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Abstract 
The article considers the influence of the structure and the chemical composition of ground blast 
furnace slag on rheological properties of slag suspensions. Different composition and structure of 
blast furnace slags were studied. The features of structural and mechanical properties of suspensions 
are revealed at shear rate 1÷50𝑐𝑐−1. The theoretical model of the flow in a flat endless channel at a 
final external pressure difference is presented on the basis of experimental data. The exact solution 
of the system of equations describing the considered flow is obtained. 
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INTRODUCTION 
Production processes at high temperatures such as 

metallurgical process are accompanied by the release of 
by-products called slag. Blast furnace slag of the 
metallurgical slag is particularly attracted the attention of 
builders because they are characterized by a constant 
chemical composition and environmental safety. Blast 
furnace slags also have astringent properties which is 
very important for the construction works since ancient 
times. As binders blast furnace slag are used in 
construction works all over the world in particular in 
Russia (Danilovich and Skanavi 1988, Gergichny 2013). 
They are widely used for the manufacture of plaster and 
masonry mortars, various concretes and production of 
construction and heat-resistant materials for various 
purposes. For example, blast-furnace granulated slag is 
the main component in the production of cements. 

When mixing with slag water blast furnace slags form 
a visco-plastic suspensions that harden after setting 
under certain conditions. Rheological features (Altoubat 
et al. 2016, Mo et al. 2015) of these suspensions affect 
the structural and mechanical properties of the final 
product used in construction. In this regard, in this work 
the task is set to investigate rheological features of slag 
suspensions by examples of specific blast furnace slag 
produced by Novokuznetsk, Mariupol and Chelyabinsk 
metallurgical plants. 

Thus the purpose of this work is an experimental 
study of rheological features of slag suspensions by slag 
samples taken from Novokuznetsk, Mariupol and 
Chelyabinsk metallurgical plants and theoretical 
description of slag suspension flow on the basis a new 

rheological model for plate endless canal at a final 
external pressure difference. 

Technique. The rotary viscometer “Rheotest-2” 
having coaxial cylinders (Mal’kova 2004) was used for 
experimental researches of the above slag suspensions. 
The rheograms showing the change of shear stress τ on 
the shear rate change γ̇ are obtained. The change 
interval of the shear rate was 1÷50 𝑐𝑐−1 and shear stress 
varied in the range of 120÷250 Pa. Figs. 1-3 show the 
results of experimental studies of slag suspensions 
without any additives. 

Main part. The given programs (see Figs. 1-3) show 
that the suspensions of the Novokuznetsk and Mariupol 
samples have very small yield strength not more than 
10÷15 Pa. For them, the value of the dynamic viscosity 
is, respectively, 47 and 35 mPa⋅c. The Chelyabinsk 
suspension sample has a yield strength of 35 Pa and its 
the dynamic viscosity is 120÷140 mPa⋅c. 

From the above rheograms it can be seen that the 
dependence of the shear stress on the flow velocity 
gradient does not correspond to the dependence 
expected for Bingham media (Gnoevoj et al. 2001a, 
2001b, Vishnyakov and Pokrovskij 2013). 

RHEOLOGICAL MODEL 
The course of curves in the above reogramme detect 

weak non-linearity of the shear rate on shear rate γ̇ in 
comparison with the dependencies typical for Bingham 
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media (Mo et al. 2015). In this regard, we assume the 
rheological equation that describes the above 
suspensions is as follows 

 𝜏𝜏 = 𝜏𝜏0 + 𝜇𝜇(�̇�𝛾) ⋅ �̇�𝛾 (1) 
where dynamic viscosity μ(γ̇) is a function of γ̇ and the 
dependence of μ(γ̇) is determined by the equality: 

 𝜇𝜇(�̇�𝛾)=𝜇𝜇 − 𝜆𝜆�̇�𝛾 (2) 
where μ is an usual dynamic viscosity which is a 
constant and the coefficient λ characterizes the 
consistency of the suspension. 

