( · )

)
for the initial condition z0( · ) and some selec-

tion g( · ) ∈ G is the guaranteed moment of the capture by the pursuer of the evader
according to the method of the resolving function.

On the other hand, we set

P
(
z0 ( · ) , g ( · )

)
= min

{
t ≥ 0 : πexpτ{B, t}z0 (−τ) +

∫ 0

−τ
πexpτ{B, t− τ − s}ż0 (s)ds

∈M −
∫ t

0

W̄ (t− τ − s)ds
}
.

(12)

Let us show that the quantity (12) is the guaranteed moment of the end of the
game of approach according to the First Direct Method of L.S. Pontryagin (see
[36],[3]).

Theorem 3.1. Let the conflict controlled process (7), (8) with the initial condition
(5) satisfy Condition 1, the set M be convex, and for the given initial state z0( · )
P
(
z0 ( · )

)
< +∞, when P

(
z0 ( · )

)
is defined by formula (12).

Then a trajectory of the process (7), (8) can be brought by the pursuer from
z0 ( · ) to the terminal set M∗ at the moment P

(
z0 ( · )

)
.

Proof. We denote by P0 = P
(
z0 ( · )

)
. The following inclusion holds

πexpτ{B,P0}z0 (−τ) +

∫ 0

−τ
πexpτ{B,P0 − τ − s}ż0 (s)ds

∈M −
∫ P0

0

W̄ (P0 − τ − s)ds.

Hence, there exist a point m ∈M and a selection g ( · ) ∈ G such that

πexpτ{B,P0}z0 (−τ) +

∫ 0

−τ
πexpτ{B,P0 − τ − s}ż0 (s)ds

=m−
∫ P0

0

g (P0 − τ − s)ds.

Consider the set-valued mapping
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U (s, v) = {u ∈ U : πexpτ{B,P0 − τ − s}φ (u, v)

−g (P0 − τ − s) = 0} , s ∈ [0, P0] , v ∈ V.
(13)

It is a Borel measurable function in s, v. The selection u (s, v) = lex minU (s, v)
is Borel measurable function in its variables as well.

The pursuers control is constructed as follows

u (s) = u (s , v (s)) , s ∈ [0, P0] ,

where v (s) , v (s) ∈ V, is a Borel measurable function of time.
By virtue (13) and (12), we obtain

πz (P0) = πexpτ{B,P0}z0 (−τ) +

∫ 0

−τ
πexpτ{B,P0 − τ − s}ż0 (s)ds

+

∫ P0

0

πexpτ{B,P0 − τ − s}φ (u (s) , v (s))ds = m ∈M.

Finally, we have the inclusion z (P0) ∈M∗. The proof is therefore complete.

Theorem 3.2. Let the conflict controlled process (7), (8) with the initial condition
(5) satisfy Condition 1.

Then the inclusion

πexpτ{B, t}z0 (−τ) +

∫ 0

−τ
πexpτ{B, t− τ − s}ż0 (s)ds

∈M −
∫ t

0

W̄ (t− τ − s)ds, t ≥ 0,

holds if and only if a selection g ( · ) ∈ G exists, such that ξ
(
t, z0 ( · ) , g ( · )

)
∈M.

Proof. Let

πexpτ{B, t}z0 (−τ) +

∫ 0

−τ
πexpτ{B, t− τ − s}ż0 (s)ds

∈M −
∫ t

0

W̄ (t− τ − s)ds.

Then there exist a point m ∈M and a selection g ( · ) ∈ G such that

πexpτ{B, t}z0 (−τ) +

∫ 0

−τ
πexpτ{B, t− τ − s}ż0 (s)ds

=m−
∫ t

0

g (t− τ − s)ds

which is equivalent to ξ
(
t, z0 ( · ) g ( · )

)
= m ∈M.

Assuming that for some g ( · ) ∈ G ξ
(
t, z0 ( · ) , g ( · )

)
∈M , and arguing in the

reverse order, we obtain the required result.
Thus, the case of equality of the resolving function α

(
t, s, z0( · ), v, g( · )

)
= +∞

corresponds to the first direct method of L.S. Pontryagin. In the future, the resolv-
ing function will play a key role in the method of resolving functions.
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Let X be a compact in Rn. We denote by X1 the set of vectors x ∈ X the
first component of which is smallest, by X2 the set of vectors x ∈ X1 the second
component of which is smallest, and so on up to Xn. It is clear that set Xn consists
of a single point x∗ which is called a lexicographic minimum of compact X. Denote
x∗ = lexminX.

