VETERINARSKI ARHIV 90 (2), 129-141, 2020

Putative virulence genes and antibiotic resistance profiles of *Campylobacter jejuni* isolated from cats[#]

Harun Hızlısoy¹*, İlknur Karaca Bekdik², Öznur Aslan², Kadir S. Gümüşsoy³, and Serhat Hızlısoy⁴

¹Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey ²Department of Internal Medicine, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey ³Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey ⁴Department of Computer Engineering, The Faculty of Engineering, Cukurova University, Adana, Turkey

HIZLISOY, H., İ. KARACA BEKDIK, Ö. ASLAN, K. S. GÜMÜŞSOY, S. HIZLISOY: Putative virulence genes and antibiotic resistance profiles of *Campylobacter jejuni* isolated from cats. Vet. arhiv 90, 129-141, 2020.

ABSTRACT

Daily contact with cats is an important risk factor for human campylobacteriosis. The main goal of this study was to investigate the virulence genes and antibiotic resistances of C. jejuni isolated from the stools of cats brought to Ercives University, Faculty of Veterinary Medicine, Training and Research Hospital Clinics. In the study, feces taken from different breeds and ages (1 month to 9 years) of 200 (116 female, 84 male) cats were examined between May 2017 and April 2018. Campylobacter spp. isolates were identified at genus and species level using genus specific multiplex PCR (mPCR), and the existence of iam, cadF, cdtA, flaA, ceuE, cdtC, cdtB and virB11 genes were found by PCR. The antimicrobial resistance and multidrug resitance (MDR) of the isolates were determined by disc diffusion test. By means of Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR), the genetic relativeness of the isolates were revealed. In this study, 41 (20.5%) of 200 stool samples were shown to be positive for Campylobacter spp. in the isolation of Campylobacter spp. from stool samples. In the positive samples, 14 of 22 (63.6%) were from diarhoeic cats and 27 of 178 (15.1%) were non-diarhoeic cats. Also, in total 71 Campylobacter spp. suspicious isolates were recovered from the 41 positive samples obtained. Phenotypic tests and PCR revealed that 65 isolates (20 from diarrhoeic and 45 from non-diarhoeic cat isolates) were identified as C. jejuni. The differences in isolation rate in relation to sex or age were not statistically significant (P>0.05). In terms of virulence genes, all C. jejuni isolates harbored at least five virulence genes. All isolates were positive for the cadF, cdtC and ceuE genes, respectively. C. jejuni isolates contained iam, cadF, cdtA, flaA, ceuE, cdtC, cdtB and virB11, at the rate of 19 (29.2%), 65 (100%), 64 (98.4), 54 (83%), 65 (100%), 65 (100%), 64 (98.4%) and 22 (33.8%) respectively. Moreover, *cdt*A and cdtB toxin genes were found in most of the isolates analysed. All C. jejuni isolates were susceptible to amoxicillin clavulanic acid. The highest resistances of the isolates were found as follows; 64 (98.4%), 63 (96.9%), 62 (95.3%) for ciprofloxacin (CIP), trimethoprim sulfamethoxazole (SXT), nalidixic acid (NA) antibiotics, respectively. Multiple resistance of isolates was detected in the present study. Sixty-one (93.8%) out of 65 isolates were resistant to three or more antibiotics, and the highest resistance levels to three and seven antimicrobials were observed in 23.1% and 15.3% of the isolates respectively. In the study, C. jejuni isolates were resistant to most antibiotics currently used, and had extraordinary virulence traits in cats which may constitute a non-negligible risk for public health.

Key words: Campylobacter jejuni; virulence; antibiotic resistance; ERIC-PCR

^{*}Corresponding author:

Ass. Prof. Dr. Harun HIZLISOY Erciyes University, Faculty of Veterinary Medicine, Department of Veterinary Public Health, Kayseri-Turkey, E-mail. harunhzlsoy@hotmail.com; hizlisoy@erciyes.edu.tr

[#]A part of this study was presented in "2nd International Congress of Veterinary Microbiology, Antalya, Turkey, 16-19 October 2018" as an oral presentation

Introduction

Campylobacter spp. is Gram negative, spiral, microaerophilic bacteria in the gastrointestinal tract in humans and animals (VANDAMME and DE LEY, 1991). The genus *Campylobacter* consists of 26 species and nine subtypes (KAAKOUSH et al., 2015; HEREDIA and GARCIA, 2018). In addition to cats and dogs, Campylobacter spp. is found as commensal in cattle, sheep, pigs and birds (HEREDIA and GARCIA, 2018). In humans, in addition to gastrointestinal disorders, Campylobacter spp. (especially C. jejuni and C. coli) can cause extra-intestinal findings, such as bacteremia, brain abscesses, meningitis, Guillain-Barre Syndrome and reactive arthritis (KAAKOUSH et al., 2015). Campylobacter spp. is also found in the gastrointestinal tracts of dogs and cats (BOJANIC et al., 2017). Daily contact with domestic cats is an important risk factor for human campylobacteriosis (LINDMARK et al., 2009). *Campylobacter* spp. is commonly isolated from feces of infected cats (ACKE, 2018). C. jejuni was first isolated from cats in England in 1977 and in the USA in 1980 (KAAKOUSH et al., 2015).

The poor identification of *Campylobacter* spp. as animal pathogens may result from the simultaneous presence of multiple strains or species with various pathogenetic characteristics. In routine diagnostic laboratories, typing of *Campylobacter* spp. is usually restricted to one colony per stool sample (KOENE et al., 2004). More than one subtype of *Campylobacter* spp. within the same species may be simultaneously detected as a causative agent in human and animal campylobacteriosis cases (KAYMAN et al., 2015).

Some authors reported that *Campylobacter* spp. isolates demonstrated resistances to the antibiotics currently used (including macrolides, fluoroquinolones and others) (KULKARNI et al., 2002; SANDBERG et al., 2002; GUPTA et al., 2004; ENGBERG et al., 2004; ANDRZEJEWSKA et al., 2013, SZCZEPANSKA et al., 2017; KUMAR et al., 2012).

In recent years, one of the significant threats to public health has been found to be multidrug resistant microorganisms (MDR) (MAGIORAKOS et al., 2012). MDR reported as a single isolate, was resistant to three or more antimicrobial classes (ABAY et al., 2012). Bacteria can develop multidrug resistance via the gathering of genes encoded for resistance to a single drug, or by increased expression of genes encoding multiple drug delivery pumps in a single cell (NIKAIDO, 2009).

In cats, few documents were found on the clinical symptoms of campylobacteriosis. In some studies, cats infected with Campylobacter spp. were clinically healthy, lacking other pathogens (FOX, 2012). Moreover, in the studies carried out on the pathogenesis of campylobacteriosis, motility, adhesion to intestinal epithelial cells, invasion to host cells, and cytotoxin production are mentioned as important virulence factors of Campylobacter spp. (CASABONNE et al., 2016). Various genes have been identified with regard to the virulence of campylobacters: flaA (Flagellin A), CadF (Campylobacter adhesion to fibronectin), dnaJ, racR, cj0588 genes are present for adherence and colonization; virB11, ciaB (Campylobacter invasion antigen B), pldA, iam (invasion-associated marker) genes are responsible for invasion; *cdt*A, *cdt*B, *cdt*C (cytolethal distending toxin A, B and C) genes are accountable for cytotoxin production; and wlaN and cgtB genes are related to Guillain-Barre syndrome (DATTA et al., 2003; MARTINEZ et al., 2006; KHOSHBAKHT et al., 2013; QUETZ et al., 2012; LARSON et al., 2008; KOOLMAN et al., 2016).