By substituting Eq. (2) into Eq. (1), we transform the 
rheological equation to the form:  

 𝜏𝜏 = 𝜏𝜏0 + 𝜇𝜇 ⋅ �̇�𝛾 − 𝜆𝜆 ⋅ (�̇�𝛾)2 (3) 
In connection with the presence in Eq. (3) nonlinear 

term, we call the considered slag suspensions described 
by Eq. (3) as quasi Bingham media. 

By analogy with the work (Mo et al. 2015), we now 
write a generalized rheological equation of quasi 
Bingham media corresponding to Eq. (3) :  

 𝑇𝑇 = 𝜏𝜏0 + 2𝜇𝜇 ⋅ 𝐻𝐻 − 𝜆𝜆𝐻𝐻2 (4) 
where 

 
𝑇𝑇 = {

1
6

[(𝜏𝜏𝑥𝑥𝑥𝑥 − 𝜏𝜏𝑦𝑦𝑦𝑦)2 + (𝜏𝜏𝑦𝑦𝑦𝑦 − 𝜏𝜏𝑧𝑧𝑧𝑧)2 + (𝜏𝜏𝑧𝑧𝑧𝑧
− 𝜏𝜏𝑥𝑥𝑥𝑥)2] + 𝜏𝜏𝑥𝑥𝑦𝑦2 + 𝜏𝜏𝑥𝑥𝑧𝑧2

+ 𝜏𝜏𝑦𝑦𝑥𝑥2 }1 2⁄  

(5) 

 
𝐻𝐻 = {

1
6

[(𝜀𝜀𝑥𝑥𝑥𝑥 − 𝜀𝜀𝑦𝑦𝑦𝑦)2 + (𝜀𝜀𝑦𝑦𝑦𝑦 − 𝜀𝜀𝑧𝑧𝑧𝑧)2 + (𝜀𝜀𝑧𝑧𝑧𝑧
− 𝜀𝜀𝑥𝑥𝑥𝑥)2] + 𝜀𝜀𝑥𝑥𝑦𝑦2 + 𝜀𝜀𝑥𝑥𝑧𝑧2

+ 𝜀𝜀𝑦𝑦𝑥𝑥2 }1 2⁄  

(6) 

T is the magnitude of the tangential stresses, Н is the 
magnitude of shear deformation rates in any point of 
medium. 

The full system of equations of the quasi-Bingham 
medium flow is analogous to the full system of equations 
of Bingham medium of the work [4] except that Eq. (4) is 
now used instead the rheological equation  

𝑇𝑇 = τ0 + 2μ ⋅ 𝐻𝐻 
represented in (Gnoevoj et al. 2004). 

STATIONARY FLOW OF A QUASI BINGHAM 
MEDIUM BETWEEN PARALLEL PLANES 

Consider the solution of the problem of steady flow 
of incompressible quasi-Bingham medium in a flat 
channel with a rheological law Eq. (4) at constant 
temperature if the pressure difference is set by analogy 

 
Fig. 1. Rheogram of shear stress on shear rate of 
Novokuznetsk aphanitic slag suspension. Experimental 
points are marked by the symbol ▪ . The solid curve 
corresponds to the theoretical dependence τ = 3.50754 +
2.48875γ̇ − 0.01793(γ̇)2 

 
Fig. 2. Rheogram of shear stress on shear rate of Mariupol 
vitrophyric hydroxidic slag suspension. Experimental points 
are marked by the symbol ▪ . The solid curve corresponds to 
the theoretical dependence τ = 13.15087 + 2.79153γ̇ −
0.00636(γ̇)2 

 
Fig. 3. Rheogram of shear stress on shear rate of 
Chelyabinsk vitrophyric acid slag suspension. Experimental 
points are marked by the symbol ▪ . The solid curve 
corresponds to the theoretical dependenceτ = 36.39485 +
4.53185γ̇ − 0.02514(γ̇)2 
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with work (Mo et al. 2015). In Fig. 4, we present a 
scheme of such a quasi-Bingham medium flow. 

