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Abstract 

Breast cancer overdiagnosis risk is difficult to estimate and varies significantly across current 

research. This research establishes a simulation approach to examine the relationship between 

breast cancer overdiagnosis and patient outcome and understand the impact that the range of 

breast cancer overdiagnosis rate estimates in the current literature has on patient outcomes. 

Overdiagnosis is represented in this study by a set of disease regression probabilities. Using 

microsimulation, we evaluate patient outcome, measured by number of mammograms and 

lifetime breast cancer mortality risk, as a function of treatment policy and regression 

probability. We use numerical experiments to evaluate treatment policies and disease 

regression probabilities, and we conclude through sensitivity analysis that treatment policy is a 

statistically significant factor for patient outcome and regression probability, or overdiagnosis 

rate, is only partially statistically significant for patient outcome. 
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1. Introduction 
 

Breast cancer is the second most common cancer in American women, and there is a 12% 

chance that a woman in the U.S. will develop breast cancer in her life (American Cancer Society 

(ACS), 2019). Most breast cancers begin as ductal carcinoma in situ (DCIS), or pre-clinical 

cancer, where there is no symptom present (Duffy et al., 1995). DCIS is the condition where the 

cells lining the milk ducts in the breast have become cancerous and is considered non-invasive 

(Martin, 2019). Breast cancer is considered invasive when the tumor reaches two to five 

centimeters or spreads into surrounding breast tissue or lymph nodes, and it is classified as 

metastatic breast cancer when the cancer cells have spread to distant organs or tissue in the 

body (Cancer Treatment Centers for America, 2020). 

 
 

1.1 Screening Overdiagnosis 
 

The current technology for breast cancer detection is mammography, which is used to identify 

abnormal areas of the breast that may be signs of cancer. Although diagnosing cancer in its 

early stages helps to develop treatment plans, frequent mammography screenings can result in 

overdiagnosis. Overdiagnosis is the diagnosis of early stage disease that does not give rise to 

symptoms during the patient’s lifetime or have lethal potential (Welch & Black, 2010). 

Measuring and observing overdiagnosis is not entirely straightforward. Overdiagnosis occurs 

when cancer does not progress beyond DCIS during the patient’s lifetime or it progresses slowly 

enough for the patient to die of other causes. Cases which are classified as overdiagnosis can 

therefore only be observed in retrospect. Figure 1 is a representation of overdiagnosis. 
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Figure 1: Representation of overdiagnosis, adapted from Madadi et al. (2018) 
 

Overdiagnosis is considered one of the significant harms of breast cancer screening 

(Welch & Black, 2010) because it leads to overtreatment, which puts patients’ well-being at risk 

and incurs unnecessary costs. Some levels of overdiagnosis and overtreatment are inevitable, 

since deaths from other causes, like accidents or other health complications, are always 

possible. However, breast cancer surgeries and treatments are strenuous, costly, and can 

adversely affect the patient’s quality of life. Therefore, cases of treatment where the cancer 

would never have progressed or become symptomatic during the patient’s lifetime have 

unnecessary negative consequences. 

To be most effective, screening policies need to target the at-risk population and 

balance the tradeoffs between screening too frequently, thus performing unnecessary tests, 

and not screening often enough, thereby missing cases (Brailsford et al., 2012). Various 

organizations such as the ACS and USPSTF (U.S. Preventive Services Task Force) have guidelines 

for screening mammography to help detect breast cancer early. However, the harms of 

overdiagnosis and overtreatment have cast controversy on breast cancer screening practices, 

resulting in the evaluation and adjustment of screening guidelines to promote less frequent 

screening, as was reflected in the updated 2015 ACS guideline. 

As of 2015, the ACS recommends annual mammograms beginning at age 45 and notes 

that women 55 and older can switch to biennial mammograms (ACS, 2019). While this 

recommendation is in part a result of increased awareness of the harms of overdiagnosis, it is 

also shaped by research that shows breast cancer grows differently as a patient ages. For 

instance, studies have shown that although the risk of developing breast cancer increases as a 
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patient ages, breast cancer is less aggressive in older women (Tabár et al., 2000). Slower cancer 

growth explains why the ACS recommends that women 55 and older only need to be screened 

every two years. 

 
 

1.2 Literature Review 
 

As one of the first modeling efforts on breast cancer screening, Maillart et al. (2008) evaluated 

a broad range of breast cancer screening policies to identify a set of “efficient” policies as 

measured by a lifetime breast cancer mortality risk and the expected number of mammograms. 

The purpose of their study was to determine whether it was more beneficial to prescribe more 

frequent screening in younger women or older women (Maillart et al., 2008) based on its effect 

on lifetime breast cancer mortality risk. 

Their study limited its evaluation to two-phase screening policies, or policies which 

consist of only two different screening intervals in the patient’s lifetime. They evaluated 

different screening policies by varying the beginning and ending age for screening, the age at 

which the initial screening interval switches to the second screening interval, as well as the 

length of the screening interval itself. The study concluded that to efficiently achieve a lifetime 

risk that was comparable to the current risk among U.S. women, screening should begin 

relatively early in life and continue relatively late in life, regardless of the screening intervals(s) 

adopted. The assessment of dynamic breast cancer screening policies in Maillart et al. provides 

the basis for the development of the research that is to be described. 

There are a number of other studies which explore the impact of screening policies and 

the relationship of their efficacy with screening adherence, mortality, as well as other factors. 

Madadi et al. (2015) considered patient adherence behavior and its impact on the efficacy of 

mammography screening guidelines. While existing screening policies do not take patient 

behavior into consideration and assume perfect adherence, compliance to mammography 

guidelines had been revealed as low. As such, Madadi et al. developed a randomized discrete- 
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time finite-horizon partially observable Markov chain model to evaluate a wide range of 

screening policies which incorporated heterogeneity in patients’ adherence behavior. 