Due to the limited data about the virulence factors, antibiotic resistance and multiple drug resistance profiles of *Campylobacter* spp. in cats, we aimed to investigate the virulence genes and antibiotic resistance profiles of *C. jejuni* isolated from stool samples of 200 cats brought to Erciyes University, Faculty of Veterinary Medicine, Training and Research Hospital Clinics.

Materials and methods

Animals. The stool samples taken from different breeds and ages (1 month to 9 years) of 200 (116

female, 84 male) cats, brought to Erciyes University, Faculty of Veterinary Medicine, Training-Research and Practice Hospital Clinics, between May 2017 and April 2018 in for the sake of a year-long study, with the permission of the pet owners. The samples were divided into two groups on the basis of history. One group comprised 22 animals out of the 200 cats identified as having diarrhea, and 178 cats in the other group did not show these symptoms, they were non-diarhoeic, and they did not have any infectious diseases or antimicrobial treatments (cats brought to the clinics for routine examinations and vaccination services). In this study, the cats were also divided into two groups as "younger than six months and older than six months" according to the literature (ACKE et al., 2006; 2009a). Regarding gender/sex, there were no established criteria, only the animal owners' declarations were taken into consideration.

 Table 1. Age, gender, non-diarhoeic and diarrhoeic status of cats in the study

	Diarrho	eic cats	Non-diarhoeic cats		
	<i>C. jejuni</i> Positive	<i>C. jejuni</i> Negative	<i>C. jejuni</i> Positive	<i>C. jejuni</i> Negative	
<6 months (n = 125)	8	4	19	94	
Female $(n = 76)$	7	3	12	54	
Male (n = 49)	1	1	7	40	
>6 months $(n = 75)$	6	4	8	57	
Female $(n = 40)$	4	2	6	28	
Male (n = 35)	2	2	2	29	
Total $(n = 200)$	14	8	27	151	

Reference strain. Staphylococcus aureus ATCC 25923, *Escherichia coli* ATCC 25922 and *Campylobacter jejuni* ATCC 700819 were used as control strains.

Isolation, identification and molecular detection of virulence genes. Fecal swabs were kept in Cary-Blair medium (Oxoid, CM0519, UK) no more than three hours before culturing. The stool samples were inoculated onto modified charcoal cefoperazone deoxycholate (mCCD) agar (Oxoid, CM739, UK), additionally supplemented with cefoperazone, amphotericin B and teicoplanin (CAT supplement, Oxoid, SR174, UK), and incubated at 42 °C for 48-72 h under microaerobic conditions.

Presumed colonies confirmed were as *Campylobacter* spp. on the basis of cell morphology (Gray to white or metallic-highlighted colonies growth on a mCCD agar) after the incubation period, by phenotypic (colony morphology, Gram staining, oxidase test, catalase test and motion test) tests. Thereafter, all Campvlobacter spp. isolates were identified at genus and species level using genus specific mPCR assay (WANG et al., 2002). For this purpose, template DNA was initially extracted using the InstaGene[™] Matrix (Bio-Rad, USA) kit. Concentrations of the DNA samples $(\mu g/\mu L)$ were measured by Qubit 3.0 fluorometer (Thermo Fisher, USA) and stored at -20 °C until analysis. mPCR was carried out in a reaction mixture for each sample; 2.5 µL DNA sample, 2.5 µL 10x PCR buffer (Thermo Scientific, USA), 20 mM MgCl₂ (Vivantis, Malaysia), 0.2 mM dNTP mixture (Thermo Scientific, USA), 0.5 µM C. jejuni and C. lari; 1 µM C. coli and C. fetus, 2 µM C. upsaliensis, 0.2 µM Campylobacter 23S rRNA primers and 1.25 U Taq polymerase (Thermo Scientific, USA) were prepared by adjusting the final concentration to 25 µL with sterile distilled water. DNA amplification was carried out including an initial denaturation step at 95 °C for 6 min, followed by 30 cycles, denaturation at 95 °C for 0.5 min, annealing at 59 °C for 0.5 min, and extension at 72 °C for 0.5 min, ending with a final extension at 72 °C for 7 min. in a thermocycler (Arktic[™] Thermal Cycler; Thermo Fisher, USA). As a result of amplification, the PCR products obtained were visualized using a UVP gel documentation system (Vilber Lourmat, France) after electrophoresis (Thermo EC 330, USA) for 90 minutes at 90 V in a 1.5% agarose gel. Campylobacter species were identified according to the band sizes (Table 2).

The presence of virulence genes, including *iam*, *cad*F, *cdt*A, *cdt*B, *cdt*C, *fla*A, *ceu*E, and *virB*11, were determined by PCR, as described in earlier studies (KRUTKIEWICZ and KLIMUSZKO, 2010; CHANSIRIPORNCHAI and SASIPREEYAJAN,

2009; DATTA et al., 2003; RIPABELLI et al., 2010) with modifications. PCRs for virulence genes were carried out in a reaction mixture: $4 \ \mu L$ DNA sample, 10x PCR buffer with KCl (Thermo Scientific, USA), 1.5 mM MgCl₂ (Vivantis, Malaysia), 250 mM dNTP mixture (Thermo Scientific, USA), 1 μ M each primers and 0.5 U Taq polymerase (Thermo Scientific, USA) to adjust the final concentration to 40 μ L with sterile distilled water. The PCR protocol included denaturation at 94 °C for 1 min., annealing

at 52 °C for 1 min. and extension at 72 °C for 1 min. followed by 30 cycles, and a final extension at 72 °C for 5 min. Negative and positive controls were used. Further, all the negative samples were tested. The amplified products were electrophoresed in a 1.5% (w/v) TAE agarose gel at 100 V for 1 h. The gel was visualized under UV light. The investigated primers and expected band size (bp) for mPCR and PCRs for virulence genes are summarized in Table 2.

