
 

 

ABSTRACT 

Cardiovascular disease is the leading cause of death in the United States. During 

the process of plaque development called atherosclerosis, oxidized low-density 

lipoproteins (oxLDL) penetrate the endothelial lining of the arterial wall. The damage to 

the endothelial wall induces a signaling pathway to trigger an inflammatory response. 

Monocytes then phagocytose oxLDL in an attempt to prevent damage to the endothelial 

wall and ultimately transform into foam cells that constitute plaque tissue. This study 

explores the prevention of arterial plaque buildup in atherosclerosis using miRNA let-7g.  

Through bioinformatics, lectin-type oxidized LDL receptor (LOX-1), a macrophage 

scavenger receptor protein that uptakes oxLDL, leading to foam cell formation, was 

identified as a potential target.  After a thorough literature review, miRNA let-7g was 

found to be the most promising miRNA that inhibits LOX-1 expression. By preventing 

the expression of LOX-1, the macrophage will no longer respond to oxLDL signaling and 

ultimately inhibit plaque development.  Our aim was to determine if LOX-1 expression in 

macrophages would increase in a dose dependent manner in response to increased oxLDL 

concentrations. LOX-1 expression in human macrophage primary cell cultures was 

measured using a flow cytometry assay. We found that oxLDL concentration was not 

correlated with macrophages’ expression of LOX-1 receptor in a dose-dependent manner. 

This suggests that inflammatory signaling molecules are needed for LOX-1 upregulation 

and increased oxLDL uptake. It is expected that using let-7g in conjunction with an anti-

inflammatory compound, such as rapamycin, will further inhibit oxLDL uptake by 

macrophages and result in a novel treatment for atherosclerosis. 
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INTRODUCTION 

Atherosclerosis 

Cardiovascular disease (CVD) is the leading cause of death in the western world, 

contributing to approximately 23.5% of deaths each year in the United States alone 

(Center for Disease Control and Prevention, 2019). Cardiovascular disease is a general 

term used to describe various heart problems such as arrhythmias, defects, and conditions 

that involve the narrowing of blood vessels (Mayo Clinic, 2018). A primary contributor 

to cardiovascular disease is atherosclerosis. Atherosclerosis is a progressive, chronic 

disease caused by the formation and continuous buildup of plaque in the arteries (Libby 

et al., 2019). Arterial plaque initially forms when oxidized low-density lipoproteins 

(oxLDLs) clump together and burrow into the endothelial lining of an arterial wall, 

known as the intima (Lo & Plutzky, 2012). When oxLDLs damage the intima, an 

inflammatory response occurs. Macrophages carry a lectin-like oxidized low-density 

lipoprotein receptor-1 (LOX-1) receptor that potentially plays a role in the migration to 

damaged intima and the phagocytosis of the oxLDLs in an attempt to reverse the damage 

(Lo & Plutzky, 2012; Wang et al., 2015). The macrophages then die due to the 

continuous consumption of oxLDL and transform into foam cells. These dead foam cells 

remain in the arterial wall and start to form plaque. Without treatment, the uncontrolled 

buildup of plaque leads to the narrowing of arteries and constriction of blood flow to 

organs in the body. If an unstable plaque formation breaks off from the arterial wall, an 

acute, life-threatening ischemic attack such as stroke, myocardial infarction or pulmonary 

embolism can occur (National Heart, Lung, and Blood Institute, 2016). Each of these 

ischemic attacks affects a large portion of the United States population, making their 
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cumulative risk even greater. 795,000 Americans suffer from a stroke every year, 

735,000 are affected by a heart attack, and an estimated 900,000 Americans suffer from a 

pulmonary embolism or deep vein thrombosis every year (Raskob et al., 2010). Finding a 

non-invasive, effective, and inexpensive treatment for atherosclerosis can drastically 

decrease the risk of these ischemic attacks.  

miRNA 

MicroRNAs (miRNAs) are a class of small, endogenous RNAs of 21–25 

nucleotides in length. They play an important regulatory role in animals and plants by 

targeting specific mRNAs for degradation or translation repression. Additionally, 

microRNAs have a wide variety of functions and are involved in various critical 

biological processes in mammals (Wahid et al., 2010). Current research is the 

investigation of the roles and pharmaceutical capabilities of miRNAs as treatments for 

cancer and cardiovascular, viral, and neurological diseases. One of the benefits of 

utilizing miRNA as treatment is that it is naturally occurring, and thus there is the 

potential for miRNA replacement therapy, where synthetic miRNA are used to promote 

normal gene regulation. Another form of treatment could be the use of miRNA 

suppression to promote - rather than prevent - gene expression (Wahid et al., 2010).  

Certain microRNAs have been proven to be involved in cardiac remodeling, the 

process in which the heart adapts to various stressors (Romaine et al., 2015). However, 

chronic cardiac remodeling is associated with a wide variety of CVD, such as myocardial 

infarctions or heart failure (Romaine et al, 2015).  



3 

 

 

 

Justification for Research  

Atherosclerosis is a progressive, long-term disease caused by the buildup of 

plaque in the arteries. Over time, the plaque hardens and causes narrowing of the arteries, 

resulting in irreversible damage to the arteries and the heart due to the lack of proper 

blood flow throughout the body. It is crucial that efforts and resources focus on research 

to find a cure because atherosclerosis has the potential to impact anyone regardless of 

gender, race, and age.  

Additionally, prolonged atherosclerotic symptoms can lead to cardiovascular 

disease (CVD) and complications, such as myocardial infarction (heart attack) and stroke. 

CVD has become a global epidemic, and the economic implications are monumental. 

Cardiovascular disease’s indirect and direct costs sum up to roughly $555 billion in the 

U.S. alone, based on data collected in 2016, and this cost is projected to reach $1.1 

trillion by 2035 (American Heart Association, 2017). These monumental numbers 

demonstrate the huge financial impact that CVD can have on our population. 

Unfortunately, atherosclerosis cannot be entirely prevented or cured over an 

individual’s lifetime. Besides preventative lifestyle measures, treatments for 

atherosclerosis are invasive and/or problematic in the long term (National Institutes of 

Health, 2016). Many of these invasive procedures also do not guarantee a cure and 

potentially just cause more pain than healing. Thus, this proves that there is a strong need 

for new, preventive treatment that can ultimately be minimally invasive for the patient 

and prevent future complications, surgeries, or medications. 

Currently, a probable yet risky solution to treat severe atherosclerosis involves 

seeking professional medical procedures by means of surgery. One common method, 
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known as percutaneous coronary intervention (PCI), is a process that improves blood 

flow with one’s heart by opening the various affected arteries using a ‘mesh tube’ that 

will keep an artery open. Another method, known as coronary artery bypass grafting 

(CABG) is a type of surgical procedure that uses one’s existing arteries/veins from other 

parts of the body as a solution to ‘bypass’ the plaque filled arteries/veins (Toledo-Ibelles 

& Mas-Oliva, 2018). Though these procedures may help improve blood flow and 

decrease the risk of heart attack and stroke, they are in fact invasive and may have 

adverse side effects. Recovery time is necessary in order to follow through with such 

procedures, and there is always a risk of procedure failure. Grouped with high costs, this 

causes these invasive solutions to be risky and dangerous. 