To consider the potential harms of mammography (e.g. risk of developing radiation- 

induced breast cancer) and different screening policies, patient outcomes were compared in 

terms of lifetime breast cancer mortality risk and total quality adjusted life years. Lifetime 

mortality risk can be defined as the probability of dying from breast cancer in a woman’s life 

(Maillart et al., 2008). The study by Madadi et al. found that high/perfect adherence always 

results in lower risk of dying from cancer, and that this benefit outweighs the risk of developing 

radiation-induced breast cancer from screening. 

Brailsford et al. (2012) described a simulation model for screening for breast cancer 

which includes behavioral factors to model women’s decisions to adhere to recommendations 

and attend mammography screenings. Brailsford et al. constructed a three-phase simulation to 

model breast cancer and screening policies. Their approach combined methods for simulating 

breast cancer screening and psychological models of health behavior to model individual 

women with both physiological and psychological attributes to observe screening attendance 

rates. The study examined the effect that different tumor growth models have on the model 

outputs. Overall, Brailsford et al. found that the choice of tumor growth model makes little 

difference to the relative increase or decrease in patient screening attendance brought about 

by the different screening scenarios which are assessed. 

These studies assessed different screening policies by measuring the impact of various 

dynamic screening intervals, patient adherence behaviors, and psychological and growth tumor 

models respectively. These studies and other relevant literature contribute to understanding 

factors which are affected by screening policies, like overdiagnosis and patient mortality. 

However, there is a lack of research in the current literature which directly explores the impact 

that differing overdiagnosis risk estimates have on the performance of screening policies. 

While it cannot be identified whether a particular patient has been overdiagnosed 

during their lifetime, it should be possible to estimate the rate and risk of overdiagnosis. 

Unfortunately, patient overdiagnosis risk is difficult to estimate and varies significantly across 
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current research. For example, a randomized control trial by Zackrisson et al. (2006) reported 

an overdiagnosis rate estimate of 10%, whereas a modeling study by Seigneurin et al. (2011) 

reported an overdiagnosis rate estimate of 28%. The decision-making process for breast cancer 

screening and treatment is consequently made more difficult by the uncertainty of patient 

overdiagnosis risk. 

 
 

1.3 Aim of Research 
 

To continue with more personalized treatment plans and evaluate the efficacy of dynamic 

screening and treatment policies, there is a need to better understand individuals’ 

overdiagnosis risk. In order to understand the range of overdiagnosis rate estimates in the 

current literature and the impact that they have on patient outcomes, the research objective in 

this study is to quantify the impact of different overdiagnosis risk estimates on patient 

outcomes, as measured by lifetime breast cancer mortality risk and number of mammograms. 

We consider a current screening policy which is still recommended by many organizations 

(annual screening from age 40) and two treatment policies (treat all cancers immediately and 

treat only invasive cancers). The simulation model established in this research provides 

opportunities to explore more combinations of screening and treatment policies in future 

research. 

The remainder of the thesis is organized as follows. Section 2 explains the methodology 

of the research and provides a detailed explanation of the base simulation model. It also walks 

through the validation process for the base model and outlines the model development and 

testing process. Section 3 communicates the key findings from the model development and 

testing. Section 4 discusses the results from Section 3 with respect to the objectives of the 

research, and it provides recommendations for future research. 
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2. Methods 
 

2.1 Methodology 
 

Simulation allows for exploration of hypothetical scenarios which could be time consuming and 

expensive to test in real life. Simulation is widely used in healthcare modeling because of its 

power and flexibility (Davies & Davies, 1994). It can provide additional measures to help 

healthcare planners and managers with decision making, and breast cancer screening is 

considered one of the classic areas of application for healthcare simulation modeling with 

studies dating back to the 1970s (Brailsford et al., 2012). 

Arena® simulation software is used in this study to create a microsimulation model that 

represents the flow of patients through the breast cancer screening process. Microsimulation is 

a simulation technique that uses microlevel units, or individuals, as the unit of analysis (Lymer 

& Brown, 2012). It moves individuals through time, updating each attribute for each time 

interval based on probabilities determined from appropriate data sources (Lymer & Brown, 

2012). Microsimulation can be used to model individuals through their history and cancer 

progression dependent on previous events and individual characteristics (Brailsford et al., 

2012). This method of simulation was chosen because it would allow for the recording of 

individual patient lifetimes, observation of patient outcomes, and the examination of the effect 

of various treatment patterns and overdiagnosis risk estimates. 

We represent overdiagnosis risk in the model by incorporating a series of regression 

probabilities. Medical studies have suggested that breast cancer may spontaneously regress 

without treatment (as summarized in Zhang & Ivy, 2012). Regression is a way to represent 

overdiagnosis because it effectively allows us to consider patients who were previously 

diagnosed with DCIS to be cancer free, as the cancer does not ultimately affect their health. 
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2.2 Construction of Base Model 
 

2.2.1 Discussion of microsimulation framework 
 

The microsimulation framework in this study integrates two components which were 

identified as key for modeling disease progression and the cancer detection process. The first 

component, representing disease progression, is based upon a Markov chain model (Ross, 

2014) that was devised to describe patient health state and changes over time. The second 

component, representing the cancer detection process, models screening practices or policies. 

The patient health state, determined by the first component of the model, acts as a signal to 

the screening component of the model. An outline of the simulation framework with the two 

components can be seen below in Figure 2. 
 

