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1 Introduction

A key goal in theoretical computer science is the identification of structures that exhibit
resilience to adversarial tampering. The classical notion in this space is that of an error-
detection or error-correction code, where we seek to ensure that tampering caused by an
adversary that can modify a bounded number of symbols in a codeword can be detected or
corrected.

But what if the number of errors that an adversary can introduce is unbounded? The
objective of error detection or correction is clearly impossible to achieve in this setting — the
adversary can simply replace the transmitted codeword with an encoding of some other fixed
value. Thus, the main question of study in this context concerns the notion of malleability:
informally speaking, our core goal must be to prevent the adversary from replacing an
encoding of a value x with an encoding of some other related value & # x.

The central information-theoretic object in this setting is called a split-state non-malleable
code [5]. Since their introduction in 2010 [5], split-state non-malleable codes have been
the subject of intense study within theoretical computer science [5, 4, 1, 3, 2, 6]. Here,
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we consider the most basic form of a split-state non-malleable code, namely a code for
encoding a single bit. A split-state non-malleable code [5] for single-bit messages consists of
randomized encoding and decoding algorithms (enc, dec). A message m € {0,1} is encoded
as a pair of strings (L, R) € {0,1}*¥ x {0,1}*, such that dec(L,R) = m. An adversary
then specifies an arbitrary pair of functions g, : {0,1}* — {0,1}*. The code is said to be
non-malleable if, intuitively, the message obtained as dec(g(L), h(R)) is “unrelated” to the
original message m. In particular, to be e-non-malleable, it is enough [4] to guarantee that
when the message m is chosen uniformly at random and encoded into (L, R), the probability
that dec(g(L), h(R)) =1 —m is at most § + ¢.

1.1 Previous Work

All known constructions and proofs of security for explicit split-state non-malleable codes have
required complex mathematical proofs, and all known such proofs either directly or indirectly
used the mathematics behind constructions of two-source extractors [4, 1, 3, 2, 6]. In fact,
after constructing the first non-malleable code in the split-state model Dziembowski, Kazana,
and Obremski wrote: “This brings a natural question if we could show some relationship
between the extractors and the non-malleable codes in the split-state model. Unfortunately,
there is no obvious way of formalizing the conjecture that non-malleable codes need to be
based on extractors” [4].

1.2 Our Contribution

In this work, we seek to establish new, simpler, foundations for the construction of single-bit
split-state non-malleable codes. We do so by answering in the negative the implicit conjecture
of [4]; we show that it is not necessary to base constructions of non-malleable codes on the
theory of extractors.

Specifically, we show that expander graphs immediately give rise to split-state non-
malleable codes for single-bit messages. We prove that any d-regular graph on n = 2* nodes
with spectral expansion \ satisfying n = Q(d® log(d)/\) yields a O (%)—non—malleable code
for single-bit messages in the split-state model. Our proof is elementary, requiring a little
more than two pages to prove, having at its heart two nested applications of the Expander
Mixing Lemma. Furthermore, we only need expanders of high degree (e.g., d = nt/ 3), which
can be constructed and analyzed easily (see, e.g., [7] or Appendix C), yielding 2~*(*)-non-
malleable codes. It is worth noting that the manner in which we construct a single-bit code
from an expander graphs is similar to how [4] constructs a single-bit code from a two-source
extractor. Thus, our main discovery is that expander graphs suffice for such a construction
to succeed.

Our construction of non-malleable codes from expander graphs thus opens up a new line
of attack in the study of split-state non-malleable codes. It is important to keep in mind that
current constructions of non-malleable codes supporting messages of arbitrary length use
many ideas pioneered in the construction of [4], in particular the use of extractors. While
we do not yet know how to generalize our results beyond single-bit messages, we speculate
that further investigation building upon our work will reveal a deeper connection and more
powerful simple constructions based on expanders.

It should be noted that two-source extractors are well-known to exhibit expansion
properties; however, in all previous proofs, much more than mere expansion was used to
argue non-malleability. Indeed previous proofs apply extractors repeatedly; for instance
the proof of [4] uses the extractor property multiple times (e.g., in equation (22) and using
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equation (43) in [4]). We also note that it is not surprising that 1-bit non-malleable codes
will exhibit some sort of expansion properties. Our contribution is the converse: that good
expansion is sufficient for the construction of non-malleable codes.

