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ABSTRACT OF THE DISSERTATION 

COMPUTATIONAL ANALYSIS OF LARGE-SCALE TRENDS AND DYNAMICS IN 

EUKARYOTIC PROTEIN FAMILY EVOLUTION 

by 

Joseph B. Ahrens 

Florida International University, 2019 

Miami, Florida 

Professor Jessica Siltberg-Liberles, Major Professor 

The myriad protein-coding genes found in present-day eukaryotes arose from a 

combination of speciation and gene duplication events, spanning more than one billion 

years of evolution. Notably, as these proteins evolved, the individual residues at each site 

in their amino acid sequences were replaced at markedly different rates. The relationship 

between protein structure, protein function, and site-specific rates of amino acid 

replacement is a topic of ongoing research. Additionally, there is much interest in the 

different evolutionary constraints imposed on sequences related by speciation (orthologs) 

versus sequences related by gene duplication (paralogs). 

A principal aim of this dissertation is to evaluate and characterize several broad trends in 

eukaryote protein evolution. To this end, I use sequence-based computational predictors 

of protein structure (intrinsic disorder and protein secondary structure) and protein 

function (predicted functional domains), in addition to Bayesian phylogenetic inference 

methods, to analyze thousands of homologous protein sequence clusters from four 

eukaryotic lineages: animals, plants, fungi and protists. Using these data, I performed 

large-scale factorial analyses, testing the correlation between protein structure/function 
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and rates of sequence evolution. The combined results of these analyses somewhat 

corroborate the findings of previous research in the field, but they also illuminate a subtle 

interaction among multiple drivers of protein sequence evolution, which is consistently 

observed across multiple eukaryote groups. Furthermore, using the results of Bayesian 

phylogenetic analysis on real and simulated protein sequence alignments, I show that 

orthologous and paralogous proteins exhibit significantly different overall patterns of 

sequence divergence, indicating that paralogs tend to evolve under relaxed selective 

pressure. 

The acquisition of homologous biological sequence clusters is a prominent component of 

computational biological research. To assist in the identification of protein families 

within large sequence databases, I implement a simple, graph-based single-linkage 

clustering procedure, and I demonstrate its capacity to recover homologous subunits of 

the Rpt regulatory ring in the 26S proteasome complex. 
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INTRODUCTION 
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Molecular data—the nucleotide and amino acid sequences extracted from living 

organisms—has enhanced our understanding of virtually every aspect of biology. The 

biological sequence databases where molecular data is archived have grown substantially 

in the post-genomic era, and institutions like the European Bioinformatics Institute (EBI) 

and the National Center for Biotechnology Information (NCBI), are in a constant race to 

keep up with ever-increasing quantities of nucleotide and amino acid sequences (Cook et 

al. 2016; Agarwala et al. 2018). The resulting availability of large-scale molecular 

datasets, containing a multitude of complete genomes from divergent organisms, has 

improved our understanding of the complex functional relationships among genes (see 

Chen and Coppola 2018) and the evolutionary origins of living things (see Koonin 2010; 

Telford et al. 2015). Additionally, functional annotation (i.e., the assignment of gene 

functions to sequences of unknown function) can be greatly improved by considering 

gene function in an evolutionary context—rather than simply assigning function using 

sequence similarity, it is important to consider the particular evolutionary history 

(phylogeny) relating genes of known function to genes of unknown function (Eisen 1998; 

Eisen and Wu 2002). The analysis of whole-genome evolution, coupled with the unique 

evolutionary histories of individual genes, has transformed into a rapidly-maturing field 

of biology known as phylogenomics (Eisen and Fraser 2003). 

Nucleotide substitutions within protein-coding genes can result in changes 

(replacements) in the individual residues of their translated amino acid sequences. 

However, a wide range of structural and functional constraints are known to govern 

protein sequence evolution (Echave et al. 2016). Thus, as a protein sequence evolves, the 

individual amino acids occupying each position (site) in the sequence can be replaced 
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over time at very different rates. Most of the statistical (likelihood-based) phylogenetic 

inference applications assume that sites in a protein evolve independently, according to a 

fixed rate matrix (see Felsenstein 1973). To account for site rate heterogeneity (i.e., 

differences in the relative speed of site-specific evolution), site rates are often assumed to 

be drawn from a discrete gamma distribution (Yang and Kumar 1996). Accounting for 

rate heterogeneity using a gamma distribution has been shown to greatly improve the 

accuracy of phylogenetic inference (Yang and Kumar 1996). 

Considerable work has been done in recent decades to better understand the 

association between the structure/function of a given protein sub-sequence (region) and 

the site-specific rates of amino acid replacement within that region (see Echave et al. 

2016). One of the primary drivers of rate heterogeneity in protein evolution is solvent 

exposure, and sites which are exposed to environmental solvents are often more variable 

than internal, buried residues (Perutz et al. 1965; Kimura and Ohta 1974; Franzosa and 

Xia 2009). Another notable driver is local packing density, since spatially proximal 

residues that form a large number of stabilizing contacts tend to be more conserved than 

residues that form fewer stabilizing contacts (Franzosa and Xia 2009; Yeh, Liu, et al. 

2014; Yeh, Huang, et al. 2014). Additionally, protein regions exhibiting intrinsic 

disorder—an extreme form of conformational flexibility—experience more amino acid 

replacements than ordered regions (Brown et al. 2002) and the residue replacements in 

disordered regions are less biochemically conservative (Brown et al. 2010). Notably, 

studies of the above nature often concentrate on one-way or “single-factor” effects: the 

relationship between sequence evolutionary rates and a single aspect of protein structure. 

However, a single-factor methodology can easily prove problematic—if the confounding 
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effects of interacting variables are ignored, the measured effect of one structural property 

(on evolutionary rate) may stem from a failure to control for additional variables. For 

instance, (Huang et al. 2014) found that the positive correlation between flexibility and 

evolutionary rate is diminished after controlling for local packing density. 

Protein scientists have conjectured for decades that, in addition to rate 

heterogeneity, site-specific shifts in amino acid replacement rates over time (i.e., sites 

exhibiting heterotachy) are a common feature of protein molecular evolution (Fitch and 

Markowitz 1970; Fitch 1971; Lopez et al. 2002). In fact, many statistical models of 

sequence evolution have been proposed to more directly account for heterotachy (e.g., 

Fitch and Markowitz 1970; Tuffley and Steel 1998; Galtier 2001). Additionally, it is 

thought that widespread shifts in site-specific evolutionary rates between two related 

protein sequences can indicate acquired structural or functional differences (Gu 1999; 

Gaucher et al. 2002). However, as mentioned previously, most contemporary 

phylogenetic inference applications—in the interest of computational tractability—

assume that sites in a protein evolve independently, and do not explicitly account for 

heterotachy. Still, further work has shown that site-specific shifts in amino acid 

replacement rates can be inferred using existing statistical frameworks. For instance, 

(Abhiman et al. 2006) showed that changes in the shape parameter (α) of the inferred 

discrete gamma distribution of site rates is an indicator of functional divergence. 

Sequence clustering (the agglomeration of similar sequences into subgroups or 

“clusters” within a database) is an indispensable component of large-scale protein data 

science. While clustering can be useful for simply creating reduced, non-redundant or 

reference protein databases like UniRef (Suzek et al. 2007), it is also quite useful for 
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identifying homologous groups of proteins which may be of interest to researchers 

studying gene/protein family evolution (see Huerta-Cepas et al. 2008) and genome 

functional annotation (Eisen 1998; Eisen and Wu 2002). While there are many sequence 

clustering applications available (e.g., Li et al. 2003; Li and Godzik 2006; Miele et al. 

2011; Hauser et al. 2013), they tend to be optimized for the task of whole-database 

clustering (i.e., partitioning an entire database into sequence clusters based on a pre-

defined similarity threshold). As such, researchers who are interested in a particular gene 

family have limited options when mining sequence databases. 

The aim of this dissertation is, in part, to explore and analyze some of the 

overarching trends in eukaryotic protein sequence evolution. Additionally, I illustrate 

how a particular form of graph-based sequence clustering (single-linkage clustering) can 

be used for targeted identification of inclusive, presumably homologous protein sequence 

groups without clustering an entire database. In the following two chapters, I use large-

scale sequence clustering analysis, combined with phylogenetic inference methods and 

sequence-based structural and functional predictors, to shed light on a subtle interaction 

of structural and functional factors driving site-specific protein sequence evolution. 

Afterward, I show that there are significant differences in patterns of sequence 

divergence between orthologous genes (related by speciation) and paralogous genes 

(related by gene duplication) in both plant and animal proteins. Finally, I describe an 

implementation of a simple, graph-based single-linkage clustering algorithm which is 

capable of identifying protein families for downstream evolutionary analysis. 
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The Nuanced Interplay of Intrinsic Disorder and Other Structural Properties Driving 

Protein Evolution 

In the second chapter of this dissertation, I present a large-scale analysis of site-

specific evolutionary rates across thousands of multiple sequence alignments of metazoan 

proteins. I used the single-linkage clustering program BLASTClust (Altschul et al. 1990) 

to generate thousands of homologous protein sequence clusters for my study. Rather than 

relying on publicly-available 3D protein structural data, I used sequence-based structural 

prediction methods on every protein sequence in my dataset to detect conserved intrinsic 

disorder, secondary structure, and functional domains within alignments, which allowed 

me to analyze a large number of proteins with unknown structure and function. I then 

used Bayesian phylogenetic inference combined with empirical Bayesian site rate 

estimation to analyze rate heterogeneity in millions of amino acid alignment sites. The 

primary aim of my study is to better understand the relationship between structural 

properties and the evolutionary rates of protein residues, particularly with regard to 

intrinsic disorder. I also employed a factorial experimental design to investigate the 

possibility of statistical interactions among the three factors under evaluation. 

 

Large-Scale Analyses of Site-Specific Evolutionary Rates across Eukaryote Proteomes 

Reveal Confounding Interactions between Intrinsic Disorder, Secondary Structure, and 

Functional Domains 

In the third chapter, I present an extended evaluation of the structural factors 

studied in Chapter II, where I analyze protein sequence datasets representing four 

divergent eukaryotic lineages: metazoans (animals), plants, saccharomycete fungi and 
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alveolate protists. Here, I used the same sequence-based predictors employed in Chapter 

II to identify protein family alignment sites with conserved intrinsic disorder, secondary 

structure and functional domain predictions. I also applied the same multifactor statistical 

analyses used in Chapter II to measure the effects of these structural and functional 

factors on site-specific rates of sequence evolution. Additionally, I used the combined 

results of structural prediction and gene ontology (GO) term analysis (Ashburner et al. 

2000) to identify and characterize “disordered-structured” sites (with both intrinsic 

disorder and secondary structure propensity), which exist in low abundance in all four 

eukaryotic groups studied here. The aim of this chapter is to discern whether there are 

statistically significant, and broadly consistent forces driving eukaryotic protein 

evolution. 

 

Evaluation of Site-specific Rate Heterogeneity Reveals Significant Differences in 

Sequence Divergence Patterns between Orthologous and Paralogous Proteins in Both 

Animals and Plants 

In the fourth chapter, I present a large-scale study where I evaluate differences in 

sequence divergence patterns between alignments of orthologous and paralogous protein 

sequences found in metazoans (animals) and plants. For this work, I utilized thousands of 

sequence clusters (taken from the animal and plant datasets in Chapter III) representing 

either putative orthologous relationships (i.e., sequences arising from a speciation event) 

or paralogous relationships (i.e., sequences arising from gene duplications). Using 

sequence-based phylogenetic analyses, I establish a correlation between sequence 

alignment divergence (total branch length of the phylogenetic tree) and the α parameter 
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of the sequence alignment’s inferred discrete gamma rate distribution. I also develop and 

describe simple computational protein sequence simulation methods which reproduce the 

correlations observed in real protein sequence data. Finally, I show that the correlation 

between divergence (tree length) and rate heterogeneity (α) is significantly different 

between orthologous and paralogous genes in both plants and animals, and I discuss the 

potential implications of this difference. 

 

Acquisition of Homologous Protein Sequence Clusters from Local Databases Using a 

Simple, Graph-Based Single-Linkage Clustering Procedure 

A wide range of bioinformatics utilities are available for the task of sequence 

clustering: the agglomeration of similar biological sequences into subgroups or 

“clusters.” In the fifth chapter of this dissertation, I outline a simple computational 

procedure for defining a single-linkage cluster in a protein sequence database using a 

combination of pairwise sequence identity and a bi-directional measurement of sequence 

alignment quality. Additionally, I describe a straightforward implementation of this 

clustering procedure using a combination of the Python programming language (Rossum 

and Guido 1995) and BLAST (Altschul et al. 1990). I benchmark the performance of said 

implementation using the same database of metazoan (animal) proteomes from Chapters 

II, III and IV. Finally, via a combination of phylogenetic inference and sequence-based 

structural/functional predictions, I demonstrate that our procedure can recover large, 

divergent protein families, using sequences from the regulatory ring (Rpt proteins) of the 

26S proteasome complex as a notable example result. Leveraging the combined results of 

phylogenetic, structural and functional analysis, I also summarize the evolutionary 
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history and paralog-specific structural/functional divergence observed in the single-

linkage Rpt sequence cluster. 

 

Intellectual Merit 

The work described in this dissertation constitutes several novel contributions to 

the field. The large protein sequence datasets constructed in Chapters II and III contain 

tens of thousands of aligned protein sequence clusters, replete with inferred evolutionary 

histories and sequence-based predictions of intrinsic disorder propensity, secondary 

structures and functional domains. These datasets can serve as a springboard for a 

plethora of future computational studies for years to come. In Chapter II, I describe a 

complex interaction of three structural and functional factors (intrinsic disorder, 

secondary structure and functional domain involvement) driving site-specific protein 

sequence evolution. My follow-up study in Chapter III confirms that the trends identified 

in animal protein evolution are consistently observed in three other eukaryotic groups as 

well (plants, protists and fungi). This analysis is, to my knowledge, the largest and most 

comprehensive of its kind. Further, by evaluating a combination of structural predictions, 

I was able to identify a conserved subset of protein sequence sites found in all four of the 

eukaryotic lineages I studied (“disordered-structured” sites), many of which appear to 

function through real-time alternations between intrinsic disorder and secondary 

structure. The protein sequence simulation work I conducted (as part of my analysis in 

Chapter IV) illustrates a simple method for incorporating heterotachy into simulated 

sequence data. Moreover, my analysis of real protein sequences indicates that there are 

significantly different sequence divergence patterns between orthologous and paralogous 
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genes over evolutionary time scales which, plausibly, result from differences in their 

selective/functional constraints. Lastly, I describe a single-linkage clustering procedure, 

as well as a simple implementation of said procedure, capable of mining individual 

homologous groups of protein sequences from large sequence databases. The clustering 

procedure is useful for mining individual protein families from databases which are too 

large to be clustered in their entirety. 
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CHAPTER II 

THE NUANCED INTERPLAY OF INTRINSIC DISORDER AND OTHER 

STRUCTURAL PROPERTIES DRIVING PROTEIN EVOLUTION 
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ABSTRACT 

Protein evolution often occurs at unequal rates in different sites along an amino 

acid chain. Site-specific evolutionary rates have been linked to several structural and 

functional properties of proteins. Previous analyses of this phenomenon have involved 

relatively small datasets and, in some cases, the interaction among multiple structural 

factors is not evaluated. Here, we present the results of a large-scale phylogenetic and 

statistical analysis, testing the effects and interactions of three structural properties on 

amino acid replacement rates. We used sequence-based computational methods to predict 

(i) intrinsic disorder propensity, (ii) secondary structure, and (iii) functional domain 

involvement across millions of amino acid sites in thousands of sequence alignments of 

metazoan proteins. Our results somewhat corroborate earlier findings that intrinsically 

disordered sites tend to be more variable than ordered sites, but there is considerable 

overlap among their rate distributions, and a significant confounding interaction exists 

between intrinsic disorder and secondary structure. Notably, protein sites that are 

consistently predicted to be both intrinsically disordered and involved in secondary 

structures tend to be the most conserved at the amino acid level, suggesting that they are 

highly constrained and functionally important. In addition, a significant interaction exists 

between functional domain involvement and secondary structure. These findings suggest 

that multiple structural drivers of protein evolution should be evaluated simultaneously in 

order to get a clear picture of their individual effects as well as any confounding 

interactions among them. 
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INTRODUCTION 

Protein evolution is commonly modeled in a “site-specific” manner, where the 

individual amino acid sites in a polypeptide are assumed to evolve independently at 

different rates. Understanding the driving forces of site-specific rate variation is a 

challenging but crucial endeavor in which many researchers are currently engaged 

(Echave et al. 2016). The primary drivers of rate heterogeneity appear to be (i) solvent 

exposure, where residues exposed to environmental solvents are more variable than 

internal, buried residues (Perutz et al. 1965; Kimura and Ohta 1974; Franzosa and Xia 

2009), and (ii) local packing density, where spatially proximal residues that form a large 

number of stabilizing contacts tend to be more conserved (Franzosa and Xia 2009; Yeh, 

Huang, et al. 2014; Yeh, Liu, et al. 2014). In addition, research suggests that intrinsically 

disordered protein regions experience more amino acid replacement than ordered regions 

(Brown et al. 2002) and that residue replacement in disordered regions is less 

biochemically conservative (Brown et al. 2010). These results appear to be compatible 

with the abiding notion that ordered regions tend to be more crucial to protein structure 

and function than disordered regions, though there are prominent counterexamples to this 

trend (Brown et al. 2002; van der Lee et al. 2014). 

Many studies relating protein structural properties to sequence evolution have 

focused on one-way or “single-factor” effects. This approach is appealing from a 

modeling standpoint: a strong correlation between a single structural property (e.g., 

packing density, intrinsic disorder, or solvent accessibility) and replacement rate would 

be more straightforward in terms of explanatory power. A serious issue with this 

methodology, however, is that the confounding effects of interacting variables are 
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ignored. Thus, the perceived effect of one structural property on evolutionary rate might 

actually be caused by an unbalanced representation of additional factors that were not 

controlled for. This is apparently the case with some metrics of structural flexibility, 

since the positive correlation between flexibility and evolutionary rate disappears after 

controlling for local packing density (Huang et al. 2014). 

Here, we present a large-scale analysis of site-specific evolutionary rates across 

thousands of multiple sequence alignments of metazoan proteins. Using structural 

prediction methods, Bayesian phylogenetic inference, and empirical Bayesian rate 

estimation, we were able to analyze millions of amino acid sites for the presence of 

intrinsic, disorder, secondary structure, and functional domains. The aim of this study 

was to better understand the relationship between the structural properties and 

evolutionary rates of protein residues, particularly in the case of intrinsic disorder. 

Importantly, we have predicted the structural properties of every sequence in each 

alignment in order to locate structurally conserved amino acid sites for downstream 

analysis. Furthermore, we employed a factorial design to investigate the possibility of 

statistical interactions among the three structural factors being studied. 

 

RESULTS 

Clustering Analysis and Phylogeny 

Clustering analysis yielded a total of 13,003 clusters containing between 5 and 

600 sequences (fig. 1). 11,973 of these clusters were of sufficient quality (30% minimum 

sequence identity, 50% minimum alignment coverage) to be used in the phylogenetic 

analysis (fig. 1). The species composition of these 11,973 clusters showed considerable 
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variation. 1,029 clusters were species-specific, containing only protein sequences from a 

single species (fig. 2), while 5,893 others indicated ortholog groups, having only one 

sequence per species. Notably, the majority of clusters had between 5 and 12 species. 

Many of these were specific to either the mammalian lineage (695), or the arthropod 

lineage (458). A small number of clusters (32) contained at least one sequence from all 

25 species in the dataset (figs. 3 and 4). 

Most of the Bayesian phylogenetic inference analyses reached a very low 

convergence diagnostic (average standard deviation of split frequencies <0.005) prior to 

running for their allotted 5 million generations. Only 35 analyses that ran for a full 5 

million generations ended with an average standard deviation of split frequencies higher 

than 0.01, the typical “stop” value recommended by the program authors (Ronquist et al. 

2011). 

Structural Prediction 

Of the 7,990,416 aligned sites from all sequence clusters used in the phylogenetic 

analysis, 5,898,946 (∼74%) did not contain any gap characters. 3,214,254 of these 

nongapped sites were predicted to be consistently ordered (i.e., every sequence in an 

alignment was predicted to be ordered at a particular site), while 993,937 sites were 

predicted to be consistently disordered. 1,879,338 sites were predicted to have conserved 

secondary structure (either always α-helix or always β-strand) and 2,664,147 were 

conserved coil sites. 2,391,699 fell unanimously inside of predicted functional domains, 

while 2,899,814 were in linker regions. In total, there were 2,969,226 sites with 

conserved predictions for all three of the above factors (disorder propensity, secondary 

structure, and domain involvement), making them ideal for 2 3 factorial analysis. 
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Statistical Analysis 

Ordered sites had a median amino acid transition rate of −0.58, whereas the 

median rate for disordered sites was −0.25 (fig. 5 A). Similarly, sites predicted to be in 

secondary structures had lower median transition rates than coil sites (−0.57 vs. −0.40, 

respectively; fig. 5 B), and sites in functional domains had lower median transition rates 

than sites in linker regions (−0.61 vs. −0.32, respectively; fig. 5 C). Mann–Whitney tests 

of all three differences indicated high statistical significance (P  < 2 × 10 −16). 

A Kruskal–Wallis test of all eight factor-level combinations indicated a 

significant difference in rate distributions (P  < 2 × 10 −16). Post hoc evaluation (fig. 6) 

indicated that only 4 of the 28 pairwise comparisons were not significantly different 

(α  = 0.05, corrected for multiple comparisons). All four nonsignificant pairwise 

differences involved comparisons with rate distributions represented by comparatively 

small sample sizes (table 1). In corroboration with the Mann–Whitney test results, the 

sites predicted to be disordered, lacking in secondary structure, and outside of domains 

had the highest median transition rate (−0.10; mean = 0.18). In contrast, the set of ordered 

sites with secondary structure in domains had a lower median transition rate (−0.63; 

mean = −0.37). The lowest median rate was observed in sites predicted to be disordered, 

but also involved in secondary structures and domains (−0.70; mean = −0.47) (table 1). 

The 2 3 factorial analysis supported the results of the nonparametric analyses in 

terms of only the three main factor effects (table 2). All three differences in rate means 

(disordered sites vs. ordered sites, coil sites vs. structured sites, and linker sites vs. 

domain sites) were statistically significant (P  < 2 × 10 −16). Nonetheless, the overall fit of 

the factorial model was low (adjusted R2 ∼0.05). In addition, a significant interaction 
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(P  < 2 × 10 −16) was observed between disorder propensity and secondary structure, as 

well as between secondary structure and domain involvement. Trace plots indicate that 

the effect of disorder propensity is confounded by the effect of secondary structure (fig. 7 

A). In other words, sites predicted to be disordered have higher amino acid replacement 

rates on average than ordered sites, provided that they are not involved in secondary 

structures. In contrast, ordered sites predicted to be involved in secondary structures have 

higher average replacement rates than disordered, structured sites, which have lower 

average replacement rates than any other structural group (overall mean = −0.39; −0.47 

for sites in domains and −0.35 for sites in linkers). In addition, the effect of domain 

involvement (i.e., the difference in mean amino acid replacement rates between sites in 

domains and linkers) is larger in sites where there is no predicted secondary structure 

(fig. 7 B). A significant higher-order interaction was also detected among all three 

structural factors, though the confounding effects of the disorder–structure interaction are 

still present in both domain and linker sites. 

 

DISCUSSION 

Clustering Analysis and Phylogeny 

Our analysis returned a relatively large number of sequence groups representing 

between 5 and 12 species (fig. 3). This result is expected due to the inherent taxonomic 

sampling bias present in well-curated genomic databases and, by extension, the proteome 

set selected for our study. Many (but not all) of the clusters in this species range contain 

arthropod-specific genes (i.e., the five arthropods in our dataset), mammal-specific genes 

(six of the vertebrates) or vertebrate-specific genes (12 vertebrates in total; see fig. 4). 
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Any clusters with more than 12 species represent genes found across multiple phyla that 

are still sufficiently conserved to form a group based on our linkage cutoffs. Similarly, 

the large number of clusters containing sequences from only a single species (fig. 2) are 

partly the result of taxonomic bias. Many of these species-specific clusters contain a 

species that is the sole representative of a phylum in our dataset (e.g., Strongylocentrotus 

purpuratus, Amphimedon queenslandica, Caenorhabditis elegans). Others contain a 

species that is highly divergent from the other members of their phylum 

(e.g., Branchiostoma floridae, Daphnia pulex). It is likely that some of the genes in these 

clusters are also present in other species, not included here, that are more closely related 

to these taxa. 