Figure 2: Outline of the simulation framework and model components 
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As previously stated, the disease progression and patient health state in this model are 

represented by a Markov chain model. In this simulation study, the Markov chain modeling 

patient health state has the following five states: 

1. Cancer Free 

2. DCIS (early stage, noninvasive) 

3. Invasive Cancer (advanced stage) 

4. Death from Breast Cancer 

5. Death from Other Causes 
 

Given a current health state, the probability that a patient will stay in their current state 

or transition to another state can be determined. There are also probabilities associated with 

the sensitivity of the mammogram, or likelihood of detection which are dependent on the 

patient’s age and cancer state. This is important for the second component of the simulation 

model, which represents the cancer detection process. Additionally, lifetime breast cancer 

mortality risk (rα) can be assigned based on the patient’s age and health state. This is important 

for assessing patient outcomes. 

The behavior and progression of a Markov chain is summarized by putting transition 

probabilities in matrix form (Cassady & Nachlas, 2008). The breast cancer transition 

probabilities used in this study for health state, mammogram sensitivity, and lifetime breast 

cancer mortality risk were extracted from Maillart’s 2008 study of dynamic breast cancer 

screening policies. These transition probabilities can be seen in Table I of the Appendix. Note 

that these values are updated every five years, i.e., the same transition probabilities, 

mammogram sensitivity, and lifetime breast cancer mortality risk (rα) values are used in each 

five-year interval. The intervals range from [25, 29], [30, 34], …, [80, 84], and [85, 100]. These 

intervals, or age groups, are represented by α. 
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2.2.2 Inputs/Outputs/Assumptions 
 

As seen in Figure 2, the inputs of this simulation model include patient inputs, or 

characteristics, and screening policy. Patient characteristics include age and health state. All 

patients in the simulation are initialized at age 25 and assigned health state 1 (cancer free). 

Initializing all patients to age 25 is consistent with Maillart’s 2008 study and assigning them with 

health state 1 is consistent with an ACS report for incidence rates for women under 25. This 

report found that a mere 1.3 cases per 100,000 were identified for 20-24 year-olds between 

1998 and 2002 (ACS, 2005). 

The screening policy used in this study prescribes annual mammograms beginning at 

age 40, continuing throughout the patient’s life. To make this simulation computationally 

efficient and to remain consistent with Maillart’s study, patients will be observed from age 25- 

100. Patients who do not die of other causes or breast cancer (health state 4 or 5) are disposed 

after they reach age 100. This is because the number of women who survive beyond age 100 is 

negligible according to the US Life Table. 

The outputs of the simulation include statistics for the average age of patients, the 

expected lifetime number of mammograms, and lifetime breast cancer mortality risk. These 

statistics characterize patient outcomes and provide the basis for assessment. 

 
 

2.2.3 Overview of the Base Model 
 

Overview of the simulation model 
 

To build a base model for simulating breast cancer development and mammography 

screening, we developed a conceptual model (Figure 3) which summarizes the flow of patients 

through the breast cancer screening process. 
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Figure 3: Conceptual model for the simulation, summarizing the flow of patients 
 

Patients are introduced into the simulation and their attributes for age, health state, and 

number of mammograms are initialized. Patients start at age 25, health state 1 (cancer free), 

and 0 number of mammograms. 

Since the screening policy dictates that mammography screening should not begin until 

the patient reaches age 40, patients age 25-39 move through a separate loop in the model than 

those age 40+. The loop for ages 25-39 updates the patient’s health state and age. The patient 

health state is updated based on transition probabilities which are a function of the patient’s 

age (α) and current health state. After their health state has been updated, the patient’s age is 

incremented by 1 year. Patients who reach health state 4 (death from breast cancer) or 5 

(death from other causes) before age 40 are disposed from the model. Patients with health 

state 4 are assigned an rα value of 1, and patients with health state 5 are assigned an rα value of 

0 before being disposed. 

Patients who are 40 years old enter the breast cancer screening section of the model. 

The patient goes for a mammogram and receives a positive or negative result which is 

determined by a probability. The probability that the mammogram returns a positive result, or 

the sensitivity of the mammogram, is a factor of age (α) and the current health state of the 

patient. 
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When a patient receives a positive mammogram result, they proceed on the cancer 

detected path indicated in pink in Figure 3. Their number of mammogram attribute is 

incremented by 1, and their health state is checked. Patients with health state 2 or 3 (DCIS or 

invasive cancer) are assumed to begin treatment. Patients who begin treatment are assigned an 

rα value, which is determined by their age (α) and health state, and are disposed from the 

model. 

Patients who receive a negative mammogram result are passed through a loop which 

increments their number of mammograms by 1, updates their health state, and increments 

their age by 1. Patients whose health state is updated to 4 or 5 in this loop are disposed from 

the model. Patients continue to loop through the breast cancer screening process until they 

advance to health state 2, 3, 4, 5, or eventually reach age 101 and are disposed from the model. 

 
 

The Health State Updating Process 
 

As previously stated, the patient health state is updated based on transition 

probabilities (Table I, Appendix) which are a function of the patient’s age (α) and current health 

state. In the simulation, the health state updating process is modeled within submodels. Figure 

4 shows the conceptual model for these submodels, which has been simplified to show the 

path of patients which fall into one of the thirteen total α groups. 
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Figure 4: Conceptual model for the Health State Updating Process, simplified to show the flow 
of patients through one α group which includes patients age 25-29 

 
It is important to note that the transition probabilities for health state in Table I 

(Appendix) assume six-month transition periods. Since breast cancer screening occurs at annual 

intervals, patient health state must be updated twice before the patient leaves the submodel to 

go for their next age update or mammography screening. To accomplish this loop, the patient is 

assigned an attribute, myNumUpdates, which is incremented by 1 each time the health state is 

updated. This attribute is used to keep track of the number of times the patient has looped 

through the submodel. 