Name	Band size (bp)			
Prier-I (CJF)				
Primer-II (CJR)	5'- GCC ACA ACA AGT AAA GAA GC - 3'	323		
Primer-I (CCF)	5'- GTAAAACCAAAGCTTATCGTG -3'	10(
Primer-II (CCR)	5'- TCCAGCAATGTGTGCAATG -3'	126		
Primer-I (CLF)	5'- TAGAGAGATAGCAAAAGAGA -3'	251		
Primer-II (CLR)	5'- TACACATAATAATCCCACCC -3'	251		
Primer-I (CUF)	5'- AATTGAAACTCTTGCTATCC -3'	204		
Primer-II (CUR)	5'- TCATACATTTTACCCGAGCT -3'	204		
Primer-I (CFF)	5'- GCAAATATAAATGTAAGCGGAGAG-3'	425		
Primer-II (CFR)	5'- TGCAGCGGCCCCACCTAT-3'	435		
23SrRNA-F	5'- TATACCGGTAAGGAGTGCTGGAG-3'	650		
23SrRNA-R	5'- ATCAATTAACCTTCGAGCACCG -3'	630		
flaAF	5'-ATGGGATTTCGTATTAACAC-3'	1700		
flaAR	5'-CTGTAGTAAATCTTAAAACATTTTG-3'	1/00		
<i>cdt</i> AF	5'- GGAAATTGGATTTGGGGGCTATACT -3'	165		
<i>cdt</i> AR	5'- ATCACAAGGATAATGGACAAT -3'	103		
<i>cdt</i> BF	5'- GTTAAAATCCCTGCTATCAACCA -3'	405		
<i>cdt</i> BR	5'- GTTGGCACTTGGAATTTGCAAGGC -3'	495		
<i>cdt</i> CF				
<i>cdt</i> CR				
<i>vir</i> B11F 5'- TCTTGTGAGTTGCCTTACCCCTTTT -3'		404		
virB11R	5'- CCTGCGTGTCCTGTGTTATTTACCC -3'	494		
ceuEF 5'-CCTGCTCGGTGAAAGTTTTG-3'		794		
ceuER	R 5'-GATCTTTTGTTTTGTGCTGC-3'			
cadFR1BF	FR1BF 5'- TTGAAGGTAATTTAGATATG-3'			
cadFR1BR	5'- CTAATACCTAAAGTTGAAAC -3'	400		
<i>iam</i> F	F 5'-GCGCAAAATATTATCACCC-3			
iamR	amR 5'-TTCACGACTACTATGCGG-3'			

Table 2. The Oligonucleotide Sequence and Predicted Sizes Used in the PCR

Antibiotic susceptibility testing. The antibiotic susceptibilities of the isolates identified as C. *jejuni* were investigated by the disc diffusion method and the results were evaluated according to CLSI recommendations (CLSI, 2014). The following 16 antibiotics were used in the study: amoxicillin clavulanic acid (AMC, 30 µg), ciprofloxacin (CIP, 5 μ g), trimethoprim sulfamethoxazole (SXT, 25 μg), enrofloxacin (ENR, 5 μg), clindamycin (DA, 2 µg), nalidixic acid (NA, 30 µg), streptomycin (S, 10 µg), tetracycline (TE, 30 µg), doxycycline (DO, $30 \mu g$), ampicillin (AMP, $10 \mu g$), erythromycin (E, 15 µg), streptomycin (S, 10 µg), amikacin (AK, 30 μg), gentamycin (CN, 10 μg), cefotaxime (CTX, $30 \mu g$), and piperacillin-tazobactam (TZP, 110 μg), (Oxoid, UK). Multidrug resistance was evaluated as to whether a single isolate was resistant to three or more antibacterial classes.

Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR). For molecular typing of the isolates, Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) was utilized (HOUF et al., 2002). In the test, ERIC1 and ERIC2 primers were used. Briefly, the PCR mixture was 50 µL in total, composed of 5 µL 10×PCR buffer, 4 mM MgCl₂, 5 U Taq DNA polymerase, the final concentration for the dNTP mixture was 0.2 mM, 25 pmol for each primer and 1 µL for template DNA. DNA amplification consisted of an initial denaturation at 94 °C and 5 min, followed by 40 cycles of 94 °C for 1 min, 25 °C for1 min and 72 °C for 2 min. The amplified products were resolved by electrophoresis in a 2% (w/v) TAE agarose gel at 100 V for 1 h. The gel was tested and evaluated by visual inspection under UV light.

Statistical analysis. Chi-square tests were used for the statistical analysis in the study, in order to compare the *C. jejuni* presence and gender, age and diarrhoea status of the cats, using the SPSS (Statistical Package for Social Sciences for Windows) 23.0 (Armonk, NY: IBM Corp.) program.

Results

In the study, 41 (20.5%) of 200 stool swab samples from cats were positive for the presence of *Campylobacter* spp. In the positive samples, 14 of

22 (63.6%) were from diarhoeic cats, and 27 of 178 (15.2%) were non-diarhoeic cats. The difference in isolation rate between the diarhoeic cats or nondiarhoeic cats was statistically significant (P<0.001, X^2 :28.22). Also, in total 71 Campvlobacter spp. suspicious isolates were recovered from the 41 positive samples obtained. Phenotypic tests and PCR revealed that 65 isolates (20 of them diarrhoeic and 45 non-diarhoeic cat isolates) were identified as C. jejuni, whereas the six remaining isolates were positive at genus but negative at species level. The age, gender, non- diarrhea and diarrhea status of C. jejuni positive cats are detailed in Table 1. The differences in isolation rate in relation to sex $(P>0.05, P = 0.064, X^2:3.432)$ or age (P>0.05, P =0.619, X^2 :0.247) in diarrhoeic and non-diarhoeic cats were not statistically significant. In 19 cat samples, more than one subtype of C. jejuni was also identified from each sample according to ERIC-PCR results. It was included that two subtypes of C. jejuni isolates were simultaneously found in 14 cat samples (three of them were diarrhoeic and 11 of them were non-diarhoeic cats) and three subtypes of C. jejuni isolates in five positive cat samples (two of them were diarrhoeic and three of them were non-diarhoeic cats).

In terms of virulence genes, all the C. jejuni isolates harbored at least five virulence genes. All isolates were positive for the cadF, cdtC and ceuE genes, respectively. The C. jejuni isolates contained iam, cadF, cdtA, flaA, ceuE, cdtC, cdtB and virB11, at the rate of 19 (29.2%), 65 (100%), 64 (98.4), 54 (83%), 65 (100%), 65 (100%), 64 (98.4%) and 22 (33.8%) respectively. Moreover, the cdtA and *cdt*B toxin genes were found in most of the isolates analyzed (Table 3). The *iam* gene was found in 7. 7% and 21.5% of the diarrhoeic and non-diarhoeic cat isolates, respectively. The cadF, ceuE and cdtC genes were found in 30.7% and 69.2% of diarrhoeic and non-diarhoeic cat isolates, respectively. The cdtA and cdtB genes were found in 29.2% and 69.2% of the diarrhoeic and non-diarhoeic cat isolates, respectively. The *flaA* gene was found in 26.1% and 56.9% of the diarrhoeic and nondiarhoeic cat isolates, respectively. The virB11 gene was found in 13.8% and 20% of the diarrhoeic and non-diarhoeic cat isolates, respectively.

In two of the diarrhoeic and four of the non-diarhoeic cat isolates, all virulence genes were positive. In addition, the combination and distribution of virulence genes in diarrhoeic and non-diarhoeic cat isolates are presented in Table 4.