The number of species with well-annotated proteomes is steadily growing, and an 

increasing number of animal phyla (e.g., annelids, mollusks, and flatworms) can now be 

represented, at least by a single taxon, in large-scale metazoan studies using existing 

databases (UniProt Consortium 2014). Still, several large animal phyla contain highly 

divergent lineages that are hundreds of millions of years old (e.g., Echinodermata, 

Cnidaria, Porifera, Mollusca, Annelida), yet they are sparsely represented in curated 

proteome databases. Exploring metazoan protein evolution more completely will require 

a more even representation of multiple taxonomic groups. Future efforts to curate animal 

proteomes should focus on underrepresented groups such as Cnidaria (corals, anemones, 

and jellyfish), Annelida (leeches, earthworms, and polychaetes), and Mollusca (bivalves, 

gastropods, cephalopods, etc.). 
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Structural Prediction 

Although the majority of gap-free alignment sites in our dataset were predicted to 

be ordered, nearly 1 million (∼17%) were predicted to be conserved disordered sites. 

186,026 (∼19%) of these disordered sites were in conserved disordered regions at least 

30-amino acids long. Overall, our results indicate that a non-negligible percentage of 

disordered metazoan protein sites are shared among species and among paralogous genes. 

Interestingly, about 118,596 (∼6%) of the sites predicted to be involved in 

secondary structures were also consistently predicted to be disordered. Statistical analysis 

of these sites revealed that they have the lowest average evolutionary rates (table 1). The 

meaning of this prediction combination (structured yet disordered) is unclear. These may 

be sites that have high propensities for secondary structure formation but are nonetheless 

disordered. For instance, they may belong to protein regions that alternate between 

intrinsic disorder and ordered secondary structure, as is sometimes the case in allostery 

(Motlagh et al. 2014), and in molecular recognition features or MoRFs (Yan et al. 2016). 

The IUPred algorithm predicts disorder propensity by estimating the potential for each 

residue to form stabilizing contacts with local residues within a predefined amino-acid 

window (Dosztányi et al. 2005). Some of these sites may be stabilized via contacts with 

residues outside of this window, or they may be exposed to solvents and form very few 

contacts with other residues in their respective proteins. Given their high level of average 

sequence conservation, future studies should focus on elucidating the functions of these 

conserved, disordered, and structured sites. 
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Statistical Analysis 

Previous work suggests that flexible, intrinsically disordered regions of proteins 

experience higher rates of amino acid replacement than ordered sites (Brown et al. 2002) 

and that variable regions of protein alignments are difficult to study because they often 

contain missing residues resulting from insertions/deletions, and that disordered regions 

might be particularly affected by alignment gaps (Brown et al. 2011). Our study is limited 

to protein sites with consistent structural predictions and without missing characters, so 

nonconserved structural regions are not considered, as their putative structure is unclear. 

Still, our results indicate that, on average, (i) intrinsically disordered sites tend to evolve 

faster than ordered sites, (ii) sites in coil regions tend to evolve faster than sites that are 

involved in secondary structures, and (iii) sites in linker regions tend to evolve faster than 

sites within functional domains. However, in all three cases, there is considerable overlap 

in the rate distributions of the sites being compared (fig. 5). Notably, previous research 

indicates that intrinsic disorder can occur in either conserved or variable regions of a 

protein, and that the relative sequence conservation of a disordered region is correlated 

with protein function (Bellay et al. 2011). This finding is consistent with our results, in 

that we observe a broad range of evolutionary rates associated with intrinsically 

disordered sites in our dataset. 

The significant interaction terms in the factorial analysis indicate that individual 

effects of disorder propensity, secondary structure, and domain involvement provide an 

incomplete picture of the driving forces behind protein evolution. For example, the shift 

in transition rates between ordered and disordered sites is larger outside of functional 

domains. Trace plots also indicate that both ordered and disordered sites tend to 
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experience more sequence conservation in functional domains than in linker regions. For 

sites within secondary structures, the overall effect of disorder propensity is actually 

reversed: sites predicted to be disordered tend to be more conserved than ordered sites. 

Despite strongly significant main effects and interaction terms, the overall fit of 

the factorial model was quite low (adjusted R2 ∼0.05). This value highlights the subtle 

but important distinction between the statistical significance and the practical significance 

of our results. Because of the large overlap in rate distributions among different structural 

site categories, the factorial model only explains a small percentage of the total variance 

in the dataset, and thus has very poor predictive power. Therefore, the claim that 

intrinsically disordered sites tend toward higher amino acid replacement rates appears 

valid, but the notion that rapidly evolving protein regions are most likely disordered is 

not supported here. 

The relationships between various structural properties of proteins and site-

specific evolutionary rates are currently a topic of great interest (Echave et al. 2016). 

Recent studies have indicated fairly strong correlations between specific structural 

properties and amino acid replacement rates (Franzosa and Xia 2009; Yeh, Huang, et al. 

2014). Our results highlight the importance of considering combinations of structural 

factors in future studies in order to account for their interactions when estimating 

evolutionary rates. Moreover, our large-scale analysis illuminates a subtle interplay 

between sequence evolution and structural properties across a diverse range of metazoan 

proteins. 
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METHODS 

Data Collection 

Complete, canonical (single isoform: only one protein representative per gene) 

proteomes for 24 metazoan taxa and one choanoflagellate (fig. 4) were retrieved from the 

2014_4 release of the Uniprot Reference Proteome Set (Suzek et al. 2007; UniProt 

Consortium 2014). These taxa were selected to represent important divergence events in 

the evolutionary history of metazoans, with special emphasis placed on chordates and, to 

a lesser extent, arthropods. In addition, we specifically included many model organisms, 

such as Mus musculus, Danio rerio, Drosophila melanogaster, and C.elegans. For each 

taxon, protein sequences shorter than 30 amino acids, as well as sequences with 

unidentified residues (marked by an “X” symbol), were excluded from the dataset. 

Clustering Analysis 

We used the clustering program BLASTClust from BLAST2.26 (Altschul et al. 

1990) to sort our database into groups of sequences for which phylogenies could be 

constructed. Clusters were formed based on pairwise similarities in amino acid sequences 

(≥40% sequence identity) as well as similarities in aligned sequence lengths (the BLAST 

alignment footprint must cover ≥90% of both proteins). BLASTClust uses a single-

linkage algorithm, meaning that sequences were added to a cluster if they were 

sufficiently similar to any sequence already in that cluster. The aforementioned 

combination of similarity cutoffs was chosen because it produced a large number of 

relatively small clusters, without highly divergent sequences that could negatively impact 

phylogenetic analyses (fig. 1). At the same time, these clusters were generally inclusive 

enough to reconstruct phylogenies illustrating the relationships of many homologous 
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proteins separated by speciation events (orthologs) and, where applicable, the 

relationships among duplicated genes (paralogs). 

Phylogenetic Analysis 

Each cluster containing between 5 and 600 full-length protein sequences was 

aligned via MAFFT v7.123b (Katoh and Standley 2013) using the “local-pair” strategy 

(L-INS-i algorithm for a maximum of 1,000 iterations). This strategy was deemed to be 

the most accurate iterative protein alignment method, both by the program authors and by 

the results of a recent benchmark study (Thompson et al. 2011). Aligned clusters were 

checked for sequences that might confound the quality of the multiple sequence 

alignment and, consequently, the results of phylogenetic analyses. Clusters containing 

any sequence pair with less than 30% global sequence identity, or any sequence covering 

<50% of the length of the multiple sequence alignment, were excluded from phylogenetic 

analysis. Large clusters (containing >600 sequences) were excluded as well. Lastly, any 

clusters of sequences with nonstandard or ambiguous amino acid characters were omitted 

from further analysis. 

Phylogenetic trees were constructed using the Bayesian inference method 

implemented in MrBayes 3.2.2 (Ronquist et al. 2012). We used the mixed-model 

approach in MrBayes to estimate the model type and parameters used in each analysis. A 

gamma distribution among rates (four discrete categories) was applied to each alignment. 

Each analysis (two independent runs, four chains per run) was allowed to run either for 5 

million generations or until the average standard deviation of split frequencies fell below 

0.005. Runs were summarized into 50% majority-rule consensus trees, with the first 25% 

of trees being discarded as burn-in. We used the gene–species tree reconciliation software 
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Notung 2.6 (Durand et al. 2005; Vernot et al. 2007) to root each gene tree. The species 

tree used to determine root placements was based on the NCBI Taxonomy Common Tree 

(Benson et al. 2009; Sayers et al. 2009), with two important exceptions (fig. 1). First, the 

unresolved portion of the metazoan tree containing Porifera, Placozoa, and Eumetazoa 

was altered to make Porifera basal to the latter two, in accordance with the conclusion of 

a recent review of metazoan phylogeny (Dohrmann and Wörheide 2013). Second, we 

positioned the lancelet B.floridae basal to Urochordata and Vertebrata based on genomic 

evidence (Gee 2008; Putnam et al. 2008). 

Site-specific evolutionary rates were estimated for each sequence alignment using 

the program Rate4Site 3.0.0 (Mayrose et al. 2004). Rates were estimated using the 

empirical Bayesian approach assuming a gamma distribution with 16 rate categories. The 

rooted, 50% majority-rule consensus trees described above were used as input 

phylogenies and no further refinement or branch length optimizations were performed. 

All rate estimations were computed using the amino-acid substitution matrix developed 

by Jones et al. (1992). Site-specific rate estimates were transformed to normalized Z -

scores (the default normalization procedure within Rate4Site) with mean equal to 0 and 

standard deviation equal to 1, allowing for the distinction between slow-evolving sites 

(negative values) and fast-evolving sites (positive values) across multiple alignments. 

Structural Prediction 

Because the number of protein sequences in our dataset far exceeds the number of 

proteins with empirically determined structural information, structural characterization of 

each protein was achieved using well-established, sequence-based predictors. Amino acid 

sites from each alignment were categorized according to three binary structural factors: 
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intrinsic structural disorder propensity (i.e., is the site predicted to be ordered or 

disordered?), secondary structure (is the site part of a secondary structure or a coil?), and 

domain involvement (is the site part of a domain or linker region?). Intrinsic disorder, 

secondary structure, and domain predictions were obtained for full-length proteins in 

order to preserve the structural context of individual amino acids. Only sites that could be 

consistently categorized for all proteins in each multiple sequence alignment were used in 

statistical analyses. Sites containing gap characters or non-conserved predictions (e.g., 

disordered in some sequences but ordered in others) were excluded. 

Intrinsic structural disorder (i.e., the low propensity to form stable intramolecular 

contacts) was predicted with IUPred 1.0 (Dosztányi et al. 2005) using the option for 

detecting long disordered regions. IUPred was specifically developed for the de 

novoprediction of intrinsically unfolded protein regions via estimated energy content, 

without assuming disorder conservation in related sequences. By default, a score >0.5 

indicates a propensity toward disorder, with a maximum score of 1.0 indicating an 

extreme propensity to be in a disordered state. We instead used a cut-off of 0.4 for the 

binary conversion of disorder predictions, as this threshold is purportedly more accurate 

when predicting disordered regions in experimentally verified disordered proteins 

(Fuxreiter et al. 2007; Xue et al. 2009). 

Secondary structure was predicted by PSIPRED 3.4 using default parameters 

(Jones 1999). Profiles for each sequence were generated with PSI-BLAST (Altschul et al. 

1997) using the filtered version of the UniRef90 database as of April 2015. PSIPRED 

converts profiles of evolutionarily related proteins into secondary structure propensities 

(helix, strand, or coil), and returns the most probable state for each site. The accuracy of 
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these predictions in a single sequence has been estimated at roughly 80% when compared 

with empirical information from the Protein Data Bank (Bernstein et al. 1977; Bryson et 

al. 2005). All sites that were consistently predicted to have identical secondary structure 

(either only α-helix or only β-strand across all sequences) were classified as structured. 

Sites with no predicted secondary structure in any sequence were classified as coils. 

Functional domains were predicted using the Pfam database (version 27) (Finn et 

al. 2014) by aligning each sequence to a hidden Markov Model profile with predefined 

gathering thresholds. Sites unanimously predicted to fall within Pfam-A domains (based 

on envelope coordinates) were considered “domain” sites, while those with no predicted 

Pfam-A domains were considered linker sites. 

Statistical Analysis 

From all sites that were 100% conserved for at least one structural property (order 

or disorder, secondary structure or coil, domain or linker), three individual datasets were 

assembled (table 1). Based on these datasets, the individual effects of disorder, secondary 

structure, and domain involvement (considering only one factor at a time while ignoring 

the others) on amino acid replacement rates were evaluated using a nonparametric Mann–

Whitney test (fig. 5). For each of the structural factors listed above, exactly two levels 

were considered. Sites that were 100% conserved for all three structural properties were 

categorized according to the eight possible factor-level combinations and used as 

treatment groups. Statistical analysis of these groups was accomplished using a Kruskal–

Wallis test followed by post hoc, nonparametric pairwise comparisons from the 

“pgirmess” package including multiple comparison correction (Siegel and Castellan 

1988) in R (R Core Team 2012). In addition, all sites included in the Kruskal–Wallis test 
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were analyzed under an unbalanced factorial model to evaluate the significance of each 

factor effect as well as their interaction terms. An unbalanced (type III) multifactor 

analysis of variance was performed on the model using tools from the “car” library (Fox 

et al. 2015) in the R programming language (R Core Team 2012). 
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Tables 

 

Table 1: Conserved Property. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a Single factor group: sites with at least one 100% conserved structural property.  

b Factor combinations: sites for which all three structural properties are 100% conserved; 

e.g., D-s-d are sites with conserved disorder (D) AND secondary structure (s) AND 

domain involvement (d). 

  

Single Factor Group1 Sample Size Mean Median 

Order (O) 3214254 -0.28234 -0.5769 

Disorder (D) 993937 0.06282 -0.2548 

Structure (s) 1879338 -0.29828 -0.5713 

Coil (c) 2664147 -0.06323 -0.3979 

Domain (d) 2391699 -0.30871 -0.6098 

Linker (l) 2899814 -0.00982 -0.3244 

Combinations2    

O-s-d 701380 -0.37081 -0.6325 

O-s-l 456067 -0.2617 -0.5351 

O-c-d 615698 -0.3356 -0.6444 

O-c-l 415903 -0.18029 -0.505 

D-s-d 36632 -0.46661 -0.7023 

D-s-l 75897 -0.35199 -0.6175 

D-c-d 88210 -0.18499 -0.5277 

D-c-l 579439 0.181966 -0.1033 
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Table 2. ANOVA table for 23 factorial analysis. 

 
Source Sum of Squares df1 F P(>F)2 

Disorder (D) 320 1 392.8311 <2e-16 

Secondary structure (s) 2053 1 2523.6104 <2e-16 

Domain (d) 325 1 399.0750 <2e-16 

disorder:secondary structure (D:s) 1457 1 1790.6429 <2e-16 

disorder:domain (D:d) 1 1 0.8488 0.3569 

Secondary structure:domain (s:d) 1189 1 1462.1611 <2e-16 

disorder:secondary structure:domain (D:s:d) 695 1 853.8174 <2e-16 

Residuals 2415212 2969218 
  

1df: Degrees of freedom 

2P(>F): p-value calculated from the F statistic 
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Figure Captions 

Figure 1. Scatterplot showing sequence similarity and alignment quality within clusters of 

various sizes (5–600). Y -axis depicts the minimum pairwise sequence identity per 

group; x -axis shows the minimum alignment coverage (sequence length/total alignment 

length) found in each aligned cluster. Grey rectangle encloses clusters used in phylogenetic 

analyses. Cluster sizes (the number of sequences in each cluster) are indicated by the shade 

and size of each point. 

 

Figure 2. Number of species-specific clusters (i.e., containing proteins from only a single 

species) for each species in the database. Clusters depicted in this plot were included in 

phylogenetic analyses. 

 

Figure 3. Bar graph showing the distribution of species representation (total number of 

species found in each cluster) across all clusters with at least five sequences used for 

phylogenetic analyses. Bars depict the total number of clusters (y -axis) containing the 

indicated number of species (x -axis). 

 

Figure 4. Species tree showing the purported evolutionary relationships among the taxa 

used in this study. Nodes labeled with an asterisk (*) are not supported by the NCBI 

Common Taxonomy Tree. Bar graph (right) shows the number of proteins sampled from 

each species. Each bar is divided into sections illustrating the number of sequences found 

in clusters of various size ranges. All phyla represented in the tree are labeled, along with 
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several important lower taxonomic groups. Dashed grey line intersects lineages thought to 

be present during the Cambrian Explosion. 

 

Figure 5. Violin plots showing distributions of normalized evolutionary rates for (A) 

ordered (n = 3,214,254) versus disordered (n  = 993,937) sites, (B) structured 

(n  = 1,879,338) versus coil (n = 2,664,147) sites, and (C) domain (n  = 2,391,699) versus 

linker (n  = 2,899,814) sites. Violins indicate the estimated kernel density of each 

distribution (bandwidth = 0.4). Boxplots are drawn inside each violin with median values 

indicated as a white dot. Y -axis indicates evolutionary rates, normalized as Z -scores. (See 

Methods for details regarding evolutionary rate estimation and normalization.) 

 

Figure 6. Violin plots showing distributions of normalized evolutionary rates for all 

factor/level combinations considered in the factorial analysis. Factor levels are indicated 

using three letters separated by hyphens, where the first letter denotes ordered (“O”) or 

disordered (“D”) sites, the second letter denotes sites within secondary structures (“s”) or 

coils (“c”), and the third denotes sites in domains (“d”) or linker regions (“l”). The upper 

diagonal of the matrix below the plots indicates whether there is a significant difference 

between group pairs (dark grey cells are significant at P  < 0.05, whereas light grey cells 

are not). 

 

Figure 7. Interaction plots illustrating statistically significant (P  < 2e −16) interactions 

between (A) disorder propensity versus secondary structure and (B) domain involvement 

versus secondary structure. In both plots, secondary structure is represented as the trace 
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factor and the Y -axis represents mean normalized evolutionary rates. Note the change in 

slope sign in plot A. 
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CHAPTER III 

LARGE-SCALE ANALYSES OF SITE-SPECIFIC EVOLUTIONARY RATES 

ACROSS EUKARYOTE PROTEOMES REVEAL CONFOUNDING INTERACTIONS 

BETWEEN INTRINSIC DISORDER, SECONDARY STRUCTURE, AND 

FUNCTIONAL DOMAINS 
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ABSTRACT 

Various structural and functional constraints govern the evolution of protein 

sequences. As a result, the relative rates of amino acid replacement among sites within a 

protein can vary significantly. Previous large-scale work on Metazoan (Animal) protein 

sequence alignments indicated that amino acid replacement rates are partially driven by a 

complex interaction among three factors: intrinsic disorder propensity; secondary 

structure; and functional domain involvement. Here, we use sequence-based predictors to 

evaluate the effects of these factors on site-specific sequence evolutionary rates within 

four eukaryotic lineages: Metazoans; Plants; Saccharomycete Fungi; and Alveolate 

Protists. Our results show broad, consistent trends across all four Eukaryote groups. In all 

four lineages, there is a significant increase in amino acid replacement rates when 

comparing: (i) disordered vs. ordered sites; (ii) random coil sites vs. sites in secondary 

structures; and (iii) inter-domain linker sites vs. sites in functional domains. Additionally, 

within Metazoans, Plants, and Saccharomycetes, there is a strong confounding interaction 

between intrinsic disorder and secondary structure—alignment sites exhibiting both high 

disorder propensity and involvement in secondary structures have very low average rates 

of sequence evolution. Analysis of gene ontology (GO) terms revealed that in all four 

lineages, a high fraction of sequences containing these conserved, disordered-structured 

sites are involved in nucleic acid binding. We also observe notable differences in the 

statistical trends of Alveolates, where intrinsically disordered sites are more variable than 

in other Eukaryotes and the statistical interactions between disorder and other factors are 

less pronounced. 
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INTRODUCTION 

Nucleotide substitutions within protein-coding genes can produce downstream 

changes (amino acid replacements) within the sequences of their translated expression 

products (proteins). Consequently, protein molecular evolution entails the replacement of 

amino acid residues at various positions (sites) within a protein’s primary structure 

(sequence) over time. The relative rates of amino acid replacement may vary significantly 

among sequence sites, and accounting for rate heterogeneity greatly increases the 

accuracy of phylogenetic reconstruction based on molecular evolutionary models [1]. 

This phenomenon has attracted considerable research examining the relationship between 

protein structure/function and site-specific rates of protein sequence evolution (see 

Echave et al. [2] for a review). 

Several structural and functional properties of proteins are now known to drive 

overall rates of protein sequence evolution as well as site-specific evolutionary rates 

within a protein sequence. In particular, sites with a large number of stabilizing contacts 

(high local packing density) tend to evolve slowly [3,4], and sites with high solvent 

exposure tend to evolve faster than buried sites [3,5,6]. At the whole-sequence level, 

there is a strong negative correlation between gene expression level and the rate of 

protein sequence evolution [7]. Brown et al. [8] also found that proteins with long 

intrinsically disordered regions (IDRs) tend to experience higher overall levels of amino 

acid replacement than ordered proteins. 

Previously, Ahrens et al. [9] used sequence-based predictors to show that site-

specific evolutionary rates in Metazoan (Animal) proteins are partially governed by an 

interaction among three factors: intrinsic disorder propensity; secondary structure; and 

https://www.mdpi.com/2073-4425/9/11/553/htm#B1-genes-09-00553
https://www.mdpi.com/2073-4425/9/11/553/htm#B2-genes-09-00553
https://www.mdpi.com/2073-4425/9/11/553/htm#B3-genes-09-00553
https://www.mdpi.com/2073-4425/9/11/553/htm#B4-genes-09-00553
https://www.mdpi.com/2073-4425/9/11/553/htm#B3-genes-09-00553
https://www.mdpi.com/2073-4425/9/11/553/htm#B5-genes-09-00553
https://www.mdpi.com/2073-4425/9/11/553/htm#B6-genes-09-00553
https://www.mdpi.com/2073-4425/9/11/553/htm#B7-genes-09-00553
https://www.mdpi.com/2073-4425/9/11/553/htm#B8-genes-09-00553
https://www.mdpi.com/2073-4425/9/11/553/htm#B9-genes-09-00553
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functional domain involvement. A strong statistical interaction was detected between 

conserved intrinsic disorder and conserved secondary structure, and sites which were 

predicted to be both intrinsically disordered and involved in secondary structures 

(“disordered-structured” sites) had lower mean rate scores than any other structural 

category [9,10]. 

Here, we present an evaluation of the structural factors studied by Ahrens et al. 

[9] across large-scale protein sequence datasets representing four eukaryotic lineages: 

Metazoans; Plants; Saccharomycete Fungi; and Alveolate Protists. We used the 

sequence-based predictors employed in Ahrens et al. [9] on hundreds of thousands of 

sequences to identify protein family alignment sites with conserved intrinsic disorder, 

secondary structure and functional domain predictions, and we applied multifactor 

statistical analyses to measure the effects of these structural/functional factors on site-

specific rates of sequence evolution. Despite the moderate error inherent in structural 

prediction, our results indicate that there are statistically significant, and broadly 

consistent forces driving eukaryotic protein evolution. Furthermore, proteins with 

conserved disordered-structured sequence sites are found in all four Eukaryote lineages 

and appear to be important for nucleic acid binding, as well as various other fold-upon-

binding events. 

 

MATERIALS AND METHODS 

2.1. Data Collection 

We collected protein sequence data from canonical reference proteomes made 

available by the UniProt Consortium [11]. These proteomes are useful for evolutionary 

https://www.mdpi.com/2073-4425/9/11/553/htm#B9-genes-09-00553
https://www.mdpi.com/2073-4425/9/11/553/htm#B10-genes-09-00553
https://www.mdpi.com/2073-4425/9/11/553/htm#B9-genes-09-00553
https://www.mdpi.com/2073-4425/9/11/553/htm#B9-genes-09-00553
https://www.mdpi.com/2073-4425/9/11/553/htm#B11-genes-09-00553
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analysis because, for alternatively spliced genes, only a single protein isoform is chosen 

to represent each gene locus. We used this data to construct four large-scale protein 

datasets containing important model organisms from four divergent eukaryotic lineages: 

Metazoans (Animals), Plants, Alveolate Protists, and Saccharomycete Fungi 

(see Appendix 1). To represent Metazoan proteins, we used the 24 Metazoan proteomes 

(plus the Monosiga brevicollis proteome) described in Ahrens et al. [9]. We collected 22 

Plant proteomes from the February 2015 release of the UniProt Reference Proteome set, 

and downloaded two additional proteomes (Oryza sativa and Volox carteri) directly from 

UniProt in April of 2016. All of the 44 Alveolate Protist proteomes, as well as the 49 

proteomes from Saccharomycete Fungi, were taken from the UniProt Reference 

Proteome set released in July of 2016. In all four datasets, we excluded any protein 

sequences that (i) were less than 30 amino acids in length or (ii) contained X characters 

(indicating missing sequence data) prior to sequence clustering. 