The submodel checks the patient’s age and directs them to the appropriate α group. 

Once they arrive to their α group, the path to their next health state is determined by their 

health state transition probability. The transition probabilities for each age group are 

represented by a variable in the model. The variable uses the patient’s current health state to 

determine the probability that the patient will stay in their current health state or advance to 

another. This probability is used to determine the patient’s path and update the patient’s 

health state. 

After updating the patient’s health state and incrementing the patient’s number of 

updates, patients who have advanced to health state 4 or 5 are assigned an rα value and 

disposed from the model. Otherwise, patients in health state 1-3 loop through the submodel a 

second time and then leave the submodel. 
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The Mammogram Process 
 

As previously stated, the probability that the mammogram returns a positive result, or 

the sensitivity of the mammogram, is a factor of the α group and the current health state of the 

patient. The process for determining if a patient receives a positive or negative mammogram 

result is modeled in a submodel. Figure 5 shows the conceptual model for the mammogram 

submodel. 
 

Figure 5: Conceptual model for the Mammogram Process which determines if cancer is 
detected by the mammogram 

 
The submodel checks the patient’s age and directs them to the appropriate α group. 

Once they arrive at their α group, they are assigned an attribute which specifies their α group. 

This α group, as well as their current health state is used to determine the probability that the 

mammogram detects cancer and returns a positive result. If the mammogram is positive, the 

patient leaves the submodel on the cancer detected path which was indicated in pink in 
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Figure 3. Otherwise the patient leaves the submodel and continues to loop through the model, 

having their age and health state updated. 

This submodel also checks for patients that age out of the model. After patients reach 

age 100, they are disposed from the model. Patients who have cancer after they reach age 100 

are assumed to die of cancer and are assigned an rα value of 1 before being disposed. Patients 

who do not have cancer when they reach 100 are assumed to die of other causes are assigned 

an rα value of 0 before being disposed. 

 
 

2.3 Base Model Validation 
 

In order to ensure that the base model accurately represents the flow of patients through the 

breast cancer screening process, the model outputs were validated with the findings from 

Maillart’s 2008 study. The base model was tested under the same parameter inputs as 

Maillart’s study and was run with 1000 entities and 10 replications. To verify and validate the 

simulation model, statistics were collected using the attribute called myNumMamm which 

keeps track of the number of mammograms that each patient has in their lifetime. 

To verify that the model accurately guides patients through the screening process and 

adheres to the chosen guideline which prescribes annual mammograms beginning at age 40, 

statistics were recorded for the number of mammograms for patients who are disposed from 

the model from age 25-39 or at age 101. The number of mammograms for patients who are 

disposed from age 25-39 was reported as 0. This indicates that the model correctly prevents 

patients from beginning mammography screening before age 40. The number of mammograms 

for patients who are disposed from the model at age 101 was 61. This verifies that patients who 

never progress beyond health state 1 (cancer free) go for 1 mammogram a year from age 40- 

100. 

Statistics for patient age and number of mammograms were also recorded for all 

patients when they are disposed from the model. The average number of mammograms per 

patient was recorded as 12.57 of ± 0.32. Comparing this value with the average age further 
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verifies the screening section of the model. The average age of patients when they are disposed 

from the model was reported as 51.33 ± 0.30, indicating that on average patients should 

receive approximately 12 mammogram screenings from age 40-51. 

After verifying the screening behavior of the simulation model, statistics were collected 

to validate the model with Maillart’s 2008 study. To do so, we compared the observed average 

number of mammograms for patients who never develop breast cancer to Maillart’s expected 

value. The average number of mammograms for patients who never develop breast cancer was 

recorded as 30.29 ± 1.51. Under the same screening policy and parameter inputs, Maillart 

reported an expected value of 41.54 mammograms for patients who never develop breast 

cancer. This difference can be attributed to differences in methodology and further 

investigation is needed. 

 
 

2.4 Model Development and Testing 
 

We modified the base model to perform numerical experiments and sensitivity analysis which 

would allow us to quantify the impact that different overdiagnosis risks and treatment policies 

have on patient outcomes. The numerical experiment tests two treatment policies and six 

variations of health state transition probabilities, which account for disease regression (or 

overdiagnosis risk). 

A slight adjustment was made to the simulation model to test two different treatment 

policies. The two treatment policies tested in this experiment are listed below: 

1. Treatment Policy 1: All patients whose mammography test detects cancer (HS=2 or 

HS=3) are assumed to begin treatment immediately and leave the model (this is the rule 

used in the base model). 

2. Treatment Policy 2: Only patients whose mammography test detects invasive cancer 

(HS=3) begin treatment. Patients with non-invasive cancer (HS=2) do not begin 

treatment and remain in the model. 
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Treatment Policy 1 is the policy that was used to create the base model. Therefore, to 

implement Treatment Policy 2, a simple decide module was added to the simulation to identify 

patients with invasive cancer who begin treatment and to identify patients with non-invasive 

cancer who continue to update and monitor their health state in the screening process. This 

addition is indicated by the red circle in Figure 6 which shows the updated conceptual model 

for the flow of patients through the simulation. 
 