This flow is symmetric with respect to the plane у = 
0. We formulate the boundary values analogously to the 
boundary conditions represented in the work [4]. For 
velocities: 

𝐯𝐯𝐱𝐱 ≡ υ = 0 at у = ±d, υ𝑠𝑠 = υ𝑝𝑝 at 𝑦𝑦 = ±𝑦𝑦1; 
for pressures: 

𝑝𝑝 = 𝑝𝑝1 at х =0, 𝑝𝑝 = 𝑝𝑝2 at х = l, 𝑝𝑝1 > 𝑝𝑝2. 
Due to the steady state of the flow 
𝑑𝑑υ
𝑑𝑑𝑑𝑑

= 0, 
and due to the incompressibility of the medium, the 
velocity function is function only a variable у: υ = υ(𝑦𝑦). 
In addition, there is no movement of the medium along 
the OY axis: 𝐯𝐯𝑦𝑦 = 0. 

We write down a system of equations for a given 
plane flow of a quasi Bingham medium using Eqs (4) – 
(6) analogously to the work (Mo et al. 2015): 

 𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝑦𝑦

= 0, 𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝑦𝑦

= 0 (7) 
As υ = υ(𝑦𝑦) then 
ε𝑥𝑥𝑥𝑥 = ∂υ

∂𝑥𝑥
= 0. 

It is also clear that ε𝑧𝑧𝑧𝑧 = ∂𝐯𝐯𝑧𝑧
∂𝑧𝑧

= 0. Then it is follows 
from the incompressibility condition of the medium ε𝑦𝑦𝑦𝑦 =
∂𝐯𝐯𝑥𝑥
∂𝑦𝑦

= 0. Besides τ𝑧𝑧𝑦𝑦 = ε𝑧𝑧𝑦𝑦 = 0, τ𝑥𝑥𝑧𝑧 = ε𝑥𝑥𝑧𝑧 = 0 and ε𝑥𝑥𝑦𝑦 =
1
2
𝑑𝑑υ
𝑑𝑑𝑦𝑦

. Therefore, from Eqs (6), (5) we have 

𝐻𝐻 = ε𝑥𝑥𝑦𝑦 =
1
2
𝑑𝑑υ
𝑑𝑑𝑦𝑦

 

and  

𝑇𝑇 =
1
2�

(τ𝑥𝑥𝑥𝑥 − τ𝑦𝑦𝑦𝑦)2 + 4τ𝑥𝑥𝑦𝑦2  

Due to the symmetry of the problem mentioned 
above, the rheological equation Eq. (4) takes the form 
at 𝑦𝑦 ≥ 0: 

 
1
2�

(𝜏𝜏𝑥𝑥𝑥𝑥 − 𝜏𝜏𝑦𝑦𝑦𝑦)2 + 4𝜏𝜏𝑥𝑥𝑦𝑦2 = −𝜏𝜏0 + 𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦

− 𝜆𝜆(
𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦

)2 (8) 

In accordance with (Gnoevoj et al. 2004), the 
equation  

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦

(𝜏𝜏𝑥𝑥𝑥𝑥 − 𝜏𝜏𝑦𝑦𝑦𝑦) = 0 (9) 

closes the system of equations for this description.  
Thus it is necessary to solve the system of Eqs (7) – 

(9) taking into account the above boundary conditions to 
describe the stationary flow of the quasi Bingham 
medium enclosed between two planes. 

We will look for the solution of the problem in the 
upper half-plane of the Fig. 4: 0≤у≤d.   

In the lower, half-plane the solution is obtained 
symmetrically.  

First, we consider the solution of the system of Eqs 
(7) – (9) in the shear flow region. Here is 𝑑𝑑υ

𝑑𝑑𝑦𝑦
≠

0 everywhere except extreme points. Therefore, from 
Eq. (9) it follows 

 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜏𝜏𝑦𝑦𝑦𝑦 (10) 
and rheological equation (8) is written as 

 𝜏𝜏𝑥𝑥𝑦𝑦 = −𝜏𝜏0 + 𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦

− 𝜆𝜆(
𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦

)2 (11) 

from which we conclude that τ𝑥𝑥𝑦𝑦is a function of only the 
variable y. This allows Eq. (7) to be written in a simpler 
form analogously to the work (Gnoevoj et al. 2004): 

 𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥

+ 𝑑𝑑𝜏𝜏𝑥𝑥𝑥𝑥
𝑑𝑑𝑦𝑦

= 0, 𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝑦𝑦

= 0 (12) 
On the basis of the second equality (12) and Eq. (10) 

we conclude 

 −
𝑑𝑑𝜏𝜏𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝜏𝜏𝑥𝑥𝑦𝑦
𝑑𝑑𝑦𝑦

= 𝜅𝜅 (13) 

where κ is constant. 
The integration of Eqs (13) and the use of boundary 

conditions for pressure leads to expressions for stresses 
(stress is opposite to pressure)  analogously to the 
work (Mo et al. 2015): 

τ𝑥𝑥𝑦𝑦 = −Δ𝑝𝑝
𝑙𝑙
𝑦𝑦 + 𝐶𝐶, τ𝑥𝑥𝑥𝑥 = τ𝑦𝑦𝑦𝑦 = −𝑝𝑝1 + Δ𝑝𝑝

𝑙𝑙
𝑑𝑑, 

where Δ𝑝𝑝 = 𝑝𝑝1 − 𝑝𝑝2, С is integration constant 
determined from symmetry of the problem relative to the 
plane у = 0. Due to this symmetry the linear 
function τ𝑥𝑥𝑦𝑦(𝑦𝑦) is to be odd: τ𝑥𝑥𝑦𝑦(𝑦𝑦) = −τ𝑥𝑥𝑦𝑦(−𝑦𝑦) where 
we get С=0. Thus we have finally for stresses: 

 𝜏𝜏𝑥𝑥𝑦𝑦 = − 𝛥𝛥𝑝𝑝
𝑙𝑙
𝑦𝑦, 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜏𝜏𝑦𝑦𝑦𝑦 = −𝑝𝑝1 + 𝛥𝛥𝑝𝑝

𝑙𝑙
𝑑𝑑 (14) 

Substitute in the rheological equation (11) the 
dependence (14) for τ𝑥𝑥𝑦𝑦: 

 −
𝛥𝛥𝑝𝑝
𝑙𝑙
𝑦𝑦 = −𝜏𝜏0 + 𝜇𝜇

𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦

− 𝜆𝜆(
𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦

)2 (15) 

From here we explicitly express the velocity 
gradient 𝑑𝑑υ

𝑑𝑑𝑦𝑦
: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦

=
𝜇𝜇

2𝜆𝜆
− �

𝛥𝛥𝑝𝑝
𝑙𝑙𝜆𝜆

(𝑦𝑦 + 𝑎𝑎) (16) 

where 

 
Fig. 4. Scheme of quasi-Bingham medium flow between 
parallel planes. ±d – channel boundaries, ±𝑦𝑦1 - boundaries 
between shear (s) and plastic (p) flow regions, 𝐯𝐯𝐱𝐱 - flow 
velocity 



 
 
EurAsian Journal of BioSciences 13: 855-859 (2019)  Nazarova et al. 
 

858 
 

 𝑎𝑎 =
𝑙𝑙
𝛥𝛥𝑝𝑝

(
𝜇𝜇2

4𝜆𝜆
− 𝜏𝜏0) (17) 

Elementary integrating Eq. (16) with applying the 
boundary condition υ = 0 at y = d leads to an expression 
for the shear flow rate of quasi Bimgham medium: 

 𝑑𝑑 =
𝜇𝜇

2𝜆𝜆
(𝑦𝑦 − 𝑑𝑑) +

2
3
�
𝛥𝛥𝑝𝑝
𝜆𝜆𝑙𝑙

[(𝑑𝑑 + 𝑎𝑎)3 2⁄ − (𝑦𝑦

+ 𝑎𝑎)3 2⁄ ] 

(18) 

In this case, the effective dynamic viscosity is 
determined by the equality: 

 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜇𝜇 − 𝜆𝜆
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜇𝜇
2

+ �𝜆𝜆𝛥𝛥𝑝𝑝
𝑙𝑙

(𝑦𝑦 + 𝑎𝑎) (19) 

It is seen from this expression that the effective 
viscosity increase with increasing a variable у which in 
turn means that this viscosity increases as the shear rate 
gradient increases. The latter indicates the 
manifestation of dilatant properties of quasi Bingham 
medium. 