1.3 Parameters and a Comparison with DKO13

For completeness we include an analysis of the concrete parameters of our resulting code.
Let v > 0 be given. Our construction yields a 1-bit y-non-malleable split-state code where
each part of the message is a vertex of a d-regular graph G on n vertices. The graph G must
have expansion A and satisfy n = Q(d®log(d)/)\) and A\3/2/d = O(y). Suppose that G has
expansion ©(+/d), which is the case for the instantiation in Appendix C. We may then set
d=0((1/7)%) and n = O((1/4)'°). Thus, our code uses space 20log(1/v) + O(loglog(1/7))
to encode a single bit. The instantiation from Appendix C is not able to choose n as flexibly
as suggested here and uses space 241og(1/7). The time taken to encode and decode a message
in this instantiation is O(log(1/7)). In comparison, the instantiation of [4] uses space around
901log(1/7) and the time to encode and decode is O(log(1/7) log®(log(1/7))). It should be
noted, however, that the construction of [4] supports leakage as well, something that we are
not considering in this paper.

1.4 Intuition behind our construction and analysis

Every graph, G = (V, E) yields a single-bit split-state code in the following straightforward
manner: To encode 1, pick an edge (v,u) € E uniformly at random, and set the left encoding
to be v and the right encoding to be u. To encode a 0, do the same with a uniformly random
non-edge in the graph.

Our analysis proceeds in two parts. First, in Proposition 6, using only elementary
manipulations, we give an exact characterization of the success probability of any particular
tampering split-state adversary against the code associated with any graph. The split-
state adversary uses two functions, g and h, to tamper with the left and right encodings,
respectively. The significant term of the probability to be analyzed is the quantity

5 <d|g @] A7 W] _ |E(gl(v),h1(u))|>'

n
(v,u)eR

To bound this expression, we make the following observations. First, sparsity of the graph
allows us to bound many of the terms immediately. Second, the term in the parentheses
above immediately suggests a bound using the Expander Mixing Lemma, applied to the
number of edges from g~!(v) to h=!(u). Third, we observe that the sum itself is over edges
(v,u) € E, and furthermore, the remaining sum of problematic terms are a sum over edges of
the form (v,u) € EN (T x §) for some vertex subsets S,7 C V. This allows us to apply the
Expander Mixing Lemma a second time, effectively bounding the number of “error terms”
that accumulate through the initial use of the Expander Mixing Lemma. The actual analysis
of this bound is just over a page of calculation. The analysis follows the intuition above,
modulo a partitioning of terms into sets of appropriate size for the analysis to work.

2 Preliminaries

We shall assume familiarity with the basics of codes and non-malleable codes. A cursory
review of relevant definitions can be found in the appendix.
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» Notation 1 (Graphs). A graph G = (V, E) consists of vertices V and edges E CV x V. In
this exposition every graph is undirected and n = |V| always denotes the number of vertices
of the graph in question.

For any v € V we denote by N(v) the set of neighbors of v in G.

For any two subsets S, T CV we denote by E(S,T) the set of (directed) edges from S to

TinG. Le. E(S,T) ={(v,u) € SxT | (v,u) € E}.

» Definition 2 (Spectral Expander). Let G = (V, E) be a d-regular graph, Ag be its adjacency
matriz, and Ay > --- > X\, be the eigenvalues of Ag. We say that G is a A spectral expander
if A > max{|Az|,..., | Anl}.

» Theorem 3 (Expander Mixing Lemma). Suppose that G = (V, E) is a X spectral expander.
Then for every pair of subsets S,T C V we have

d-|S|-|T
(s, 1)) - PV <y s

Our results will rely on the following characterization of 1-bit non-malleable codes by
Dziembowski, Kazana, and Obremski found in [4].

» Theorem 4. Let (enc,dec) be a coding scheme with enc: {0,1} — X and dec: X — {0, 1}.
Further, let F be a set of functions f: X — X. Then (enc,dec) is e-non-malleable with
respect to F if and only if for every f € F,

Pr o (dec(f(enc(b))) =1 —-b) <
b<={0,1}

+ e,

DN | =

where the probability is over the uniform choice of b and the randomness of enc.