Figure 6: Conceptual model for the simulation development, summarizing the flow of patients 
through Treatment Policy 2 

 
In this experiment, we only consider disease regression from the DCIS stage to the 

cancer free state (health state 2 to health state 1). This disease regression is represented by the 

red arrow in Figure 7. The six variations of health state transition probabilities that were used in 

the numerical experiment were generated by incorporating a series of regression probabilities 

into the transition probabilities used in the base model. The regression probabilities include 0% 

(base case, no regression), 5%, 10%, 15%, 20%, and 25%. This range of regression probabilities 

does not exceed 25% because an observational study by Zahl et al. (2004) found a regression 

probability of approximately 22%. These percentage of cancers are considered harmless to the 

patients (overdiagnosed) and therefore patients will stay in the cancer free state. 
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Figure 7: Representation of breast cancer disease progression which incorporates 
spontaneous regression from DCIS stage cancer to the cancer free state 

 
The simulation was run for all twelve combinations of the two treatment policies and 

the six health state transition probabilities (Treatment Policy 1 with 0% regression, Treatment 

Policy 1 with 5% regression, … Treatment Policy 2 with 20% regression, and Treatment Policy 2 

with 25% regression). As previously stated in the explanation of the health state updating 

process, the health state transition probabilities for each age group of patients are represented 

by variables in the model. For each test, the health state transition probabilities were adjusted 

to include different regression probabilities (0%, 5%, 10%, 15%, 20%, 25%) by updating the 

variables in the model. 

Each simulation test was run with 1000 entities and 10 replications, and outputs for the 

expected number of mammograms for patients who never develop breast cancer and lifetime 

breast cancer mortality risk values (rα) were recorded for comparison. Two-way ANOVA tests 

were performed in Minitab® statistical software to observe the impact that different treatment 

policies and regression probabilities have on patient outcome, as characterized by number of 

mammograms and lifetime mortality risk. 
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3. Results 
 

The average outputs for all twelve tests, as summarized by the number of mammograms for 

patients who never develop breast cancer and lifetime mortality risk values, along with their 

corresponding confidence intervals (represented by half-width), were recorded and shown in 

Table 1. Table 1 shows that the transition from Treatment Policy 1 to Treatment Policy 2 

resulted in an increase in the number of mammograms and lifetime mortality risk, suggesting 

that treatment policy is a statistically significant factor for both response variables. As the 

regression probabilities (or overdiagnosis risk) increase in Table 1, the values for lifetime breast 

cancer mortality risk decrease, but there does not appear to be a discernable pattern for 

number of mammograms. This suggests that regression probability may only be a statistically 

significant factor with respect to lifetime mortality risk. 

  Table 1: Summary of average outputs from the numerical experiment  
 

 Number of Mammograms Lifetime Breast Cancer Mortality Risk 
Regression Probability \ Treatment Policy 1 2 1 2 

0% 30.29 ± 1.51 41.15 ± 0.27 1.03% ± 0.0% 6.42% ± 0.0% 
5% 30.39 ± 1.60 41.31 ± 0.36 0.94% ± 0.0% 4.93% ± 0.0% 

10% 30.38 ± 1.62 41.32 ± 0.37 0.90% ± 0.0% 4.04% ± 0.0% 
15% 30.41 ± 1.56 41.41 ± 0.38 0.82% ± 0.0% 3.47% ± 2.60% 
20% 30.46 + 1.73 41.41 ± 0.43 0.77% ± 0.0% 3.04% ± 2.37% 
25% 30.51 ± 1.65 41.40 ± 0.40 0.73% ± 0.0% 2.66% ± 2.10% 

 

Since there were two treatment policies and six regression probabilities to be tested, 

and ten replications per test, there were 120 data points used for the sensitivity analysis 

(2*6*10=120). The model performance for all 120 data points as summarized by number of 

mammograms for patients who never develop breast cancer and lifetime breast cancer 

mortality risk values, along with their corresponding confidence intervals (represented by half- 

width), can be seen in Table II of the Appendix. The complete results from the sensitivity 

analysis can be seen in Figure I of the Appendix. The results from the two-way ANOVA tests 

indicate that: 
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1. Treatment policy is a statistically significant factor with respect to both number of 

mammograms and lifetime breast cancer mortality risk, as the p-values are close to 

zero. 

2. Regression probability is a statistically significant factor with respect to lifetime breast 

cancer mortality risk, as the p-value is close to zero. 

3. Regression probability is not a statistically significant factor with respect to number of 

mammograms, as the p-value is large. 

To better visualize the results, the average number of mammograms for patients who 

never develop breast cancer and the average lifetime breast cancer mortality risk for all 120 

replications were plotted in the boxplots shown in Figure 8 and Figure 9 respectively. The blue 

boxplots represent data associated with Treatment Policy 1 and the pink boxplots represent 

data associated with Treatment Policy 2. 
 

Figure 8: Boxplot of the average number of mammograms for each treatment policy and 
regression probability 

 
In Figure 8, the mean number of mammograms across all Treatment Policy 1 boxplots 

do not show a discernable trend and appear to remain relatively consistent across all regression 

probabilities. The same holds for the mean number of mammograms across all Treatment 
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Policy 2 boxplots. The overall average number of mammograms for Treatment Policy 1 is 30.22, 

and, except for the 20% regression probability boxplot, the percent differences between the 

individual boxplot means and the overall mean are well under 1%. The overall average number 

of mammograms for Treatment Policy 2 is 41.33, and the percent difference between the 

individual boxplot means and the overall mean are also well under 1%. This supports the 

statement that regression probability does not have a statistically significant impact the 

number of mammograms. 

There is, however, a large and consistent difference in the mean number of 

mammograms for patients who never develop breast cancer between Treatment Policy 1 and 

Treatment Policy 2 for each level of regression in Figure 8. On average, the mean number of 

mammograms for Treatment Policy 2 is 11.11 mammograms greater than the mean number of 

mammograms for Treatment Policy 1. This confirms that treatment policy does statistically 

impact the number of mammograms. 
 