In terms of current non-invasive treatments, one more commonly used method to 

treat plaque formation in the use of blood thinners and anti-inflammatory drugs, such as 

aspirin. This more commonly used drug can help thin one’s blood, thus allowing for 

temporary improvement in blood flow, seemingly improving one’s situation with regards 

to symptoms. However, in reality, the use of such drugs is simply a means to delay 

progression and does not target the real problem at hand. Even with the use of anti-

inflammatories, plaque formation is not decreased, and the drugs must be continuously 

administered. Prolonged use of these drugs is not only expensive but may also trigger 

adverse side effects while not solving the root of the issue. 

 Another field of non-invasive treatments includes the use of antioxidants to help 

alleviate the effects of atherosclerosis. However, the main issue with using them revolves 

around safety concerns. Many of the methods from previous studies are not standardized, 

and because comparing current research regarding clinical trials is laborious, there is 
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currently a lack of conclusions that point us in the direction of this potential solution.  

Recent scientific advances have revealed the synthesis pathways and the 

regulatory mechanisms of miRNAs in animals and plants, and miRNA-based regulation 

is implicated in disease etiology and has been studied for treatment. Additionally, several 

preclinical and clinical trials have been initiated for miRNA-based therapeutics, as it has 

been increasingly considered as a viable treatment. Recent findings in miRNA studies 

may add new dimensions to small RNA biology and miRNA therapeutics. 

LOX-1 is a receptor on the macrophage that initiates the interaction between the 

macrophage and oxidized LDLs (oxLDLs). When LOX-1 is expressed on the 

macrophage, it receives signals from oxLDL that has penetrated the artery and is drawn 

to it. Once at the site of oxLDL, the macrophage takes up the oxLDL to excess and dies. 

The dead macrophage then hardens as a foam cell and becomes plaque. Using the 

miRNA sequence let-7g has been shown to prevent the translation of LOX-1 into the 

receptor (Ding et al., 2013). Without LOX-1, the macrophage does not receive signals to 

consume oxLDL. Without the signal, the macrophage never consumes oxLDL and plaque 

is never formed. 

Research Questions and Hypotheses 

The goal of this project was to interrupt the atherosclerotic pathway at the 

macrophage uptake of oxLDL, thereby preventing the differentiation of macrophages to 

foam cells.  We used bioinformatics research and direct testing on a human macrophage 

primary cell line to answer the following questions:  

(1) What receptors are involved in the uptake of oxLDL by macrophage cells that 

ultimately leads to the production of atherosclerotic plaque?  



6 

 

 

 

(2) What miRNAs interact with these receptors to inhibit the protein production of these 

receptors?  

(3) Do the human macrophage primary cells express the LOX-1 protein?  

(4) Is the production of LOX-1 inhibited in this cell line through treatment with 

microRNA let-7g? 

We hypothesize that by introducing a miRNA mimetic of let-7g, we can prevent 

the expression of the LOX-1 protein that results in oxLDL uptake. Ultimately, this could 

pave the path for future research to determine whether this can prevent the formation of 

atherosclerotic plaque. 
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LITERATURE REVIEW 

Atherosclerosis 

 Atherosclerosis is a long-term disease that can lead to stages of cardiovascular 

disease that are difficult to treat. Foam cell formation and plaque generation are 

progressive processes but can be mitigated with proper lifestyle choices. However, timely 

or costly preventive methods and genetic predispositions to atherosclerotic factors make 

it difficult to prevent atherosclerosis altogether. This review details the pathology, 

prevention methods, and current treatments available for atherosclerosis in order to better 

understand the basis of our study and the severity of the disease.  

Pathology 

When discussing the stages of atherosclerosis, it is essential to have a thorough 

understanding of the endothelial cells that line the artery walls. Endothelial cells maintain 

a functional vascular network via vascular homeostasis (Michiels, 2003). Additionally, 

endothelial cells are the primary responders to changes in the vascular system and play a 

central role in the mechanisms underlying the development of vascular disorders, 

including atherosclerosis (Michiels, 2003). 

Cholesterol levels play a significant role in the development of atherosclerosis. 

High blood cholesterol is a significant risk factor for atherosclerosis (Nelson, 2013). 

Cholesterol travels through the body in small packs called lipoproteins, which are 

categorized into low-density lipoproteins (LDLs) and high-density lipoproteins (HDLs). 

Lipoproteins are made of fat and protein and help transport cholesterol through the blood. 

HDL clears from the body through the liver, which prevents the build-up of plaque in the 

arteries, while LDL carries cholesterol to the arteries, allowing cholesterol to collect in 
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the artery walls and contribute to atherosclerotic plaque formation (Linton et al., 2018). 

As LDL levels increase and HDL levels decrease, the risk of cardiovascular diseases rises 

because LDLs are the main component of arterial plaque (Hao & Friedman, 2014). 

In atherosclerosis, LDLs in the blood first accumulate in the arterial intima, which 

is the innermost layer of the artery wall below the endothelium. Then, LDLs are oxidized 

by free radicals, which are oxidative agents that promote inflammation in the body and 

become oxidized LDL or oxLDL (Insull, 2009). The changes in the arterial wall due to 

LDL oxidation activate endothelial cells to coordinate the recruitment of immune cells 

such as lymphocytes, mast cells, and neutrophils to sites of oxLDL build-up. Endothelial 

cells also secrete MPC-1, a monocyte chemoattractant protein, which attracts monocytes 

to the area (Hao & Friedman, 2014). Immune cells then release more pro-inflammatory 

cytokines - small proteins that affect the behavior of cells around them - and recruit even 

more immune cells to the artery wall (Fatkhullina et al., 2016). Monocytes also secrete 

lipoprotein-binding proteoglycans, which furthers inflammation (Ilhan & Kalkanli, 

2015).  

As more immune cells are recruited to the site of oxLDL build-up, monocytes 

attached to the endothelium make their way into the arterial intima, where they proliferate 

and differentiate into macrophages (Lusis, 2000). Proteins called scavenger receptors 

(LOX-1, CD36, CD68, and so forth) are on the macrophage surface (Figure 1). The 

receptors recognize oxLDL and signal the macrophage to engulf the oxLDL to remove 

oxLDL from the bloodstream (Moore et al., 2013). However, following uptake, Moore et 

al. explain that there is little negative feedback, leading to macrophages becoming grossly 

engorged with oxLDL. The normal macrophage phenotype is altered, and they become 
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foam cells, compromising crucial immune functions. Over time, the foam cells die and 

spill their lipid-filled contents into the dead core of the atherosclerotic lesion (Lusis, 

2000). Eventually, this dead lipid core can become 30% to 50% of the arterial wall’s total 

volume (Insull, 2009) and leads to the formation of harmful atherosclerotic plaque. This 

process is depicted in Figure 2. 

 

Figure 1. Macrophage scavenger receptors that respond to oxLDL (Stephen et al., 2010). 
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Figure 2. Inflammatory response pathway leading to the generation of atherosclerotic 

plaque buildup (Chhibber-Goel et al., 2016). 