3 Results

We first formally introduce our candidate code and then prove that it is a non-malleable
code.

3.1 Candidate Code

From a graph we can very naturally construct a coding scheme as follows.

» Definition 5 (Graph Code). Let G = (V,E) be a graph. The associated graph code,
(encg, decq), consists of the functions

encg: {0,1} =V xV, decg: V xV = {0,1}

which are randomized and deterministic, respectively, and given by

(u,v) &< (V x V)\ E, b=0,
el = (u,0) <~ E -
R
’ 1
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3.2 Non-Malleability of Expander Graph Codes

Finally, arriving at the core of the matter, we first establish the following lemma casting the
expression of Theorem 4 in terms of graph properties.

» Proposition 6. Let G = (V, E) be a graph, functions g,h: V. — V be given, and f =
(g, h): VXV = VXV satisfy f(u,v) = (g(u), h(v)). For the probability that f flips a random
bit encoded by enceq, write

T'= Pr (decg(f(encg(b))) =1—10)
b<={0,1}

where the probability is taken over the randomness of encg and the sampling of b. Then

T 1Y
el y <d\g @] |» <>\_,E(g_1(v)’h_1(u)),>, 1)

n
(v,u)EE

Proof. For b € {0,1} denote by Q, the probability

Qy = Pr(decg(f(encg (b)) =1—10)

taken over the randomness of encg. It is clear that T' = % and that by definition

Qo = Pr [(g(v), h(u)) € ET, Q= Pr [(g(v),h(u)) & EJ.

(0,u) =V X V\E (V) F

First, for b = 0 we see that the number of non-edges that are mapped by f to any given
(v,u) € E is given by ’g_l(v)‘ : ‘h_l(u)’ - ‘E(g_l(v), h_l(u))‘. There are n(n — d) non-edges
in G so it follows that

_ Zpwen |9 @) @] - [B(gT (), hH(w)]
0 n(n —d) '

Second, for b = 1 the number of edges of G that are mapped to non-edges by f is given by
2 (vu)gE |E(g=*(v), h=*(u))|. Since there are dn edges of G to choose from when encoding
the bit b =1,

_ Z(v,u)eE |E(971(U)a hil(um

o o

Now, observing that the number of (directed) edges in the graph is dn and that {g=(v)},ev
and {h™!(u)}uev are both partitions of V, we get

= S es [BGT O] Ser Bl 0. )
te dn T dn '

Putting it all together,
D O Ol e (O 0 R oI . O O]

2n(n — d) 2 2dn

dlg )| - |h Hu
B S S <|g<>L| ()||E@1w»h1wm>-

(v,u)EE

T

A

We proceed immediately with the main theorem, which concludes the exposition. In order to
keep this presentation short and to the point, more elaborate calculations, which avoid the
log-factors, have been placed in the appendix as Theorem 10.
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» Theorem 7. Let G = (V,E) be d-regular with spectral expansion A satisfying n =
Q(d®log(d)*/N). Then (encg,dece) is an O (%ﬂ)—non—malleable code in the split-state
model.

Proof. Let f =(g,h): V XV — V x V be given. By Theorem 4 and Proposition 6 we just
need to show that

1 d|g~ ()| - |p*(u)| B _

is bounded by O (&d/’z) Define the sets

Gr={vevilyie)> 5}, Hy={ueV|[h@]> %},
Gy {UGVHg Mg%}, Hg—{u€V||h_1(u)|§%}7

for i,j € {1, 2} write

1
2d(n — d)

R dlg~ )] |h~ ()]

(v,u)eEN(G;x Hj) (

and observe that R =}, ; ;o Ri;
Consider the case when i = 2. Slmply bounding the terms of the form |g=(v)| - |h™! (u)]
by using that each vertex has only d neighbours, we get

1 _ _
R2,1+R2,2§m Z ’g 1(’U)||h 1(u)}
(v, u)EEN(GaxV)