All C. jejuni isolates were susceptible to amoxicillin clavulanic acid. The highest resistances of the isolates were found as follows: 64 (98.4%), 63 (96.9%), 62 (95.3%) for ciprofloxacin (CIP), trimethoprim sulfamethoxazole (SXT), nalidixic acid (NA) antibiotics, respectively (Table 5). In 64 ciprofloxacin resistant isolates, 20 (30.7%) were diarrhoeic cat isolates and 44 (67.6%) were non-diarhoeic cat isolates. In 63 trimethoprim sulfamethoxazole resistant isolates, 20 (30.7%) were diarrhoeic cat isolates and 43 (66.1%) of them were non-diarhoeic cat isolates. In 62 nalidixic acid resistant isolates, 20 (30.7%) were diarrhoeic cat isolates and 42 (64.6%) of them were non-diarhoeic cat isolates (Table 5).

Multiple resistance of isolates was detected in the present study. Sixty-one (93.8%) out of 65 isolates were resistant to three or more antibiotics, where the highest resistance levels to antimicrobials three and seven were observed in 23.1% and 15.3% of the isolates, respectively. Thirteen point eight per cent were resistant to antimicrobials five and eight, 10.7% to antimicrobials four and six and 3.1% to antimicrobials nine and ten. In total, 15 isolates were resistant to three antimicrobials. Four of them were diarrhoeic and 11 of them were nondiarhoeic cat isolates. MDR levels are presented in Table 6 in terms of diarrhoeic and non-diarhoeic cat isolates. The lowest MDR levels were against 9 and 10 antibiotics. This was equally distributed to both diarrhea and non-diarrhea animals. In addition, the highest MDR levels were found to three antibiotics in 15 isolates (23.1%), including 4 and 11, from diarrhea and non-diarrhea cats, respectively.

	() (3(
1 X IN	iam CadF DC NDC DC ND 5(7. 14 20 45 7%) (21.5%) (30.7%) (69.1 19 (29.2%) 65 (100%)

DC: Diarrhoeic cat isolates; NDC: non-diarhoeic cat isolates

N° of virulence genes combinations	Genes	DC	NDC
8	ABCDEFGH	2	4
7	BCDEFGH	5	7
7	ABCDEFG	2	8
7	ABCEFGH	-	1
6	BCDEFG	7	18
6	BCEFGH	1	1
6	ABCEFG	1	1
5	BCEFG	1	5
5	BDEFH	1	-

Table 4. The combination and distribution of Virulence Genes in Diarrhoeic and Non-diarhoeic Cat Isolates

A: *iam*; B: *Cad*F; C: *Cdt*A; D: *Fla*A; E: *Ceu*E; F: *Cdt*C; G: *Cdt*B; H: *VirB*11; DC: Number of diarrhoeic cat isolates; NDC: Number of non-diarhoeic cat isolates

Table 5. Antibiotic Resistance Profiles of C. jejuni Isolates

	S (%)		I (%)			R (%)			
Antibiotics	N	DC	NDC	Ν	DC	NDC	Ν	DC	NDC
Nalidixic acid (NA)	1 (1.5)	-	1 (1.5)	2 (3. 1)	-	2 (3. 1)	62 (95. 4)	20 (30. 7)	42 (64. 6)
Erythromycin (E)	64 (98. 4)	64 (98. 4)	-	-	-	-	1 (1.5)	1 (1.5)	
Doxycycline (DO)	43 (66. 1)	15 (23. 1)	28 (43. 1)	12 (18. 5)	2 (3. 1)	10 (15. 3)	10 (15. 3)	5 (7.7)	5 (7.7)
Amoxicillin clavulanic acid (AMC)	65 (100)	20 (30. 7)	45 (69. 2)	-	-	-	-	-	-
Trimethoprim sulfamethoxazole (SXT)	2 (3. 1)	-	2 (3. 1)	-	-	-	63 (96. 9)	20 (30. 7)	43 (66. 1)
Ciprofloxacin (CIP)	1 (1.5)	-	1 (1.5)	-	-	-	64 (98. 4)	20 (30. 7)	44 (67. 6)
Ampicillin (AMP)	28 (43. 1)	9 (13. 8)	19 (29. 2)	-	-	-	37 (56. 9)	12 (18. 5)	25 (38. 5)
Enrofloxacin (ENR)	5 (7.7)	-	5 (7.7)	29 (44. 7)	13 (20)	16 (24. 6)	31 (47. 7)	7 (10. 7)	24 (36. 9)
Clindamycin (DA)	63 (96. 9)	20 (30. 7)	43 (66. 1)	2 (3. 1)	-	2 (3. 1)	-	-	-
Tetracycline (TE)	18 (27. 7)	5 (7.7)	13 (20)	5 (7.7)	2 (3. 1)	3 (4. 6)	42 (64. 6)	13 (20)	29 (44. 7)
Piperacillin tazobactam (TZP)	36 (55. 4)	10 (15. 3)	26 (40)	16 (24. 6)	7 (10. 7)	9 (13. 8)	13 (20)	4 (6. 2)	9 (13. 8)
Cefotaxime (CTX)	43 (66. 1)	14 (21. 5)	29 (44. 7)	11 (16. 9)	4 (6. 2)	7 (10. 7)	11 (16. 9)	3 (4. 6)	8 (12. 3)
Streptomycin (S)	46 (70. 8)	14 (21. 5)	32 (49. 2)	1 (1. 5)		1 (1.5)	18 (27. 7)	7 (10. 7)	11 (16. 9)
Amikacin (AK)	64 (98. 4)	20 (30. 7)	44 (67. 6)	-		1 (1.5)	-	-	
Gentamicin (CN)	64 (98. 4)	20 (30. 7)	44 (67. 6)	-	-		1 (1. 5)		1 (1. 5)
Azythromycine	64 (98. 4)	20 (30. 7)	44 (67. 6)	-	-		1 (1. 5)		1 (1.5)

S - Susceptible; I -Intermedier; R- Resistant; N: Number of isolates; DC - Diarrhoeic cat isolates; NDC: - Non-diarhoeic cat isolates.

Antibiotic numbers	Antibiotic Combinations	Ν	DC	NDC	%			
3	NA, SXT, CIP	13	4	9	- 23.1			
3	SXT, CIP, AMP	2	-	2				
	NA, SXT, CIP, AMP	2	2					
4	NA, SXT, CIP, TE	2		2	10.7			
4	NA, SXT, CIP, CTX	1	-	1	10.7			
	NA, SXT, CIP, S	2	2	-				
	NA, SXT, CIP, TE, CTX	2	2	-				
5	NA, SXT, CIP, ENR, TE	3	1	2	13.8			
	NA, SXT, CIP, AMP, TE	4	2	2				
6	NA, SXT, CIP, AMP, ENR, CTX	1		1				
	NA, SXT, CIP, AMP, ENR, TE	2	-	2	10. 7			
	NA, DO, SXT, CIP, ENR, TE	2	-	2				
	NA, SXT, CIP, AMP, TE, S	1	1	-				
	NA, SXT, CIP, ENR, TE, TZP	1	-	1	1			
	NA, SXT, CIP, AMP, ENR, TE, S	5	-	5	1			
7	NA, SXT, CIP, AMP, ENR, TE, TZP	3	-	3	15.2			
7	NA, E, SXT, CIP, AMP, TE, AZM	1	1	-	15.3			
	NA, DO, SXT, CIP, AMP, ENR, TE	1	-	1				
8	NA, DO, SXT, CIP, AMP, ENR, TE, TZP	1	1	-	1			
	NA, SXT, CIP, AMP, ENR, TE, CTX, S	2	-	2	13.8			
	NA, SXT, CIP, AMP, ENR, TE, TZP, S	1	1	-				
	NA, DO, SXT, CIP, AMP, ENR, TE, CN	1	1	-				
	NA, SXT, CIP, AMP, ENR, TE, TZP, CTX	2	-	2				
	NA, DO, SXT, CIP, AMP, ENR, TE, S	2	1	1	1			
	NA, DO, SXT, CIP, AMP, ENR, TE, TZP, S	1	1	-	3.1			
9	NA, SXT, CIP, AMP, ENR, TE, TZP, CTX, S	1	-	1	3.1			
10	NA, DO, SXT, CIP, AMP, ENR, TE, TZP, CTX, S	2	1	1	3.1			