Theorem 3.3. Let the conflict controlled process (7), (8) ) with the initial condition
(5) satisfy Condition 1, and let the set M be convex, for the given initial state z0 ( · )
and some selection g0 ( · ) ∈ G T = T

(
z0 ( · ) , g0 ( · )

)
< +∞.

Then a trajectory of the process (7), (8) can be brought by the pursuer from
z0 ( · ) to the terminal set M∗ at the moment T .

Proof. Let v ( · ) be an arbitrary measurable function taking values from the control
domain V. Moment T is the estimated time for the end of the pursuit game. Let
us consider the case when ξ

(
T, z0 ( · ) , g0 ( · )

)
/∈ M. For this we introduce the

controlling function

h (t) = 1−
∫ t

0

α
(
T, s, z0 ( · ) , v (s) , g0 ( · )

)
ds, t ≥ 0.

It is continuous, non-increasing, and h(0) = 1.
From the definition of time T , there exists a switching time t∗ = t∗ (v ( · )) , 0 <

t∗ ≤ T, such that h (t∗) = 0.
The whole process of pursuit is divided into two time sections: active [0 , t∗) and

passive [t∗ , T ] , where t∗ is the moment of switching from one law of choosing the
counter-control to another, depending on prehistory of running away. In the first
section, the method of resolving functions actually works. When the integral of the
resolving function becomes unity at the instant t∗, we switch the pursuit process to
Pontryagin’s first direct method.

In accordance with the foregoing, we define the following law of choice of the
pursuer’s control. To do this, we consider the set-valued mapping

U1(s, v) =
{
u ∈ U : πexpτ{B, T − τ − s}φ (u, v)− g0 (T − τ − s)

∈ α
(
T, s, z0 ( · ) , v (s) , g0 ( · )

) [
M − ξ

(
T, z0 ( · ) , g0 ( · )

)]}
.

(14)

It follows from assumptions concerning the process (7), (8) parameters, with
account of properties of the resolving function, that the mapping U1 (s, v) is a
Borel measurable function on the set [0, T ]× V. Then selection

u1 (s, v) = lex minU1 (s, v)

appears as a jointly Borel measurable function in its variables (see [32]-[35]).
The pursuer’s control on the interval [0, t∗) is constructed in the following form

u (s) = u1 (s, v (s))

being a superposition of Borel measurable functions and it is also a Borel measurable
function (see [32], [33]).

On the passive interval [t∗, T ] accumulate the resolving function no longer makes
sense (see [3], [36]), so here the resolving function is assumed to be equal to zero:

α
(
T, s, z0 ( · ) , v (s) , g0 ( · )

)
≡ 0

and we will now select the control of the pursuer in accordance with the first direct
method of L.S. Pontryagin. To this end, we introduce the mapping
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U2 (s, v)

=
{
u ∈ U : πexpτ{B, T − τ − s}φ (u, v)− g0 (T − τ − s) = 0

}
, s ∈ [t∗, T ] , v ∈ V

being a Borel measurable function in its variables, and its selection

u2 (s, v) = lex minU2 (s, v)

is Borel measurable function as well.
On the interval [t∗ , T ] we set the pursuer’s control equal to

u (s) = u2 (s , v (s)) . (15)

It is measurable function too.
In the case when ξ

(
T, z0 ( · ) , g0 ( · )

)
∈M , we choose the pursuers control on

the interval [0, T ] in the form (15).
We will now show that if the pursuer follows these rules in the course of the game,

a trajectory of process (7), (8) hits the terminal set at the time T under arbitrary
admissible controls of the evader.

By virtue of Lemma 3, the Cauchy formula for the system (7) under the initial
condition (5) implies the representation

πz (T ) = πexpτ{B, T}z0 (−τ) +

∫ 0

−τ
πexpτ{B, T − τ − s}ż0 (s)ds

+

∫ T

0

πexpτ{B, T − τ − s}φ (u (s) , v (s))ds.

(16)

We examine the case when ξ
(
T, z0 ( · ) , g0 ( · )

)
/∈M.