2.2. Clustering and Multiple Sequence Alignment 

Sequence clustering was accomplished by running the graph-based single-linkage 

program BLASTClust from BLAST v2.2.26 [12] on each of the four datasets described 

above. We used two criteria (pairwise sequence identity and sequence overlap) to 

establish linkage: two sequences were grouped in the same cluster if (i) their pairwise 

sequence identity was at least 40% and (ii) the length of their BLAST alignment footprint 

(the region of sequence overlap) was at least 90% the length of the longer sequence. The 

motivation for this permissive clustering approach was to obtain inclusive clusters of 

homologous protein sequences that were suitable for multiple sequence alignment and 

subsequent downstream analyses. Clusters containing between 10 and 300 sequences 
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were aligned with MAFFT v7.123b (Animals) and v7.313 (Plants, Protists, Fungi) using 

the local pairwise alignment strategy and a maximum of 1000 iterations [13]. Sequence 

alignments were used for downstream evolutionary analysis if the following conditions 

were met: (i) the minimum pairwise sequence identity (1 − p-distance) of any two 

sequences in the alignment was at least 30%; (ii) every sequence was at least 50% the 

length of the full sequence alignment; (iii) none of the sequences contained ambiguous 

characters or non-standard amino acids; (iv) less than 90% of alignment sites were 

conserved (invariant) at the amino acid level; and (v) at least four sequences in each 

alignment were unique. 

2.3. Evolutionary Analysis 

We inferred phylogenetic trees using the MPI-enabled version of MrBayes 3.2.2 

[14] with tree-bisection-reconnection (TBR) moves disabled. Each analysis used the 

mixed-model approach (substitution matrix treated as a free parameter) and a four-

category gamma distribution among site rates. Analyses were run for 5,000,000 

generations, or until the average standard deviation of split frequencies fell below 0.005. 

Majority-rule consensus trees were constructed for each alignment, discarding the initial 

25% of trees as burn-in. To infer site-specific rates of sequence evolution, we used a 

modified version of the program Rate4site [15] which prints the entire alignment-wide 

distribution of rate scores rather than only the values associated with a particular 

reference sequence. Multiple sequence alignments and their associated consensus trees 

were used as inputs and evaluated under a sixteen-category gamma-distributed model. To 

more directly measure the values of interest (i.e., the relative site-wise rates of amino acid 

residue replacement), and in consideration of recent developments in the field [16,17], 
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site rates were scored based on the equal-probability matrix proposed by Jukes and 

Cantor [18] rather than the default matrix proposed by Jones et al. [19]. We used the 

empirical Bayesian method of rate inference implemented in Rate4site, and site rates 

were normalized as z-scores with mean = 0.0 so that in all alignments, positive scores 

indicated faster sites while negative scores indicated slower sites. 

2.4. Structural Prediction 

As in Ahrens et al. [9], we predicted the intrinsic disorder propensity, secondary 

structure and functional domains of all sequences in each alignment using sequence-

based computational tools. Intrinsic disorder propensity was evaluated using the long 

disorder prediction method implemented in IUPred 1.0 [20]. The accuracy of IUPred-

long varies from 62% against DisProt [21] to 85% against IDEAL [22] using the intended 

cut-off of 0.5 [23]. However, IUPred has greater accuracy against DisProt using a cut-off 

of 0.4 [24,25]. Here, sequence sites with a propensity score above 0.4 were considered 

intrinsically disordered, in accordance with previous studies [9,24,25]. Secondary 

structures (α-helices, β-strands and random coils) were predicted using PSIPRED 3.4 [26] 

based on sequence profiles generated with PSIBLAST [27] against a filtered version of 

the UniRef90 database [28]. Previous benchmarks indicate that when based on sequence 

profiles, PSIPRED predicts secondary structure with >80% accuracy [29,30]. Functional 

domains were predicted using the Pfam database [31], and all sequence regions outside of 

functional domains were considered inter-domain linkers. All binary predictions were 

mapped onto their corresponding protein family alignment sites, and only alignment sites 

with conserved predictions were considered for statistical analysis. 
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2.5. Gene Ontology 

From each Eukaryote dataset, sequence clusters containing disordered-structured 

alignment sites (i.e., sites where every sequence in the alignment was predicted to be 

intrinsically disordered as well as involved in either an α-helix or β-strand) were reserved 

for gene ontology analysis. Sequences from these alignments corresponding to Homo 

sapiens (Metazoans), Arabidopsis thaliana (Plants), Saccharomyces 

cerevisiae (Saccharomycetes) or Plasmodium falciparum (Alveolates) were collected and 

analyzed using the Panther webserver [32,33]. 

2.6. Statistical Analysis 

Each alignment site was labelled based on the predicted structural properties of all 

sequences in the alignment. A site was called “disordered” if the IUPred score for every 

sequence at that site was above 0.4, and “ordered” if every score was below 0.4. 

Similarly, a site was considered “structured” if PSIPRED indicated that either (i) every 

sequence fell within an alpha helix or (ii) every sequence fell within a beta strand, and it 

was labelled “coil” if all sequences fell within random coils at that site. Finally, sites 

were called “domain” sites when all sequences fell within a predicted Pfam domain and 

“linker” sites when none of them fell within a Pfam domain. Sites containing any number 

of gap characters were excluded from further evaluation. 

All statistical analysis and visualization was performed in the R programming 

language [34,35] as well as the “matplotlib” module [36] available in the Python 

programming language [37]. In each of the four eukaryotic datasets, nonparametric 

Mann-Whitney tests were used to compare normalized rates of sequence evolution 

observed in ordered vs. disordered sites, structured vs. coil sites, and domain vs. linker 
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sites found across all sequence alignments. Additionally, based on the above criteria, 

many alignment sites could be labeled according to all three structural properties (e.g., 

disordered/coil/linker). Following a Kruskal–Wallis test, nonparametric multiple pairwise 

significance tests (α = 0.05) were performed to compare the rate distributions of all 

factor-level combinations (e.g., disordered/coil/linker vs. disordered/coil/domain) in all 

four datasets via the “kruskalmc” method available in the “pgirmess” package [38] in R. 

Using the “car” package developed by Fox and Weisberg [39], these sites were also 

incorporated into an unbalanced (type III) factorial analysis of variance (ANOVA) with 

zero-sum contrasts to evaluate the statistical interaction among intrinsic disorder, 

secondary structure and functional domain involvement. The relationship between cluster 

disorder content (fraction of disordered alignment sites) and mean rate scores within 

disordered-structured alignment sites was analyzed via Loess regression and visualized in 

the “ggplot2” library [40]. 

 

RESULTS 

3.1. Clustering and Phylogenetics 

Across all four Eukaryote datasets, single-linkage clustering via BlastClust [12] 

produced 25,871 clusters containing between 10 and 300 sequences (see Appendix 1). 

After multiple sequence alignment, 22,395 (87%) of these clusters were suitable for 

downstream phylogenetic inference and site-wise evolutionary rate inference (Figure 1; 

see Methods: Clustering and Multiple Sequence Alignment for suitability criteria). These 

sequence alignments contained a total of 14,011,483 sites, of which 9,202,935 (66%) 
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contained no gap characters. Refer to Table 1 for more information relating to individual 

datasets. 

Nearly all of the 22,395 phylogenetic analyses in MrBayes [14] converged in less 

than 5,000,000 generations. Only 204 (<1%) of the analyses ran for 5,000,000 

generations without reaching an average standard deviation of split frequencies (ASDSF) 

of less than 0.01, the convergence diagnostic value recommended by the program authors 

[41], while 21,952 (98%) reached an ASDSF of less than 0.005. 

3.2. Structural Prediction 

IUPred results [20] indicated that 847,431 of the 9,202,935 gap-free sites were 

conserved disordered alignment sites (i.e., sites where every sequence in an alignment 

was intrinsically disordered) and 5,551,255 were conserved ordered sites. Relative to the 

number of gap-free sites, the percentages of conserved disordered alignment sites in 

Metazoans (11.6%), Plants (8.2%), Saccharomycetes (6.4%), and Alveolates (9.7%) were 

consistently low (see Table 1). PSIPRED [26] indicated 3,216,527 conserved structured 

sites (sites where every sequence fell within either an α-helix or a β-strand) and 

3,474,440 conserved coil sites, and Pfam [31] indicated 3,972,117 conserved domain 

sites and 4,132,983 conserved linker sites. Furthermore, 4,206,014 sites could be 

consistently labeled according to all three binary factors (e.g., all sequences predicted to 

be disordered/coil/linker at a particular site), making them suitable for multiple pairwise 

comparison and factorial ANOVA. 

3.3. Statistical Analysis 

Mann-Whitney tests indicated that in all four eukaryotic datasets, disordered sites 

had higher median amino acid replacement rate scores than ordered sites 
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(Δmedian_rate Metazoans: =+0.28, Plants: +0.33, Saccharomycetes: +0.29, Alveolates: 

+0.75). Similarly, coil sites had higher median rate scores than structured sites 

(Δmedian_rate Metazoans: +0.11, Plants: +0.12, Saccharomycetes: +0.03, Alveolates: +0.15) 

and linker sites had higher median scores than domain sites (Δmedian_rateMetazoans: +0.25, 

Plants: +0.30, Saccharomycetes: +0.25, Alveolates: +0.27). All median differences in all 

datasets were highly statistically significant (p < 2.2 × 10−16), but opposing rate 

distributions (e.g., order vs. disorder) exhibited large overlaps in their range of values 

(Figure 2). Notably, Mann-Whitney tests considering only sites from clusters where 

opposing structural properties co-occur (e.g., disordered and ordered sites found within 

the same alignment) were statistically significant as well (p< 2.2 × 10−16). Kruskal-Wallis 

tests comparing the eight factor-level combinations were statistically significant in all 

four datasets (p < 2.2 × 10−6), and most of the 28 post hoc multiple pairwise comparisons 

were also significant (corrected p < 0.05; see Appendix 3). 

In addition to statistically significant main effects (all p < 10−5), parametric 

factorial analyses for all four datasets showed statistically significant interaction terms 

(all p < 2 × 10−16). First-order interactions were particularly large between disorder and 

secondary structure where the effect of disorder was reversed across three of the four 

datasets: in Metazoans, Plants, and Saccharomycetes, alignment sites predicted to be both 

disordered and involved in secondary structures (disordered-structured sites) have lower 

mean rate scores than ordered, structured sites (Figure 3). A similar phenomenon is 

observed in the disorder x domain interaction in Plants: disordered sites in functional 

domains tend to be more conserved than ordered domain sites (Figure 3). Higher-order 

interactions (disorder × structure × domain) were also detected in all four datasets (all p < 
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2 × 10−16). Correlation coefficients (adjusted R2values) were low in all four models 

(Metazoans: 0.04, Plants: 0.03, Saccharomycetes: 0.02, Alveolates: 0.06). 

Loess regression indicated a negative correlation between sequence evolutionary 

rates of disordered-structured sites and the overall disorder content (fraction of disordered 

sites) in their respective alignments (Figure 4). This trend is less pronounced in Alveolate 

alignments than in the other three datasets. 

3.4. Gene Ontology of Proteins with Disordered-Structured Sites 

Analysis of GO (gene ontology) terms in PantherDB [32,33] revealed similar 

patterns in sequences containing conserved disordered-structured sites within all four 

eukaryotic lineages. Of the GO annotations found for sequences with conserved 

disordered-structured sites in Homo sapiens (Metazoans), Arabidopsis thaliana 

(Plants), Saccharomyces cerevisiae (Saccharomycetes), and Plasmodium falciparum 

(Alveolates), the majority had molecular functions associated with binding (53.3%, 

43.0%, 40.5%, and 41.8%, respectively) or catalytic activity (30.8%, 39.5%, 39.6%, and 

38.8%, respectively). Additionally, the majority of identified biological processes within 

these four taxa were either cellular processes (30.1%, 35.3%, 35.4%, and 37.6%, 

respectively) or metabolic processes (23.9%, 34.9%, 32.1%, and 34.3%, respectively) and 

the majority of associated cellular components were cell parts (38.9%, 42.0%, 40.2%, and 

39.6%, respectively), organelles (30.4%, 32.0%, 30.3%, and 30.8%, respectively) and 

macromolecular complexes (17.2%, 20.2%, 24.4%, and 24.8%, respectively). In all four 

taxa, a large fraction of protein classes identified for sequences from alignments with 

conserved disordered-structured sites were nucleotide-binding proteins (24.3%, 32.1%, 

37.5%, and 37.4%, respectively) compared to sequences from alignments lacking 
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conserved disordered-structured sites (11.7%, 15.5%, 17.1%, and 24.8%, respectively). 

Refer to Appendix 2 for GO term results for sequences with conserved disordered-

structured sites from all four representative taxa. 

 

DISCUSSION 

4.1. Clustering and Phylogenetics 

Previous work by Ahrens et al. [9] highlighted the inherent difficulty of taxon 

sampling when working with curated molecular datasets—such as the Uniprot Reference 

Proteome Database [42]—because the bias toward well-studied model organisms is 

phylogenetically uneven (see Appendix 1). Indeed, there are large percentages of: (i) 

Vertebrates in the Metazoan dataset (48%); (ii) Angiosperms (flowering Plants) in the 

Plant dataset (75%); (iii) Saccharomyces congeners in the Saccharomycete dataset 

(20.5%); and (iv) Plasmodium congeners in the Alveolate dataset (33%). This 

phylogenetic unevenness can create downstream biases, wherein the sequence clusters 

suitable for evolutionary analysis primarily depict relationships among well-represented 

taxa (Vertebrates, Angiosperms, etc.). 

When considering only a single dataset (e.g., Metazoans), it is difficult to 

determine whether a statistical analysis is biased toward trends in well-represented taxa 

(e.g., Vertebrates) or truly reflective of more general trends in molecular evolution. By 

independently analyzing multiple divergent lineages, our statistical results show that 

there are broad, generally consistent trends across several eukaryotic groups (i.e., in the 

relationship between structural/functional factors and sequence evolutionary rate) despite 

the phylogenetic unevenness inherent within the individual datasets. 
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4.2. Structural Prediction 

Previous research has revealed that intrinsic disorder is more prevalent in 

eukaryotic proteins than either Bacteria or Archaea [43,44,45,46]. Rather than simply 

acting as flexible linkers, some eukaryotic IDR’s occur within functional domains and are 

crucial to the functions of their associated proteins [47], and many functional IDR’s 

undergo disorder-to-order transitions in the process of binding to neighboring proteins or 

nucleotide molecules [48]. Thus, the three factors evaluated in this study (intrinsic 

disorder, secondary structure, functional domains) appear to be intricately connected and 

overlapping: intrinsic disorder can occur within functional domains, and transient 

secondary structures may form within IDR’s to facilitate interactions with other 

biomolecules. In this light, the combined results of conserved intrinsic disorder, 

secondary structure and functional domain predictions in an evolutionary context (i.e., 

multiple sequence alignment sites) appear to be very useful for detecting biologically 

important sequence regions within proteins. 

While sequence-based predictors are not perfectly accurate, our in-silico 

assignment of three binary states to individual alignment sites (order/disorder, 

structure/coil, and domain/linker) allowed us to study a wide range of protein alignments 

from several eukaryotic lineages, including many alignments containing sequences where 

experimentally-determined structural data is not available. Our analysis workflow (site 

rate inference, structural prediction, statistical analysis) was applied consistently, such 

that data arising from different alignments, and different Eukaryote datasets, are directly 

comparable. Furthermore, by limiting statistical analyses to only gap-free alignment sites 

with conserved structural predictions, we avoided many error-prone alignment regions as 
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well as inconsistent (and possibly inaccurate) structural assignments. Also, evaluating all 

combinations of the three binary factors inferred by predictors, we have identified an 

interesting category of evolutionarily conserved alignment sites (i.e., disordered-

structured sites). Notably, such an interplay of structural factors cannot be readily 

identified via publicly-available experimental data from the Protein Data Bank (PDB) 

[49], since structural assignments are not provided for regions of intrinsic disorder, where 

electron density is missing. 

4.3. Gene Ontology 

In prior work on Metazoan protein alignments, Ahrens et al. [9] proposed that 

disordered-structured sites may be involved in the kinds of disorder-to-order transitions 

commonly associated with molecular recognition features (MoRFs), wherein the ordered 

state often adopts secondary structure upon binding to another protein molecule [50,51]. 

Similar disorder-to-order transitions are important in many nucleic acid binding proteins, 

especially RNA-binding proteins [52,53,54]. The disorder propensity of these binding 

regions is thought to confer high specificity, while still allowing binding partners to 

easily dissociate when necessary [52]. 

Based on protein class GO terms in our four reference taxa, a large percentage of 

sequences containing conserved disordered-structured sites are in fact nucleic acid 

binding proteins (see Appendix 2). Interestingly, a large number of hydrolase proteins 

also had conserved disordered-structured sites, and there is evidence that some hydrolases 

rely directly on intrinsic disorder to function. Ubiquitin C-terminal hydrolase activity, for 

example, is mediated by a disorder-to-order transition within its active site [55,56]. 
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The low amino acid replacement rates we observed in disordered-structured sites 

suggest selective constraint, likely resulting from the functional importance of transient 

secondary structure within regions of many eukaryotic proteins [51,52,53,54]. Hence, the 

joint output of intrinsic disorder and secondary structure predictors in a conserved 

evolutionary context (i.e., consistent predictions across multiple related sequences) may 

be useful for identifying protein sites where transitions between disorder and secondary 

structure are required for protein function. 

4.4. Intrinsic Disorder in Alveolates 

Other researchers have observed that the proteomes of many Alveolate Protists, 

particularly multi-host pathogens in the clade Apicomplexa, possess a high abundance of 

proteins with long disordered regions [56,57] and a high fraction of disordered residues in 

general [46]. Mohan et al. [57] predicted long disordered regions (>30 residues) in most 

of the protein sequences from the Apicomplexan pathogens Toxoplasma gondii (87.8–

89.8%) as well as members of the genus Plasmodium (75.3–82.5%). Pancsa and Tompa 

[46] showed that the overall percentage of disordered sites within T. gondii proteins was 

higher than any of the other 193 Eukaryotes they examined, and the disorder percentages 

of Plasmodium spp. proteins were more similar to those of multicellular Eukaryotes 

(Metazoans, Plants, and Fungi) than other Alveolates. Among the alignment sites 

containing no gap characters, we observed percentages of conserved disordered sites 

(6.4–11.6%) that were markedly lower than the overall percentages reported in previous 

studies [46,57]. Such a disparity is expected, though, since the total number of disordered 

sites in a given protein sequence exceeds the number of sites with conserved disorder 

across several related sequences [58]. 
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In the case of membrane and secreted proteins, intrinsic disorder in Apicomplexan 

parasites has a potential dual function: (i) the reduction of antibody binding affinity and 

(ii) the facilitation of promiscuous attachment to various host cells [59]. Many potential 

vaccine targets in Plasmodium are intrinsically disordered [60], and the erythrocyte 

binding-like proteins in P. falciparum appear to lack transient secondary structures even 

when recognizing and binding to cell surface receptors during host invasion [61]. Our 

results indicate that disordered sites in Alveolate proteins also experience higher amino 

acid replacement rates than other Eukaryotes, and disordered-structured sites in 

Alveolates are less conserved at the sequence level than in Metazoans, Plants, or 

Saccharomycetes (Figure 2, Figure 3 and Figure 4). However, recent work has shown that 

increased rates of protein sequence evolution in disordered regions can result from high 

positive selection (i.e., an increase in non-synonymous nucleotide substitutions) rather 

than relaxed purifying selection [62], so the relatively high replacement rates we 

observed in Alveolate disordered sites may actually be driven by increased pressure for 

innovation to avoid host recognition and/or to make novel host interactions. Ultimately, 

these results suggest that developing effective drugs and vaccines targeting 

Apicomplexan parasites could prove especially difficult, and require a deeper 

understanding of drug interactions within disordered protein regions. 

4.5. Statistical Analysis 

Across four large-scale molecular datasets, spanning four divergent eukaryotic 

lineages (Animals, Plants, Fungi, and Protists), we found mostly consistent, statistically 

significant relationships between three structural/functional factors and site-specific rates 

of amino acid replacement. By using the equal-probability model from Jukes and Cantor 
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[18] to evaluate rate scores, our results merit a natural, intuitive interpretation—

intrinsically disordered sequence sites are more variable than ordered sites, sites in 

random coils are more variable than sites within secondary structures, and sites in inter-

domain linkers are more variable than sites in functional domains. Furthermore, factorial 

ANOVA indicated widespread confounding interactions among all pairwise 

combinations of the three factors we tested, as well as significant higher-order 

interactions beyond what can be observed in trace plots (Figure 3). In fact, the least 

significant (i.e., highest) p-value observed in any factorial ANOVA corresponded to a 

main effect term (intrinsic disorder in Plants: p = 4.13 × 10−6), while all other terms 

across all analyses were highly significant (p < 2.2 × 10−16). Nonetheless, the first-order 

interactions appear to follow largely similar patterns in each dataset. One notable 

exception is the disorder x structure interaction in Alveolates which, although statistically 

significant, lacks the sign reversal observed in the other three lineages (i.e., disordered-

structured sites are more variable on average than ordered, structured sites). Additionally, 

the disorder x domain interaction seen in Plant sites, where disordered sites within 

domains tend to be more conserved than ordered domain sites, is less pronounced (but 

still significant) in the other datasets. 

Importantly, the statistical significance of these results (indicated by p-values) is 

consistently high, but the predictive power of the associated factorial models (indicated 

by correlation coefficients) is consistently low. The residual variance contributing to low 

model fit can also be seen in the large amount of overlap between the opposing 

distributions of rate scores (order vs. disorder, structure vs. coil, and domain vs. linker) in 

every dataset (Figure 2). Hence, it is appropriate to conclude based on our results that 

https://www.mdpi.com/2073-4425/9/11/553/htm#B18-genes-09-00553
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ordered sites, for instance, tend to evolve more slowly than disordered sites, but the 

likelihood that a particular conserved site is ordered is not necessarily high, and said 

likelihood clearly depends on additional site-specific factors as well (i.e., secondary 

structure and functional domain involvement). Future large-scale analyses incorporating 

additional structural factors (e.g., relative solvent exposure) may detect stronger 

statistical interactions with higher correlations to amino acid replacement rates. 

The negative correlation between alignment disorder content (the fraction of 

disordered sites in an aligned sequence cluster) and the mean relative rate scores of 

disordered-structured sites within a given alignment suggests that latent structural factors 

at the sequence level also govern observed rates of amino acid replacement (Figure 4). 

Such effects are likely nontrivial, considering the unbalanced nature of the site-wise 

factors discussed here. The prevalence of disordered-structured sites is generally low 

compared to ordered, structured sites or disordered random coils, and many protein 

sequences essentially lack intrinsic disorder entirely. Joint analysis of several sequence-

level and site-level factors (e.g., via hierarchical linear modelling) may provide deeper 

insight into the forces driving amino acid replacement. 

The complex network of structural and functional properties governing protein 

(and therefore gene) sequence evolution is a topic of active research [2,63]. To this end, 

previous work on intrinsic disorder has uncovered similar trends regarding protein 

sequence conservation [8,9], and much stronger correlations between other protein 

structural properties and sequence evolutionary rate (e.g., contact number and packing 

density) have also been observed [2,3,4,64]. Nonetheless, to our knowledge, the results 

described here represent the most comprehensive evidence for widespread, large-scale 
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structural and functional drivers of eukaryotic sequence evolution to date (Appendix 

1 [65,66]). Furthermore, they reinforce the notion that several factors interact, often in 

subtle ways, to influence molecular evolution. 
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Tables 

 

Table 1: Dataset-specific information for nonparametric analysis. 

 

Dataset Metazoans Plants Saccharomycetes Alveolates 

Clusters 6938 8266 4494 2697 
Sequences 130632 198081 122132 44060 
Total Alignment Sites 4677490 4703587 2990109 1640297 
Gap-free sites 3217225 2851827 1954761 1179122 
Ordered Sites 1819695 1706275 1223656 801629 
Disordered Sites 373639 234853 125047 113892 
Structured sites 1062380 1014001 722444 417702 
Random coil sites 1314563 1064725 670357 424795 
Domain sites 1436746 1175745 936813 422813 
Linker sites 1368702 1289830 817371 657080 
Median Order Rate −0.599 −0.625 −0.6188 −0.605 
Median Disorder Rate −0.3155 −0.2916 −0.3271 0.1426 
Median Structure Rate −0.5787 −0.6262 −0.5935 −0.605 
Median Coil Rate −0.4682 −0.5013 −0.5603 −0.4542 
Median Domain Rate −0.62345 −0.6679 −0.6353 −0.629 
Median Linker Rate −0.3698 −0.3718 −0.3902 −0.3569 
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Figure Captions 

 

Figure 1. Scatterplots showing minimum pairwise sequence identity (fraction of matching 

aligned characters) and minimum alignment coverage (seq. length/alignment length) for 

all Metazoan, Plant, Saccharomycete, and Alveolate clusters used in analyses. 