 In atherosclerosis, the dominant type of lesion is the fibrous plaque lesion, which 

supports the dead lipid core that is already built up within the artery wall. Fibrous tissue, 

particularly collagen type I and type III, is added to form a cap over the lipid core. The 

fibrous cap is responsible for the strength of the structure due to its composition of 

calcium and elastin (Insull, 2009). The weak lipid core, however, is prone to deposition, 

and if the fibrous cap weakens or gets punctured, the entire plaque will rupture (Libby, 

1995). Plaque is also reduced by cellular apoptosis, death, and elastin degradation with 

lipid deposition (Katsuda, 2003). When the plaque ruptures, it has great potential to cause 

a heart attack or stroke, leading to detrimental cardiovascular events. 
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Current Treatments 

Current treatments to combat atherosclerosis are generally invasive or expensive. 

Oftentimes prescription drugs, medical procedures, and medical interventions are needed. 

These methods can be invasive or have harmful side-effects. 

Surgical procedures are the most invasive. The most common methods include 

percutaneous coronary intervention (PCI), which opens blocked or narrowed arteries, and 

coronary artery bypass grafting (CABG), which bypasses narrowed coronary arteries 

(Mohr et al, 2013). However, Mohr et al. state that PCI can lead to complications such as 

blood vessel damage, kidney damage, as well as myocardial infarction, while CABG can 

potentially cause a stroke. Thus, less invasive atherosclerosis treatments are gaining 

popularity in both research and patient use. Current, less invasive treatments include anti-

inflammatories, antioxidant therapies, and drug inhibitors that target specific proteins 

involved in atherogenesis. 

 Anti-inflammatories are compounds that reduce inflammation and oxidative stress 

at the sites of plaque formation. Studies have shown that arterial plaque has an increased 

number of inflammatory cells as well as inflammatory mediators (Charo & Taub, 2011). 

One popular anti-inflammatory treatment is the use of statins, which are lipid-lowering 

medications with an anti-inflammatory mechanism. Another promising anti-inflammatory 

is the drug Canakinumab, which targets a cytokine that mediates inflammatory response 

(Ridker 2017). However, its cost is high-approximately $73,000 per year in the United 

States, which is extremely expensive for the treatment of CVD (Sehested, 2019). Also, 

since it targets the body’s inflammatory response and immune system, there can be some 

adverse side effects in patients, such as immune infections and sepsis (Ridker 2017). 
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Ultimately, these drugs do not prevent or improve the development of atherosclerosis but 

only delay the progression.  

Another approach is to target specific proteins that are critical in atherosclerosis. 

Recently, researchers at the NIH have identified a protein, Sirtuin 3 (SIRT3), as a way to 

resist or reverse the effects of obesity-related inflammation (Traba et al., 2015). SIRT3 

ultimately blocks the receptor on macrophages and reduces the inflammation that 

contributes to atherosclerosis. Similarly, a second approach is to use the adhesion 

receptor protein CD146 to regulate macrophage foam cell formation (Luo et al., 2017). 

However, these avenues of research have encountered the same drawbacks as the anti-

inflammatories described above, since there are other inflammatory pathways in which 

atherosclerosis can still progress through.  

Antioxidants have also been researched to combat the oxidative stress that plays a 

role in atherosclerosis. Oxidative stress can be characterized as the imbalance between 

antioxidant levels and reactive oxygen species (ROS) in the body. An excess of ROS 

within the plasma and the arterial intima causes increased LDL oxidation (Adams, 1999). 

Free radicals also become hazardous when direct oxidation of critical cellular 

components like DNA and protein occurs (Yang, 2017). Antioxidant treatments protect 

against and eliminate ROS along with specific herbal derivatives, which can reduce 

inflammation. However, there is no substantial evidence to incorporate antioxidants or 

herbal remedies and treatments without having the risk of safety concerns (Tian et al., 

2017).  

Current advancements in treatment are geared towards noninvasive techniques. 

These noninvasive treatments are used as a preventative measure to slow the progression 
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of the disease or reverse it altogether. There is also a lower risk involved using 

noninvasive techniques, as there is usually a higher risk of injury or death with invasive 

surgical procedures. 

Prevention Methods 

Since CAD is the number one leading cause of death in the United States, 

preventative measures must be taken to delay the progression of this disease. Lifestyle 

changes are the cornerstone of atherosclerosis prevention. Simple changes to daily 

lifestyle habits can yield significant positive results. Eating right, regular physical 

activity, smoking cessation, and limiting stress are of the essential strategies for 

preventing CAD and managing risk factors.  

 Adopting a heart-healthy diet is one of the main ways for atherosclerosis 

prevention. Such a diet consists of fruits, vegetables, whole grains, fish, and low-fat dairy 

products. This also includes limiting sodium, added sugars, refined carbohydrates, and 

saturated fats. As mentioned above, limiting saturated fat intake is especially important 

because saturated fats contain small-dense LDL cholesterol, which is more susceptible to 

oxidation and thus atherosclerosis. Increased small-dense LDL means a decrease in HDL, 

often known as “good cholesterol,” in the blood. This results in high total cholesterol 

(TC): HDL ratio, which is a significant predictor of CAD. Diets consisting of increased 

added sugars and refined carbohydrates also increase the TC/HDL ratio resulting in the 

progression of atherosclerosis (DiNicolantonio et al., 2016).  

Engaging in physical activity is another preventive method for atherosclerosis. 

Larson-Meyer et al. (2010) demonstrated that LDL, total cholesterol, and blood pressure 

were improved in those who engaged in regular physical activity and were placed on a 
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calorie-restricted diet in comparison to those who were only placed on the diet (Larson-

Meyer et al., 2010). It is recommended that individuals engage in at least 30 minutes of 

exercise most days. Simple changes, such as taking the stairs or walking after a meal, can 

be done to increase daily activity.  

Smoking cessation is also critical for the prevention of atherosclerosis. Cigarette 

smoke contains thousands of chemicals and has reactive oxygen species that upregulate 

inflammatory cytokines, cause endothelial dysfunction and contribute to oxidative stress, 

thus hindering proper control of plaque formation (Edirisinghe & Rahman, 2010). The 

cigarette smoke also can result in increased inflammation and foam cell formation 

leading to the rapid progression of atherosclerosis (Huang et al., 2016). Increased stress 

also can interfere with inflammatory responses leading to the progress of atherosclerosis. 

Stress influences the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic 

nervous system. Increased release results in the release of cortisol, referred to as the 

body’s stress hormone. Cortisol has been found to influence cardiovascular function 

negatively. It has been found that those with low-stress resilience has increased risk for 

the progression of cardiovascular disease (Robertson et al., 2017).  

It is important to note that these are only a few prevention methods, and many 

more can be taken in order to delay atherosclerosis progression. If lifestyle changes are 

unsuccessful, medication and further treatments can be provided.  