Table 6. Multidrug Resistance Profiles of C. jejuni Isolates

N - Number of resistance patterns of isolates; DC - number of diarrhoeic cat isolates; NDC - number of non-diarhoeic cat isolates

Discussion

In the present study, the prevalance of *Campylobacter* spp. was 20.5% in the cats examined. The frequency of isolation of *Campylobacter* spp. in cats ranges from 8% to 47.8% globally (SANDBERG et al., 2002; ENGVALL et al., 2003; ACKE et al., 2009a; SALIHU et al., 2010).

Similar to our study, ABAY et al. (2014), SALIHU et al. (2010) and SANDBERG et al. (2002), found prevalences of *Campylobacter* spp. of 26.7%, 18.3%

and 18% in cats, respectively. However, LAZOU et al. (2017), SZCZEPANSKA et al. (2017) and ANDRZEJEWSKA et al. (2013) found relatively low levels of campylobacters at 15%, 12.1%, 10.5% and 9.8% from cats, respectively. The differences in the isolation and identification methods (filtration, using different media, etc.), sample, regional and geographical varieties could be the causes of the low level results. In a study by BAKER et al.

(1999) in Southern Australia, the filtration method was used for isolation and samples were of different origins. LAZOU et al. (2017), conducted a study in Greece and used mCCD agar and Karmali agar for isolation. In ANDRZEJEWSKA et al. (2013) samples were collected from Poland and were initially inoculated to Preston broth. Later, CCD agar was used for isolation of campylobacters.

Relatively higher results than ours were reported by ACKE et al. (2006; 2009b), who reported *Campylobacter* species in 75% and 42.9% from cat fecal swab samples. In addition, ACKE et al. (2009a) isolated *Campylobacter* spp. from both healthy and diarrhoeic animals at a rate of 45.2% in dogs and cats in Ireland.

In terms of the concurrent presence of C. jejuni, in the study, different C. jejuni isolates were simultaneously found in 19 (46%) cats, similar to SHEN et al. (2001) who reported that 16 (34%) of 47 Campylobacter spp. samples were positive for more than one species of Campylobacter spp. in cat samples. Also, BANG et al. (2001) detected that three chickens with two different C. jejuni isolates, and one chicken carrying a C. jejuni and a C. coli isolate concurrently in Denmark. Also, multiple Campylobacter species were found in 6 (26%) of 23 positive stool samples in dogs (KOENE et al., 2004). In another study conducted by RICHARDSON et al. (2001), in 7.5% of patients, the presence of concomitant infection with two different types of C. jejuni was determined by molecular typing methods, in humans. According to our literature review, this study may be the first report of the simultaneous presence of different C. *jejuni* strains in cats in Turkey. Our data clearly demonstrated that the synchronous existence of different C. jejuni strains is quite frequent in cats. It might be of utmost importance for epidemiological studies that different strains are found within a single species, including the commensal presence, for finding the sources of infections, and studies on the pathogenicity of Campylobacter spp. in cats. Moreover, cases of infection with subtypes of one species or more than one species are thought to be important in terms of both the antibacterial susceptibility and the epidemiology of human diseases (KAYMAN et al., 2015).

In our study, there was a statistically significant difference in isolation rate between non-diarhoeic or diarrhoeic cats (P<0.05), but no statistically significant difference between sex (P>0.05) and age status in the cats used as subjects (P>0.05). However, previous studies have reported difference in relation to age and gender in diarrhoeic and healthy animals (BAKER et al., 1999; SANDBERG et al., 2002; ENGVALL et al., 2003).

Since *Campylobacter* spp. (including *C. jejuni*, *C. coli*, *C. lari* and *C. upsaliensis*) is naturally found in the intestinal biota of dogs and cats, cats and dogs exhibit a significant hazard for human campylobacteriosis (OLSON and SANDSTEDT, 1987; NEWTON et al., 1988). *Campylobacter* spp. might be a primary or secondary pathogen which is related to other predisposing factors, including viral infections or opportunistic agents in pets with other disorders (ACKE et al., 2009a).

In the present study, the cadF, cdtC and ceuEgenes were found in all C. jejuni isolates recovered from the cats. Morever, in this study, all isolates contained at least five virulence genes. Similar results were described by previous studies of animals, and they reported that a high ratio of flaA, cadF and cdtB genes was found in the analyzed isolates from domestic animals (ANDRZEJEWSKA et al., 2011; KRUTKIEWICZ and KLIMUSZKO, 2010; ANDRZEJEWSKA et al., 2013). Also, RODRIGUES et al. (2015), among the strains of C. jejuni isolates detected in dogs, found that two samples (flaA, cadF and ciaB, or flaA, pldA and cadF) and two isolates contained the flaA gene or cadF and ciaB genes, while two isolates contained only one virulence gene (cadF or flaA). BISWAS et al. (2011), in C. jejuni isolates from cattle and humans, 67% of the isolates contained all of the genes except virB11. The cadF gene was found in 100% of the isolates tested.

The present study on the antimicrobial susceptibility of strains isolated from cats confirmed a high level of amoxicillin clavulanic acid. The highest level of resistance was to ciprofloxacin (CIP), trimethoprim sulfamethoxazole (SXT), nalidixic acid (NA), and streptomycin (S). Similar results were described in a study conducted by ANDRZEJEWSKA et al. (2013), SANDBERG et al. (2002) and SZCZEPANSKA et al. (2017). Due to the use of atimicrobial agents in veterinary practice, resistant Campvlobacter isolates from pets and humans have been revealed (GUPTA et al., 2004; ENGBERG et al., 2004). Also, a study conducted in India on the prevalence of antibiotic resistance in dogs showed that isolates had a high rate of resistance (97.3%) to cefotaxim, chloramphenicol, floxacin, ciprofloxacin, cefaclor, nitrofurazone, norfloxacin, gentamicin, amikacin and enrofloxacin (KULKARNI et al., 2002). The multiple resistance of isolates was detected in 61 (93.8%) out of 65 isolates that were resistant to three or more antibiotics, whereas resistance to three and seven antimicrobials was observed in 23.1% and 15.3% of the isolates, respectively (Table 3). Our results were relatively compatible with those of SZCZEPANSKA et al. (2017) and GONI et al. (2018), who detected multidrug resistance rates of 40% and 50% in Campvlobacter spp. isolates, respectively. In addition MDR was also reported by KUMAR et al. (2012).