 

Figure 2. Split violin plots showing differences in normalized site-specific rates of amino 

acid replacement in: (a) ordered vs. disordered sites; (b) structured vs. coil sites; and (c) 

domain vs. linker sites within four eukaryotic datasets. Middle dashed lines indicate 

medians and outer dashed lines indicate quartiles. 

 

Figure 3. Trace plots illustrating first-order interactions among all site-wise binary factor 

levels: order (Order) and intrinsic disorder (Disorder), secondary structures (Structure) 

and random coils (Coil), functional domains (Domain) and interdomain linkers (Linker). 

Trace factors (solid vs. dashed lines) are indicated to the right of each row of plots. 

Vertical columns of plots correspond to each of the four datasets (indicated) above. Y-

axes represent mean normalized evolutionary rates. 

 

Figure 4. Scatterplot showing the disorder content of clusters (fraction of disordered 

alignment sites) against the mean rate of sequence evolution among sites predicted to be 

both disordered and structured. Only sequence clusters containing disordered/structured 

sites are shown. Trend lines were constructed for each of the four eukaryotic datasets 

using Loess regression. Note that the Alveolate trend line (dashed) is consistently higher 

than other lineages. 
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Appendix Captions 

Appendix 1. Dataset information: Cladograms representing evolutionary 

relationships among the Metazoans, Plants, Saccharomycetes and Alveolates used 

in this study. Stacked bars (drawn to scale) indicate the fractions of protein 

sequences from each reference proteome that fall within sequence clusters of 

various sizes (see individual legends) after clustering analysis. Total proteome 

sizes (number of sequences in each proteome) are indicated to the right of each 

stacked bar. Cladograms were drawn according to the NCBI Common Taxonomy 

Tree [65,66]. 

 

Appendix 2. GO Term results: Gene ontology results obtained from PantherDB 

[32,33] for protein sequences containing conserved disordered-structured sites. 

 

Appendix 3. Nonparametric post hoc multiple comparison results. 
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Appendix 2 

Molecular Function 

# GO Term Count 
% 
Proteins 

% 
Terms 

Homo sapiens 

1 binding (GO:0005488) 1127 34.40% 53.30% 

2 catalytic activity (GO:0003824) 652 19.90% 30.80% 

3 structural molecule activity (GO:0005198) 101 3.10% 4.80% 

4 transporter activity (GO:0005215) 97 3.00% 4.60% 

5 signal transducer activity (GO:0004871) 56 1.70% 2.60% 

6 receptor activity (GO:0004872) 55 1.70% 2.60% 

7 translation regulator activity (GO:0045182) 25 0.80% 1.20% 

8 channel regulator activity (GO:0016247) 2 0.10% 0.10% 

Arabidopsis thaliana 

1 binding (GO:0005488) 574 22.20% 43.00% 

2 catalytic activity (GO:0003824) 527 20.40% 39.50% 

3 structural molecule activity (GO:0005198) 114 4.40% 8.50% 

4 transporter activity (GO:0005215) 44 1.70% 3.30% 

5 translation regulator activity (GO:0045182) 38 1.50% 2.80% 

6 receptor activity (GO:0004872) 15 0.60% 1.10% 

7 signal transducer activity (GO:0004871) 12 0.50% 0.90% 

8 antioxidant activity (GO:0016209) 11 0.40% 0.80% 

Saccharomyces cerevisiae 

1 binding (GO:0005488) 274 31.50% 40.50% 

2 catalytic activity (GO:0003824) 268 30.80% 39.60% 

3 structural molecule activity (GO:0005198) 78 9.00% 11.50% 

4 transporter activity (GO:0005215) 26 3.00% 3.80% 

5 translation regulator activity (GO:0045182) 23 2.60% 3.40% 

6 signal transducer activity (GO:0004871) 4 0.50% 0.60% 
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7 receptor activity (GO:0004872) 3 0.30% 0.40% 

8 antioxidant activity (GO:0016209) 1 0.10% 0.10% 

Plasmodium falciparum 

1 binding (GO:0005488) 157 29.50% 41.80% 

2 catalytic activity (GO:0003824) 146 27.40% 38.80% 

3 structural molecule activity (GO:0005198) 36 6.80% 9.60% 

4 transporter activity (GO:0005215) 18 3.40% 4.80% 

5 translation regulator activity (GO:0045182) 17 3.20% 4.50% 

6 receptor activity (GO:0004872) 1 0.20% 0.30% 

7 antioxidant activity (GO:0016209) 1 0.20% 0.30% 

Biological Process 

# GO Term Count 
% 
Proteins 

% 
Terms 

Homo sapiens 

1 cellular process (GO:0009987) 1533 46.80% 30.10% 

2 metabolic process (GO:0008152) 1218 37.20% 23.90% 

3 cellular component organization or biogenesis (GO:0071840) 529 16.20% 10.40% 

4 biological regulation (GO:0065007) 369 11.30% 7.20% 

5 developmental process (GO:0032502) 362 11.10% 7.10% 

6 localization (GO:0051179) 329 10.00% 6.50% 

7 response to stimulus (GO:0050896) 314 9.60% 6.20% 

8 multicellular organismal process (GO:0032501) 244 7.50% 4.80% 

9 immune system process (GO:0002376) 64 2.00% 1.30% 

10 biological adhesion (GO:0022610) 54 1.60% 1.10% 

11 locomotion (GO:0040011) 42 1.30% 0.80% 

12 reproduction (GO:0000003) 31 0.90% 0.60% 

13 rhythmic process (GO:0048511) 5 0.20% 0.10% 

14 growth (GO:0040007) 4 0.10% 0.10% 

Arabidopsis thaliana 

1 metabolic process (GO:0008152) 903 34.90% 35.30% 
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2 cellular process (GO:0009987) 894 34.50% 34.90% 

3 cellular component organization or biogenesis (GO:0071840) 294 11.40% 11.50% 

4 localization (GO:0051179) 164 6.30% 6.40% 

5 response to stimulus (GO:0050896) 134 5.20% 5.20% 

6 biological regulation (GO:0065007) 104 4.00% 4.10% 

7 developmental process (GO:0032502) 32 1.20% 1.30% 

8 reproduction (GO:0000003) 20 0.80% 0.80% 

9 multicellular organismal process (GO:0032501) 11 0.40% 0.40% 

10 rhythmic process (GO:0048511) 2 0.10% 0.10% 

Saccharomyces cerevisiae 

1 cellular process (GO:0009987) 478 54.90% 35.40% 

2 metabolic process (GO:0008152) 434 49.80% 32.10% 

3 cellular component organization or biogenesis (GO:0071840) 226 25.90% 16.70% 

4 localization (GO:0051179) 95 10.90% 7.00% 

5 response to stimulus (GO:0050896) 59 6.80% 4.40% 

6 biological regulation (GO:0065007) 55 6.30% 4.10% 

7 reproduction (GO:0000003) 4 0.50% 0.30% 

8 developmental process (GO:0032502) 1 0.10% 0.10% 

Plasmodium falciparum 

1 cellular process (GO:0009987) 275 51.60% 37.60% 

2 metabolic process (GO:0008152) 251 47.10% 34.30% 

3 cellular component organization or biogenesis (GO:0071840) 103 19.30% 14.10% 

4 localization (GO:0051179) 54 10.10% 7.40% 

5 response to stimulus (GO:0050896) 24 4.50% 3.30% 

6 biological regulation (GO:0065007) 17 3.20% 2.30% 

7 reproduction (GO:0000003) 4 0.80% 0.50% 

8 locomotion (GO:0040011) 2 0.40% 0.30% 

9 developmental process (GO:0032502) 1 0.20% 0.10% 

Cellular Component 
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# GO Term Count 
% 
Proteins 

% 
Terms 

Homo sapiens 

1 cell part (GO:0044464) 1248 38.10% 38.90% 

2 organelle (GO:0043226) 976 29.80% 30.40% 

3 macromolecular complex (GO:0032991) 553 16.90% 17.20% 

4 membrane (GO:0016020) 295 9.00% 9.20% 

5 extracellular region (GO:0005576) 60 1.80% 1.90% 

6 cell junction (GO:0030054) 31 0.90% 1.00% 

7 synapse (GO:0045202) 29 0.90% 0.90% 

8 extracellular matrix (GO:0031012) 16 0.50% 0.50% 

Arabidopsis thaliana 

1 cell part (GO:0044464) 936 36.20% 42.00% 

2 organelle (GO:0043226) 712 27.50% 32.00% 

3 macromolecular complex (GO:0032991) 450 17.40% 20.20% 

4 membrane (GO:0016020) 118 4.60% 5.30% 

5 extracellular region (GO:0005576) 9 0.30% 0.40% 

6 nucleoid (GO:0009295) 1 0.00% 0.00% 

7 cell junction (GO:0030054) 1 0.00% 0.00% 

Saccharomyces cerevisiae 

1 cell part (GO:0044464) 484 55.60% 40.20% 

2 organelle (GO:0043226) 365 41.90% 30.30% 

3 macromolecular complex (GO:0032991) 294 33.80% 24.40% 

4 membrane (GO:0016020) 61 7.00% 5.10% 

5 extracellular region (GO:0005576) 1 0.10% 0.10% 

Plasmodium falciparum 

1 cell part (GO:0044464) 243 45.60% 39.60% 

2 organelle (GO:0043226) 189 35.50% 30.80% 

3 macromolecular complex (GO:0032991) 152 28.50% 24.80% 

4 membrane (GO:0016020) 27 5.10% 4.40% 
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5 extracellular region (GO:0005576) 3 0.60% 0.50% 

Protein Class 

# GO Term Count 
% 
Proteins 

% 
Terms 

Homo sapiens 

1 nucleic acid binding (PC00171) 529 16.20% 24.30% 

2 transcription factor (PC00218) 367 11.20% 16.90% 

3 hydrolase (PC00121) 209 6.40% 9.60% 

4 enzyme modulator (PC00095) 178 5.40% 8.20% 

5 cytoskeletal protein (PC00085) 129 3.90% 5.90% 

6 transferase (PC00220) 122 3.70% 5.60% 

7 membrane traffic protein (PC00150) 87 2.70% 4.00% 

8 signaling molecule (PC00207) 79 2.40% 3.60% 

9 transporter (PC00227) 55 1.70% 2.50% 

10 receptor (PC00197) 53 1.60% 2.40% 

11 ligase (PC00142) 47 1.40% 2.20% 

12 transfer/carrier protein (PC00219) 45 1.40% 2.10% 

13 calcium-binding protein (PC00060) 40 1.20% 1.80% 

14 chaperone (PC00072) 31 0.90% 1.40% 

15 oxidoreductase (PC00176) 29 0.90% 1.30% 

16 cell adhesion molecule (PC00069) 29 0.90% 1.30% 

17 transmembrane receptor regulatory/adaptor protein (PC00226) 27 0.80% 1.20% 

18 defense/immunity protein (PC00090) 26 0.80% 1.20% 

19 cell junction protein (PC00070) 26 0.80% 1.20% 

20 extracellular matrix protein (PC00102) 22 0.70% 1.00% 

21 structural protein (PC00211) 16 0.50% 0.70% 

22 isomerase (PC00135) 15 0.50% 0.70% 

23 lyase (PC00144) 11 0.30% 0.50% 

24 viral protein (PC00237) 1 0.00% 0.00% 

25 surfactant (PC00212) 1 0.00% 0.00% 
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Arabidopsis thaliana 

1 nucleic acid binding (PC00171) 403 15.60% 32.10% 

2 hydrolase (PC00121) 175 6.80% 13.90% 

3 transferase (PC00220) 112 4.30% 8.90% 

4 transcription factor (PC00218) 97 3.70% 7.70% 

5 oxidoreductase (PC00176) 64 2.50% 5.10% 

6 enzyme modulator (PC00095) 63 2.40% 5.00% 

7 cytoskeletal protein (PC00085) 56 2.20% 4.50% 

8 transporter (PC00227) 45 1.70% 3.60% 

9 membrane traffic protein (PC00150) 41 1.60% 3.30% 

10 lyase (PC00144) 39 1.50% 3.10% 

11 ligase (PC00142) 36 1.40% 2.90% 

12 isomerase (PC00135) 30 1.20% 2.40% 

13 chaperone (PC00072) 22 0.90% 1.80% 

14 transfer/carrier protein (PC00219) 19 0.70% 1.50% 

15 calcium-binding protein (PC00060) 17 0.70% 1.40% 

16 defense/immunity protein (PC00090) 7 0.30% 0.60% 

17 signaling molecule (PC00207) 6 0.20% 0.50% 

18 structural protein (PC00211) 6 0.20% 0.50% 

19 receptor (PC00197) 6 0.20% 0.50% 

20 extracellular matrix protein (PC00102) 3 0.10% 0.20% 

21 transmembrane receptor regulatory/adaptor protein (PC00226) 3 0.10% 0.20% 

22 cell adhesion molecule (PC00069) 3 0.10% 0.20% 

23 storage protein (PC00210) 2 0.10% 0.20% 

Saccharomyces cerevisiae 

1 nucleic acid binding (PC00171) 227 26.10% 37.50% 

2 hydrolase (PC00121) 68 7.80% 11.20% 

3 transferase (PC00220) 50 5.70% 8.30% 

4 enzyme modulator (PC00095) 44 5.10% 7.30% 

5 transcription factor (PC00218) 39 4.50% 6.40% 
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6 transporter (PC00227) 25 2.90% 4.10% 

7 ligase (PC00142) 23 2.60% 3.80% 

8 membrane traffic protein (PC00150) 22 2.50% 3.60% 

9 cytoskeletal protein (PC00085) 20 2.30% 3.30% 

10 oxidoreductase (PC00176) 20 2.30% 3.30% 

11 lyase (PC00144) 14 1.60% 2.30% 

12 transfer/carrier protein (PC00219) 13 1.50% 2.10% 

13 chaperone (PC00072) 10 1.10% 1.70% 

14 calcium-binding protein (PC00060) 7 0.80% 1.20% 

15 isomerase (PC00135) 7 0.80% 1.20% 

16 signaling molecule (PC00207) 5 0.60% 0.80% 

17 cell junction protein (PC00070) 4 0.50% 0.70% 

18 receptor (PC00197) 4 0.50% 0.70% 

19 defense/immunity protein (PC00090) 1 0.10% 0.20% 

20 structural protein (PC00211) 1 0.10% 0.20% 

21 storage protein (PC00210) 1 0.10% 0.20% 

Plasmodium falciparum 

1 nucleic acid binding (PC00171) 143 26.80% 37.40% 

2 hydrolase (PC00121) 48 9.00% 12.60% 

3 enzyme modulator (PC00095) 34 6.40% 8.90% 

4 transferase (PC00220) 28 5.30% 7.30% 

5 cytoskeletal protein (PC00085) 18 3.40% 4.70% 

6 ligase (PC00142) 17 3.20% 4.50% 

7 membrane traffic protein (PC00150) 15 2.80% 3.90% 

8 transporter (PC00227) 14 2.60% 3.70% 

9 transcription factor (PC00218) 13 2.40% 3.40% 

10 calcium-binding protein (PC00060) 8 1.50% 2.10% 

11 transfer/carrier protein (PC00219) 8 1.50% 2.10% 

12 chaperone (PC00072) 8 1.50% 2.10% 

13 isomerase (PC00135) 8 1.50% 2.10% 
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14 oxidoreductase (PC00176) 5 0.90% 1.30% 

15 lyase (PC00144) 3 0.60% 0.80% 

16 extracellular matrix protein (PC00102) 2 0.40% 0.50% 

17 signaling molecule (PC00207) 2 0.40% 0.50% 

18 cell junction protein (PC00070) 2 0.40% 0.50% 

19 structural protein (PC00211) 2 0.40% 0.50% 

20 receptor (PC00197) 2 0.40% 0.50% 

21 transmembrane receptor regulatory/adaptor protein (PC00226) 1 0.20% 0.30% 

22 defense/immunity protein (PC00090) 1 0.20% 0.30% 

Pathway 

# GO Term Count 
% 
Proteins 

% 
Terms 

Homo sapiens 

1 Wnt signaling pathway (P00057) 75 2.30% 6.90% 

2 Gonadotropin-releasing hormone receptor pathway (P06664) 64 2.00% 5.90% 

3 Integrin signalling pathway (P00034) 40 1.20% 3.70% 

4 PDGF signaling pathway (P00047) 38 1.20% 3.50% 

5 CCKR signaling map (P06959) 37 1.10% 3.40% 

6 Inflammation mediated by chemokine and cytokine signaling pathway (P00031) 36 1.10% 3.30% 

7 Angiogenesis (P00005) 35 1.10% 3.20% 

8 Alzheimer disease-presenilin pathway (P00004) 30 0.90% 2.80% 

9 Cadherin signaling pathway (P00012) 30 0.90% 2.80% 

10 Huntington disease (P00029) 26 0.80% 2.40% 

11 FGF signaling pathway (P00021) 25 0.80% 2.30% 

12 EGF receptor signaling pathway (P00018) 25 0.80% 2.30% 

13 Apoptosis signaling pathway (P00006) 23 0.70% 2.10% 

14 Transcription regulation by bZIP transcription factor (P00055) 20 0.60% 1.90% 

15 TGF-beta signaling pathway (P00052) 20 0.60% 1.90% 

16 Heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha mediated pathway (P00027) 18 0.50% 1.70% 

17 T cell activation (P00053) 17 0.50% 1.60% 
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18 Cytoskeletal regulation by Rho GTPase (P00016) 17 0.50% 1.60% 

19 p53 pathway (P00059) 16 0.50% 1.50% 

20 Parkinson disease (P00049) 16 0.50% 1.50% 

21 General transcription regulation (P00023) 15 0.50% 1.40% 

22 Endothelin signaling pathway (P00019) 15 0.50% 1.40% 

23 B cell activation (P00010) 15 0.50% 1.40% 

24 VEGF signaling pathway (P00056) 14 0.40% 1.30% 

25 Interleukin signaling pathway (P00036) 14 0.40% 1.30% 

26 Alzheimer disease-amyloid secretase pathway (P00003) 13 0.40% 1.20% 

27 p53 pathway feedback loops 2 (P04398) 13 0.40% 1.20% 

28 Heterotrimeric G-protein signaling pathway-Gi alpha and Gs alpha mediated pathway (P00026) 13 0.40% 1.20% 

29 Toll receptor signaling pathway (P00054) 12 0.40% 1.10% 

30 Nicotinic acetylcholine receptor signaling pathway (P00044) 12 0.40% 1.10% 

31 Ras Pathway (P04393) 11 0.30% 1.00% 

32 Muscarinic acetylcholine receptor 1 and 3 signaling pathway (P00042) 10 0.30% 0.90% 

33 Insulin/IGF pathway-protein kinase B signaling cascade (P00033) 10 0.30% 0.90% 

34 Axon guidance mediated by netrin (P00009) 9 0.30% 0.80% 

35 Ubiquitin proteasome pathway (P00060) 9 0.30% 0.80% 

36 Hypoxia response via HIF activation (P00030) 9 0.30% 0.80% 

37 5HT2 type receptor mediated signaling pathway (P04374) 9 0.30% 0.80% 

38 Oxidative stress response (P00046) 8 0.20% 0.70% 

39 Notch signaling pathway (P00045) 8 0.20% 0.70% 

40 Thyrotropin-releasing hormone receptor signaling pathway (P04394) 8 0.20% 0.70% 

41 p38 MAPK pathway (P05918) 8 0.20% 0.70% 

42 DNA replication (P00017) 8 0.20% 0.70% 

43 Synaptic vesicle trafficking (P05734) 7 0.20% 0.60% 

44 Ionotropic glutamate receptor pathway (P00037) 7 0.20% 0.60% 

45 Interferon-gamma signaling pathway (P00035) 7 0.20% 0.60% 

46 Oxytocin receptor mediated signaling pathway (P04391) 7 0.20% 0.60% 

47 Histamine H1 receptor mediated signaling pathway (P04385) 7 0.20% 0.60% 
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48 PI3 kinase pathway (P00048) 6 0.20% 0.60% 

49 Hedgehog signaling pathway (P00025) 6 0.20% 0.60% 

50 Angiotensin II-stimulated signaling through G proteins and beta-arrestin (P05911) 6 0.20% 0.60% 

51 Circadian clock system (P00015) 6 0.20% 0.60% 

52 Cell cycle (P00013) 6 0.20% 0.60% 

53 Axon guidance mediated by Slit/Robo (P00008) 5 0.20% 0.50% 

54 Alpha adrenergic receptor signaling pathway (P00002) 5 0.20% 0.50% 

55 mRNA splicing (P00058) 5 0.20% 0.50% 

56 GABA-B receptor II signaling (P05731) 5 0.20% 0.50% 

57 Insulin/IGF pathway-mitogen activated protein kinase kinase/MAP kinase cascade (P00032) 5 0.20% 0.50% 

58 Nicotine pharmacodynamics pathway (P06587) 5 0.20% 0.50% 

59 Blood coagulation (P00011) 5 0.20% 0.50% 

60 Beta2 adrenergic receptor signaling pathway (P04378) 5 0.20% 0.50% 

61 Beta1 adrenergic receptor signaling pathway (P04377) 5 0.20% 0.50% 

62 TCA cycle (P00051) 4 0.10% 0.40% 

63 De novo pyrimidine ribonucleotides biosythesis (P02740) 4 0.10% 0.40% 

64 Metabotropic glutamate receptor group II pathway (P00040) 4 0.10% 0.40% 

65 Metabotropic glutamate receptor group III pathway (P00039) 4 0.10% 0.40% 

66 Vasopressin synthesis (P04395) 4 0.10% 0.40% 

67 P53 pathway feedback loops 1 (P04392) 4 0.10% 0.40% 

68 Opioid proopiomelanocortin pathway (P05917) 4 0.10% 0.40% 

69 Opioid proenkephalin pathway (P05915) 4 0.10% 0.40% 

70 Dopamine receptor mediated signaling pathway (P05912) 4 0.10% 0.40% 

71 Adrenaline and noradrenaline biosynthesis (P00001) 3 0.10% 0.30% 

72 Heme biosynthesis (P02746) 3 0.10% 0.30% 

73 Plasminogen activating cascade (P00050) 3 0.10% 0.30% 

74 Muscarinic acetylcholine receptor 2 and 4 signaling pathway (P00043) 3 0.10% 0.30% 

75 Metabotropic glutamate receptor group I pathway (P00041) 3 0.10% 0.30% 

76 Endogenous cannabinoid signaling (P05730) 3 0.10% 0.30% 

77 JAK/STAT signaling pathway (P00038) 3 0.10% 0.30% 
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78 p53 pathway by glucose deprivation (P04397) 3 0.10% 0.30% 

79 General transcription by RNA polymerase I (P00022) 3 0.10% 0.30% 

80 Pyruvate metabolism (P02772) 3 0.10% 0.30% 

81 Cortocotropin releasing factor receptor signaling pathway (P04380) 3 0.10% 0.30% 

82 5HT4 type receptor mediated signaling pathway (P04376) 3 0.10% 0.30% 

83 5HT3 type receptor mediated signaling pathway (P04375) 3 0.10% 0.30% 

84 5HT1 type receptor mediated signaling pathway (P04373) 3 0.10% 0.30% 

85 Axon guidance mediated by semaphorins (P00007) 2 0.10% 0.20% 

86 Methylmalonyl pathway (P02755) 2 0.10% 0.20% 

87 Isoleucine biosynthesis (P02748) 2 0.10% 0.20% 

88 De novo purine biosynthesis (P02738) 2 0.10% 0.20% 

89 ATP synthesis (P02721) 2 0.10% 0.20% 

90 Vitamin D metabolism and pathway (P04396) 2 0.10% 0.20% 

91 Glycolysis (P00024) 2 0.10% 0.20% 

92 Succinate to proprionate conversion (P02777) 2 0.10% 0.20% 

93 FAS signaling pathway (P00020) 2 0.10% 0.20% 

94 5-Hydroxytryptamine degredation (P04372) 2 0.10% 0.20% 

95 SCW signaling pathway (P06216) 1 0.00% 0.10% 

96 GBB signaling pathway (P06214) 1 0.00% 0.10% 

97 DPP signaling pathway (P06213) 1 0.00% 0.10% 

98 DPP-SCW signaling pathway (P06212) 1 0.00% 0.10% 

99 BMP/activin signaling pathway-drosophila (P06211) 1 0.00% 0.10% 

100 Pyridoxal-5-phosphate biosynthesis (P02759) 1 0.00% 0.10% 

101 Mannose metabolism (P02752) 1 0.00% 0.10% 

102 Lipoate_biosynthesis (P02750) 1 0.00% 0.10% 

103 Fructose galactose metabolism (P02744) 1 0.00% 0.10% 

104 De novo pyrimidine deoxyribonucleotide biosynthesis (P02739) 1 0.00% 0.10% 

105 Cysteine biosynthesis (P02737) 1 0.00% 0.10% 

106 Arginine biosynthesis (P02728) 1 0.00% 0.10% 

107 Vitamin B6 metabolism (P02787) 1 0.00% 0.10% 
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108 Valine biosynthesis (P02785) 1 0.00% 0.10% 