Scavenger Receptors and LOX-1 

 Scavenger receptors are membrane-bound receptors that bind to a variety of 

ligands (such as carbohydrates or cholesterol ester) but have been largely known for 

binding low-density lipoprotein (LDL). In particular, as a supergroup, the scavenger 
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receptors can bind different forms of LDL leading to subsequent responses within the 

body. The scavenger receptors can be categorized into several classes, ranging from A-J, 

depending on the specific domain of the receptor. In general, the receptor first receives a 

signal when a specific ligand binds its receptor. This triggers an intracellular signaling 

pathway, resulting in signal transduction and activation down the pathway. For scavenger 

receptors, this pathway tends to be the regulation of the host response, leading to events 

such as inflammation, cytokine signaling, and more depending on the specific receptor 

function and ligand. Overall, scavenger receptors have been found to be specifically 

linked to ROS generation, apoptosis, and angiogenesis. ROS generation and apoptosis are 

also linked in this manner. Scavenger receptors that promote ROS generation thus 

promote oxidative DNA damage, which results in apoptosis (Zani, 2015). These events 

all occur at a heightened rate during atherosclerosis, thus further strengthening the link 

between atherosclerotic conditions and scavenger receptors.  

Examples of known and studied scavenger receptors are CD36 and SR-A1, which 

play roles in apoptosis, cell migration and adhesion, inflammation, and foam cell 

formation (Zani, 2015). Thus, the amplification of these oxLDL receptors can lead to 

very detrimental effects. However, as shown in Figure 3, a scavenger receptor can 

potentially be targeted in gene therapy in order to reduce the pro-inflammatory effects. 

Eliminating or reducing the expression of a pro-inflammatory receptor leads to a 

reduction in the subsequent signaling events that promote atherosclerosis. Knocking out 

SR-A1 or CD36 using RNA-interference has already shown promising results in reducing 

foam cell formation, and subsequently, plaque formation and other atherosclerotic 
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episodes (Mäkinen, 2010). This discovery is the basis of our study and potential 

treatment plan, as knocking out the receptor has demonstrated effective results. 

 

Figure 3: Intracellular signaling pathways of SR-A, CD36, and LOX-1 after oxLDL 

activation (Zani, 2015). 

 However, there has not yet been a development of human gene therapy treatment 

for preventing atherosclerosis. For this study in particular, one scavenger receptor is 

necessary and has been gaining attention as a potential target in cardiovascular disease 

treatment due to its enhanced expression during atherosclerosis. This receptor is the 

lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1 receptor), which is one of 

the most crucial receptors of interest in the uptake of oxLDL. As a type II membrane 

receptor, its main function is the uptake and internalization of oxLDL, which, in turn, can 

lead to atherosclerotic pathways such as inflammation and oxidative stress. LOX-1 has 

been identified in vascular endothelial cells, macrophages, and smooth muscle cells 
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(Chen et al., 2001), but is of particular importance in the monocyte-derived macrophages 

due to the subsequent foam cell formation after oxLDL uptake. oxLDL binds with a high 

affinity to LOX-1, making it a key player in oxLDL internalization. This typically occurs 

through clathrin-mediated endocytosis or lipid raft-mediated uptake (Murphy, 2008).  

LOX-1 expression is increased during atherosclerotic conditions, due to the 

increase in inflammation and reactive oxygen species (ROS) production (Thakkar, 2015). 

This leads to a reduction in macrophage migration since the macrophages are taking up 

the oxLDL (Wang, 2015). Again, this lack of macrophage migration ultimately leads to 

foam cell formation and plaque build-up due to the continuous consumption of oxLDL 

until the macrophage itself dies. Additionally, mutations within the LOX-1 gene also 

result in higher incidences of atherosclerosis (Mango, 2003). This speaks to its 

importance in the implication of atherosclerosis and cardiovascular disease. Thus, in 

order to prevent atherosclerotic conditions, LOX-1 expression could be targeted as a 

potential treatment plan. Knocking out or eliminating the expression of LOX-1 in its 

entirety has already been proven to significantly reduce atherosclerosis in LOX-1 

knockout mice (Mehta, 2007). This is due to the reduction of oxLDL uptake and 

subsequent oxLDL clearance through the kidneys. Knocking out LOX-1 expression 

reduces the signaling pathways that are stimulated by the presence of oxLDL, which can 

lower foam cell formation and plaque generation.  

miRNA 

Biological Mechanisms 

MicroRNAs, also referred to as miRNAs are single-stranded noncoding small 

RNAs that are typically 21-25 nucleotides long. Typically, miRNAs will downregulate 
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gene expression by binding to the 3′ UTR (untranslated region) in mature RNA, thereby 

suppressing protein production via cleavage or translation inhibition. It is estimated that 

30% of protein-coding genes are regulated by miRNA (MacFarlane & Murphy, 2010). 

While there is a general pathway for miRNA synthesis in animals, there are 

alternate pathways that exist and are proposed. The general biosynthesis mechanism also 

differs based on whether it is produced from intronic or intergenic regions of protein-

coding genes (MacFarlane & Murphy, 2010). Animal intergenic miRNA biosynthesis 

begins with the transcription of the miRNA genes by RNA polymerase II or III, forming 

pri-miRNA (primary miRNA), which are large step-loop molecules (Wahid et al., 2010, p 

1231-1243). This molecule is then processed by Drosha and DiGeorge syndrome critical 

region gene-8 (DGCR-8) to produce a pre-miRNA. The pre-miRNA is then transported 

to the cytoplasm with the help of exportin 5 (EXP5), which recognizes the short 

overhangs of the pre-miRNA. However, whether EXP5 is involved in miRNA 

biosynthesis in mammals is debated (MacFarlane & Murphy, 2010). In the cytoplasm, the 

RNase III enzyme Dicer cleaves the pre-miRNA hairpin, forming a miRNA/miRNA 

duplex composed of the mature miRNA strand along with the passenger strand, labeled 

with an asterisk and also initiates the formation of the protein complex, RISC (Wahid et 

al., 2010). RISC, whose exact assemblage mechanism is debated, then uses the mature 

miRNA as a template to recognize complementary sequences in mRNA (MacFarlane & 

Murphy, 2010). 

The mechanism of downregulation that the miRNA/RISC protein complex 

employs depends on the specificity of the miRNA molecule. The two agreed-upon 

mechanisms that can be employed are either slicer-dependent or slicer-independent 
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regulation. If there is extensive base pairing between the miRNA and its target, which is 

in the 3’ UTR of an mRNA strand, the slicer-dependent mechanism will occur. In 

humans, argonaute-2 proteins in the RISC complex will cleave the mRNA, and mRNA 

degradation will occur. If the miRNA does not have extensive base pairing to the target 

mRNA, the silencer-independent mechanism is employed. In this form of gene 

suppression, translation is inhibited. There are various pathways that different miRNA 

use. One proposed process is the physical movement of the target mRNA away from 

translational machinery to cytoplasmic structures known as P-bodies. Research suggests 

that P-bodies are the site of reversible mRNA repression as well as mRNA degradation 

(MacFarlane & Murphy, 2010).  