Figure 9: Boxplot of the average lifetime mortality risk for each treatment policy and 
regression probability 
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In Figure 9, the mean lifetime breast cancer mortality risk across all Treatment Policy 1 

boxplots appears to decrease slightly as the regression probabilities increase along the x-axis. In 

fact, the average decrease in mean lifetime mortality risk is 0.06%. The mean lifetime mortality 

risk for the Treatment Policy 2 boxplots shows a definite negative trend as the regression 

probabilities increase. The trend appears to be exponential, and the average decrease in mean 

lifetime breast cancer mortality risk across all regression probabilities is 0.75%. The negative 

trends shown in Figure 9 support the statement that regression probability is a statistically 

significant factor for lifetime breast cancer mortality risk. 

There is also a large and consistent difference in the mean lifetime breast cancer 

mortality risk between the Treatment Policy 1 and Treatment Policy 2 boxplots across all levels 

of regression. The difference between treatment policies also appears to be exponential since 

Treatment Policy 2 experiences more of a dramatic decrease, but on average, the mean lifetime 

mortality risk of Treatment Policy 2 is 3.23% greater than Treatment Policy 1. This supports that 

treatment policy has a statistically significant impact on patient lifetime breast cancer mortality 

risk. 
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4. Discussion and Conclusion 
 

From a model verification standpoint, it makes sense that both the number of mammograms 

for patients who never develop breast cancer and the lifetime breast cancer mortality risk 

would increase with the transition from Treatment Policy 1 to Treatment Policy 2. On average, 

patients adhering to Treatment Policy 2 would stay in the model longer to monitor their health 

state and wait to begin treatment until invasive cancer has been detected. While they are 

waiting for invasive cancer to be detected, the patients would continue to go for mammogram 

screenings and have an increased lifetime breast cancer mortality risk, as they continue to live 

with non-invasive cancer. The statistical significance of the treatment policy results indicates 

that the decision to wait to treat breast cancer is critical to patient outcome. 

It was interesting to learn that regression probability was not a statistically significant 

factor with respect to the average number of mammograms. It was expected to be statistically 

significant under the assumption that as disease regression increased, patient time in the 

system would experience an increase and that the number of mammograms would increase 

accordingly. However, perhaps because the regression probabilities were relatively low, 0-25%, 

occurrence rates were not high enough to significantly increase the amount of time that 

patients spent in the system. 

It was expected that regression probability would be a statistically significant factor for 

lifetime breast cancer mortality risk, and the results of this research confirmed this hypothesis. 

It makes sense that as regression probability increases, the number of patients who progress 

from non-invasive cancer to invasive cancer and who ultimately die from cancer would 

decrease, therefore lowering overall lifetime breast cancer mortality risk. The partial statistical 

significance of the regression probability results indicates that the assumed value for the 

probability of disease regression (or overdiagnosis risk) is only critical to the lifetime breast 

cancer mortality risk component of patient outcome. 

This research established a simulation approach to examine the relationship between 

breast cancer overdiagnosis and patient outcome. Overdiagnosis was represented in the model 

using a set of disease regression probabilities, and patient outcome was measured in terms of 
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the average number of mammograms and the lifetime breast cancer mortality risk per patient. 

This model limits its evaluation to consider one breast cancer screening policy, which prescribes 

annual mammograms beginning at age 40, and two treatment policies, the first of which 

prescribes treatment of all cancer (non-invasive and invasive) and the second of which restricts 

treatment to cases of invasive cancer. 

The results of this research contribute to understanding the impact that the range of 

breast cancer overdiagnosis rate estimates in the current literature have on patient outcomes. 

Understanding overdiagnosis risk will help inform screening recommendations, help develop 

more personalized treatment plans, reduce overtreatment, and reduce unnecessary healthcare 

costs. To gain further understanding of the relationship between overdiagnosis and patient 

outcome, we recommend that future studies investigate more treatment and screening 

policies. The simulation model developed in this research can be easily modified to incorporate 

more dynamic screening and treatment policies. The methodology in this research can also be 

supplemented to explore the relationship between overdiagnosis and other factors, and it can 

even be applied to examine overdiagnosis with other diseases. 
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Appendix 

α : age group of the patient 

Pα : one-step transition matrix representing the transition of patient age α from current 
health state i to health state j ( i, j ϵ [1,5] ) 

aα : sensitivity of mammogram 

rα : patient lifetime mortality risk for health state j = 1, 2 
 

 
  Table I: Markov process parameter estimates by age, from Maillart et al. (2008)_ _ 
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Table I: Continued _ 
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  Table II: Summary of all replications of the numerical experiment used for sensitivity analysis  
 

 Treatment Policy 1 Treatment Policy 2 

0% regression probability 0% regression probability 

Num Mamm ± h.w. rα ± h.w. Num Mamm ± h.w. rα ± h.w. 
Rep. 1 31.68 insufficient 0.85% 0.45% 41.33 0.8863 5.95% 1.34% 
Rep. 2 32.51 insufficient 1.06% 0.44% 41.52 0.6608 6.49% 1.11% 
Rep. 3 34.00 insufficient 1.17% 0.48% 41.54 0.8681 7.26% 1.35% 
Rep. 4 29.35 insufficient 1.33% 0.45% 40.63 0.8308 6.67% 1.51% 
Rep. 5 27.40 insufficient 0.92% 0.40% 40.81 0.8310 5.64% 1.07% 
Rep. 6 30.86 insufficient 0.87% 0.42% 41.41 0.9820 6.32% 1.06% 
Rep. 7 31.28 insufficient 1.12% 0.49% 41.32 0.7077 5.87% 1.08% 
Rep. 8 29.01 insufficient 1.09% 0.48% 41.39 1.0076 6.81% 1.06% 
Rep. 9 28.16 insufficient 0.77% 0.48% 41.05 0.8623 6.45% 1.24% 
Rep. 10 28.69 insufficient 1.07% 0.53% 40.53 0.9756 6.71% 1.03% 

 5% regression probability 5% regression probability 
 Num Mamm ± h.w. rα ± h.w. Num Mamm ± h.w. rα ± h.w. 