109 Anandamide degradation (P05728) 1 0.00% 0.10% 

110 Opioid prodynorphin pathway (P05916) 1 0.00% 0.10% 

111 Salvage pyrimidine ribonucleotides (P02775) 1 0.00% 0.10% 

112 Enkephalin release (P05913) 1 0.00% 0.10% 

113 Pyridoxal phosphate salvage pathway (P02770) 1 0.00% 0.10% 

114 Proline biosynthesis (P02768) 1 0.00% 0.10% 

115 Beta3 adrenergic receptor signaling pathway (P04379) 1 0.00% 0.10% 

116 Pentose phosphate pathway (P02762) 1 0.00% 0.10% 

Arabidopsis thaliana 

1 General transcription regulation (P00023) 17 0.70% 5.50% 

2 Transcription regulation by bZIP transcription factor (P00055) 16 0.60% 5.20% 

3 Ubiquitin proteasome pathway (P00060) 10 0.40% 3.30% 

4 Huntington disease (P00029) 9 0.30% 2.90% 

5 PDGF signaling pathway (P00047) 8 0.30% 2.60% 

6 DNA replication (P00017) 8 0.30% 2.60% 

7 Wnt signaling pathway (P00057) 7 0.30% 2.30% 

8 Parkinson disease (P00049) 7 0.30% 2.30% 

9 De novo purine biosynthesis (P02738) 7 0.30% 2.30% 

10 Nicotinic acetylcholine receptor signaling pathway (P00044) 7 0.30% 2.30% 

11 Ras Pathway (P04393) 7 0.30% 2.30% 

12 EGF receptor signaling pathway (P00018) 7 0.30% 2.30% 

13 Adrenaline and noradrenaline biosynthesis (P00001) 6 0.20% 2.00% 

14 Histidine biosynthesis (P02747) 6 0.20% 2.00% 

15 Heme biosynthesis (P02746) 6 0.20% 2.00% 

16 Muscarinic acetylcholine receptor 2 and 4 signaling pathway (P00043) 6 0.20% 2.00% 

17 Insulin/IGF pathway-mitogen activated protein kinase kinase/MAP kinase cascade (P00032) 6 0.20% 2.00% 

18 Gonadotropin-releasing hormone receptor pathway (P06664) 5 0.20% 1.60% 

19 Interleukin signaling pathway (P00036) 5 0.20% 1.60% 

20 Inflammation mediated by chemokine and cytokine signaling pathway (P00031) 5 0.20% 1.60% 
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21 TCA cycle (P00051) 4 0.20% 1.30% 

22 Oxidative stress response (P00046) 4 0.20% 1.30% 

23 Ionotropic glutamate receptor pathway (P00037) 4 0.20% 1.30% 

24 Tryptophan biosynthesis (P02783) 4 0.20% 1.30% 

25 FGF signaling pathway (P00021) 4 0.20% 1.30% 

26 FAS signaling pathway (P00020) 4 0.20% 1.30% 

27 S-adenosylmethionine biosynthesis (P02773) 4 0.20% 1.30% 

28 p53 pathway (P00059) 3 0.10% 1.00% 

29 De novo pyrimidine ribonucleotides biosythesis (P02740) 3 0.10% 1.00% 

30 Muscarinic acetylcholine receptor 1 and 3 signaling pathway (P00042) 3 0.10% 1.00% 

31 Metabotropic glutamate receptor group II pathway (P00040) 3 0.10% 1.00% 

32 Arginine biosynthesis (P02728) 3 0.10% 1.00% 

33 Metabotropic glutamate receptor group III pathway (P00039) 3 0.10% 1.00% 

34 Integrin signalling pathway (P00034) 3 0.10% 1.00% 

35 Thyrotropin-releasing hormone receptor signaling pathway (P04394) 3 0.10% 1.00% 

36 Oxytocin receptor mediated signaling pathway (P04391) 3 0.10% 1.00% 

37 p38 MAPK pathway (P05918) 3 0.10% 1.00% 

38 Opioid proopiomelanocortin pathway (P05917) 3 0.10% 1.00% 

39 Opioid prodynorphin pathway (P05916) 3 0.10% 1.00% 

40 Opioid proenkephalin pathway (P05915) 3 0.10% 1.00% 

41 Dopamine receptor mediated signaling pathway (P05912) 3 0.10% 1.00% 

42 Pyruvate metabolism (P02772) 3 0.10% 1.00% 

43 Cortocotropin releasing factor receptor signaling pathway (P04380) 3 0.10% 1.00% 

44 Beta3 adrenergic receptor signaling pathway (P04379) 3 0.10% 1.00% 

45 Beta2 adrenergic receptor signaling pathway (P04378) 3 0.10% 1.00% 

46 Beta1 adrenergic receptor signaling pathway (P04377) 3 0.10% 1.00% 

47 5HT4 type receptor mediated signaling pathway (P04376) 3 0.10% 1.00% 

48 5HT3 type receptor mediated signaling pathway (P04375) 3 0.10% 1.00% 

49 5HT2 type receptor mediated signaling pathway (P04374) 3 0.10% 1.00% 

50 5HT1 type receptor mediated signaling pathway (P04373) 3 0.10% 1.00% 
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51 Apoptosis signaling pathway (P00006) 2 0.10% 0.70% 

52 O-antigen biosynthesis (P02757) 2 0.10% 0.70% 

53 Methionine biosynthesis (P02753) 2 0.10% 0.70% 

54 CCKR signaling map (P06959) 2 0.10% 0.70% 

55 Lysine biosynthesis (P02751) 2 0.10% 0.70% 

56 Fructose galactose metabolism (P02744) 2 0.10% 0.70% 

57 TGF-beta signaling pathway (P00052) 2 0.10% 0.70% 

58 PI3 kinase pathway (P00048) 2 0.10% 0.70% 

59 Adenine and hypoxanthine salvage pathway (P02723) 2 0.10% 0.70% 

60 Insulin/IGF pathway-protein kinase B signaling cascade (P00033) 2 0.10% 0.70% 

61 p53 pathway feedback loops 2 (P04398) 2 0.10% 0.70% 

62 Vitamin D metabolism and pathway (P04396) 2 0.10% 0.70% 

63 General transcription by RNA polymerase I (P00022) 2 0.10% 0.70% 

64 Pentose phosphate pathway (P02762) 2 0.10% 0.70% 

65 Pyridoxal-5-phosphate biosynthesis (P02759) 1 0.00% 0.30% 

66 N-acetylglucosamine metabolism (P02756) 1 0.00% 0.30% 

67 Methylmalonyl pathway (P02755) 1 0.00% 0.30% 

68 Isoleucine biosynthesis (P02748) 1 0.00% 0.30% 

69 mRNA splicing (P00058) 1 0.00% 0.30% 

70 Glutamine glutamate conversion (P02745) 1 0.00% 0.30% 

71 Notch signaling pathway (P00045) 1 0.00% 0.30% 

72 Chorismate biosynthesis (P02734) 1 0.00% 0.30% 

73 Biotin biosynthesis (P02731) 1 0.00% 0.30% 

74 Synaptic vesicle trafficking (P05734) 1 0.00% 0.30% 

75 Ascorbate degradation (P02729) 1 0.00% 0.30% 

76 Allantoin degradation (P02725) 1 0.00% 0.30% 

77 Interferon-gamma signaling pathway (P00035) 1 0.00% 0.30% 

78 Vitamin B6 metabolism (P02787) 1 0.00% 0.30% 

79 Valine biosynthesis (P02785) 1 0.00% 0.30% 

80 Hypoxia response via HIF activation (P00030) 1 0.00% 0.30% 
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81 Hedgehog signaling pathway (P00025) 1 0.00% 0.30% 

82 Succinate to proprionate conversion (P02777) 1 0.00% 0.30% 

83 Serine glycine biosynthesis (P02776) 1 0.00% 0.30% 

84 Salvage pyrimidine ribonucleotides (P02775) 1 0.00% 0.30% 

85 Pyrimidine Metabolism (P02771) 1 0.00% 0.30% 

86 Pyridoxal phosphate salvage pathway (P02770) 1 0.00% 0.30% 

87 Circadian clock system (P00015) 1 0.00% 0.30% 

88 Cell cycle (P00013) 1 0.00% 0.30% 

89 Phenylethylamine degradation (P02766) 1 0.00% 0.30% 

90 Peptidoglycan biosynthesis (P02763) 1 0.00% 0.30% 

91 5-Hydroxytryptamine degredation (P04372) 1 0.00% 0.30% 

Saccharomyces cerevisiae 

1 Transcription regulation by bZIP transcription factor (P00055) 16 1.80% 8.00% 

2 General transcription regulation (P00023) 15 1.70% 7.50% 

3 Parkinson disease (P00049) 14 1.60% 7.00% 

4 Ubiquitin proteasome pathway (P00060) 13 1.50% 6.50% 

5 Apoptosis signaling pathway (P00006) 10 1.10% 5.00% 

6 Wnt signaling pathway (P00057) 10 1.10% 5.00% 

7 Nicotinic acetylcholine receptor signaling pathway (P00044) 7 0.80% 3.50% 

8 Glycolysis (P00024) 6 0.70% 3.00% 

9 De novo purine biosynthesis (P02738) 5 0.60% 2.50% 

10 TCA cycle (P00051) 4 0.50% 2.00% 

11 EGF receptor signaling pathway (P00018) 4 0.50% 2.00% 

12 DNA replication (P00017) 4 0.50% 2.00% 

13 Isoleucine biosynthesis (P02748) 3 0.30% 1.50% 

14 Heme biosynthesis (P02746) 3 0.30% 1.50% 

15 PDGF signaling pathway (P00047) 3 0.30% 1.50% 

16 Muscarinic acetylcholine receptor 2 and 4 signaling pathway (P00043) 3 0.30% 1.50% 

17 Muscarinic acetylcholine receptor 1 and 3 signaling pathway (P00042) 3 0.30% 1.50% 

18 Metabotropic glutamate receptor group II pathway (P00040) 3 0.30% 1.50% 
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19 ATP synthesis (P02721) 3 0.30% 1.50% 

20 Valine biosynthesis (P02785) 3 0.30% 1.50% 

21 Huntington disease (P00029) 3 0.30% 1.50% 

22 FGF signaling pathway (P00021) 3 0.30% 1.50% 

23 CCKR signaling map (P06959) 2 0.20% 1.00% 

24 Leucine biosynthesis (P02749) 2 0.20% 1.00% 

25 Toll receptor signaling pathway (P00054) 2 0.20% 1.00% 

26 De novo pyrimidine ribonucleotides biosythesis (P02740) 2 0.20% 1.00% 

27 Arginine biosynthesis (P02728) 2 0.20% 1.00% 

28 Tryptophan biosynthesis (P02783) 2 0.20% 1.00% 

29 Endothelin signaling pathway (P00019) 2 0.20% 1.00% 

30 Cell cycle (P00013) 2 0.20% 1.00% 

31 B cell activation (P00010) 2 0.20% 1.00% 

32 Pentose phosphate pathway (P02762) 2 0.20% 1.00% 

33 SCW signaling pathway (P06216) 1 0.10% 0.50% 

34 GBB signaling pathway (P06214) 1 0.10% 0.50% 

35 DPP signaling pathway (P06213) 1 0.10% 0.50% 

36 DPP-SCW signaling pathway (P06212) 1 0.10% 0.50% 

37 BMP/activin signaling pathway-drosophila (P06211) 1 0.10% 0.50% 

38 Gonadotropin-releasing hormone receptor pathway (P06664) 1 0.10% 0.50% 

39 Pyridoxal-5-phosphate biosynthesis (P02759) 1 0.10% 0.50% 

40 Angiogenesis (P00005) 1 0.10% 0.50% 

41 Alzheimer disease-amyloid secretase pathway (P00003) 1 0.10% 0.50% 

42 Mannose metabolism (P02752) 1 0.10% 0.50% 

43 Lipoate_biosynthesis (P02750) 1 0.10% 0.50% 

44 p53 pathway (P00059) 1 0.10% 0.50% 

45 mRNA splicing (P00058) 1 0.10% 0.50% 

46 Histidine biosynthesis (P02747) 1 0.10% 0.50% 

47 VEGF signaling pathway (P00056) 1 0.10% 0.50% 

48 Tetrahydrofolate biosynthesis (P02742) 1 0.10% 0.50% 
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49 TGF-beta signaling pathway (P00052) 1 0.10% 0.50% 

50 Cysteine biosynthesis (P02737) 1 0.10% 0.50% 

51 Notch signaling pathway (P00045) 1 0.10% 0.50% 

52 Chorismate biosynthesis (P02734) 1 0.10% 0.50% 

53 Synaptic vesicle trafficking (P05734) 1 0.10% 0.50% 

54 Metabotropic glutamate receptor group III pathway (P00039) 1 0.10% 0.50% 

55 Ionotropic glutamate receptor pathway (P00037) 1 0.10% 0.50% 

56 Vitamin B6 metabolism (P02787) 1 0.10% 0.50% 

57 Inflammation mediated by chemokine and cytokine signaling pathway (P00031) 1 0.10% 0.50% 

58 Thyrotropin-releasing hormone receptor signaling pathway (P04394) 1 0.10% 0.50% 

59 Oxytocin receptor mediated signaling pathway (P04391) 1 0.10% 0.50% 

60 Heterotrimeric G-protein signaling pathway-Gi alpha and Gs alpha mediated pathway (P00026) 1 0.10% 0.50% 

61 Hedgehog signaling pathway (P00025) 1 0.10% 0.50% 

62 Sulfate assimilation (P02778) 1 0.10% 0.50% 

63 General transcription by RNA polymerase I (P00022) 1 0.10% 0.50% 

64 Enkephalin release (P05913) 1 0.10% 0.50% 

65 Dopamine receptor mediated signaling pathway (P05912) 1 0.10% 0.50% 

66 FAS signaling pathway (P00020) 1 0.10% 0.50% 

67 Histamine H2 receptor mediated signaling pathway (P04386) 1 0.10% 0.50% 

68 Pyruvate metabolism (P02772) 1 0.10% 0.50% 

69 Histamine H1 receptor mediated signaling pathway (P04385) 1 0.10% 0.50% 

70 Pyridoxal phosphate salvage pathway (P02770) 1 0.10% 0.50% 

71 Purine metabolism (P02769) 1 0.10% 0.50% 

72 Beta2 adrenergic receptor signaling pathway (P04378) 1 0.10% 0.50% 

73 Beta1 adrenergic receptor signaling pathway (P04377) 1 0.10% 0.50% 

74 5HT2 type receptor mediated signaling pathway (P04374) 1 0.10% 0.50% 

75 5HT1 type receptor mediated signaling pathway (P04373) 1 0.10% 0.50% 

Plasmodium falciparum 

1 Ubiquitin proteasome pathway (P00060) 8 1.50% 10.10% 

2 Huntington disease (P00029) 5 0.90% 6.30% 
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3 Transcription regulation by bZIP transcription factor (P00055) 4 0.80% 5.10% 

4 General transcription regulation (P00023) 4 0.80% 5.10% 

5 DNA replication (P00017) 4 0.80% 5.10% 

6 Parkinson disease (P00049) 4 0.80% 5.10% 

7 Wnt signaling pathway (P00057) 3 0.60% 3.80% 

8 Nicotinic acetylcholine receptor signaling pathway (P00044) 3 0.60% 3.80% 

9 p53 pathway (P00059) 2 0.40% 2.50% 

10 mRNA splicing (P00058) 2 0.40% 2.50% 

11 General transcription by RNA polymerase I (P00022) 2 0.40% 2.50% 

12 Methylcitrate cycle (P02754) 2 0.40% 2.50% 

13 Tryptophan biosynthesis (P02783) 2 0.40% 2.50% 

14 CCKR signaling map (P06959) 2 0.40% 2.50% 

15 De novo pyrimidine ribonucleotides biosythesis (P02740) 2 0.40% 2.50% 

16 Pyruvate metabolism (P02772) 2 0.40% 2.50% 

17 Gonadotropin-releasing hormone receptor pathway (P06664) 2 0.40% 2.50% 

18 De novo purine biosynthesis (P02738) 1 0.20% 1.30% 

19 Purine metabolism (P02769) 1 0.20% 1.30% 

20 Alzheimer disease-presenilin pathway (P00004) 1 0.20% 1.30% 

21 Interleukin signaling pathway (P00036) 1 0.20% 1.30% 

22 Alzheimer disease-amyloid secretase pathway (P00003) 1 0.20% 1.30% 

23 Adrenaline and noradrenaline biosynthesis (P00001) 1 0.20% 1.30% 

24 Insulin/IGF pathway-protein kinase B signaling cascade (P00033) 1 0.20% 1.30% 

25 Inflammation mediated by chemokine and cytokine signaling pathway (P00031) 1 0.20% 1.30% 

26 p53 pathway feedback loops 2 (P04398) 1 0.20% 1.30% 

27 Heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha mediated pathway (P00027) 1 0.20% 1.30% 

28 Heterotrimeric G-protein signaling pathway-Gi alpha and Gs alpha mediated pathway (P00026) 1 0.20% 1.30% 

29 Vitamin D metabolism and pathway (P04396) 1 0.20% 1.30% 

30 Ras Pathway (P04393) 1 0.20% 1.30% 

31 FGF signaling pathway (P00021) 1 0.20% 1.30% 

32 FAS signaling pathway (P00020) 1 0.20% 1.30% 
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33 ATP synthesis (P02721) 1 0.20% 1.30% 

34 TCA cycle (P00051) 1 0.20% 1.30% 

35 Endothelin signaling pathway (P00019) 1 0.20% 1.30% 

36 EGF receptor signaling pathway (P00018) 1 0.20% 1.30% 

37 PI3 kinase pathway (P00048) 1 0.20% 1.30% 

38 PDGF signaling pathway (P00047) 1 0.20% 1.30% 

39 Heme biosynthesis (P02746) 1 0.20% 1.30% 

40 Cell cycle (P00013) 1 0.20% 1.30% 

41 Cadherin signaling pathway (P00012) 1 0.20% 1.30% 

42 Muscarinic acetylcholine receptor 2 and 4 signaling pathway (P00043) 1 0.20% 1.30% 

43 Salvage pyrimidine ribonucleotides (P02775) 1 0.20% 1.30% 
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Appendix 3 

Nonparametric Post Hoc Multiple Comparison Results 

(TRUE = significant; Corrected Alpha = 0.05) 

Comparison Metazoans Plants Saccharomycetes Alveolates 
Disordered-Coil-Domain vs. Disordered-Coil-Linker TRUE TRUE TRUE TRUE 

Disordered-Coil-Domain vs. Disordered-Structure-Domain FALSE FALSE FALSE TRUE 

Disordered-Coil-Domain vs. Disordered-Structure-Linker TRUE TRUE FALSE TRUE 

Disordered-Coil-Domain vs. Ordered-Coil-Domain TRUE TRUE TRUE FALSE 

Disordered-Coil-Domain vs. Ordered-Coil-Linker TRUE TRUE TRUE FALSE 

Disordered-Coil-Domain vs. Ordered-Structure-Domain TRUE TRUE TRUE TRUE 

Disordered-Coil-Domain vs. Ordered-Structure-Linker TRUE TRUE TRUE TRUE 

Disordered-Coil-Linker vs. Disordered-Structure-Domain TRUE TRUE TRUE TRUE 

Disordered-Coil-Linker vs. Disordered-Structure-Linker TRUE FALSE TRUE TRUE 

Disordered-Coil-Linker vs. Ordered-Coil-Domain TRUE TRUE TRUE TRUE 

Disordered-Coil-Linker vs. Ordered-Coil-Linker TRUE TRUE TRUE TRUE 

Disordered-Coil-Linker vs. Ordered-Structure-Domain TRUE TRUE TRUE TRUE 

Disordered-Coil-Linker vs. Ordered-Structure-Linker TRUE TRUE TRUE TRUE 

Disordered-Structure-Domain vs. Disordered-Structure-Linker TRUE TRUE FALSE TRUE 

Disordered-Structure-Domain vs. Ordered-Coil-Domain FALSE TRUE FALSE TRUE 

Disordered-Structure-Domain vs. Ordered-Coil-Linker TRUE TRUE FALSE TRUE 

Disordered-Structure-Domain vs. Ordered-Structure-Domain TRUE TRUE TRUE FALSE 

Disordered-Structure-Domain vs. Ordered-Structure-Linker TRUE TRUE TRUE TRUE 

Disordered-Structure-Linker vs. Ordered-Coil-Domain TRUE TRUE FALSE TRUE 

Disordered-Structure-Linker vs. Ordered-Coil-Linker FALSE TRUE FALSE FALSE 

Disordered-Structure-Linker vs. Ordered-Structure-Domain FALSE TRUE TRUE TRUE 

Disordered-Structure-Linker vs. Ordered-Structure-Linker TRUE TRUE TRUE FALSE 

Ordered-Coil-Domain vs. Ordered-Coil-Linker TRUE TRUE FALSE TRUE 

Ordered-Coil-Domain vs. Ordered-Structure-Domain TRUE TRUE TRUE TRUE 

Ordered-Coil-Domain vs. Ordered-Structure-Linker TRUE TRUE TRUE TRUE 

Ordered-Coil-Linker vs. Ordered-Structure-Domain TRUE TRUE TRUE TRUE 

Ordered-Coil-Linker vs. Ordered-Structure-Linker TRUE TRUE TRUE TRUE 

Ordered-Structure-Domain vs. Ordered-Structure-Linker TRUE TRUE FALSE TRUE 
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CHAPTER IV 

EVALUATION OF SITE-SPECIFIC RATE HETEROGENEITY REVEALS 

SIGNIFICANT DIFFERENCES IN SEQUENCE DIVERGENCE PATTERNS 

BETWEEN ORTHOLOGOUS AND PARALOGOUS PROTEINS IN BOTH 

ANIMALS AND PLANTS 
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ABSTRACT 

Heterotachy—the change in sequence evolutionary rate over time—is a common 

feature of protein molecular evolution. Decades of research has shed some light on the 

conditions under which heterotachy occurs, and there is evidence that evolutionary rate 

shifts are correlated with changes in protein function. Here, we present a large-scale, 

computational analysis using thousands of protein sequence alignments from metazoan 

(animal) and plant proteomes, representing genes related either by orthology (speciation 

events) or paralogy (gene duplication). We use the results of sequence-based 

phylogenetic analyses to establish a correlation between sequence alignment divergence 

(tree length) and the estimated shape parameter (α) of the alignment’s inferred rate 

distribution. We also describe and implement simple, computational simulation methods 

which largely reproduce the patterns we observed in real protein data.  Our simulation 

results indicate that sequence divergence and the α parameter are positively correlated 

when sequences evolve with heterotachy, meaning that inferred site rate distributions 

tend to become more uniform as sequence alignments become more divergent. Tree 

length and α are also correlated in both orthologous and paralogous genes. However, the 

rate of α increase is markedly higher in paralogous protein alignments than in 

orthologous alignments, which is consistent with the widely-held view that paralogous 

proteins are evolving under relaxed selective pressure promoting functional divergence, 

and hence experiencing more evolutionary rate fluctuations than orthologous proteins. 

We discuss these findings in the context of the ortholog conjecture, a long-standing 

assumption in molecular evolution, which posits that protein sequences related by 

orthology tend to be more functionally conserved than paralogous proteins. 
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INTRODUCTION 

Homologous pairs of protein-coding genes within multicellular eukaryotes are 

typically related in one of two broad ways: orthology or paralogy. Orthologous genes are 

observed in different organisms and are related via speciation events, whereas paralogous 

genes may be found within a single organism and are related via gene duplications. A 

long-standing notion in molecular evolution, known as the “ortholog conjecture,” posits 

that orthologous genes tend to have very similar functions, whereas paralogous genes can 

change function (Koonin 2005). The rationale for the conjecture is that single-copy 

protein-coding genes cannot easily alter their function without decreasing the overall 

fitness of an organism. However, following a gene duplication event, one or more gene 

copies (paralogs) may change function (neofunctionalize) in response to shifting selective 

pressures associated with concomitant changes in gene dosage (Hughes and Liberles 

2008; Ahrens et al. 2017). Retained gene copies often initially undergo 

subfunctionalization (i.e., complementary partial loss of their ancestral functions), and 

this may eventually lead to complete functional change at a later time (Rastogi and 

Liberles 2005; Teufel et al. 2016). Nonetheless, the most common outcome of a small-

scale gene duplication (i.e., duplication of only a small segment of the overall genome) is 

the inactivation (pseudogenization) of any additional gene copies (Lynch and Conery 

2000). 