 MicroRNAs have a wide variety of functions and are involved in various critical 

biological processes in mammals (Wahid et al., 2010). There is a wide variety of research 

that is currently investigating the roles as well as pharmaceutical capabilities of miRNAs 

as treatments for cancer and cardiovascular, viral, and neurological diseases. One of the 

benefits of utilizing miRNA as a form of therapy is that it is naturally occurring. Thus, 

there is the potential for miRNA replacement therapy, where synthetic miRNA is used to 

promote healthy gene regulation. Another form of treatment could be the use of miRNA 

suppression to encourage rather than prevent gene expression (Wahid et al., 2010).  

Cardiovascular Disease Treatment 

The regulatory functions of miRNA in cardiovascular processes have encouraged 

many researchers to focus on miRNA as a form of cardiovascular disease (CVD) 

treatment (Zhou et al., 2018). This can include both their use as a form of direct therapy 

as well as their employment as diagnostic biomarkers CVDs (Zhou et al., 2018).  
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MiRNAs are involved at various steps of the atherosclerosis pathway, such as 

endothelial cell dysfunction, inflammatory cell infiltration, lipid dysregulation, as well as 

smooth muscle cell differentiation (Romaine et al., 2015). Endothelial cell dysfunction, a 

starting process in atherosclerosis, is linked to miR-126-5p, which regulates the 

formation of endothelial cells.  

The potential of various miRNAs as a form of biomarkers is summarized by Zhou 

(2018), who focuses mainly on circulating miRNAs. Circulating miRNAs have garnered 

lots of interest as potential biomarkers due to their durability, as they can travel in the 

bloodstream in naturally forming vesicles and thus are not degraded (Zhou et al., 2018).  

miRNA let-7g 

MiRNA let-7g is one of the best-characterized members of the Let-7 family of 

miRNAs and appears to play a uniquely primary role in the pathogenesis of vascular 

diseases (Mendell & Olson, 2012). Over the past five years, let-7g has been found as an 

important modulator in the development of atherosclerosis (Zampetaki & Mayr, 2012). 

Let-7g has been found to reduce plaque buildup and other effects of atherosclerosis in a 

variety of cells, including endothelial cells (Frangogiannis, 2014).  

Let-7g reduces atherosclerotic progression by stabilizing atherosclerotic plaque. 

First, it negatively regulates LOX-1 through the intracellular Ca2+-activated protein 

kinase C-oxLDL-LOX-1-let-7g pathway (Chen et al., 2011). Let-7g is an endogenous 

inhibitor of endothelial inflammation and protects endothelial cells by regulating TGF-β 

signaling and SIRT-1 signaling (Figure 4), which are pathways that promote 

atherosclerotic progression (Liao et al., 2014). This limits plaque inflammation to local 

areas and therefore improves vascular thrombosis. The increased let-7g expression also 
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results in less adhesion and migration of monocytes across the arterial endothelial wall, 

which is an important step in plaque build-up (Rom et al., 2015).  

 

Figure 4. Diagram showing the effects of miRNA let-7g on endothelial cells. miRNA 

Let-7g modulates TGF-𝛃 and SIRT-1 signaling to prevent outcomes such as continued 

cell proliferation, inflammation, monocyte adhesion, and monocyte migration (Liao et al., 

2014).  

Another possible mechanism by which miRNA let-7g contributes to reducing 

atherosclerotic progression is by downregulating matrix metalloproteinases, or MMPs 

(Frangogiannis, 2014). MMPs belong to a family of proteases produced by inflammatory 

cells in atherosclerotic plaques to digest extracellular matrix, which helps vascular 

smooth muscle cells (VSMCs) migrate to the fibrous cap and cause plaque rupture 
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(Allahverdian et al., 2014). MiRNA let-7g may contribute to the reduction of 

atherosclerotic plaques by regulating MMPs. MiRNA let-7g has been shown to suppress 

the expression and activity of MMP-2 and MMP-9 in breast cancer (Qian et al., 2011). 

However, the role of MMPs in the atherosclerosis pathway is complicated; while some 

may weaken plaque caps, other MMPs are responsible for plaque stabilization. Some 

studies have shown that MMP-2, MMP-9, and MMP-14 promote VSMC migration and 

proliferation that increases fibrous cap thickness and maintains plaque stability (Liu et al., 

2014). Furthermore, different MMPs have differential effects on plaque stabilization. 

More research on various MMPs’ individual and synergistic effects on plaque 

stabilization should be studied. 

Rapamycin  

Biological Mechanism 

Upon initial discovery, rapamycin, also known as sirolimus, was found to be 

produced by Streptomyces hygroscopicus, a soil bacterium in Easter Island. Rapamycin 

can be characterized by its antiproliferative properties as well as its ability to suppress the 

immune system (Lee & Kim et al., 2014). It exerts its immunosuppressive effects 

inhibiting the mammalian target of rapamycin (mTOR) signaling pathway which is 

critical for the regulation of cell growth and metabolism by controlling mRNA translation 

and ribosome synthesis (Guertin & Sabatini, 2017). There are currently two separate, yet 

functional, mTOR complexes.  

Information from oxygen levels, growth factors, and nutrients such as amino acids 

are first integrated by mTOR complex 1 (mTORC1). Typically, the T cells in the immune 

system that produce cytokines (small proteins essential for immune function) activate the 



23 

 

 

 

PI3K/AKT pathway and mTOR. The activated mTORC1 can then phosphorylate 

ribosomal protein 6 kinase (S6K) and eukaryotic initiation factor 4E binding protein 1 

(4EBP1) to initiate protein translation and subsequent protein synthesis to promote tumor 

growth and metastasis (Tong & Jiang, 2016). However, rapamycin disrupts this pathway 

by acting as a potent inhibitor of the TOK kinase. More specifically, rapamycin binds to 

the 12 kDa FK506-binding protein (FKBP12), forming the rapamycin-FK506 complex, 

which then blocks mTORC1 disrupting the progression of cell cycle and proliferation of 

T cells (Lee & Kim et al., 2014).  

 The mTOR complex 2 (mTORC2) is slightly different in that it is a rapamycin-

insensitive protein complex. Here the mTROC2 integrates information from only growth 

factors and, in turn, promotes cytoskeleton organization in cells and cell survival via 

activation of protein kinase B, also known as Akt (Lee & Kim et al., 2014). However, 

with chronic exposure and administration of rapamycin, it has been found that the 

mTORC2 pathway can be inhibited as well. While the mechanism for this has not been 

found, it is proposed that inhibition of complex assembly is the reason why (Oh & 

Jacinto, 2011). 

Due to its immunosuppression abilities, rapamycin has been beneficial for the 

treatment of many diseases such as cancer, neurodegenerative diseases, and diabetes 

(Zhang et al., 2014). However, the mTOR pathway promotes not only increased protein 

synthesis but also the proliferation of vascular smooth muscle cells and plaque formation 

in atherosclerosis (Cai et al., 2018). With the inhibitor properties of rapamycin on the 

mTOR pathway, rapamycin acts as a promising treatment for atherosclerosis. 
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Treatment of Cardiovascular Disease 

 As previously noted, rapamycin is readily used as an immunosuppressive drug, as 

it acts as an mTOR pathway inhibitor, which has been proven to be helpful for lowering 

the risk of rejection after organ transplants and for treating cancer patients (Dao et al., 

2017). As a drug, it has a varying range of effects, from immunomodulating to anti-aging. 