Conclusion

In conclusion, the data obtained in this study reveal that the high prevalence of virulenceassociated genes among *C. jejuni* isolates obtained from cats suggests their crucial role in the pathogenesis of campylobacteriosis infection among cats, and their close contact with humans.

Moreover, the presence of multidrug resistant *C. jejuni* isolates indicates a potential transmission risk from cats to humans.

Funding sources

This work was not funded by any project.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgment

We are grateful to Assoc. Prof. Dr. Nurhan Ertas ONMAZ for her technical assistance. We also thank to Assoc. Prof. Dr. Aytac AKCAY at Erciyes University, Faculty of Veterinary Medicine, Department of Biometri.

References

ABAY, S., T. KAYMAN, H. HIZLISOY, F. AYDIN (2012): In vitro antibacterial susceptibility of *Arcobacter butzleri* isolated from different sources. J. Vet. Med. Sci. 74, 613-616.

DOI: 10.1292/jvms.11-0487

- ABAY, S., F. AYDIN, H. HIZLISOY, V. GUNES (2014): Recovery of thermophilic *Campylobacter* spp. in healthy and diarrhoeic pets by culture methods and identification of the isolates by multiplex polymerase chain reaction (mPCR), Kafkas Univ. Vet. Fak. Derg. 20, 735-741. DOI: 10.9775/kvfd.2014.11010
- ACKE, E., P. WHYTE, B. R. JONES, K. MCGILL, J. D. COLLINS, S. FANNING (2006): Prevalence of thermophilic *Campylobacter* species in cats and dogs in two animal shelters in Ireland. Vet. Rec. 158, 51-54. DOI: 10.1136/yr.158.2.51
- ACKE, E., K. MCGILL, O. GOLDEN, B. R. JONES, S. FANNING, P. WHYTE (2009a): Prevalence of thermophilic *Campylobacter* species in household cats and dogs in Ireland. Vet. Rec. 164, 44-47. DOI: 10.1126/j. 164.2.44

DOI: 10.1136/vr.164.2.44

- ACKE, E., K. MCGILL, O. GOLDEN, B. R. JONES, S. FANNING, P. WHYTE (2009b): A comparison of different culture methods for the recovery of *Campylobacter* species from pets. Zoonoses Public Health 56, 490-495. DOI: 10.1111/j.1863-2378.2008.01205.x
- ACKE, E. (2018): Campylobacteriosis in dogs and cats: a review, NZ Vet. J. 66, 221-228.

DOI: 10.1080/00480169.2018.1475268

ANDRZEJEWSKA, M., J. J. KLAWE, B. SZCZEPAŃSKA, D. ŚPICA (2011): Occurence of virulence genes among *Campylobacter jejuni* and *Campylobacter coli* isolates from domestic animals and children. Pol. J. Vet. Sci. 14, 207-211.

DOI: 10.2478/v10181-011-0031-x

ANDRZEJEWSKA, M., B. SZCZEPAŃSKA, J. J. KLAWE, D. ŚPICA, M. CHUDZIŃSKA (2013): Prevalence of *Campylobacter jejuni* and *Campylobacter coli* species in cats and dogs from Bydgoszcz (Poland) region. Pol. J. Vet. Sci. 16, 115-120.

DOI: 10.2478/pjvs-2013-0016

BAKER, J., M. D. BARTON, J. LANSER (1999): Campylobacter species in cats and dogs in South Australia. Aust. Vet. J. 77, 662-666.

DOI: 10.1111/j.1751-0813.1999.tb13159.x

BANG, D. D., F. SCHEUTZ, P. AHRENS, K. PEDERSEN, J. BLOM, M. MADSEN (2001): Prevalence of cytolethal, distending toxin (cdt) genes and CDT production in *Campylobacter* spp. isolated from Danish broilers. J. Med. Microbiol. 50, 1087-1094.

DOI: 10.1099/0022-1317-50-12-1087

- BISWAS, D., S. J. HANNON, H. G. G. TOWNSEND, A. POTTER, B. J. ALLAN (2011): Genes coding for virulence determinants of *Campylobacter jejuni* in human clinical and cattle isolates from Alberta, Canada, and their potential role in colonization of poultry. Int Microbiol. 4, 25-32. DOI: 10.2436/20.1501.01.132
- BOJANIĆ, K., A. C. MIDWINTER, J. C. MARSHALL, L. E. ROGERS, P. J. BIGGS, E. ACKE (2017): Isolation of *Campylobacter* spp. from client-owned dogs and cats, and retail raw meat pet food in the Manawatu. New Zealand. Zoonoses Public Health 64, 438-449.
 - DOI: 10.1111/zph.12323
- CASABONNE, C., A. GONZALEZ, V. AQUILI, T. SUBILS, C. BALAGUE (2016): Prevalence of seven virulence genes of *Campylobacter jejuni* isolated from Patients with diarrhea in Rosario. Argentina. Int. J. Infect. 3(4), e37727 DOI: 10.17795/iji-37727
- CHANSIRIPORNCHAI, N., J. SASIPREEYAJAN (2009): PCR detection of four virulence-associated genes of *Campylobacter jejuni* isolates from Thai broilers and their abilities of adhesion to and invasion of INT-407 cells. J. Vet. Med. Sci. 71, 839-844.

DOI: 10.1292/jvms.71.839

- CLINICALAND LABORATORY STANDARDS INSTITUTE (2014): Clinical and Laboratory Standards Institute (CLSI) Performance standards for antimicrobial susceptibility testing; Twenty-Fourth Informational Supplement. CLSI document M100-S24. Wayne, PA: Clinical and Laboratory Standards Institute.
- DATTA, S., H. NIWA, K. ITOH (2003): Prevalence of 11 pathogenic genes of *Campylobacter jejuni* by PCR in strains isolated from humans, poultry meat and broiler and bovine faeces. J. Med. Microbiol. 52, 345-348.

DOI: 10.1099/jmm.0.05056-0

- ENGBERG, J., J. NEIMANN, E. M. NIELSEN, F. M. AARESTRUP, F. M. FUSSING, 2004. Quinolone-resistant *Campylobacter* infections in Denmark: risk factors and clinical consequences. Emerg. Infect. Dis. 10, 1056-1063. DOI: 10.3201/eid1006.030669
- ENGVALL, E. O., B. BRANDSTROM, L. ANDERSSON, V. BAVERUD, G. TROWALD-WIGH, L. ENGLUND (2003): Isolation and identification of thermophilic *Campylobacter* species in faecal samples from Swedish dogs. Scand. J. Infect. Dis. 35, 713-718. DOI: 10.1080/00365540310014558
- FOX, J. G. (2012): Enteric Bacterial Infections, In: Infectious Disesases of Dog and Cat. (Greene, C. E., Ed.), 4th ed., Saunders Elsevier, St. Louis Missouri USA, p. 371.
- GONI, M. D., A. Y. OSMAN, S. A. AZIZ, Z. ZUNITA, G. K. DHALIWAL, M. I. JALO, A. A. BITRUS, M. JAJERE, M. A. ABBAS (2018): Antimicrobial resistance of *Campylobacter* spp. and *Arcobacter butzleri* from pets in Malaysia. J. Am. Vet. Med. Assoc. 13, 152-161.