Tests of the ortholog conjecture using gene ontology (GO) terms (Ashburner et al. 

2000) have produced controversial results (see Nehrt et al. 2011; Chen and Zhang 2012; 

Rogozin et al. 2014). More careful GO-term-based studies indicated that orthologs are 

indeed less functionally divergent than paralogs (see Altenhoff et al. 2012) and 
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alternative lines of experimental evidence in favor of the ortholog conjecture (e.g., gene 

expression level) have also been presented (Chen and Zhang 2012; Rogozin et al. 2014). 

Still, in many studies, the explicit phylogenetic context of the data is not considered (see 

Dunn et al. 2018). Moreover, the expected results under an appropriate null hypothesis 

(i.e., no association between homology type and propensity for functional divergence) is 

not always specified (see Studer and Robinson-Rechavi 2009). 

Nearly fifty years ago, Fitch (1971) speculated that as a protein sequence changes, 

the subsets of invariant sites (where mutations cannot occur) and variable sites (where 

new mutations are accepted) shift as well. The phenomenon is now more generally 

referred to as heterotachy: a lineage-specific shift in amino acid replacement rates over 

time (Lopez et al. 2002). Further work has indicated that shifts in site-specific amino acid 

replacement rates (i.e., heterotachy) are associated with functional changes in proteins 

(Gu 1999; Gaucher et al. 2002). In particular, Philippe et al. (2003) found that novel 

mutations in previously invariant sites are strong signifiers of functional change.  

Likelihood-based methods of phylogenetic inference have been a component of 

molecular evolutionary studies throughout much of the 21st century. Following the 

development of an efficient dynamic programming strategy for likelihood computation 

(Felsenstein 1973), a multitude of software applications became available for general use 

among molecular biologists. Some programs employ maximum-likelihood strategies to 

provide a point estimate of jointly optimized model parameters (tree topology, branch 

lengths, etc.) whereas others like MrBayes (Ronquist et al. 2012) use Markov chain 

Monte Carlo algorithms to jointly estimate the posterior distributions of model 

parameters. A common feature of these methods is the underlying framework in which 
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likelihood scores are calculated, wherein molecular sequences are assumed to evolve 

along a branching, continuous-time Markov chain whose state transitions are governed by 

a fixed, instantaneous rate matrix. 

Statistical models of sequence evolution have been proposed (e.g., Fitch and 

Markowitz 1970; Tuffley and Steel 1998; Galtier 2001) to directly account for 

heterotachy (Lopez et al. 2002). However, in the interest of computational tractability, 

heterotachy is typically ignored during phylogenetic inference, and sites are assumed to 

evolve independently, according to a single rate matrix. To account for fixed differences 

in the relative speed of site-specific evolution (rate heterogeneity), site rates are often 

assumed to be drawn from a discrete gamma distribution with a shape parameter α = β 

such that the mean rate in the distribution is 1.0 and the variance of the distribution is 1/α 

(Yang 1996). Notably, though, shifts over time in the overall distribution of site rates—

which can be measured via differences in the gamma rate distribution’s α parameter 

among groups of related genes—often indicate changes in gene function (Abhiman et al. 

2006). 

Here, we present the results of a large-scale study evaluating differences in 

sequence divergence patterns between alignments of orthologous and paralogous protein 

sequences found in metazoans (animals) and plants. We use the results of sequence-based 

phylogenetic analyses to establish a correlation between sequence alignment divergence 

(total tree length) and the α parameter of the alignment’s inferred gamma rate 

distribution. We also describe simple, computational simulation methods which 

reproduce the patterns we observed in real protein data. Our goal is to illustrate that 

common phylogenetic inference methods (which to not directly account for heterotachy) 
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can still be used to detect varying levels of heterotachy in large-scale datasets. Further, 

we describe a staightforward statistical test of the ortholog conjecture with i) a clearly 

defined null hypothesis and ii) a dataset in an explicit phylogenetic context, which can be 

applied to large molecular sequence datasets even when no GO term annotations exist. 

 

RESULTS 

Protein Sequence Data 

In the metazoan dataset taken from Ahrens et al. (2016) and Ahrens et al. (2018) 

(see Figure 1), we identified 5893 sequence alignments containing putative orthologs 

(i.e., exactly one protein sequence per represented species) and 1028 alignments of Type 

I paralogs (i.e., several protein sequences from exactly one species). Additionally, 1133 

new (Type II) paralog alignments were extracted from protein family alignments 

(containing a mixture of orthologous and paralogous sequences) in the original metazoan 

dataset (Figure 1). In the plant dataset (see Figure 1) from Ahrens et al. (2018), we 

identified 1295 putative ortholog alignments and 823 Type I paralog alignments, and 

4623 Type II paralog alignments were extracted from protein family clusters. (See 

Methods and Figure 2 for details on Type I vs. Type II paralog alignments.) 

Phylogenetic Analysis 

Of the 1800 simulated multiple sequence alignments that we analyzed in MrBayes 

(Ronquist et al. 2012), only 7 (0.4%) did not reach an average standard deviation of split 

frequencies (ASDSF) below 0.005 within 5,000,000 generations. Further, only 3 of these 

7 analyses did not reach an ASDSF below 0.01, the convergence diagnostic threshold 

recommended by the program authors (Ronquist et al. 2011). Only 32 (0.4%) of the 9082 
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metazoan alignments failed to reach an average standard deviation of split frequencies 

(ASDSF) below 0.005 within 5,000,000 generations, and only 24 did not reach an 

ASDSF below 0.01. Similarly, 20 (0.3%) of the 7564 plant alignments failed to reach an 

average standard deviation of split frequencies (ASDSF) below 0.005 within 5,000,000 

generations, and only 8 did not reach an ASDSF below 0.01 

Statistical Analysis 

Regression analyses, relating normalized estimated tree length (i.e., mean tree 

length divided by the number of terminal nodes) to the shape parameter α of the inferred 

4-category gamma distribution among site rates, show that MrBayes (Ronquist et al. 

2012) consistently predicts α values which are close to the true (i.e., predefined) value 

when 1) alignments are simulated under a fixed gamma rate distribution with no 

heterotachy and 2) the α value is low (Figure 3A). However, when site rates are allowed 

to vary along the length of a phylogenetic tree (Figure 3B-C), we observe a positive 

correlation between the normalized estimated (mean) tree length and the estimated 

(mean) α parameter of the site rate distribution. Additionally, the degree to which site 

rates may vary (determined by a scaling constant C in each heterotachy model; see 

methods for details) significantly impacts the correlation between tree length and the 

inferred α parameter. In other words, the more site rates are allowed to vary along the 

phylogenetic tree (used to simulate the sequence alignment), the more uniform the 

inferred distribution of site rates will appear (as α increases, individual site rates become 

increasingly similar). 

Logarithmic regressions also indicated that, in both metazoan and plant sequence 

alignments, there is a positive correlation between the estimated tree length of the 
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inferred phylogeny (corresponding to each sequence alignment), and the inferred α 

parameter of the site rate distribution (Figure 4). Moreover, interaction tests show that 

paralogous gene clusters tend to have significantly higher estimated α parameters, 

relative to their normalized estimated tree length, than orthologous alignments (p < 0.05). 

This is true in metazoans when considering the original (Type I) paralogous alignments 

taken from Ahrens et al. (2016) and Ahrens et al. (2018), as well as new (Type II) 

paralogous alignments extracted from protein family clusters used in those previous 

studies. In plants, the difference in regression lines between Type II paralogs and putative 

orthologs is not as statistically significant (p = 0.08). 

Regression plots comparing inferred phylogenetic tree lengths to actual 

phylogenetic trees (used to simulate protein sequence alignments in this study) suggest 

that MrBayes (Ronquist et al. 2012) tends to underestimate tree lengths as the actual 

phylogenetic trees become very divergent (i.e., as the true total tree length increases). 

However, when the true phylogenetic trees are relatively small (e.g., tree lengths between 

0.0 – 10.0), the inferred tree lengths become more accurate. Notably, the majority of 

inferred phylogenies associated with actual protein sequence data (from metazoans and 

plants) have estimated tree lengths less than 10.0. 

 

DISCUSSION 

Protein Sequence Data and Phylogenetic Analysis 

The infeasibility of maintaining taxonomic evenness (i.e., a similar degree of 

representation for each species) in large-scale datasets has been discussed previously in 

Ahrens et al. (2016) and reiterated in Ahrens et al. (2018). Much of this difficulty arises 
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from the inherent phylogenetic unevenness of publicly available protein sequence 

databases, which tend to be enriched with model organism proteomes, primarily 

stemming from a relatively small number of clades (e.g., arthropods, chordates, 

angiosperms). The result is that, when using agglomerative techniques (e.g., single-

linkage clustering) to group sequence data into homologous clusters, organisms from 

underrepresented clades (e.g., echinoderms, poriferans, nematodes) will be 

underrepresented in orthologous sequence clusters as well. Indeed, our dataset contains 

several times more human (Homo sapiens) and mouse (Mus musculus) sequences in 

orthologous alignments (5355 and 5324, respectively) than Caenorhabditis elegans or 

Amphimedon queenslandica sequences (456 and 616, respectively), most likely because 

C. elegans and A. queenslandica are the only representatives of their respective phyla 

(Nematoda and Porifera). 

In addition to the uneven taxonomic representation within orthologous sequence 

alignments, paralogous alignments exhibit apparent bias as well (see Figure 1). This is 

also largely attributable to the phylogenetic unevenness of the datasets, since paralogs of 

more closely related species are more likely to be found together in Type II paralog 

groups (i.e., extracted from clusters originally containing a mixture of orthologs and 

paralogs) than in Type I paralog groups (species-specific groups taken directly from the 

original datasets). Conversely, paralogs from species with few close relatives (and hence, 

few close orthologs) tend be more well represented in Type I paralog groups than in Type 

II groups. 

Even as the number of publicly-available proteomes continues to increase, 

phylogenetic unevenness will ultimately remain a feature of many large-scale molecular 
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datasets for a variety of reasons. For one, the relative diversity of extant phyla varies 

widely in nature. Trichoplax adhaerens is nearly the only extant representative of the 

phylum Placozoa (Eitel et al. 2018), whereas the true number of extant species in the 

phylum Arthropoda—which includes insects, crustaceans and arachnids—has proven 

difficult to even estimate (Stork et al. 2015). Furthermore, variation in proteome size as 

well as differences in gene duplication history determine the number and size of 

homologous sequence groups which can be constructed for a particular taxon. 

Nonetheless, we observe consistent differences in sequence divergence patterns between 

orthologous and paralogous proteins in both plant and animal sequence alignments, 

despite the inherent phylogenetic unevenness in both datasets. 

Statistical Analysis of Simulated Data 

 A range of augmented statistical evolutionary models—attempting to account for 

heterotachy explicitly—have been available for several decades (see Philippe et al. 2003). 

These include the simple covarion model (Fitch and Markowitz 1970; Tuffley and Steel 

1998) as well as the more complex “covarion-like” model proposed by Galtier (2001), 

wherein site rates are allowed to change over the length of a phylogeny. Both of these 

models introduce relatively few parameters for the sake of computational tractability, and 

studies have revealed that accounting for heterotachy in protein evolution is 

advantageous for phylogenetic reconstruction (Lopez et al. 2002) as well as detecting 

positive selection (Siltberg and Liberles 2002) and functional divergence (Gaucher et al. 

2001; Philippe et al. 2003). 

The two models we implemented here to simulate sequence evolution with 

heterotachy (see Methods) were designed to clearly illustrate the effects of heterotachy on 
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phylogenetic tree inference when site-specific amino acid replacement rates are assumed 

(by the inference software) to be constant over the length of the tree (i.e., when 

heterotachy is ignored). In simulations where site rates are constant and gamma-

distributed, MrBayes (Ronquist et al. 2012) quite accurately predicts the true α shape 

parameter of the gamma distribution even when i) the number of simulated rate 

categories (16) exceeds the number of allowed categories for inference (4) and ii) the tree 

lengths used to simulate the data are very large (Figure 3A). However, when heterotachy 

is introduced to the simulations, we observe a positive correlation between sequence 

divergence (tree length / number of sequences) and the estimated α value. This effect 

increases with elevated levels of heterotachy (Figure 3). 

The positive correlation we observe between sequence divergence and the 

inferred α parameter provides crucial insight into the expected behavior of phylogenetic 

inference software when the model of sequence evolution is misspecified. Essentially, 

when rates of amino acid replacement are allowed to change among lineages, a single 

alignment site may actually be governed by a complex mixture of replacement rates (i.e., 

in different lineages and at different times), and when the software infers the replacement 

rate at a particular alignment site, it actually provides a point estimate of this mixture. 

Thus, as phylogenetic tree length and heterotachy are increased, site-specific rate 

estimates tend to appear more uniform (i.e., they tend toward the mean rate score), 

meaning that the inferred α parameter of the gamma distribution becomes large (i.e., the 

distribution centers more tightly around the mean value). 

Importantly, even the models of sequence evolution accounting for heterotachy 

tend to make unrealistic simplifying assumptions. For instance, fitness effects of site-
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specific amino acid replacements are partly governed by concomitant replacements at 

neighboring sites within the same protein sequence (Fitch and Markowitz 1970; 

Goldstein and Pollock 2016), as well as replacements in other protein sequences (Gao 

and Zhang 2003; Breen et al. 2012). Such epistatic interactions form the basis of 

contemporary “mechanistic” models of protein sequence evolution (see Pollock et al. 

2017), where even sequences evolving under purifying selection are constrained by a 

constantly shifting set of site-specific amino acid preferences and replacement rates 

(Pollock et al. 2012). Our results show that phylogenetic inference, under a statistical 

model that fails to properly account for heterotachy, displays a particular relationship 

between measurable values (sequence divergence and α parameter) when heterotachy is 

in fact a component of sequence simulation. Future simulation work incorporating more 

realistic parameters (e.g., variation in site-specific amino acid preferences, epistatic 

effects, etc.) may further illuminate the effects of model misspecification during 

phylogenetic inference. 

Statistical Analysis of Protein Sequence Data 

Previous studies have largely indicated that paralogous proteins diverge in 

function more readily than orthologous proteins (Altenhoff et al. 2012; Chen and Zhang 

2012; Rogozin et al. 2014). Furthermore, prior work has demonstrated a link between 

protein functional divergence and site-specific shifts in sequence evolution (Gaucher et 

al. 2002; Philippe et al. 2003). Statistical methods have even been developed to evaluate 

functional divergence based on measurements of molecular evolution (e.g., Gu 1999; 

Gaucher et al. 2002; Siltberg and Liberles 2002; Gu 2003; Abhiman et al. 2006; Gu et al. 

2013).  
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Notably, the link between site-specific rate shifts and functional divergence is not 

entirely clear. Gribaldo et al. (2003) assert that heterotachy is actually a common feature 

of neutral (i.e., non-adaptive) sequence evolution, but that functional divergence is 

specifically associated with sudden amino acid replacements in highly conserved sites, 

which they refer to as “constant but different” (CBD) sites. Studer and Robinson-Rechavi 

(2010) showed that indicators of functional divergence (e.g., CBD sites) can be found 

among both orthologous and paralogous proteins, and they did not observe a difference 

between the two sequence groups. 

Our results show that, similar to the protein simulations discussed above, there is 

a relationship between sequence divergence (tree length / number of sequences) and the 

estimated α parameter of the gamma rate distribution in real protein sequence alignments 

(Figure 4). Additionally, in both metazoans and plants, as sequences diverge, the inferred 

α value increases more quickly in paralogous alignments than in orthologous alignments. 

This implies, based on our simulations, that heterotachy is more prevalent on average in 

paralogous alignments than in orthologous alignments. Given that heterotachy is often 

associated with functional change (e.g., Gaucher et al. 2002; Abhiman et al. 2006), these 

results provide compelling evidence in favor of the ortholog conjecture, across several 

thousand groups of homologous sequences, from two divergent eukaryotic lineages. 

In both the metazoan and plant datasets, we also observe a difference in 

divergence patterns between Type I paralogous alignments (taken directly from the 

original dataset) and Type II paralogous alignments (extracted from mixed clusters of 

orthologous and paralogous sequences), wherein Type I alignments tend have higher α 

values than Type II alignments (Figure 4). While the biological distinction between these 
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two alignment types is not entirely clear, a possible explanation for this discrepancy in α 

values is that a large number of the Type I paralogous alignments contain sequences 

corresponding to small-scale, lineage-specific gene duplications, many of which will 

eventually become pseudogenes (Wagner 1998; Lynch and Conery 2000). Whereas Type 

II alignments originally contained a mixture of multiple species, often implying gene 

duplication events which precede several speciation events, there is no direct evidence 

(within our datasets) suggesting that Type I paralogs are found in other lineages 

(although as discussed above, this is partly an artifact of phylogenetically uneven 

datasets). 

Per the ortholog conjecture, functional divergence is often associated with 

duplicated genes, where clades of orthologous genes (ortholog groups) retain similar 

structure and function, but paralogs differ (see Dos Santos and Siltberg-Liberles 2016). 

However, noteworthy counterexamples to this trend can also be observed. For example, 

the tumor suppressor protein, p53, is part of a family of three paralogs (p53, p63 and 

p73), but a recent study found strong evidence of ongoing functional divergence among 

p53 orthologs, as well as more sequence divergence (inferred via branch length) among 

the p53 orthologs than between the other two paralogs (p63 and p73) in the family (dos 

Santos et al. 2016). While we observe consistent differences in the large-scale divergence 

patterns of orthologous and paralogous sequences, the overlapping regions of our results 

(Figure 4) are consistent with previous findings (see Studer and Robinson-Rechavi 2010; 

dos Santos et al. 2016) indicating that both orthologs and paralogs can undergo functional 

divergence over time. 
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The criteria we used to delineate orthologous and paralogous sequence alignments 

in the present study are relatively simple. Given the nature of our alignments (i.e., single-

linkage sequence clusters) and the scale of our dataset (thousands of alignments), it was 

not feasible to account for the potential misidentification of out-paralogs (i.e., paralogs 

from different species) as orthologs (see Koonin 2005), nor could we reliably distinguish 

ohnologs (paralogs in a whole genome duplication) from small-scale paralogs (resulting 

from small-scale duplication). Nonetheless, our analysis constitutes i) a statistical test of 

the ortholog conjecture against a clear null hypothesis (i.e., no difference in divergence 

pattern) where ii) the data were evaluated in an explicit phylogenetic context (see Dunn et 

al. 2018) and iii) our analysis cannot be impacted by biased functional annotation (see 

Altenhoff et al. 2012; Chen and Zhang 2012; Rogozin et al. 2014). Additionally, our 

results show an apparent difference in sequence divergence patterns between orthologs 

and paralogs which, to our knowledge, has not been previously reported in the literature. 

 

METHODS 

Protein Sequence Data Collection 

Clusters of homologous protein sequences from 24 metazoan (animal) species 

(plus the choanoflagellate Monosiga brevicollis) as well as 24 plant species were taken 

from previous datasets used in Ahrens et al. (2016) and Ahrens et al. (2018). These 

clusters were originally generated using the graph-based single-linkage clustering 

program BLASTClust (Altschul et al. 1990) with a pairwise sequence identity threshold 

of 40% and a pairwise length threshold of 90%. We used MAFFT (Katoh and Standley 

2013) to align all clusters containing at least 5 sequences. Any alignments with i) a 
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minimum pairwise sequence identity of at least 30% (but less than 100%) and ii) a 

minimum alignment coverage (ratio of sequence length to alignment length) greater than 

50% were retained for further analysis. 

Many of the alignments from the above datasets contained exactly one protein 

sequence from each represented species (e.g., 5 protein sequences from 5 different 

species). These “non-redundant” alignments were classified as putative orthologs (Figure 

2). Other alignments were “species-specific,” containing several different protein 

sequences from exactly one species, and were classified as Type I paralogs (i.e., a paralog 

group identified directly in the initial set of alignments). The remaining multispecies 

alignments contained protein sequences wherein some species were represented more 

than once (e.g., 10 sequences from only 5 different species), indicating that the sequences 

were connected by a mixture of orthologous and paralogous relationships (Figure 2). 

Within these mixed alignments, any subset of 5 or more sequences originating from a 

single species was extracted and classified as a Type II paralog group (Figure 2). These 

new paralogous alignments were edited via Trimal (Capella-Gutierrez et al. 2009) to 

eliminate any gap-only sites which were created when the sequences from other species 

were removed. 

Sequence Alignment Simulation 

A total of 200 phylogenetic trees, each containing 20 terminal nodes (leaves), 

were generated via the birth-death model implemented in Dendropy (Sukumaran and 

Holder 2010) using a mean birth rate of 1.0 (s.d.: 0.1) and a mean death rate of 0.5 (s.d., 

0.1). Each tree was randomly rescaled by a factor between 0.0 and 3.0 to produce a 

sample of phylogenies exhibiting a wide range of tree lengths. Using these phylogenies, 
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1800 sequence alignments, each containing 1600 gap-free sites, were simulated in the 

Pyvolve module developed by Spielman and Wilke (2015). All simulated alignments 

were generated using the fixed amino acid rate matrix developed by Jones et al. (1992).  

The first 600 simulations introduced site-specific rate heterogeneity wherein site 

rates were drawn from a discrete (16-category) gamma distribution. In other words, these 

alignments were simulated under the JTT + Γ model (see Yang and Kumar 1996; Darriba 

et al. 2011). The shape parameter α of the discrete gamma distribution was fixed at one of 

three values (α = 0.5, 1.0, 5.0) for each simulation, resulting in three sets (of 200 

alignments) generated under differing degrees of rate heterogeneity. 

The next 600 simulations introduced heterotachy (i.e., variation in lineage-

specific site rates) using a simple random walk model. Initial site rates at the root node of 

each tree were drawn from a 16-category discrete gamma distribution with shape 

parameter α = 0.5. At every descendant node in the tree, each site rate Ri was iteratively 

modified by drawing a value Vi from a normal distribution, with mean equal to 0.0 and 

variance equal to the product of the node’s branch length Li and an additional constant C. 

The new site rate was then set to (Ri + Vi) mod 10.0, effectively imposing a random walk 

over the range [0.0, 10.0]. Similar to the first 600 simulations, the random walk constant 

C was set to one of three values (C = 0.05, 0.5, 1.0) for each simulation, resulting in three 

sets of alignments generated under differing degrees of heterotachy. 

The final 600 simulations introduced heterotachy by allowing pairs of sites to 

randomly exchange rates along the length of each tree. Again, initial (root node) site rates 

were drawn from a 16-category gamma distribution (α = 0.5). However, at every 

descendant node, Ni randomly-chosen site pairs were allowed to swap rate scores, where 
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Ni is a random integer drawn from a Poisson distribution with rate parameter λ equal to 

the product of the node’s branch length Bi and a constant C. Again, the rate parameter 

constant C was set to one of three values (C = 10.0, 50.0, 200.0) for each simulation, 

resulting in alignments generated under differing degrees of heterotachy. Notably, this 

method of introducing heterotachy differs from the random walk simulations (described 

previously) in that all nodes in each tree are guaranteed to have gamma rate distributions 

with identical shape parameters (i.e., α = 0.5), but the exact arrangement of fast or slow 

site rates may differ substantially at each individual tree node. 

Phylogenetic Analysis 

Phylogenetic analyses for each protein sequence alignment, as well as for all 

simulated alignments, were performed in MrBayes 3.2.2 (Ronquist et al. 2012) with tree-

bisection-reconnection (TBR) moves disabled. Phylogenies were estimated using the 

“mixed-model” approach (variable matrix plus gamma-distributed site rates), and the 

shape parameter α of an underlying 4-category gamma distribution was estimated from 

the data. Each analysis was run for 5,000,000 generations or until the average standard 

deviation of split frequencies fell below 0.005. After discarding the first 25% of 

generations as “burn-in,” we recorded the mean estimated tree length as well as the mean 

estimated gamma shape parameter (α) for each analysis. 

Statistical Analysis 

Regression analyses and interaction tests were performed in R (Ihaka and 

Gentleman 2012) to examine the correlation between normalized tree length (i.e., the 

estimated mean tree length divided by the number of terminal nodes) and the estimated 

mean gamma shape parameter α in each sequence alignment. Separate regression 
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analyses were performed for i) ortholog groups, ii) original (Type I) paralog groups and 

iii) new (Type II) paralog groups identified in the animal and plant datasets, respectively. 

Regression analyses were also performed for all subgroups of simulated protein 

alignments described above. Visualization of all regression analyses was accomplished 

using the ggplot2 library (Wickham 2009). 
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Figure Captions 

Figure 1. Phylogenetic trees showing the 24 animal species plus M. brevicollis (top) and 

the 24 plant species (bottom) used in this study. Columns to the right of each species 

show the number of clusters (separated by cluster type) in which each species can be 

found. Phylogenies are based on the NCBI Common Taxonomy Tree (Sayers et al. 2009; 

Benson et al. 2009). 