Let us consider the area of plastic flow in which the 
flow velocity is maximum in comparison with the flow 
velocity in the shear area. In this connection we find a 
maximum point 𝑦𝑦1 of the function (18) using a necessary 
condition of extremum of this function 𝑑𝑑υ

𝑑𝑑𝑦𝑦
= 0: 

 𝑦𝑦1 =
𝑙𝑙
𝛥𝛥𝑝𝑝

𝜏𝜏0 (20) 

The point 𝑦𝑦1 determines the boundary between areas 
of shear and plastic flows. It is easy to make sure that 
the sufficient maximum condition at the point 𝑦𝑦1 is also 
satisfied: 

𝑑𝑑2υ
𝑑𝑑𝑦𝑦2

� 𝑦𝑦=𝑦𝑦1 = −Δ𝑝𝑝
μ𝑙𝑙
√λ < 0. 

Substituting Eq. (20) into Eq. (18) we find a maximum 
value of shear velocity υmax𝑠𝑠  which is a constant velocity 
of plastic flow υ𝑝𝑝: 

 𝑑𝑑𝑚𝑚𝑚𝑚𝑥𝑥
𝑠𝑠 = 𝑑𝑑𝑝𝑝 =

𝜇𝜇
2𝜆𝜆

(𝑦𝑦1 − 𝑑𝑑) +
2
3
�
𝛥𝛥𝑝𝑝
𝜆𝜆𝑙𝑙

[(𝑑𝑑

+ 𝑎𝑎)3 2⁄ − (𝑦𝑦1 + 𝑎𝑎)3 2⁄ ] 

(21a) 

or finally  

 
𝑑𝑑𝑝𝑝 =

𝑙𝑙
𝛥𝛥𝑝𝑝

{−
𝜇𝜇

2𝜆𝜆
(
𝛥𝛥𝑝𝑝
𝑙𝑙
𝑑𝑑 +

𝜇𝜇2

6𝜆𝜆
− 𝜏𝜏0) +

2
3√𝜆𝜆

(
𝛥𝛥𝑝𝑝
𝑙𝑙
𝑑𝑑

+
𝜇𝜇2

4𝜆𝜆
− 𝜏𝜏0)3 2⁄ } 

(21b) 

Simple calculations show that at the boundary of the 
plastic flow, that is, at the point 𝑦𝑦1: μ𝑒𝑒𝑒𝑒𝑒𝑒(𝑦𝑦1) = μ. It is 
mean that the plastic flow has the viscosity not equal 
zero. 

Since the velocity of the plastic flow (21a), (21b) is 
constant its derivative is zero at any point in this region: 

𝑑𝑑υ𝑝𝑝

𝑑𝑑𝑦𝑦
= 0. 

Therefore, the rheological equation (8) takes the 
form: 

 
1
2�

(𝜏𝜏𝑥𝑥𝑥𝑥 − 𝜏𝜏𝑦𝑦𝑦𝑦)2 + 4𝜏𝜏𝑥𝑥𝑦𝑦2 = −𝜏𝜏0 (22) 

This equation is similar to the one considered in 
(Gnoevoj et al. 2004). Therefore, a further description of 
the plastic flow is similar to the description given in (Mo 
et al. 2015) in which the following expressions of 
stresses are obtained: 

 
𝜏𝜏𝑥𝑥𝑦𝑦
𝑝𝑝 (𝑦𝑦) = −𝛥𝛥𝑝𝑝

𝑙𝑙
𝑦𝑦, 𝜏𝜏𝑦𝑦𝑦𝑦

𝑝𝑝 = −𝑝𝑝1 + 𝛥𝛥𝑝𝑝
𝑙𝑙
𝑑𝑑, 

𝜏𝜏𝑥𝑥𝑥𝑥
𝑝𝑝 = 𝜏𝜏𝑦𝑦𝑦𝑦

𝑝𝑝 − 2�𝜏𝜏02 − 𝜏𝜏𝑥𝑥𝑦𝑦
𝑝𝑝2 

(23) 