However, it has been recently discovered that rapamycin has an impact on the 

cardiovascular system and its subsequent diseases as well. In particular, rapamycin has 

anti-atherosclerotic effects, in turn impacting the growth and progression of plaque due to 

its stimulation of autophagy pathways. The potential anti-atherosclerotic effects are wide-

reaching, from promoting vasorelaxation, decreasing foam cell formation, to inhibiting 

the movement of monocytes. Rapamycin also tends to serve as a preventative treatment 

against the advanced stages of atherosclerosis. During advanced atherosclerotic stages, 

foam cell formation and plaque buildup are highly unstable, but rapamycin has the ability 

to stabilize plaques through its inhibition of apoptosis (Sun et al., 2018). However, it is 

unable to reduce the amount of lipid accumulation. Clinically, rapamycin can be applied 

to help treat atherosclerosis and the subsequent cardiovascular issues that follow, but this 

has proven to be both difficult and invasive. 

 Although a rapamycin/sirolimus-eluting stent has been used in clinical patients 

and found to be potentially more successful than traditional coronary stents (Morice et 

al., 2002), the procedure to both insert the stent during surgery and maintain its stability 

afterwards is difficult. There are several complications that can follow, such as the 

fracturing of the sirolimus-eluting stent (Ino et al., 2009) and hyperlipidemia, which may 

only further cause additional atherosclerotic issues as this results in an increase in lipids 
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(Kniepeiss et al., 2004). Since rapamycin affects endothelial cells as well, there is 

evidence of it potentially causing endothelial dysfunction, which can further aggravate 

atherosclerosis. There appears to be an optimal concentration of rapamycin for 

atherosclerotic treatment (dose dependency) that does not result in such side effects as 

endothelial cell damage and hyperlipidemia (Otsuka et al., 2015), but as of recently, that 

concentration is not well-known. Overall, rapamycin does have a therapeutic effect on 

atherosclerosis and may potentially be a strong treatment for it in the future. The 

mentioned studies have seen an application in animal trials and are now in practice with 

human patients. However, advancements are needed in order to minimize the dangers and 

invasiveness of the current clinical procedures utilizing rapamycin. 
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SUMMARY OF GOALS 

Our study of microRNA let-7g and its effects on atherosclerosis was conducted by 

pursuing three goals: 

I. Identify a receptor involved in the uptake of oxLDL as well as a miRNA 

sequence that inhibits its expression. 

II. Confirm the expression of LOX-1 in human macrophage primary cell 

culture. 

III. Measure the degree of inhibition of LOX-1 production in the macrophage 

cells after treatment with a miRNA mimic of let-7g. 

We aimed to accomplish the first goal via a bioinformatic investigation of 

receptor proteins, for oxLDL, on the surface of human macrophage cells, as well as of 

corresponding, testable miRNA to inhibit such a protein. For the second goal, we 

hypothesized that human macrophage primary cell culture cells would express the LOX-1 

protein. In addition to this general hypothesis, we expected the expression of the protein 

to increase in the presence of oxLDL. Concerning the third goal, we expected that, after 

treating the macrophage cells with the miRNA let-7g mimic, the cells would exhibit a 

decrease in the expression of the LOX-1 protein. 
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METHODOLOGY 

Methodology Justification 

 After developing an understanding through the literature of macrophage cell 

culturing, LOX-1 receptor function, miRNA transfection, and other assays measuring the 

uptake of oxLDL, the following methods were performed. 

Bioinformatics 

The use of bioinformatics was important to better understand the genetic 

composition and ultimate protein structure of several oxLDL receptors on human 

macrophage cells. The resource genecards.org was helpful in determining the cell 

signaling pathways by which LOX-1 receptor takes up oxLDL, and its role in other pro-

atherogenic events.  

The first step to our approach includes the use of bioinformatics to find miRNA 

that targets proteins that uptake oxLDL, such as LOX-1, SCARB-1, and MSR1. Online 

bioinformatic analyses were performed to assess the predictable miRNA binding sites in 

order to validate the miRNA-mRNA interactions. miRNAs are small (18-24 nucleotides), 

single-stranded, noncoding RNAs. They regulate gene expression by binding to the 3’-

untranslated region (UTR) of specific target mRNA (messenger RNA) sequences. Since 

any given miRNA can have several distinct miRNA-binding sites within its 3’-UTR, 

miRNAs have multiple levels of regulation over gene expression. 

It is expected that increasing the expression of miRNA in vitro will repress 

protein production. Reliable genetic databases such as mirbase.org and genecards.org 

provided useful information about the genes for the LOX-1, SCARB1, and MSR1 

proteins. By searching databases like miRBase, we accessed full annotations and 
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predicted gene targets of any miRNA sequence (Griffiths-Jones, 2006). Information 

gathered included the sequence of the gene, the 3’ UTR, and the miRNAs which have a 

known effect on gene expression. Research databases like miRBase provided “integrated 

interfaces” for miRNA sequence data, annotation, and predicted gene targets (Griffiths-

Jones, 2006). 

Proteins that imbibe LOX-1 include proteins included scavenger receptors such as 

SCARB1, LOX-1, and 3 members of the class A type of scavenger receptors. Using 

genecards.org, the gene information for these proteins were found, and each web page 

was looked at individually. From these pages, the sequence of the 3’ UTR, the sequence 

of the entire gene, and relevant miRNA were obtained and recorded. Secondly, the names 

of individual miRNA were searched for in mirbase.org. This website provided the 

sequence of the miRNA, any possible stem-loops, and relevant research articles on the 

specific miRNA. After all this information was gathered, it was deduced that LOX-1 

would be the best protein to inhibit with a miRNA called let-7g. Overall, these websites 

helped us to deduce the miRNA that are associated with gene expression and protein 

production. Ultimately, the resulting miRNA were cross-referenced and searched for in 

other databases such as NCBI.  

Macrophage Cell Culture 

Human macrophage primary cell culture was purchased (Celprogen) and grown in 

Human Macrophage Cell Culture Complete Growth Media containing fetal bovine serum 

and antibiotics (Celprogen). The cell line was maintained in T25 flasks kept at 37°C, 5% 

CO2. Media was replaced every other day and passed once every 7 days.  
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Analysis of LOX-1 Expression 

Macrophages were plated with oxLDL tagged with fluorescence at varying 

concentrations (0ug, 5ug, 10ug, 20ug) to assess dose-dependent LOX-1 expression. Cells 

were run on a FACS Canto II flow cytometer (BD Biosciences, CA) and analyzed with 

FCS Express 6 (De Novo Software, Glendale, CA). Deris, doublets, and dead cells were 

excluded from analysis. Flow cytometry and CD45 flow cytometry was conducted to 

count live cells, cells expressing CD45, and cells expressing LOX-1 protein. 