1 n 1
St C 2 g W

ueV
B n
- 2(n—d)d’
Thus, Ry 1 + Ra2 =0 (d_l). By symmetry, Ry 2 = O (d_l). It only remains to show that
Ry = O (’\2/2). To this end, partition G; and Hj, respectively, as
k _ n 1 _ n
Gi={vealg=2ls)|> 5} H={vem| gy "W >3}
for1 <k, 1< (1og2 (dQH. Now, focusing on each pair G¥ and H!, we write
1 dlg~" (v)] - [h " (u)]
S = _|E —1 h—l
k,l 2d(n —d) Z ( n ‘ (97 (v), (U))|
(v,u)EEN(GY x H!)

and apply first the mixing lemma then the Cauchy-Schwartz inequality to get
d |g_1(v)’ ’ZueN(U)mHl h_l(“)|

2d(n — d) Sy = Y . d -lElsw, | '
veGE uwEN (v)NH!
<> A flgt@l Y i)
veGk u€N(v)NH!
n n 1
= )‘\/ ok—1 " 9i—1 Z \/ }N(U)DHII
veGY

IN

2% Jlat] /|Gy ).
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We use the fact that ‘G’f‘ < 2k, HH < 2!, apply the mixing lemma to the last factor, and
wield Jensen’s inequality on the arising square root to obtain

k) Ll
U — d)Sus < -2 r@fwdwwﬂ Gl A

n

< AMW2kdn + 25T X\3/2p < X - VdBn + 27T 232,

By symmetry of k and I, d(n — d)Sk,; < X - Vd3n + 2575 \3/2, Thus,

Riq= Z Sk

1<k,I<[log, (d?)]

Mog(d)? - Vd N3/2 k=l
oMW (K)o

1<k,I<[log,(d?)]

o (Y, .
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A Definitions for Split-State Non-Malleable Codes

Here, we recall the basic definition of a split-state non-malleable code due to [5].

» Definition 8 (Coding scheme). We define a coding scheme to be a pair of functions
(enc,dec). The encoding function enc: M — X is randomized while the decoding function
dec: X - M U{L} is deterministic. Further, for all s € M the pair satisfies

Pr[dec(enc(s)) = s] =1
where the probability is taken over the randomness of enc.

» Definition 9 (Split State Non-Malleable Code). A coding scheme (enc,dec), enc: M —
L xR and dec: L x R — MU{L}, is e-non-malleable in the split state model if for every
pair of functions g: L — L,h: R — R and writing f = (g, h) there exists a distribution Dy
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supported on MU {*, L} such that for every s € M the two random variables defined by the
experiments

AS — { (L,R)<—enc(s); }
f Output dec(g(L),h(R))

Bs _ §<—Df;
f 7 ) If =% output s else output &

have statistical distance at most €.

B Deliver Us from Log Factors

A more thorough analysis of the sums in the proof of Theorem 7 allows us to get slightly
better bounds. The technicalities are of little interest to the big picture and were hence
omitted in the body of the paper. The addition consists of an alternative ending to the proof
of Theorem 7.

» Theorem 10. Let G = (V,E) be d-regular with spectral expansion A salisfying n =
Q(d?log(d)/\). Then (encg,decg) is an O (%)—non—malleable code in the split-state

model.

Proof. At the very end of the proof of Theorem 7, we arrived at

ik d- |G| |H!
d(n — d)Sy, <2 ’Ekm-\/yc:'f;.\/W+A-,/\G§\-|H{|.

Applying Jensen’s inequality, we get

A Itk ) A3/2 Ik 4
swzo( ) et i vo (P ) ¥ e m e

with the functions hidden by the O-notation being independent of k, I.
Now, note that

_ n- |Gk _ n- |H!
g1 (GD)] > 2|k1| |nH(HD)| > ; ! (3)
k
and for all k < [log,(d?)| we have |2C:/12‘ < 2d. We shall bound each of the terms of (2)

separately.
First, write

I — Z (2—’?|G’1€|\/@>
1<k, I<[log,(d?)]

Using the Cauchy-Schwartz inequality in the second inequality,

L<a2d- > J27t|HY|

1<i<[log,(d?)]

<o(tvig@) [ ¥ v

1<I<[logy(d?)]