Rep. 1 32.11 insufficient 0.76% 0.37% 41.28 0.8197 4.90% 1.07% 
Rep. 2 32.56 insufficient 0.95% 0.41% 41.67 0.7503 4.95% correlated 
Rep. 3 34.32 insufficient 1.16% 0.48% 41.89 0.8181 5.66% 1.17% 
Rep. 4 29.46 insufficient 1.17% 0.41% 40.63 0.9255 4.58% 1.33% 
Rep. 5 27.40 insufficient 0.87% 0.39% 41.08 0.6971 4.07% 1.06% 
Rep. 6 31.11 insufficient 0.78% 0.39% 41.32 0.8597 4.61% 0.88% 
Rep. 7 31.28 insufficient 1.00% 0.46% 41.74 0.6723 4.15% 0.84% 
Rep. 8 28.65 insufficient 1.03% 0.46% 41.87 0.8127 5.99% 1.11% 
Rep. 9 28.16 insufficient 0.69% 0.37% 41.13 0.8589 4.93% 1.09% 
Rep. 10 28.68 insufficient 0.98% 0.53% 40.46 0.9956 5.46% 1.09% 

 10% regression probability 10% regression probability 
 Num Mamm ± h.w. rα ± h.w. Num Mamm ± h.w. rα ± h.w. 

Rep. 1 32.26 insufficient 0.65% 0.33% 41.29 1.0219 4.02% 1.00% 
Rep. 2 32.56 insufficient 0.94% correlated 41.46 0.6404 3.84% 1.05% 
Rep. 3 34.37 insufficient 1.11% 0.47% 41.76 0.8681 4.68% 1.19% 
Rep. 4 29.56 insufficient 1.11% 0.39% 40.51 0.9333 4.11% 1.13% 
Rep. 5 27.40 insufficient 0.87% 0.39% 41.24 0.8197 3.09% 0.91% 
Rep. 6 31.00 insufficient 0.75% 0.40% 41.47 1.0450 3.62% 0.79% 
Rep. 7 31.28 insufficient 0.91% 0.44% 41.62 0.8114 3.57% 0.77% 
Rep. 8 28.54 insufficient 0.99% 0.45% 42.15 0.7325 4.67% 1.03% 
Rep. 9 28.16 insufficient 0.67% 0.36% 41.08 0.8406 4.11% 1.01% 
Rep. 10 28.68 insufficient 0.98% 0.53% 40.54 1.0150 4.69% 0.87% 
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  Table II: Continued  
 

 Treatment Policy 1 Treatment Policy 2 

15% regression probability 15% regression probability 

Num Mamm ± h.w. rα ± h.w. Num Mamm ± h.w. rα ± h.w. 
Rep. 1 32.00 insufficient 0.53% 0.26% 41.38 1.0000 3.43% 0.92% 
Rep. 2 32.45 insufficient 0.87% 0.42% 41.53 0.7915 3.19% 0.86% 
Rep. 3 34.44 insufficient 1.03% 0.46% 41.75 0.9246 4.25% 1.20% 
Rep. 4 29.76 insufficient 1.06% 0.36% 40.68 0.9612 3.71% 1.02% 
Rep. 5 27.83 insufficient 0.74% 0.26% 41.36 0.9449 2.61% 0.77% 
Rep. 6 31.00 insufficient 0.70% 0.40% 41.63 0.9273 2.99% 0.74% 
Rep. 7 31.28 insufficient 0.71% 0.30% 41.86 0.8159 2.96% 0.76% 
Rep. 8 28.53 insufficient 0.99% 0.46% 42.17 0.6660 4.17% 1.21% 
Rep. 9 28.16 insufficient 0.62% 0.32% 41.33 0.8973 3.26% 0.90% 
Rep. 10 28.68 insufficient 0.96% 0.53% 40.41 0.9792 4.08% 0.84% 

 20% regression probability 20% regression probability 
 

Num Mamm ± h.w. rα ± h.w. Num Mamm ± h.w. rα ± h.w. 
Rep. 1 32.90 insufficient 0.49% 0.22% 41.39 1.0220 3.25% 0.78% 
Rep. 2 21.66 insufficient 0.90% 0.43% 41.46 0.6935 2.92% 0.76% 
Rep. 3 34.44 insufficient 1.03% 0.46% 42.01 1.0470 3.45% 0.92% 
Rep. 4 29.76 insufficient 1.04% 0.36% 40.54 1.0990 3.29% 1.19% 
Rep. 5 27.83 insufficient 0.71% 0.26% 41.16 0.8990 2.37% 0.74% 
Rep. 6 31.10 insufficient 0.69% 0.40% 41.63 0.8605 2.62% 0.62% 
Rep. 7 31.41 insufficient 0.69% 0.30% 41.87 0.7936 2.65% 0.74% 
Rep. 8 28.54 insufficient 0.79% 0.36% 42.26 0.6309 3.73% 1.02% 
Rep. 9 27.26 insufficient 0.52% 0.30% 41.40 0.8371 2.68% 0.85% 
Rep. 10 28.68 insufficient 0.83% 0.52% 40.38 0.8629 3.47% 0.93% 