RESULTS 

Flow cytometry analysis of macrophages to determine LOX-1 expression levels  

We first assessed the effects of oxLDL on LOX-1 expression in human 

macrophages. The percentage of live macrophages expressing LOX-1 was calculated 

through flow cytometry (Figure 5). CD45-gated flow cytometry was also used to 

calculate the percentage of live CD45+ macrophages expressing LOX-1 (Figure 6). 

 

 

Figure 5. Live macrophage cell count and PE emission (nm) in various oxLDL 

concentrations. After incubating human macrophage cultures with various oxLDL 
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concentrations (0, 5, 10, and 20 ug/mL), percentage of LOX-1-expressing macrophages 

as calculated by running the cells on a FACS Canto II flow cytometer (BD Biosciences, 

CA) and analyzing them with FCS Express 6 (De Novo Software, Glendale, CA).  The 

red markers represent the gates. 

 

 

Figure 6. Live CD45+ macrophage cell count and PE emission (nm) in various oxLDL 

concentrations. After incubating human macrophage cultures with various oxLDL 

concentrations (0, 5, 10, and 20 ug/mL), percentages of LOX-1-expressing macrophages 

were calculated using FCS express software. The red markers represent the error bars. 

CD45 flow cytometry was performed. 

Contrary to other literature, the percentage of LOX-1-expressing macrophages did 

not appear to have a positive correlation with oxLDL concentration (Figure 7). In fact, 

there appears to be almost no correlation between oxLDL concentration and LOX-1 

expression, as indicated by the low R2 value of 0.143 (Figure 7). Likewise, the percentage 
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of LOX-1-expressing CD45+ macrophages was not positively correlated with oxLDL 

concentration (Figure 8). 

 

Figure 7. Dose response curve of oxLDL (ug/mL) on LOX-1 expression in macrophages. 

Percentage of all macrophages expressing LOX-1, including CD45+ macrophages, 

obtained from flow cytometry was plotted against oxLDL concentration. Linear line of 

best fit was calculated with equation y = -0.562x + 73.5, with an R2 value of 0.143. 
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Figure 8. Dose response curve of oxLDL (ug/mL) on LOX-1 expression in CD45+ 

macrophages. Percentage of macrophages expressing LOX-1 obtained from CD45 flow 

cytometry was plotted against oxLDL concentration. Linear line of best fit was calculated 

with equation y = -0.0621x + 94.8, with an R2 value of 0.233. 

However, oxLDL appears to have the same consistent effect on macrophages, 

whether they are CD45+ or CD45-. There is a strong positive correlation between LOX-1 

expression in CD45- and CD45+ after the same oxLDL treatments; the linear regression 

had an R2 value of 0.905 (Figure 9). 
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Figure 9. LOX-1 expression in CD45+ and CD45- macrophages at the same oxLDL 

concentrations. Corresponding percentages of LOX-1 expressing CD45- and CD45+ 

macrophages obtained from flow cytometry were plotted at these oxLDL concentrations: 

0, 5, 10, and 20 ug/mL. 

Flow cytometry analysis of poorly differentiated macrophages 

Poorly differentiated macrophages expressed low levels of CD45. Among these 

cells, 98.15% of them were CD45- according to flow cytometry data (Figure 10). Of the 

CD45- cells, only 5.25% of them constitutively expressed LOX-1 (Figure 10). Only 

1.85% of cells expressed CD45 (Figure 10). Of the CD45+ cells, 23% constitutively 

expressed LOX-1 (Figure 10).  
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Figure 10. Flow cytometry analysis of poorly differentiated monocytes. Top right panel 

is emission intensity and corresponding macrophage counts of CD45+ cells (circled in 

red in the top left panel). Top left panel is emission intensity and corresponding 

macrophage counts of CD45- cells (circled in red in the bottom left panel). Purple 

markers indicate the percentage of macrophages that constitutively express LOX-1.  
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DISCUSSION 

OxLDL does not independently increase macrophage expression of LOX-1 receptor 

OxLDL does not appear to stimulate LOX-1 receptor production on its own in 

pure macrophage culture. Contrary to previous literature, there appeared to be no positive 

correlation between oxLDL addition and LOX-1 expression in any macrophage culture of 

this study. In fact, there was no correlation between oxLDL concentration and percentage 

of macrophages expressing LOX-1.  

Several reasons could account for this. First of all, previous literature found that 

LOX-1 expression greatly increases in the presence of oxLDL in addition to 

inflammatory molecules such as TNF-𝛼 (Kume et al., 2000). Atherosclerosis is an 

inflammatory process, so an inflammatory ligand may be needed to stimulate LOX-1 

production despite the presence of oxLDL.  

Secondly, there appeared to be a steady decrease in LOX-1 expression from 0 to 

10 ug/uL oxLDL; perhaps the percentage of macrophages expressing LOX-1 at 20 ug/uL 

was due to human error (Figures 7 & 8). Conversely, the increase in LOX-1 expression 

from 10 to 20 ug/uL could in fact be due to oxLDL concentrations greater than a certain 

threshold value. Previous literature has found that the binding of oxLDL to LOX-1 is 

enough to activate the NF-kB inflammatory pathway, which further upregulates the 

expression of LOX-1 (Kattoor, Goel, & Mehta, 2019). If oxLDL alone is enough to 

upregulate LOX-1, this could cause the increase in LOX-1 expression from 10 to 20 

ug/uL. Macrophage expression of LOX-1 should be analyzed in oxLDL concentrations of 

greater than 20 ug/uL. 
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The results indicate that more testing is needed with increased replicates and a 

wider range of oxLDL concentrations in order to properly confirm or disprove findings. 

LOX-1 expression is dependent on monocyte differentiation 

Macrophage cells arise from monocytes, which differentiate into macrophage 

cells after various signaling events. Immature, poorly differentiated macrophage cells 

express very low levels of LOX-1 (Figure 10). Of the immature CD45+ macrophage 

cells, 23% constitutively expressed Lox-1 (Figure 10), compared to 95% when fully 

differentiated (Figures 6 & 8). Further, among the immature CD45- macrophage cells, 

only 5.25% of them expressed Lox-1 (Figure 10). 

These data suggest that LOX-1 expression is dependent on monocyte 

differentiation, and that this should be noted in future experiments. Additionally, this 

confirms previous literature that LOX-1 is expressed in differentiated macrophages but 

suggests that even a low percentage of undifferentiated monocytes express LOX-1 

(Kume et al., 2000). 

Future Methodology  

Since human differentiated macrophages in this study did not express LOX-1 in a 

dose dependent manner when oxLDL is present, it is important to understand how LOX-1 

expression can be manipulated. Further research is needed to obtain optimal oxLDL 

concentrations at which LOX-1 can be studied. In the context of this project, the next step 

would be to use let-7g miRNA mimic to downregulate LOX-1 expression. It is expected 

that LOX-1 expression will decrease and oxLDL uptake will decrease in a dose-

dependent manner. After examining the role of miRNA let-7g in inhibiting the LOX-1 

receptor expressed in the macrophages, this miRNA treatment will be compared to an 
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existing drug with known anti-atherosclerotic effects. The drug chosen for comparison 

was rapamycin (Sirolimus), which has been found to reduce the increase in LOX-1 

mRNA and protein levels when oxLDL is present. It does this by reducing mTOR 

(mechanistic target of rapamycin) phosphorylation, inhibiting transcription factor NF-ᴋB 

activation, and suppressing LOX-1 expression. In order to do this, the macrophages will 

be transfected with a miRNA let-7g mimic, and oxidized LDL uptake into the cells will 

be measured. It is expected that LOX-1 expression and oxLDL uptake will be reduced. 