§O<d'\/M)' 1<l<[lz:(d2ﬂ
=0 (d- Viog(@))

|n =t ()|
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since the H! are disjoint subsets of V. In conclusion,

) e X~ \/d-log(d)
o( ) X ot o (AT )
Vn 1<k,I< [log, (d2)] \/7 v
/\3/2
=0<d>'

Second, let k <! and write ¢t = [ — k. We now bound the sum using (3). Write

K= S ey |a.

1<k<I<[log, (d?)]

k-1

K<) (2; @)’ \hl(Hm)

1<k<I<log,(d2)]

Bl

[log,(d®)] o [log, (d”

)] -
< > |5 X Vel i)
=t

t=0

3/4 1/4

|—log2(d2)‘| [Ing (dz)—| |—log2(d2)‘|

=D DR S D DENVR(C 1] IS B SR

t=0 =t =t

t=0

where the third inequality is established using Holder’s inequalty.
It now follows that

/\3/2
2. Su=0 (d) |
1<k<I<[log,(d?)]
By symmetry of k£ and [,
)\3/2
Ry = Z Sk =0 <d> ’

1<k,1<[log, (d?)]
which completes the proof. |
C Instantiating Our Construction
Using our results to instantiate an efficient, secure split-state non-malleable code, we require

a family of graphs {Gy }ren, where each Gy = (Vi, Ey) is dg-regular with spectral expansion
Ak, satisfying the following:

1. The function e(k) = )‘2:2 is negligible.

2. We have ng = |V(Gk)| = Q(dz log(dk)/)\k)

3. Both sampling an edge (u,v) <~ Ej and sampling a non-edge (u,v) <= (Vi x Vi) \ Ep
can be done in time polynomial in k.
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4. Determining membership of a pair (u,v) € V x V in E(G},) can be done deterministically
in time polynomial in k.

Given such a family of graphs it is clear that the corresponding graph code (encg, ,decg, ) is

an efficiently computable non-malleable code.

C.1 Instantiation with High-Degree Cayley Graphs

Explicit constructions of such families of graphs do indeed exist. We shall here give an
example from [7] from the class of graphs known as Cayley graphs. The construction is as
follows.

» Definition 11. For p a prime and 1 <t < p let the graph LD, ; have vertezx set IFZ‘H and
edge set

E(LDp;) = {(z,x + (b,ab,a®,...,a'b)) |z € FS™ a,b € Fp},

i.e. z,y € V(LD, r) are connected by an edge if and only if there exists a,b € F,, such that
y =+ (b,ab,a?b, ... a'b).

It is worth nothing that the graph LD, ; is p?-regular and that it is undirected as z is
connected to y if and only if y is connected to x.

Now, let t =5 and for each k € N let p; be some k-bit prime. We consider the family of
graphs {LD,, 5}ken for our instantiation. In the following, we shall check the criteria from
the beginning of the section point by point.

1. The family of graphs LD, ; has great expander properties.
» Theorem 12 (explicit in Trevisan [7]). For 1 <t < p, the graph LD, is a pt-spectral

expander.
3/2

This fact allows us to note that for our particular choice of graphs, (k) = % < \}—3,
k k

which in fact is 27*(*) and the representation size is O(k) bits.

2. We have Q2 (d’%k;\igk(d’“)) = Q(p®log(p)) such that indeed,
3
= V(LD )| = = ().
k

3. Sampling an edge (u,v) <= E(LDy, ;) is simply a question of picking « € FL, a,b € F),

uniformly at random and then outputting the edge (z,z + (b, ab, a?b, ..., a'd)).
To pick a non-edge, simply sample two random vertices u,v € F;tl uniformly at random
and check (with the procedure to be specified below) whether (u,v) € E(LD,, ). Since
for ¢ > 1 the probability of hitting an edge with such a random choice is < 1/py, the
expected number of repetitions is constant and hence the procedure takes expected

polynomial time.

4. To test membership of some (u,v) € (F;;tl)z in E(LD,, ), perform the following opera-
tion: Compute ¢ = u — v and write © = (xg,...,2¢). It is now trival to check whether

(1, L, ﬂ) is of the form (1,a,a?,...,a").
o o
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