 25% regression probability 25% regression probability 
 

Num Mamm ± h.w. rα ± h.w. Num Mamm ± h.w. rα ± h.w. 
Rep. 1 32.97 insufficient 0.47% 0.20% 41.22 1.0400 2.86% 0.83% 
Rep. 2 32.25 insufficient 0.86% 0.43% 41.52 0.7545 2.63% 0.73% 
Rep. 3 34.44 insufficient 1.01% 0.46% 41.99 0.9171 2.81% 0.75% 
Rep. 4 29.98 insufficient 1.00% 0.35% 40.67 1.1390 2.70% 0.98% 
Rep. 5 28.09 insufficient 0.65% 0.24% 41.21 0.7920 2.10% 0.74% 
Rep. 6 31.10 insufficient 0.59% 0.34% 41.68 0.8163 2.22% 0.65% 
Rep. 7 31.52 insufficient 0.67% 0.29% 41.90 0.7769 2.44% 0.71% 
Rep. 8 28.54 insufficient 0.79% 0.36% 42.15 0.7007 3.32% 0.75% 
Rep. 9 27.53 insufficient 0.50% 0.30% 41.24 0.8699 2.30% 0.73% 
Rep. 10 28.68 insufficient 0.74% 0.48% 40.43 0.7302 3.18% 0.86% 
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Figure I: Minitab® output for the sensitivity analysis _ _ 
General Linear Model: Number of Mammograms versus Treatment Policy, 
Regression Rate 
Method 

Factor coding (-1, 0, +1) 
Factor Information 

 Factor Type Levels Values  
 
 
 
 
 
 
 
 

 
Model Summary 

  S R-sq R-sq(adj) R-sq(pred) 
1.77172    91.27% 90.80% 90.15% 

Coefficients 
 Term Coef SE Coef T-Value P-Value VIF 
Constant 35.777 0.162 221.21 0.000  
Treatment Policy     
1 -5.555 0.162 -34.35 0.000 1.00 

Regression Rate      

0.00 -0.053 0.362 -0.15 0.883 1.67 
0.05 0.063 0.362 0.17 0.862 1.67 
0.10 0.069 0.362 0.19 0.848 1.67 
0.15 0.135 0.362 0.37 0.710 1.67 
0.20 -0.393 0.362 -1.09 0.280 1.67 

Regression Equation 
Number of Mammograms = 35.777 - 5.555 Treatment Policy_1 + 5.555 Treatment Policy_2 

- 0.053 Regression Rate_0.00 + 0.063 Regression Rate_0.05 
+ 0.069 Regression Rate_0.10 + 0.135 Regression Rate_0.15 

- 0.393 Regression Rate_0.20 + 0.179 Regression Rate_0.25 
Fits and Diagnostics for Unusual Observations 

Number of 
    Obs Mammograms Fit Resid Std Resid  

3 34.000 30.168 3.832 2.23 R 
23 34.320 30.285 4.035 2.35 R 
43 34.370 30.291 4.079 2.37 R 
63 34.440 30.356 4.084 2.38 R 
82 21.660 29.829 -8.169 -4.75 R 
83 34.440 29.829 4.611 2.68 R 

103 34.440 30.400 4.040 2.35 R 

R Large residual 

Treatment Policy Fixed 2 1, 2 
Regression Rate Fixed 6 0.00, 0.05, 0.10, 0.15, 0.20, 0.25 

Analysis of Variance 
 Source DF Adj SS Adj MS F-Value P-Value 

Treatment Policy 1 3703.35 3703.35 1179.79 0.000 
Regression Rate 5 4.32 0.86 0.28 0.926 

Error 113 354.71 3.14   
Lack-of-Fit 5 5.37 1.07 0.33 0.893 
Pure Error 108 349.34 3.23   

Total 119 4062.38    
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Figure I: Continued _ _ 
General Linear Model: Lifetime Mortality Risk versus Treatment Policy, 
Regression Rate 
Method 

Factor coding (-1, 0, +1) 
Factor Information 

 Factor Type Levels Values  
Treatment Policy Fixed 2 1, 2 
Regression Rate Fixed 6 0.00, 0.05, 0.10, 0.15, 0.20, 0.25 

Analysis of Variance 

 Source DF Adj SS Adj MS F-Value P-Value 
Treatment Policy 1 0.031284 0.031284 618.09 0.000 
Regression Rate 5 0.005629 0.001126 22.24 0.000 

Error 113 0.005719 0.000051   
Lack-of-Fit 5 0.004106 0.000821 54.95 0.000 
Pure Error 108 0.001614 0.000015   

Total 119 0.042632    

Model Summary 

  S R-sq R-sq(adj) R-sq(pred) 
0.0071143    86.58% 85.87% 84.87% 

Coefficients 
 Term Coef SE Coef T-Value P-Value VIF 
Constant 0.024769 0.000649 38.14 0.000  
Treatment Policy     
1 -0.016146 0.000649 -24.86 0.000 1.00 

Regression Rate      

0.00 0.01244 0.00145 8.57 0.000 1.67 
0.05 0.00457 0.00145 3.15 0.002 1.67 
0.10 -0.00009 0.00145 -0.06 0.952 1.67 
0.15 -0.00335 0.00145 -2.30 0.023 1.67 
0.20 -0.00572 0.00145 -3.94 0.000 1.67 

Regression Equation 
Lifetime Mortality Risk = 0.024769 - 0.016146 Treatment Policy_1 

+ 0.016146 Treatment Policy_2 + 0.01244 Regression Rate_0.00 
+ 0.00457 Regression Rate_0.05 - 0.00009 Regression Rate_0.10 
- 0.00335 Regression Rate_0.15 - 0.00572 Regression Rate_0.20 
- 0.00786 Regression Rate_0.25 

Fits and Diagnostics for Unusual Observations 
Lifetime 

Mortality Std 
    Obs Risk Fit Resid Resid  

13 0.07260   0.05336   0.01924 2.79 R 
18 0.06810   0.05336   0.01474 2.14 R 
38 0.05990   0.04549   0.01441 2.09 R 

 
R Large residual 
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