DOI: 10.3844/ajavsp.2018.152.161

GUPTA, A., J. M. NELSON, T. J. BARRETT, R. V. TAUXE,
S. P. ROSSITER, C. R. FRIEDMAN, K. W. JOYCE, K. E.
SMITH, T. F JONES, M. A. HAWKINS, B. SHIFERAW,
J. L. BEEBE, D. J. VUGIA, T. RABATSKY-EHR, J.
A. BENSON, T. P. ROOT, F. J. ANGULO, NARMS
WORKING GROUP (2004). Antimicrobial resistance among *Campylobacter* strains, United States, 1997-2001.
Emerg. Infect. Dis. 10, 1102-1109.
DOI: 10.3201/eid1006.030635

DOI: 10.3201/etd1006.030635

- HEREDIA, N., S. GARCIA (2018): Animals as sources of foodborne pathogens: A review. Animal Nutrition 4, 250-255. DOI: 10.1016/j.aninu.2018.04.006
- HOUF, K., L. DE ZUTTER, J. VAN HOOF, P. VANDAMME (2002): Assessment of the genetic diversity among arcobacters isolated from poultry products by using two PCR-based typing methods. Appl. Environ. Microbiol. 68, 2172-2178.

DOI: 10.1128/AEM.68.5.2172-2178.2002

KAAKOUSH, N. O., N, CASTAN[~]O-RODRI'GUEZ, H. M. MITCHELL, S. M. MAN (2015): Global Epidemiology of *Campylobacter* Infection. Clin. Microbiol. Rev. 28, 687-720.

DOI: 10.1128/CMR.00006-15

KAYMAN, T., F. AYDIN, S. ABAY, K. S. DIKER (2015): Coinfection with *Campylobacter jejuni* subtypes in patients with acute gastroenteritis. Türk Mikrobiyol. Cem. Derg. 45, 117-121 (in Turkish).

DOI: 10.5222/TMCD.2015.117

KHOSHBAKHT, R., M. TABATABAEI, S. HOSSEINZADEH, SS. SHEKARFOROUSH, H. S. ASKI (2013): Distribution of nine virulence-associated genes in *Campylobacter jejuni* and *C. coli* isolated from broiler feces in Shiraz, Southern Iran. Foodborne Pathog. Dis. 10, 764-770.

DOI: 10.1089/fpd.2013.1489

KOENE, M. G., D. J. HOUWERS, J. R. DIJKSTRA, B. DUIM, J. A. WAGENAAR (2004): Simultaneous presence of multiple *Campylobacter* species in dogs. J. Clin. Microbiol. 42, 819-821.

DOI: 10.1128/JCM.42.2.819-821.2004

KOOLMAN, L., P. WHYTE, C. BURGESSA, D. BOLTON (2016): Virulence gene expression, adhesion and invasion of *Campylobacter jejuni* exposed to oxidative stress, Int. J. Food Microbiol. 220, 33-38.

DOI: 10.1016/j.ijfoodmicro

KRUTKIEWICZ, A., D. KLIMUSZKO (2010): Genotyping and PCR detection of potential virulence genes in *Campylobacter jejuni* and *Campylobacter coli* isolates from different sources in Poland. Folia Microbiol. (Praha). 55, 167-175.

DOI: 10.1007/s12223-010-0025-6

KULKARNI, S. P., S. LEVER, J. M. LOGAN, A. LAWSON, J. STANLEY, M. S. SHAFI (2002). Detection of *Campylobacter* species: a comparison of culture and polymerase chain reaction based methods. J. Clin. Pathol. 55,749-753.

DOI: 10.1136/jcp.55.10.749

KUMAR, R., A. K., VERMA, A., KUMAR, M., SRIVASTAVA, H. P. LAL (2012): Prevalence of *Campylobacter* sp. in dogs attending veterinary practices at Mathura, India and risk indicators associated with shedding. Asian J. Anim. Vet. Adv. 7, 754-760.

DOI: 10.3923/ajava.2012.754.760

- LARSON, C. L., J. E. CHRISTENSEN, S. A. PACHECO, S. A. MINNICH, M. E. KONKEL (2008): *Campylobacter jejuni* Secretes Proteins via the Flagellar Type III Secretion System That Contribute to Host Cell Invasion and Gastroenteritis. In: *Campylobacter*. (Nachamkin, I., C. M. Szymanski, M. J. Blaser, Eds), ASM Press, Washington DC, pp 314-332.
- LAZOU, T., F. FRAGKOU, A. GELASAKIS, C. DOVAS, N. SOULTOS, K. ADAMAMA-MORAITOU, E. IOSSIFIDOU (2017): Prevalence, antimicrobial resistance and risk factors for *Campylobacter* colonising dogs and cats in Greece. BJVM. 20, 244-254.

DOI: 10.15547/bjvm.1003

LINDMARK, H., S. BOQVIST, M. LJUNGSTRÖM, P. ÅGREN, B. BJÖRKHOLM, L. ENGSTRAND (2009): Risk factors for campylobacteriosis: an epidemiological surveillance study of patients and retail poultry. J. Clin. Microbiol. 47, 2616-2619.

DOI: 10.1128/JCM.00826-09

MAGIORAKOS, A. P., A. SRINIVASAN, R. B. CAREY, Y. CARMELI, M. E. FALAGAS, C. G. GISKE (2012): Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268-281.

DOI: 10.1111/j.1469-0691.2011.03570.x

MARTINEZ, I., E. MATEO, E. CHURRUCA, C. GIRBAU, R. ALONSO, A. FERNÁNDEZ-ASTORGA (2006): Detection of *cdt*A, *cdt*B, and *cdt*C genes in *Campylobacter jejuni* by multiplex PCR. Int. J. Med. Microbiol. 296, 45-48.

DOI: 10.1016/j.ijmm.2005.08.003

- NEWTON, C. M, D. G. NEWELL, M. WOOD, M. BASKERVILLE (1988): *Campylobacter* infection in a closed dog breeding colony. Vet. Rec. 123, 152-154. DOI: 10.1136/vr.123.6.152
- NIKAIDO, H (2009): Multidrug resistance in bacteria. Annu Rev. Biochem. 78, 119-146.

DOI: 10.1146/annurev.biochem.78.082907.145923

OLSON, P., K. SANDSTEDT (1987): *Campylobacter* in the dog: a clinical and experimental study. Vet. Rec. 121, 99-101.