 

Figure 2. Illustration of the three types of sequence clusters used in this study. Putative 

orthologs (top-left) are homologous sequence clusters with exactly one sequence per 

species (e.g., S1-S5). Type I paralogs (top-right) are sequence clusters in which all 

sequences correspond to the same species (e.g., S1). Many sequence clusters contained a 

mixture of orthologous and paralogous genes (bottom-left). If at least 5 of the genes in 

such a cluster corresponded to the same species, they were extracted and placed in a Type 

II paralog cluster (bottom-right). 

 

Figure 3. Loess regressions showing the relationship between the mean phylogenetic tree 

length (normalized by the number of sequences in each cluster) and the mean estimated α 

parameter (of the gamma rate distribution) for simulated sequence datasets with A) no 

heterotachy (fixed α = 0.5,1.0,5.0), B) a random-walk heterotachy model (α = 0.5) and C) 

a rate-swap heterotachy model (α = 0.5). A parameter “C” is used (fig B,C) to control the 

degree of heterotachy in each simulation, and larger values of C indicate more 

heterotachy. Note that the estimated α parameter is close to the true value when 

sequences are simulated without heterotachy and the fixed α parameter is small (A). In all 
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other cases, there is a positive correlation between tree length and α, which increases with 

increasing heterotachy. Grey bands indicate 95% confidence intervals for each 

regression. 

 

Figure 4. Log regressions showing the relationship between the mean phylogenetic tree 

length (normalized by the number of sequences in each cluster) and the mean estimated α 

parameter (of the gamma rate distribution) for all three cluster types in animals (top) and 

plants (bottom). Grey bands indicate 95% confidence intervals for each regression line. 

Note that in animals and plants, the line corresponding to orthologous sequence clusters 

is significantly lower, over most of the chart range, than both Type I and Type II paralog 

cluster regression lines. 
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ABSTRACT 

The identification of homologous groups of gene sequences is useful in a wide 

range of biological research applications, including phylogenetic inference and genome 

functional annotation. Numerous utilities are available to computational biologists for the 

task of sequence clustering: the agglomeration of similar biological sequences into 

subgroups or “clusters.” Many of these clustering applications are designed to operate on 

entire sequence databases at once, and they often utilize incremental, greedy clustering 

strategies to work effectively on large databases. However, in cases where one is only 

interested in a small group of homologous sequences (e.g., a protein family), such large-

scale applications may be too inflexible and time-consuming (since one has to cluster an 

entire database just to obtain the group of sequences they want to study). Here, we 

present a simple, graph-based single-linkage clustering procedure which uses an iterative 

search-and-filter approach to identify just one cluster of similar protein sequences based 

on a set of user-defined starting sequences and similarity cutoffs. We describe a simple 

implementation of this procedure involving the Basic Local Alignment Search Tool 

(BLAST) and the BioPython library for the Python programming language. We also 

benchmark the performance of our implementation (runtime relative to cluster size) using 

49 sequences from a eukaryote proteome database (24 animals + Monosiga brevicollis) 

and compare our results to an existing single-linkage application. Our results indicate that 

the composition of a single-linkage cluster is quite sensitive to the sequence alignment 

strategy employed to establish linkage. Additionally, we show that our clustering 

procedure can easily be used to recover subunits (Rpt proteins) of the eukaryotic 

regulatory ring of the 26S proteasome from all of the species in our benchmark database. 
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We use phylogenetic inference and sequence-based structure/function prediction methods 

to show that this sequence cluster contains a diverse (but homologous) set of protein 

sequences suitable for evolutionary analysis. 

 

INTRODUCTION 

The pace of biological sequence data collection (i.e., nucleotide and amino acid 

sequences from biological organisms) has significantly increased in the post-genomic era. 

As a result, the institutions responsible for storing and maintaining publicly-available 

sequence data, such as the European Bioinformatics Institute (EBI) and the National 

Center for Biotechnology Information (NCBI), must constantly increase their digital 

storage capacity, as well as their data accession and visualization tools, to accommodate 

ever-growing databases (Cook et al. 2016; Agarwala et al. 2018). The curation of such 

large sequence databases remains a crucial task for bioinformaticians, and the scalability 

of manual gene annotation in well-curated databases such as Swiss-Prot (Bairoch and 

Apweiler 2000) has been called into question (see Baumgartner et al. 2007, but see also 

Poux et al. 2017). Still, the availability of large-scale molecular datasets has already 

greatly enhanced our ability to study the complex functional relationships among genes 

(see Chen and Coppola 2018), illuminate the evolutionary origins of present-day 

organisms (see Koonin 2010; Telford et al. 2015) and determine/annotate the functional 

roles of homologous genes (Eisen 1998; Eisen and Wu 2002). In cases where 

comprehensive manual gene annotation is not required, canonical protein sequence 

databases (i.e., containing one representative sequence per gene), such as the canonical 

proteome dataset maintained by UniProt (Bateman et al. 2017), provide a useful starting 
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point for a diverse range of molecular studies, from comparative genomics to 

experimental molecular studies. 

The total number of unique protein sequences ever to exist constitutes an 

extremely small fraction of protein sequence space: the set of all possible amino acid 

sequences (Salisbury 1969). This is partly because of the short time period in which life 

has existed (relative to the number of possible protein sequences), but also because of the 

ruggedness of the protein fitness landscape and, hence, the small number of acceptable 

amino acid replacements at any given moment in time (Smith 1970; Povolotskaya and 

Kondrashov 2010). The net result is that the portion of sequence space represented by 

real proteins exhibits a notable pattern (see Buchholz et al. 2017), where homologous 

proteins form “clusters” of similar sequences surrounded by large empty regions (i.e., 

sequences which are not found in living organisms). The identification of these clusters 

of biological sequences within large databases remains an ongoing challenge in 

computational biology, but efforts have been made to provide databases of sequence 

clusters replete with resolved phylogenies (evolutionary relationships) for future studies 

(see Huerta-Cepas et al. 2008). Many applications have also been developed to assist 

researchers in clustering nucleotide and protein databases by themselves. Commonly, 

these applications produce graph-based clusters, wherein members of a given cluster are 

viewed as nodes/vertices in a connected edge-weighted linkage graph. Often, the edge 

weights in the linkage graph represent a measurement (or a combination of 

measurements) of sequence similarity (Figure 1). 

Because clustering a large number of biological sequences becomes 

computationally demanding, many of the applications designed to cluster entire databases 



136 

 

are primarily optimized for speed. For instance, the programs kClust (Hauser et al. 2013) 

and CD-Hit (Li and Godzik 2006) employ pre-filters to minimize the number of pairwise 

alignments necessary to establish linkage. Both kClust and CD-Hit also utilize a greedy, 

incremental strategy to construct linkage graphs quickly. Essentially, all sequences in the 

database are ranked in descending order of length, and the longest sequence is chosen as 

the representative of the first cluster. All other sequences are then compared to the 

representative sequence, and any sequences which meet user-defined linkage cutoffs 

(e.g., pairwise identity) are grouped with the representative. The longest remaining 

sequence (i.e., of the sequences which do not yet belong to a cluster) is then compared to 

the other remaining sequences, and the process is repeated until all sequences have been 

assigned to a group. The result of this process is that all sequences in a given cluster are 

directly linked to a single reference sequence (Figure 1 A-B). Importantly, clustering 

strategies such as these are order-dependent, meaning that sorting the sequences in 

ascending order of length instead, and then beginning with the shortest sequence as a 

representative, may result in a different set of sequence clusters. 

An early form of graph-based sequence clustering, known as single-linkage 

clustering, was implemented in the (now deprecated) program BLASTClust (Altschul et 

al. 1990) as well as the newer program SiLiX (Miele et al. 2011). Single-linkage clusters 

are essentially defined as follows: 1) any two sequences, A and B, are linked if they are 

sufficiently similar, according to a predefined set of linkage cutoffs (e.g., pairwise 

identity, coverage, alignment score, etc.) and 2) if A and B are linked, and B and C are 

linked, then A, B and C are members of a single-linkage cluster. While single-linkage 

methods such as BLASTClust are more inclusive than the representative-based clustering 
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methods described above (Figure 1C), they are computationally slower (to the point of 

being infeasible when clustering a database containing more than a few million 

sequences), and currently-available programs are only designed to cluster entire 

databases. 

Interestingly, if single-linkage cutoffs are defined appropriately, such that A and 

B are homologs and B and C are homologs, then A and C can be considered transitive 

homologs, and the overall cluster can be considered a group of homologous sequences 

(but see Miele et al. 2011 for important caveats). Additionally, single linkage clusters are 

non-overlapping and order-independent, meaning that in a particular database at a 

particular linkage cutoff, sequence A only belongs to one single-linkage cluster, and the 

composition of a given cluster does not depend on the order in which the clusters were 

constructed. Thus, within a very large sequence database, it is possible to define a single-

linkage cluster without clustering the rest of the sequences in the database. 

Here, we discuss a simple procedure for defining a single-linkage cluster in a 

protein sequence database using a combination of pairwise sequence identity and a bi-

directional measurement of sequence alignment quality. We describe a straightforward 

implementation of this procedure using the Python programming language and the 

BLAST program (Altschul et al. 1990), and we benchmark its performance on a database 

of metazoan (animal) proteomes with a choanoflagellate outgroup species (Monosiga 

brevicollis) originally constructed by (Ahrens et al. 2016). Finally, we use phylogenetic 

inference and sequence-based structural/functional predictions to demonstrate that our 

procedure can recover large, divergent protein families, using sequences from the Rpt 

regulatory ring of the 26S proteasome complex as a notable example result. The 
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evolutionary history and paralog-specific structural/functional divergence observed in our 

single-linkage Rpt cluster are also discussed in context of recent discoveries relating to 

the diversification of the Rpt protein family. 

 

RESULTS 

Single-linkage Clustering Procedure 

We developed an iterative single-linkage clustering procedure for amino acid 

sequence data using the BLAST sequence search program (Altschul et al. 1990) as well 

as the BioPython library (Cock et al. 2009) in the Python programming language 

(Rossum 1995). The procedure works by performing BLAST searches against a local 

BLAST-formatted database on a collection of n ≥ 1 user-defined starting sequences, 

which can either be taken directly from the local database or supplied externally, in a 

FASTA-formatted file. For each BLAST query, results can be filtered by expectation 

threshold (E-value) or a maximum number of BLAST search hits (i.e., subject sequences) 

can be specified beforehand.  Then, each subject sequence is aligned to the query 

sequence to measure their pairwise sequence identity, and the alignment footprint 

coverage relative to the longer of the two sequences (i.e., the number of overlapping 

residues in the alignment divided by the length of the longer sequence). If both of these 

measurements are higher than the cutoff values specified by the user, the subject and 

query sequences are considered linked, and (if it is not already included in the single 

linkage cluster) the subject is added to the list of queries, so that the above procedure can 

be performed again, using the subject sequence as a BLAST query. Eventually, the entire 

list of BLAST queries will be searched (including the linked sequences which were 
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added by the procedure), and the final list of (already searched) queries are the members 

of the single-linkage cluster (see methods for a more detailed description). 

The procedure also allows linkage measurements to be obtained from a variety of 

different alignment strategies. The simplest strategy (BLAST-SL) uses the original 

BLAST alignment (query vs. subject) to test for linkage. Because BLAST alignments are 

sub-optimal, a more exhaustive strategy (BLAST-BD) can be used to also check the 

reverse alignment (query vs. subject and subject vs. query) to see if the linkage 

measurements improve (i.e., BLAST-BD performs “bi-directional” alignment). 

Additionally, optimal alignments can be generated using the Smith-Waterman (SW) local 

alignment algorithm (Smith and Waterman 1981) implemented in BLAST, or the 

Needleman-Wunsch (NW) global alignment algorithm (Needleman and Wunsch 1970) 

implemented in BioPython. Because there can exist more than one optimal NW 

alignment for a given pair of sequences, the first 1000 NW alignments reported by 

BioPython are all measured and, if any one of them produces satisfactory 

identity/coverage measurements, the sequences are considered linked. 

Benchmark Analyses 

To evaluate the runtime of our clustering procedure under different parameter 

settings, and to test its performance against BLASTClust (Altschul et al. 1990), we 

selected 49 sequences from a database used in (Ahrens et al. 2016) and again in (Ahrens 

et al. 2018) (see methods for details). We created single-linkage clusters containing each 

of the 49 sequences using a 40% minimum sequence identity cutoff and a 90% alignment 

footprint coverage cutoff (i.e., the number of overlapping residues divided by the length 

of the longer sequence in the alignment must be at least 0.9), and we employed three 
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distinct sequence alignment strategies to establish linkage (Figure 2, 3). All 49 sequences 

aggregate into single-linkage clusters containing > 1 member in BLASTClust using a 

40% identity cutoff and a 90% alignment coverage cutoff. However, 16 of the 49 

sequences are identified as singletons (clusters with only one member) in our procedure 

when the BLAST-SL strategy is used to establish linkage. Further, 15 of the 16 sequences 

are still identified as singletons using BLAST-BD. This indicates that the alignment 

coverage threshold used by BLASTClust (which includes gaps when measuring 

alignment footprint length) can result in more inclusive single-linkage clusters than our 

procedure (which does not include gaps in the alignment footprint length). However, 

when using the SW + NW strategy to establish linkage, only 4 sequences are still 

identified as singletons, and 39 sequences are found in larger clusters than the single-

linkage groups identified by BLASTClust. 

Final runtimes for analyses resulting in singletons were relatively short (ranging 

from 4.2 to 46.1 seconds) regardless of the sequence alignment strategy used to establish 

linkage. The total runtime increases with cluster size, and clustering analyses that were 

run using the optimal sequence alignment strategy (SW + NW) show a tendency toward 

longer total runtimes than analyses using only BLAST-SL or BLAST-BD (Figure 2). 

Notably, the variance in runtime increases with cluster size as well. For instance, the 

longest analysis runtime (442,289.4 seconds; 122.9 hours) resulted in a cluster containing 

112 sequences, whereas the analysis resulting in the largest cluster (887 sequences) 

terminated in far less time (22,727.8 seconds; 6.3 hours). 
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Analysis of the Rpt Protein Family 

One of the clusters we obtained from our benchmark test contains 142 members 

of a protein family comprising the heterohexameric ring (Rpt) of the 19S regulatory 

particle (RP) in the 26S proteasome complex. After 15,000,000 generations, Bayesian 

MCMC analysis of the aligned sequence cluster in MrBayes (Ronquist et al. 2012) 

reached an average standard deviation of split frequencies (ASDSF) of 0.014. Although 

the observed ASDSF is slightly higher than the target convergence diagnostic (0.01) 

recommended by the program authors (Ronquist et al. 2011), the resulting 50% majority-

rule consensus tree contained 6 highly-supported clades (posterior probability = 1.0) 

containing all 6 subunits of the eukaryotic Rpt ring. 

Genes from all of the 25 species in the target BLAST database are represented in 

the Rpt ring cluster, and 10 of the species are represented exactly once in each of the 6 

Rpt clades (Figure 4).  Of the 6 species with multiple genes in at least one clade, only 

Strongylocentrotus purpuratus is not represented in all 6 clades (2 genes in Rpt4 clade 

plus Rpt1, Rpt5, Rpt6). The species with the highest number of genes in the cluster is 

Drosophila melanogaster—in addition to identifying all 6 subunits of the Rpt ring, we 

found three additional genes (Rpt3R, Rpt4R, Rpt6R) which appear to have arisen from 

more recent gene duplications (Figure 4). 

Results from IUPRed (Dosztányi et al. 2005) revealed marked differences in site-

specific intrinsic disorder propensities (i.e., the potential of each site to form stabilizing 

contacts) among the six clades we identified (Figure 5). For instance, the majority of 

sequences in clade containing Rpt2 genes possess an extended n-terminal region with 

high disorder propensity (low potential to form stabilizing contacts). Members of the 
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Rpt1 clade have two predicted domains: an AAA domain and a C-terminal AAA+ Lid 

domain, both of which are associated with ATPase activity. Most of the remaining 

sequences also contained a predicted oligonucleotide binding (OB) domain, with the 

exception of one sequence in the Rpt6 clade (corresponding to Amphimedon 

queenslandica), a second gene in the Rpt2 clade (from Caenorhabditis elegans) and a 

third sequence in the Rpt3 clade (from Trichoplax adhaerens). Lastly, a single gene in the 

Rpt5 clade from Monosiga brevicollis also contained a predicted N-terminal tRNA 

pseudouridine synthase D (TruD) domain. 

 

DISCUSSION 

Single-linkage Clustering Procedure 

Many graph-based sequence clustering applications are currently available for 

database analysis, including reference-based clustering applications such as CD-Hit and 

kClust (Li and Godzik 2006; Hauser et al. 2013), single-linkage clustering methods like 

BLASTClust (Altschul et al. 1990) and Silix (Miele et al. 2011), and non-deterministic 

Markov clustering procedures like OrthoMCL (Li et al. 2003). These applications are 

often optimized for clustering entire sequence databases, and a description of their overall 

clustering procedure (see Hauser et al. 2013) indicates that this is their intended use case. 

By contrast, the clustering procedure we present here is not intended for partitioning an 

entire database into sequence clusters. Rather, the advantage of our procedure (relative to 

whole-database approaches) is that a particular single-linkage cluster, at a particular 

linkage threshold, can be defined in a sequence database without expending the 

computational resources (time or memory) to define all of the other clusters at that same 
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threshold. This means that, if a researcher is only interested in mining a database to 

identify a particular homologous gene cluster (or a small number of gene clusters), the 

size of the target database is not as problematic (i.e., because the clustering procedure 

only needs to spend computational resources defining the groups of interest). 

Additionally, the user input for our procedure does not have to be a sequence from the 

target database (external query sequences can be supplied in a FASTA file), and the 

linkage cutoffs, BLAST pre-filters (e-value, number of hits) and alignment strategies can 

be set individually for each sequence cluster. Ultimately, these features allow for efficient 

and flexible acquisition of sequence clusters from large databases. 

Benchmark Analyses 

Because most sequence clustering applications focus on partitioning entire 

databases according to a pre-defined set of similarity cutoffs, their benchmark analyses 

also tend to evaluate database-level runtimes, or the time it takes the application to cluster 

a database of a given size (see Li et al. 2003; Li and Godzik 2006; Miele et al. 2011; 

Hauser et al. 2013). As mentioned previously, our procedure is more suitable for 

generating individual clusters within a database, so we focused instead on the relationship 

between cluster size and analysis runtime, as well as the way this relationship may 

change under more or less time-consuming alignment strategies. Our results show that 

individual runtimes can vary widely for specific single-linkage clusters, but runtimes 

generally increase with cluster size (Figure 2). Further, the longest runtimes in our 

benchmark correspond to large clusters (> 50 sequences) that were formed using optimal 

SW and NW alignment strategies. This makes sense because a BLAST search must be 

performed for every member of each single-linkage cluster (to identify potentially linked 
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sequences), and each BLAST search (Altschul et al. 1990) is computationally expensive, 

as it entails short word (k-mer) matching, local alignment, and E-value approximation 

across an entire database. Optimal sequence alignment (SW and NW) is also time-

consuming, and up to 1,000 NW alignments may need to be evaluated per query/subject 

pair.  

While BLASTClust includes gap characters when measuring alignment length 

and, subsequently, alignment footprint coverage, our procedure considers only the 

number of overlapping residues in a pairwise alignment (where neither sequence contains 

a gap character) when computing coverage. This means that our results are not directly 

comparable to BLASTClust, and indeed, many of the sequences which fall within single-

linkage clusters in BLASTClust (at 40% identity, 90% coverage) are identified as 

singletons with our procedure using the same percentage cutoffs (but a more stringent 

form of coverage measurement). However, MAFFT alignments (Katoh and Standley 

2013) of the 4 BLASTClust clusters containing sequences that we identified as 

singletons, even under the permissive SW + NW alignment strategy, appear to have 

relatively poor alignment quality, as the minimum alignment coverages (see Figure 6) of 

these clusters are all below 75%. Other developers have warned that clustering strategies 

permitting low alignment coverage can result in groups of sequences which have very 

different domain architectures (Miele et al. 2011), making the clusters unsuitable for 

many downstream analyses (alignment, phylogenetic inference, etc.). In light of this, 

while the coverage measurement used by BLASTClust is more sensitive (i.e., inclusive), 

we feel that our coverage measurement (considering only overlapping residues) is more 

appropriate for the task of agglomerating homologous sequences when their explicit 
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evolutionary history (phylogeny) is of interest. That being said, alignment strategy also 

appears to play a significant role in cluster composition and downstream multiple 

sequence alignment quality. Multiple sequence alignment of the non-singleton clusters 

identified by our procedure indicate that the SW + NW alignment strategy tends to 

produce clusters of more divergent sequences (Figure 7), so accounting for pairwise 

alignment strategy is important when determining appropriate linkage cutoffs. 

Analysis of the Rpt Protein Family 

The 26S proteasome is a large (roughly 2.5 megadalton) molecular machine that 

degrades protein sequences which have been labeled with ubiquitin (Voges et al. 1999; 

Komander and Rape 2012). In eukaryotes, it is composed of two main subunits: a 20S 

core particle (CP) and a 19S regulatory particle (RP) which together form the 26S 

proteasome complex (Voges et al. 1999; Bard et al. 2018). The 19S RP can be divided 

further into a 9-subunit “lid” complex (Lander et al. 2012; Lasker et al. 2012) and a 10-

subunit “base” complex, which attaches to one (or both) open ends of the CP, and is 

responsible for unfolding and translocating targeted proteins to the interior of the CP for 

degradation (Lander et al. 2012; de la Peña et al. 2018).  

The base complex of the 26S proteasome in eukaryotes includes 6 paralogous 

subunits (Rpt proteins, forming a ring in the order Rpt1, Rpt2, Rpt6, Rpt3, Rpt4, Rpt5), 

nearly all of which we were able to recover using our single-linkage clustering strategy 

(Figure 4). Recent structural determination via cryogenic electron microscopy (cryo-EM) 

has shown that these Rpt subunits of the lid complex are arranged in a “spiral-staircase” 

fashion and undergo substantial conformational changes while translocating a substrate 

(i.e., the protein targeted for degradation) to the internal proteolytic chamber of the CP 
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(de la Peña et al. 2018). The ensemble of cryo-EM structures elucidated by de la Peña et 

al. (2018) also reveals that the N-terminal regions of the individual Rpt subunits perform 

a diverse range of specific tasks, from the delineation of a path guiding the substrate into 

the CP for degradation (via Rpt2) to the stabilization of the β-hairpin structure in the 

ubiquitin-binding RPN11 lid subunit (via Rpt5).  

Notably, the N-termini of the Rpt proteins in our single linkage cluster exhibit 

relatively fast rates of amino acid replacement, as well as variation in both length and 

intrinsic disorder propensity (Figure 5). However, there is considerable conservation in 

the overall disorder profiles (i.e., arrangement of ordered and disordered sites) within 

each of the six major clades in our phylogeny (Figure 5), and every member of the Rpt1 

clade is missing the OB domain prediction from PFAM, which is found in nearly all other 

sequences in the phylogeny (though all 142 sequences contain at least part of the aligned 

region where the OB domain is predicted to be found). The appropriate placement of the 

root for the Rpt protein family phylogeny is unclear (see Wollenberg and Swaffield 2001; 

Fort et al. 2015) and because there is no discernible outgroup sequence in our dataset 

(i.e., the most divergent taxon, Monosiga brevicollis, is found in all 6 clades), we are 

displaying our consensus phylogeny as a midpoint-rooted tree. Nonetheless, the strong 

overall structural conservation seen in sequences within each main clade of our 

phylogeny (Figure 5), as well as the apparent structural differences among sequences in 

different clades, corroborate recent findings that different Rpt subunits play unique, 

complementary roles in the 26S proteasome. 

The fact that some species are not represented in all 6 clades (Figure 4) does not 

necessarily imply that those Rpt subunits were lost in their respective organisms, because 
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the database we used for this benchmark omitted a subset of sequences from each 

organism’s proteome, specifically any sequences that i) were less than 30 amino acids in 

length or ii) contained “X” characters, indicating ambiguous or unknown sequence data 

(see Ahrens et al. 2016). However, based on our results, many species certainly possess 

more than 6 copies of the Rpt gene, and in particular, Anopheles gambiae, Drosophila 

melanogaster, and Caenorhabditis elegans possess additional gene copies that are highly 

divergent in sequence, as measured by large tree distances between gene copies (Figure 

4). The duplicated Rpt/RptR genes in D. melanogaster have been studied previously 

(Belote and Zhong 2009), and it appears that at least some of the duplicated 26S 

proteasome genes are crucial for normal spermatogenesis (Zhong and Belote 2007; 

Belote and Zhong 2009). Given the divergent Rpt gene copies we observe here in A. 

gambiae and C. elegans, it is possible that additional Rpt gene copies are a more general 

feature of ecdysozoans (i.e., arthropods and nematodes). 