After this experiment, the results of transfection with let-7g and rapamycin will be 

compared to assess which is best at reducing oxLDL uptake. This could have 

implications for drug development in the context of heart disease treatment. 

In order to complete this experiment, the macrophages will need to be treated 

according to a specific set of conditions, and their uptake of oxidized LDL will need to be 

measured using flow cytometry. In the first part of the experiment, a specific amount of 

the previously cultured human macrophages will be added in triplicate to the 24-well 

plate. They will then be treated using the following conditions: 

- Row one, three wells: Positive control group, macrophages will be treated 

only with Myricetin. Myricetin has been reported to be an inhibitor of 

oxLDL uptake through CD36 transcriptional reduction in macrophages. 

- Row two, three wells: Macrophages will only be treated with rapamycin. 

- Row three, three wells: Macrophages will only be treated/transfected with 

miRNA let-7g mimic. 

- Row four, three wells: Macrophages will be treated with both rapamycin 

and miRNA. 
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- Row five, three wells: Negative control group two, macrophages will not 

be treated with anything. 

Following this treatment period, fluorescent oxLDL called oxLDL-DyLight 488 

will be added to each of the wells in the plate. The macrophages will then be incubated 

for 4 to 24 hours before the flow cytometry protocol begins to observe the final uptake of 

oxidized LDL in the macrophages. 

Anticipated Results  

 It is expected that under treatment condition row one, oxLDL uptake will be 

reduced because Myricetin is a known inhibitor of oxLDL receptors such as CD-36. The 

purpose of finding these results is to establish a baseline that we can compare further 

results to. Additionally, the treatment scenario in row five will establish a baseline 

amount of oxLDL that these cells take up. It is anticipated that under treatment condition 

row two, there will be decreased oxLDL uptake. This level will be compared to Myricetin 

to understand its relative efficacy as a possible drug for atherosclerosis prevention. The 

third treatment condition will allow us to compare oxLDL uptake after LOX-1 inhibition 

with miRNA let-7g. We expect to see a decrease in oxLDL uptake after the miRNA let-

7g treatment. This would support previous research that suggested that miRNA let-7g can 

inhibit expression of LOX-1 protein by targeting its 3’ untranslated region, therefore 

reducing the amount of oxLDL taken up by the cell. If there is a higher level of oxLDL 

uptake in the treatment with let-7g in comparison to the treatment with Myricetin,  we 

would be able to confirm that miRNA let-7g is a more effective treatment for inhibiting 

the LOX-1 receptor than rapamycin. After establishing how effective let-7g and 

rapamycin are individually at decreasing LOX-1 expression and oxLDL uptake, the 
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macrophage cell line will be treated with them both. It is expected that when they are 

used in combination, the lowest amount of LOX-1 dependent uptake of oxLDL will be 

observed. After concluding the optimal concentrations of miRNA let-7g and rapamycin 

that diminish ox-LDL uptake, these drugs could be used as an injection to prevent further 

development of atherosclerotic lesions in heart disease patients. 

Future Directions 

MiRNA has proven successful in many in vitro studies, but its behavior in vivo is 

a cause for concern. An array of miRNA have been studied with success in targeting and 

inhibiting mRNA expression in vitro. Within the body, miRNA degenerates rapidly, has 

poor cellular uptake, and clears rapidly following administration in the body. These 

characteristics make miRNA an ineffective treatment in vivo when used on its own. 

Developing a compatible delivery method is essential to the efficacy of miRNA.  

Liposomes & Drug Delivery 

Developing a compatible delivery method is essential to the efficacy of miRNA as 

a drug treatment. Nanoparticles composed of lipids, polymers, and metals have all been 

studied with varying levels of stability and efficacy (Ozpolat, 2013). Of these 

nanoparticles, a lipid-based nanosome, otherwise known as a liposome, has proven to 

improve stability and increase bioavailability. Liposomes are one of the most common 

delivery methods in vitro.  

Liposomes are optimal for treatment pertaining to atherosclerosis. The stability of 

liposomes has been studied in animal models and there is a direct relationship between 

cholesterol content and liposomal stability. This is optimal for treatment of the 

atherosclerotic pathway because of the relationship between hyperlipidemia and 
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atherosclerosis (Lobatto et al, 2012). The composition of the liposome contributes to the 

characteristics of the nanoparticle. A liposome of equimolar amounts of cholesterol and 

phosphatidylcholine showed the highest levels of miRNA transfection into the liposome. 

Meanwhile, cholesterol-free liposomes have been found to have decreased stability 

(Kirby et al., 1980). Cholesterol is integral to a stable liposome and, fortunately will then 

cooperate well with the let-7g miRNA transfection. A particular study manipulated 

liposomes encapsulating miR-34a and let-7g to treat a lung tumor in mice. The treatment 

found “significantly decreased lung tumor burden” to approximately half of the mice 

treated with miRNA (Alshehri et al.,  2018). The liposome delivery system has high 

efficacy and is commonplace in miRNA studies.  

Polymer Vesicles  

 Polymer vesicles, also referred to as polymersomes, are a viable and versatile 

drug delivery method due to their adjustable membrane contents, targeting abilities, and 

capability of containing a variety of molecules (Zhao et al., 2017). Unlike liposomes, 

polymersomes are made of “macromolecular amphiphiles architectures”, a distinctive 

composition that allows them to have superior “colloidal stability” and protection of any 

drug contents (Zhao et al., 2017). In this section, we will take a look at asymmetrical 

polymersomes, which are polymeric capsules with asymmetrical membranes that allow 

them to have a superior endocytosis rate.  

 Due to their more stable membranes compared to that of liposomes, 

polymersomes may serve as a superior alternative for drug delivery. Additionally, 

polymersomes have the ability to contain hydrophobic, hydrophilic and amphiphilic 

compounds in their membranes. This is a notable advantage because future directions 
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may lead to other contents other than microRNA or Rapamycin being contained for 

delivery.  

 In this case, the use of the previously described ‘asymmetric polymersomes’ is 

advantageous due to the fact that they will allow for an increased endocytosis rate and 

efficient drug loading capacity, both which allow for the polymersome to protect drug 

properties and allow for more control in drug release (Zhao et al., 2017). Furthermore, in 

the case for protein delivery, asymmetric polymer vesicles are capable of encapsulating 

larger amounts of proteins efficiently than normal polymer vesicles, and the membrane of 

these vesicles will also prevent protein degradation. As such, these vesicles could be 

potentially used in the future as a means of drug delivery. The versatile and adjustable 

properties, along with greater protection for vesicle contents highlight the visibility that 

polymersomes showcase in a potential future application.  
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