DOI: 10.1136/vr.121.5.99

QUETZ, J. da S., I. F. N. LIMA, A. HAVT, M. M. PRATA, P. A. CAVALCANTE, P. H. MEDEIROS, D. A. CID, M. L. MORAES, L. C. REY, A. M. SOARES, R. M. MOTA, B. H. WEIGL, R. L GUERRANT, A. A. LIMA (2012): *Campylobacter jejuni* infection and virulence associated genes in children with moderate to severe diarrhoea admitted to emergency rooms in Northeastern Brazil. J. Med. Microbiol. 61, 507-513.

DOI: 10.1099/jmm.0.040600-0

- RICHARDSON, J. F., J. A. FROST, J. M. KRAMER (2001): Coinfection with *Campylobacter* species: an epidemiological problem? J. Appl. Microbiol. 91, 206-211. DOI: 10.1046/j.1365-2672.2001.01377.x
- RIPABELLI, G., M. TAMBURRO, F. MINELLI, A. LEONE, M. L. SAMMARCO (2010): Prevalence of virulenceassociated genes and cytolethal distending toxin production in *Campylobacter* spp. isolated in Italy. Comp. Immunol. Microbiol. Infect. Dis. 33, 355-364.

DOI: 10.1016/j.cimid.2008

RODRIGUES, C. G, R. T. MELO, B. B. FONSECA, P. A. MARTINS, F. A. FERREIRA, M. B. J. ARAUJO, D. A. ROSSI (2015): Occurrence and characterization of *Campylobacter* spp. isolates in dogs, cats and children. EMBRAPA. 35, 365-370.

DOI: 10.1590/S0100-736X2015000400009

- SALIHU, M. D., A. A. MAGAJI, J. U. ABDULKADIR, A. KOLAWALE (2010): Survey of thermophilic *Campylobacter* species in cats and dogs in north-western Nigeria. Vet. Ital. 46, 425-430.
- SANDBERG, M., B. BERGSJO, M. HOFSHAGEN, E. SKJERVE, H. KRUSE (2002): Risk factors for *Campylobacter* infection in Norwegian cats and dogs. Prev. Vet. Med. 55, 241-253.

DOI: 10.1016/S0167-5877(02)00095-8

- SHEN, Z., Y. FENG, F. E. DEWHIRST, J. G. FOX (2001): Coinfection of enteric *Helicobacter* spp. and *Campylobacter* spp. in cats. J. Clin. Microbiol. 39, 2166-2177. DOI: 10.1128/JCM.39.6.2166-2172.2001
- SPSS (Statistical Package for Social Sciences) for Windows Version 23. 0, Armonk, NY, IBM Corp. USA.
- SZCZEPANSKA, B., M. ANDRZEJEWSKA, D. SPICA, J. J. KLAWE (2017): Prevalence and antimicrobial resistance of *Campylobacter jejuni* and *Campylobacter coli* isolated from children and environmental sources in urban and suburban areas. BMC Microbiol. 17, 80.

DOI: 10.1186/s12866-017-0991-9

VANDAMME, P., J. DE LEY (1991): Proposal for a new family, Campylobacteraceae. Int. J. Syst Bacteriol. 41, 451-455.

DOI: 10.1099/00207713-41-3-451

WANG, G., G. C. CLIFFORD, M. T. TRACY (2002): Colony multiplex PCR assay for identification and differentiation of *Campylobacter jejuni*, *C. coli*, *C. lari*, *C. upsaliensis*, and *C. fetus* subsp. *fetus*. J. Clinical Microbiol. 40, 4744-4747. DOI: 10.1128/JCM.40.12.4744-4747.2002 Received: 17 May 2019 Accepted: 21 October 2019

HIZLISOY, H., İ. KARACA BEKDIK, Ö. ASLAN, K. S. GÜMÜŞSOY, S. HIZLISOY: Geni potencijalne virulencije i profili antibiotske rezistencije bakterije *Campylobacter jejuni* izolirane iz mačaka. Vet. arhiv 90, 129-141, 2020.

SAŽETAK

Svakodnevni kontakt s mačkama znatan je čimbenik rizika za kampilobakteriozu u ljudi. Glavni je cilj ovoga rada bio istražiti gene virulencije i antibiotsku rezistenciju bakterije C. jejuni izolirane iz izmeta mačaka dovedenih na Erciyes University, Faculty of Veterinary Medicine, Training and Research Hospital Clinics. Izmet je uzet od 200 mačaka (116 ženki i 84 mužjaka) različitih pasmina i dobi (1 mjesec do 9 godina), od svibnja 2017. do travnja 2018. Izolati Campylobacter spp. identificirani su na razini roda i vrste primjenom genski specifičnog multipleks PCR-a (mPCR) kojim je ustanovljena prisutnost gena iam, cadF, cdtA, flaA, ceuE, cdtC, cdtB i virB11. Antimikrobna rezistencija i otpornost na širok spektar lijekova (MDR) izolata određeni su disk-difuzijskim testom. Primjenom Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) otkriveni su genski srodnici izolata. U ovom je istraživanju 41 (20,5 %) od 200 uzoraka izmeta bio pozitivan na Campylobacter spp. Među pozitivnim uzorcima njih 14 od 22 (63,6 %) potjecalo je od mačaka koje su imale proljev, a 27 od 178 (15,1 %) uzoraka bilo je od mačaka koje nisu imale proljev. Fenotipski testovi i PCR pokazali su da je 65 izolata (20 od njih potjecalo je od mačaka koje su imale proljev i 45 od mačaka koje nisu imale proljev) identificirano kao C. jejuni. Razlike u broju izolata s obzirom na spol i dob nisu bile statistički znakovite (P > 0,05). Svi izolati C. jejuni imali su barem pet gena virulencije i bili pozitivni na gene cadF, cdtC i ceuE. Gen iam sadržavalo je 19 izolata C. jejuni (29,2 %), gen cadF 65 izolata (100 %), gen cdtA 64 izolata (98,4 %), gen flaA 54 izolata (83 %), gen ceu E 65 izolata (100 %), gen cdtC 65 izolata (100 %), gen cdtB 64 izolata (98,4 %) i gen virB11 22 izolata (33,8 %). Geni toksina cdtA i cdtB pronađeni su u većini analiziranih izolata. Svi su izolati C. jejuni bili osjetljivi na amoksicilin-klavulansku kiselinu. Najveća rezistencija bila je: 64 izolata (98, 4 %) na ciprofloksacin (CIP), 63 izolata (96,9 %) na trimetoprimsulfametoksazol (SXT) i 62 izolata (95,3 %) na nalidiksičnu kiselinu (NA). U ovom je istraživanju ustanovljena višestruka rezistencija izolata. 61 od 65 izolata (93,8 %) bilo je otporno na tri ili više antibiotika, a najveća je otpornost utvrđena na tri antimikrobna lijeka u 23,1 % izolata i na sedam antimikrobnih lijekova u 15,3 % izolata. Istraživanjem je ustanovljena otpornost izolata C. jejuni na većinu antibiotika koji se trenutačno primjenjuju te iznimna svojstva virulencije u mačaka, koja mogu imati određeni rizik za javno zdravstvo.

Ključne riječi: Campylobacter jejuni; virulencija; antibiotska rezistencija; ERIC-PCR