By adding and subtracting from the right-hand side of equation (16) the value∫ T
0
g0 (T − τ − s) ds, one can deduce

πz (T ) ∈ ξ
(
T, z0 ( · ) , g0 ( · )

) [
1−

∫ t∗

0

α
(
T, s, z0 ( · ) , v (s) , g0 ( · )

)
ds

]
+

∫ t∗

0

α
(
T, s, z0 ( · ) , v (s) , g0 ( · )

)
Mds.

(17)

By virtue
∫ t∗

0
α
(
T, s, z0 ( · ) , v (s) , g0 ( · )

)
ds = 1 and the set M is convex then

πz (T ) ∈M . Then, applying the rule of the pursuer control for the case when
ξ
(
T, z0 ( · ) , g0 ( · )

)
∈ M, we obtain the inclusion πz (T ) ∈ M. The proof is

therefore complete.

Theorem 3.4. Let the conflict-controlled process (7), (8) with the initial condition
(5) satisfy Condition 1.

Then for any initial state z0 ( · ) there exists a selection g0 ( · ) ∈ G such that

T
(
z0 ( · ) , g0 ( · )

)
≤ P

(
z0 ( · )

)
.

Proof. Let the game be completed at the moment P
(
z0 ( · )

)
. This means that

the inclusion holds in relation (12). By virtue of Lemma 3 there exists a se-
lection g0 ( · ) ∈ G such that ξ

(
T, z0 ( · ) , g0 ( · )

)
∈ M . This implies that

α
(
T, s, z0 ( · ) , v (s) , g0 ( · )

)
= +∞. Then

∫ t
0
α
(
T, s, z0 ( · ) , v (s) , g0 ( · )

)
ds =

+∞ > 1. By virtue of Theorem 4 we can end the game of pursuit by the method
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of resolving functions in the time T = T
(
z0 ( · ) , g0 ( · )

)
. In this case T =

P
(
z0 ( · )

)
. This implies the inequality to be proved.

4. Example. Let the differential-difference game

ż (t) = bz (t− τ) + u (t)− v (t) , z ∈ Rn , 0 < b < 1, τ > 0,

be given, where the initial states

z (t) = z0, −τ ≤ t ≤ 0 ,

‖u‖ ≤ 1, ‖v‖ ≤ 1− b, ‖z0‖ = 1.
The game is considered complete if x = y.
The terminal set M∗ = M = M0 = {z ∈ Rn : z = 0}, L = Rn, π is the identity

operator.
Consider the set-valued mapping

W̄ (t, v) = πexpτ{bI, t}φ (U, v)

and verify the Pontryagin’s condition:

W̄ (t, v) = expτ{bI, t} (S − v) , W̄ (t) = {0},
where S is the unit ball centered at zero in the space L and I is the unit matrix of
order n.

The condition W̄ (t) = {0} uniquely determines the selection g(t) = 0.
We say that in the game from the initial state z0 /∈ M∗ it is possible to avoid

meeting the terminal set if there exists a measurable function v(t) ∈ V , t ≥ 0, such
that z(t) /∈M∗ for any t ≥ 0.

It is shown in (see [24], [37], [38]) that if in this example we put in v(t) = (b−1)z0,
t ∈ [0, T ], then ‖z(t)‖ ≥ 1, that is z(t) /∈M∗ for any t ≥ 0. Thus, in such a game of
two persons, it is possible to avoid meeting with the terminal set with any control
of the pursuer, in spite of the fact that the dynamic capabilities of the pursuer are
greater. But if the pursuers are several then it is shown that the pursuit game can
be completed.

Thus, a scheme of the method of resolving functions for a class of differential-
difference pursuit games with pure time-lag for the case of one evader and one
pursuer has been developed. Sufficient conditions for the parameters of the process
for guaranteed capture are found. A method for finding the fundamental matrix of
a system and the method for constructing a resolving function are given. Since the
inversion of the resolving function in +∞ corresponds to the first direct method of
L.S. Pontryagin, the guaranteed moment of the end of the pursuit game is obtained
according to the first direct method of L.S. Pontryagin. Comparison of the approach
times by the method of resolving functions and the first direct method of L.S.
Pontryagin are made. An example is considered.
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