 

CONCLUSION AND FUTURE DIRECTIONS 

Our aim here was to i) describe a simple but flexible single-linkage clustering 

procedure which can be used for targeted acquisition of homologous protein sequences 

for downstream analysis (alignment, phylogenetic inference, etc.), ii) provide benchmark 

data to illustrate how the procedure performs under various scenarios and iii) to show that 

the procedure can identify inclusive sequence groups representing divergent protein 

families (i.e., the Rpt ring of the 26S proteasome). In the future, we plan to release a 

standalone version of the clustering procedure which will serve as a flexible data-mining 

tool for other researchers. 
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METHODS 

Algorithm and Implementation 

We used the Basic Local Alignment Search Tool, or BLAST (Altschul et al. 

1990), as the basis of our sequence search strategy. The remainder of the procedure was 

implemented in the Python programming language (Rossum 1995) using the Biopython 

library (Cock et al. 2009). The clustering protocol we implemented is based on a simple, 

graph-based single-linkage algorithm utilizing an iterative search-filter strategy which 

can be summarized as follows: 

1. Let Q be a container for homologous sequences such that each sequence corresponds 

to a unique label (header). Initialize Q with user-defined sequences. User input can be 

a FASTA-formatted sequence file and/or a list of sequence accession codes from a 

local BLAST-formatted database D (see 3). Q will serve as the query queue for 

performing BLAST searches. 

2. Let C be a separate container for labeled sequences. Initialize C as an empty container 

(C = Ø). (As BLAST searches are performed on queries qi  Q, they will be moved to 

C and eventually C will contain all sequences that belong to the single-linkage 

cluster.) 

3. Let D be a set of labeled sequences in a BLAST-formatted database such that a 

substring of each label is recognized as a unique accession code. (Note that Q may 

contain a mixture of database sequences qi  D and external query sequences qi  D). 

4. Let Hi be the set of all hit sequences hj  Hi returned from a BLAST search against D 

using qi  Q as a query sequence. Based on user BLAST specifications, Hi can be 
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pre-filtered to contain only the first n sequences or only sequences with a specified 

maximum e-value. 

5. Let fij be the alignment footprint for qi  Q vs. hj  Hi (the number of residues that 

overlap when qI and hj are aligned). 

6. Let S(qi,hj) be a function evaluating a user-defined set of conditions establishing 

whether or not a query sequence qi  Q is sufficiently similar to a hit sequence hj  

Hi. Allowable conditions include i) minimum pairwise sequence identity and ii) 

minimum alignment footprint coverage, i.e., min(fij/qi, fij/hj). In cases where qi  D 

and hj  D, the bidirectional optimum sequence identity and alignment footprint 

coverage may also be considered (i.e., the values obtained when using hj as a query to 

find the hit qi in D may be used to establish linkage instead). Also, sequence identity 

and alignment footprint coverage may be computed from the first 1,000 optimal 

global alignments generated using the global alignment algorithm by Needleman and 

Wunsch (1970) (NW) as implemented in BioPython. Finally, an alignment can be 

generated using the optimal local alignment strategy developed by Smith and 

Waterman (1981) (SW) as implemented in BLAST. S(qi,hj) returns True if and only 

if all user-defined conditions (e.g., sequence identity > 40%, alignment footprint 

coverage > 90%) are simultaneously met for a single alignment of qi vs. hj (or hj vs. 

qi). 

7. While Q ≠ Ø: 

Move one qi  Q to C (i.e., C  qi) 

BLAST qi against D to produce Hi 

For each hj  Hi: 
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If S(qi,hj) = True and hj  (C  Q): 

Q  hj 

In essence, the procedure begins by performing a BLAST search for a sequence qi 

 Q against the target database D and moving that searched sequence into C. Any hit 

sequences which are linked to a given query based on S(qi,hj), but are currently neither in 

Q nor C, are then added to Q. The procedure repeats until Q is empty (i.e., Q = Ø), at 

which point C will contain all sequences in the single-linkage cluster at the linkage cutoff 

defined by S(qi,hj). 

 

Importantly, if the linkage cutoffs are sufficiently relaxed (e.g., sequence identity: 

0%, alignment footprint coverage: 0%), the above algorithm (see 7) will create a single-

linkage cluster which contains every sequence in the target database D. To avoid the 

creation of overly-inclusive clusters (and unnecessarily long run times) we have included 

a safeguard in our implementation, wherein the user can specify a maximum number of 

members in C. If this upper bound is reached, the procedure halts and only returns the 

sequences found thus far. 

Benchmark Tests 

To evaluate the performance of our implementation of the above single-linkage 

clustering procedure, we used a BLAST-formatted database containing 25 eukaryotic 

proteomes (24 animals plus Monosiga brevicollis) which were originally used in Ahrens 

et al. (2016) and Ahrens et al. (2018). The database was filtered to exclude sequences 

which i) were less than 30 amino acids long or ii) contained “X” characters (i.e., 

ambiguous or missing sequence data). We selected 49 accession codes to initialize 49 
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single-sequence query queues (see Q above) and formed 49 single-linkage clusters using 

a minimum pairwise sequence identity threshold of 40% and a minimum alignment 

footprint coverage threshold of 90%. In Ahrens et al. (2016) and Ahrens et al. (2018), 

sequences were agglomerated into single-linkage clusters via BLASTClust (Altschul et 

al. 1990) using the similar thresholds (40% identity, 90% length), but BLASTClust 

includes internal alignment gaps when calculating the length of the alignment footprint, 

whereas our procedure only considers the alignment “footprint” to be the number of 

aligned non-gap characters. Thus, the footprint coverage threshold used in our procedure 

is actually more stringent than the one used by BLASTClust, so even though the 

numerical thresholds appear to be the same, the resulting single-linkage clusters are not 

necessarily identical. 

For each of the 49 analyses, we recorded 1) the final number of sequences in the 

single-linkage cluster and 2) the run time required to produce the cluster. To evaluate the 

effect of sequence alignment strategies on cluster size and run time, we ran each single-

linkage analysis three times. In the first run (BLAST-SL), linkage was determined based 

only on the initial BLAST sequence alignment. The second run (BLAST-BD) used the 

initial BLAST alignment as well as the alignment produced by using the hit sequence (hj 

 Hi) as a search string to find the original query sequence (qi  Q) in the database (note 

that because BLAST alignments are sub-optimal, these two alignments may not be 

identical, and hence may produce different measurements of sequence identity and 

alignment footprint coverage). The third run (SW + NW) considered an optimal local 

aligment produced by the Smith-Waterman (SW) algorithm, as well as all of the first 

1000 optimal global alignments produced by the Needleman-Wunsch (NW) algorithm. In 
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all three runs, we used the same linkage cutoff (40% identity, 90% alignment footprint 

coverage). Clusters containing more than 1 sequence were aligned with MAFFT (Katoh 

and Standley 2013). 

Analysis of the Rpt Protein Family 

One of the single-linkage clusters obtained from our benchmark analysis 

contained a protein family whose members comprise the subunits of the Rpt regulatory 

ring of the eukaryotic 26S proteasome complex. We aligned the protein sequences in this 

cluster with MAFFT (Katoh and Standley 2013) using a local-pair alignment strategy. 

Bayesian Markov Chain Monte Carlo (MCMC) phylogenetic analysis was run for 

15,000,000 generations in MrBayes3.2.2 (Ronquist et al. 2012) using a mixed-model 

strategy and assuming a 4-category gamma distribution among alignment site rates. We 

then inferred a 50% majority-rule consensus phylogenetic tree, discarding the initial 25% 

of generations as burn-in, and displayed the topology using a midpoint rooting strategy. 

Posterior probabilities for each clade (i.e., the fraction of trees in the MCMC chain which 

contain a given clade) were mapped to the corresponding internal nodes of the 

phylogeny. 

For each sequence in the cluster, we inferred site-specific intrinsic disorder 

propensities using IUPred (Dosztányi et al. 2005) to predict long disordered regions. 

These propensities were then mapped onto the sequence alignment to help detect changes 

in disorder propensity among orthologous groups of sequences within the protein family. 

Functional domains were also inferred for each sequence using PFAM (Finn et al. 2014). 

Alignment site rates were inferred using the empirical Bayesian method implemented in 

the program Rate4Site (Mayrose et al. 2004). Data visualization was accomplished using 
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a combination of the ETE3 (Huerta-Cepas et al. 2016) and matplotlib (Hunter 2007) 

Python libraries. 
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Figure Captions 

Figure 1. Examples of linkage graphs connecting objects (e.g., sequences) to form graph-

based clusters. Reference-based clusters (A, B) are created by using a reference object 

(black node) to identify and group similar objects (grey nodes). Note that the members of 

a reference-based cluster depend on the choice of reference object. By contrast, a single-

linkage cluster (C) is the connected graph that results from joining all pairs of similar 

objects together (effectively, every object is treated as a reference). This clustering 

strategy can be used to identify much larger groups than a reference-based clustering 

strategy using the same similarity threshold. 

 

Figure 2. Scatterplot showing the relationship between analysis runtime (y axis) and the 

number of sequences identified in a single-linkage cluster (x-axis). Results are shown for 

analyses using three different alignment strategies: i) the initial BLAST alignment of a hit 

sequence to the query sequence (BLAST-SL), ii) the additional reverse BLAST 

alignment of the query sequence to the hit sequence (BLAST-BD) or iii) the optimal 

alignments produced by the local Smith-Waterman algorithm and the global Needleman-

Wunsch algorithm (SW + NW). Note that both the x-axis and y-axis are log-scaled. 

 

Figure 3. Jitterplots showing the number of sequences clustered in each of the 49 

benchmark analyses using i) the legacy single-linkage program BLASTClust, ii) the 

initial BLAST alignment of a hit sequence to the query sequence (BLAST-SL), iii) the 

additional reverse BLAST alignment of the query sequence to the hit sequence (BLAST-

BD), iv) the optimal alignments produced by the local Smith-Waterman algorithm and 
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the global Needleman-Wunsch algorithm (SW + NW) and v) the first linked sequences 

identified by the initial BLAST search of the clustering procedure. Note that the y-axis is 

log-scaled. 

 

Figure 4. 50% majority-rule consensus tree (scale bar: bottom) showing inferred 

relationships between the 142 sequences identified in a benchmark single-linkage cluster 

containing the Rpt regulatory ring of the 26S proteasome complex. Labels indicate 

species names, UniProt codes, and gene annotations. Branch support values (posterior 

probability) are given for basal nodes of the tree. Note that all 6 main clades (containing 

subunits of the heterohexameric Rpt ring) are well-supported. 

 

Figure 5. Structural and functional information obtained for sequences in the Rpt ring 

single-linkage cluster. Top: Site-specific sequence evolutionary rates are shown over a 

heatmap (below) displaying the IUPred intrinsic disorder propensity of each site in each 

sequence (higher values indicate higher disorder). Top-left: phylogenetic tree with color-

coded terminal nodes indicating sequences with known functional annotations 

corresponding to Rpt1 (red), Rpt6 (orange), Rpt4 (yellow), Rpt2 (green), Rpt3 (blue) and 

Rpt5 (purple). Bottom-left: phylogeny indicating the 5 additional sequences (red) found 

in our optimal (SW + NW) single linkage cluster, which are not found in the original 

BLASTClust cluster. Bottom heatmap indicates predicted functional domains 

superimposed over amino acid sequence data (dark grey). Scale bar (bottom-left corner) 

indicates tree length. 
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Figure 6. Scatterplot showing sequence alignment quality of the 49 BLASTClust 

sequence clusters containing the 49 benchmark sequences used in our analysis. Y-axis 

indicates the minimum pairwise sequence identity between any two sequences in a given 

cluster. X-axis indicates the minimum alignment coverage (sequence length divided by 

the number of sites in the multiple sequence alignment) in each cluster. One of our 

benchmark sequences (red) was only identified as a singleton using the BLAST-SL 

method (BLAST-BD and SW + NW recovered additional members). Grey dots are 

clusters containing a benchmark sequence which was also identified as a singleton using 

BLAST-BD. Black dots are clusters containing a benchmark sequence which our 

clustering method identified as a singleton using all three alignment strategies (including 

SW + NW). Note that BLASTClust uses a more permissive calculation of pairwise 

coverage (including many alignment gaps), and the 4 single-linkage groups which our 

method failed to recover have relatively low alignment quality (low minimum alignment 

coverage). 

 

Figure 7. Scatterplot showing sequence alignment quality of the non-singleton clusters 

produced using different pairwise alignment strategies. Y-axis indicates the minimum 

pairwise sequence identity between any two sequences in a given cluster. X-axis 

indicates the minimum alignment coverage (sequence length divided by the number of 

sites in the multiple sequence alignment) in each cluster. Note that the alignment qualities 

of clusters produced using the SW + NW strategy tend to be lower than the other two 

strategies. 
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The Nuanced Interplay of Intrinsic Disorder and Other Structural Properties Driving 

Protein Evolution 

The link between the structural properties of proteins and their site-specific rates 

of amino acid replacement will likely remain a topic of intense research, and other studies 

have already indicated fairly strong correlations between specific structural properties 

and replacement rates (Franzosa and Xia 2009; Yeh et al. 2014). Here, I describe the 

results of a large-scale analysis of metazoan protein evolution, examining the association 

between site-specific protein evolution and three factors: intrinsic disorder propensity, 

secondary structure and functional domain involvement. In designing this study, I 

explicitly tested for the possibility of non-additive statistical interactions, and indeed, the 

factorial model reveals significant interactions between all three of the factors I 

measured. Hence, the results of this study illustrate that it is important to consider all 

possible combinations of structural factors, and also to account for the possibility of non-

additive effects that interacting structural/functional factors may have on rates of 

sequence evolution. In this case, doing so exposes a nuanced interplay between multiple 

drivers of sequence evolution. 

A curious additional discovery in the course of this study was that a fraction of 

sequence alignment sites were consistently predicted to be both intrinsically disordered 

and involved in a conserved secondary structure (either an α-helix or a β-strand). 

Notably, these sites tend to have very low rates of amino acid replacement. At the time, I 

termed these puzzling predictions “disordered-structured” sites, and speculated that they 

may correspond to regions of proteins that alternate between secondary structure and 

intrinsic disorder. 
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Large-Scale Analyses of Site-Specific Evolutionary Rates across Eukaryote Proteomes 

Reveal Confounding Interactions between Intrinsic Disorder, Secondary Structure, and 

Functional Domains 

While my initial factorial analysis of animal proteins revealed a surprising 

relationship between protein structure, function and sequence evolution, it was unclear 

whether those trends could be extrapolated to other eukaryotic lineages. In this follow-up 

study, I examine the same relationships between intrinsic disorder, secondary structure, 

functional domain involvement and sequence evolutionary rates in animals, plants, 

alveolate protists and saccharomycete fungi. Here, I report largely consistent trends in the 

relationships between structural/functional factors and rates of sequence evolution. In 

fact, in all four lineages, I find that i) ordered sites experience lower average amino acid 

replacement rates than disordered sites, ii) sites in secondary structures have lower 

average replacement rates than sites in random coils, and iii) sites in functional domains 

have lower average replacement rates than sites in inter-domain linker regions. 

Furthermore, the non-additive statistical interactions I initially reported in metazoans are 

observed in the other three eukaryotic lineages as well.  

Notably, the alveolate dataset is somewhat of an exception to an overarching 

trend, in that the confounding interaction between disorder and secondary structure is less 

pronounced than in the other three lineages (though it is still statistically significant) and 

there also appears to be a larger difference in amino acid replacements between ordered 

and disordered sites in alveolate proteins. The alveolate dataset I studied here includes 

pathogenic organisms from the clade Apicomplexa, including several strains of the 

malaria-inducing parasite Plasmodium falciparum. Other researchers have noted that 
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apicomplexan proteomes contain a large number of long disordered regions (Mohan et al. 

2008; Fong et al. 2009), and many of the potential vaccine targets in Plasmodium are 

known to be intrinsically disordered (Guy et al. 2015). Moreover, the erythrocyte 

binding-like proteins in P. falciparum, which are responsible for attaching to the surface 

of blood cells during host invasion, are intrinsically disordered even while binding to cell 

surface receptors (Blanc et al. 2014). Together, these findings suggest that intrinsic 

disorder may play a uniquely important functional role in many alveolate protists. This 

also suggests that future work will be required to better our understanding of interactions 

within disordered protein regions, in order to develop effective drugs/vaccines against 

malaria. 

I initially speculated that the conserved disordered-structured alignment sites 

found in animal proteins may be associated with molecular recognition features or 

MoRFs: regions of protein sequences which must alternate between (unbound) intrinsic 

disorder and (bound) secondary structure in order to properly function (Mohan et al. 

2006; Yan et al. 2016). Following up on this speculation, I analyzed the gene ontology 

(GO) terms (Ashburner et al. 2000) associated with protein sequences which contained 

conserved disordered-structured sites. A high fraction of these sequences have GO 

functional annotations corresponding to nucleic acid binding, and there is substantial 

evidence that nucleic acid binding proteins exhibit disorder-to-order transitions, upon 

binding to nucleotide targets, which are similar to the transitions observed in MoRFs 

(Dyson 2012; Varadi et al. 2015; Wang et al. 2016). A large fraction of hydrolase 

proteins also contain disordered-structured sites, and there is some evidence to suggest 
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that hydrolase proteins also rely on disorder-to-order transitions for proper function 

(Misaghi et al. 2005; Fong et al. 2009). 

Ultimately, although many of the trends I describe here are i) statistically 

significant and ii) consistently observed across the four eukaryotic lineages I studied, the 

overall predictive power of the resulting statistical models is quite low. In other words, 

based on my results, it is somewhat appropriate to claim that intrinsically disordered 

protein sites have faster average rates of sequence evolution than ordered sites, but 

because of the high overlap in site rate distributions among ordered and disordered sites, 

there is not necessarily a large probability that a particular fast-evolving protein site is 

intrinsically disordered. Additionally, because of the strong confounding interaction 

observed in animals, plants and saccharomycetes, the expected rate of sequence evolution 

at a disordered site depends crucially on other structural factors (e.g., whether the site is 

involved in a secondary structure). 

 

Evaluation of Site-specific Rate Heterogeneity Reveals Significant Differences in 

Sequence Divergence Patterns between Orthologous and Paralogous Proteins in Both 

Animals and Plants 

The relationship between inferred sequence divergence (i.e., the normalized 

lengths of a phylogenetic tree corresponding to a multiple sequence alignment) and the α 

parameter of the inferred gamma rate distribution among alignment sites is something 

which, to my knowledge, has not been explicitly evaluated before. In this study, I show 

using simulated evolutionary scenarios that the inferred α value of a sequence alignment 

correlates positively with tree length in cases where heterotachy contributes to protein 
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sequence evolution. Furthermore, the slope of this correlation increases with higher levels 

of heterotachy. Interestingly, in alignments of real protein data, there is a significant 

difference in the relationship between tree length and α when considering i) clusters of 

orthologous sequences (related by speciation) and ii) clusters of paralogous sequences 

(related by gene duplication). Specifically, the difference in divergence patterns implies 

that paralogous protein evolution entails significantly more heterotachy than orthologous 

protein evolution. 

The ortholog conjecture (Koonin 2005), the hypothesis that orthologous genes 

tend to be more functionally similar than paralogous genes, has been tested numerous 

times in recent years (see Nehrt et al. 2011; Altenhoff et al. 2012; Chen and Zhang 2012; 

Rogozin et al. 2014). Here, I have shown that orthologous proteins do exhibit a different 

sequence divergence pattern than paralogous genes, a difference which is consistent with 

my finding that they experience significantly less heterotachy overall. There is also a 

theoretical basis for the notion that variation in site-specific rates of evolution (i.e., 

heterotachy) is associated with changes in protein function (Gu 1999; Gaucher et al. 

2002; Abhiman et al. 2006). Therefore, given that i) heterotachy is associated with 

functional change and ii) heterotachy is apparently significantly more prevalent in 

paralogous phylogenies than in orthologous phylogenies, it stands to reason that iii) on 

average, paralogous proteins are significantly more functionally divergent than 

orthologous proteins, when overall sequence divergence is considered in an evolutionary 

(i.e., phylogenetic) context. In this light, the results I present here are compelling 

evidence in favor of the ortholog conjecture, as they corroborate the hypothesis that genes 
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related by duplication tend to be more functionally divergent than genes related by 

speciation. 

 

Acquisition of Homologous Protein Sequence Clusters from Local Databases Using a 

Simple, Graph-Based Single-Linkage Clustering Procedure 

The intended use-case of most sequence clustering methods is the partitioning of 

entire sequence databases. As such, their developers tend to emphasize their performance 

at the whole-database scale (see Li and Godzik 2006; Miele et al. 2011; Hauser et al. 

2013). The graph-based single-linkage clustering procedure I describe here is instead 

intended to produce only one sequence cluster at time, and is thus not designed to operate 

efficiently as a whole-database clustering procedure. However, for researchers interested 

in only a single gene cluster (or a relatively small number of gene clusters) the small-

scale nature of my procedure affords a degree of flexibility which is not available in 

whole-database clustering programs. For instance, rather than being limited to producing 

clusters of sequences within a target database, my procedure allows the use of external 

query sequences (i.e., sequences not found in the target database). Additionally, because 

the time required to define just one single-linkage cluster (minutes to hours) is typically 

much smaller than that required to cluster an entire database in BLASTClust (Altschul et 

al. 1990) (hours to days), users may define clusters using several different query 

sequences, linkage cutoffs and alignment strategies in a relatively short amount of time, 

and without expending unnecessary resources. 

A curious feature of single-linkage clustering is that, if linkage cutoffs are set 

such that any two sequences which are directly linked can be considered homologs (e.g., 
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40% protein sequence identity, 90% coverage), then all members of a single linkage 

cluster are effectively “transitive” homologs (i.e., A is homologous to B and B is 

homologous to C, so A is homologous to C). An important caveat of this feature is that 

the alignment coverage must be stringent enough to avoid clustering sequences with, for 

example, incongruent domain architectures (see Miele et al. 2011). Nonetheless, I show 

here that using a moderately stringent set of linkage cutoffs (40% protein sequence 

identity, 90% alignment footprint coverage, BLAST E-value filter of 10-6 and a 

maximum of 500 hits per BLAST search), it is possible to recover a single-linkage cluster 

representing a mostly-complete protein family—in this case, the proteins comprising the 

heterohexameric Rpt ring of the 26S proteasome complex. The Rpt protein family is 

known to be ancient, and the six primary gene duplications (giving rise to the 

heterohexamer) are believed to have occurred prior to the divergence of plants and 

animals, and possibly even prior to the last eukaryote common ancestor or LECA (Fort et 

al. 2015). Multiple sequence alignment indicates that protein sequence, structure and 

function is conserved among orthologous sequences in this group, but there is apparent 

divergence in structure (i.e., differing regions of intrinsic disorder) and function 

(differences in predicted functional domains) among paralogous proteins. These findings 

are consistent with recent cryogenic electron microscopy (CryoEM) work, indicating that 

subunits of the Rpt heterohexamer play unique roles in stabilizing the active proteasome 

complex and guiding targeted proteins to the core particle for degradation (de la Peña et 

al. 2018). 
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Future Directions 

Sequence-based predictors of protein structure are still being developed, and 

newer prediction methods achieve higher accuracy by jointly estimating several structural 

factors at once (see Yang et al. 2017). Future work, which considers the joint effects of a 

larger number of (more accurately-predicted) structural/functional protein properties, 

may uncover a clearer association between protein sequence, structure and function. 

Further, as statistical methods become more efficient, hierarchical linear models (e.g., 

considering the disorder propensity of a site in addition to the overall disorder content of 

the sequence) will likely reveal a more complete picture of how protein structure drives 

sequence evolution. 

Given the observed correlation between sequence divergence (i.e., tree length) 

and rate heterogeneity (i.e., the α parameter of the gamma distribution), it is possible that 

there also exists a positive correlation between site-specific heterotachy (i.e., the amount 

of rate variation at a particular alignment site across different lineages) and the 

uncertainty (variance) in the corresponding site rate estimate. Rather than focusing only 

on global measurements of rate heterogeneity (i.e., α values), future Bayesian analyses 

should estimate the joint posterior distributions of individual site rates as well. Such 

distributions may be helpful for identifying alignment sites which are evolving under 

markedly different evolutionary constraints in different lineages. 

While my goal in Chapter V was primarily to outline a targeted clustering 

procedure, and present a straightforward implementation of said procedure, future 

optimizations to this implementation (e.g., concurrency/parallelization) have the potential 

to greatly accelerate its performance. At the moment, the implementation I have 
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described performs reasonably efficiently and is well-suited to the task of mining local 

protein sequence databases for protein families. This makes the implementation suitable 

for a wide range of research projects, from phylogenetic inference to homology detection 

to functional annotation. 
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