From the comparison of Eqs (14) and (23), it is seen 
that at the boundary between the areas of shear and 
plastic flow the stresses coincide: 

τ𝑥𝑥𝑦𝑦𝑠𝑠 = τ𝑥𝑥𝑦𝑦
𝑝𝑝 , τ𝑦𝑦𝑦𝑦𝑠𝑠 = τ𝑦𝑦𝑦𝑦

𝑝𝑝 . 
We calculate the flow rate W of a quasi Bingham 

medium flowing in a channel bounded by parallel planes: 
𝑊𝑊 = ∫ υ(𝑦𝑦)𝑑𝑑𝑦𝑦 = 2(∫ υ𝑠𝑠(𝑦𝑦)𝑑𝑑𝑦𝑦 + ∫ υ𝑝𝑝𝑑𝑑𝑦𝑦𝑦𝑦1

0
𝑑𝑑
𝑦𝑦1

)𝑑𝑑
=𝑑𝑑 , 

using Eqs (18), (21). Calculations lead to the result: 

 

𝑊𝑊 = (
𝑙𝑙
𝛥𝛥𝑝𝑝

)2{
𝜇𝜇

2𝜆𝜆
[(𝜏𝜏0 −

𝜇𝜇2

6𝜆𝜆
)2 +

𝜇𝜇4

180𝜆𝜆2
 

−(
𝛥𝛥𝑝𝑝
𝑙𝑙
𝑑𝑑)2] +

4
5√𝜆𝜆

(
𝛥𝛥𝑝𝑝
𝑙𝑙
𝑑𝑑 +

𝜇𝜇2

4𝜆𝜆
− 𝜏𝜏0)3 2⁄ ⋅ (

𝛥𝛥𝑝𝑝
𝑙𝑙
𝑑𝑑

−
2
3

(
𝜇𝜇2

4𝜆𝜆
− 𝜏𝜏0))} 

(24) 

Note that in the special case of absence of dynamic 
viscosity (μ=0) we obtain the Herschel - Bulkley model 
successfully describing rheology of weighted drilling 
fluids (Bulatov 2016) with the rheological law 

τ = τ0 − λ(γ̇)2. 
Within the last, we have from Eqs (18), (21b), (24) 

respectively:  

υ𝑠𝑠 = 2
3
�Δ𝑝𝑝

λ𝑙𝑙
[(𝑑𝑑 + 𝑙𝑙τ0

4Δ𝑝𝑝λ
)3 2⁄ − (𝑦𝑦 + 𝑙𝑙τ0

4Δ𝑝𝑝λ
)3 2⁄ ], 

υ𝑝𝑝 = 2
3
�Δ𝑝𝑝

λ𝑙𝑙
(𝑑𝑑 − 𝑙𝑙τ0

Δ𝑝𝑝
)3 2⁄ }, 

𝑊𝑊 = (
𝑙𝑙
Δ𝑝𝑝

)2{+𝑊𝑊 =
4
5
�
Δ𝑝𝑝
λ𝑙𝑙

(𝑑𝑑 −
𝑙𝑙τ0
Δ𝑝𝑝

)3 2⁄ ⋅ (𝑑𝑑 +
2
3
𝑙𝑙τ0
Δ𝑝𝑝

)} 

CONCLUSION 
Summarizing the above, it should be noted that 

experimentally obtained rheograms of slag suspensions 
based on slag samples of Novokuznetsk, Mariupol, 
Chelyabinsk metallurgical plants show that their 
rheological properties differ from those of Bingham 
media. Precisely, they detect a nonlinear dependence of 
the shear stress on the flow velocity gradient. Based on 
these experimental results, it is proposed a new model 
of description of the above viscoplastic suspensions with 
the nonlinear rheological law taking into account the 
manifestation of dilatant properties of the considered 
suspensions called as quasi Bingham media. As an 
example, the stationary flow of the quasi-Bingham 
medium is considered in the channel bounded by 
parallel planes at a finite pressure difference. It is 
obtained exact solution of the system of equations 
describing the considered flow. 
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