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Abstract
Recent work in differential privacy has highlighted the shuffled model as a promising avenue to
compute accurate statistics while keeping raw data in users’ hands. We present a protocol in
this model that estimates histograms with error independent of the domain size. This implies an
arbitrarily large gap in sample complexity between the shuffled and local models. On the other
hand, we show that the models are equivalent when we impose the constraints of pure differential
privacy and single-message randomizers.
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1 Introduction

The local model of private computation has minimal trust assumptions: each user executes a
randomized algorithm on their data and sends the output message to an analyzer [17, 19, 11].
While this model has appeal to the users – their data is never shared in the clear – the noise
in every message poses a roadblock to accurate statistics. For example, a locally private d-bin
histogram has, on some bin, error scaling with

√
log d. But when users trust the analyzer

with their raw data (the central model), there is an algorithm that achieves error independent
of d on every bin.

Because the local and central models lie at the extremes of trust, recent work has focused
on the intermediate shuffled model [6, 8]. In this model, users execute ranomization like in
the local model but now a trusted shuffler applies a uniformly random permutation to all
user messages before the analyzer can view them. The anonymity provided by the shuffler
allows users to introduce less noise than in the local model while achieving the same level of
privacy. This prompts the following questions:

In terms of accuracy, how well separated is the shuffled model from the local model?

How close is the shuffled model to the central model?
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1:2 Separating Local & Shuffled D.P.

1.1 Our Results
In Section 3, we provide a new protocol for histograms in the shuffled model. To quantify
accuracy, we bound the simultaneous error : the maximum difference over all bins between
each bin’s estimated frequency and its true frequency in the input dataset.

I Theorem 1 (Informal). For any ε < 1 and δ = o(1/n), there exists a shuffled protocol
that satisfies (ε, δ)-differential privacy and reports a histogram with simultaneous error
O(log(1/δ)/(ε2n)) with constant probability.

For comparison, [8] give a protocol with error O(
√

log d · log 1/δ/(εn)). Our protocol has
smaller error when log(1/δ) = o(log d). In the natural regime where δ = Θ(poly(1/n)), that
condition is satisfied when logn = o(log d). An example for this setting would be a dataset
holding the browser home page of each user. The data universe could consist of all strings
up to a certain length which would far exceed the number of users.

In Section 3.3, we show that the histogram protocol has strong implications for the
distributional setting. Here, the rows of the dataset are independently drawn from a
probability distribution. We focus on the sample complexity, which is the number of samples
needed to identify or estimate some feature of the distribution. We prove that the separation
in sample complexity between the local and shuffled models can be made arbitrarily large:

I Theorem 2 (Informal). There is a distributional problem where the sample complexity in
the local model scales with a parameter of the problem, but the sample complexity in the
shuffled model is independent of that parameter.

We also show that there is a distributional problem which requires polynomially more samples
in the sequentially interactive local model than in the shuffled model. This is done by reusing
the techniques to prove Theorem 2.

A natural conjecture is that there are progressively weaker versions of Theorem 2 for
progressively constrained versions of the model. In Section 4, we prove that the shuffled
model collapses to the local model when constraints are too strong:

I Theorem 3 (Informal). For every single-message shuffled protocol that satisfies pure
differential privacy, there is a local protocol with exactly the same privacy and sample
complexity guarantees.

1.2 Related Work
Table 1 presents our histogram result alongside existing results for the problem – all previous
bounds on simultaneous error in the shuffled model depend on d. Although we focus on
simultaneous error, error metrics focusing on per-bin error are also used in the literature
such as mean squared error (MSE) and high probability confidence intervals on each bin.
When considering these alternative metrics or when d is not large, other histogram protocols
may outperform ours (see e.g. [18]).

Quantitative separations between the local and shuffled models exist in the literature
[8, 1, 13, 12]. As a concrete example, [8] implies that the sample complexity of Bernoulli
mean estimation in the shuffled model is O(1/α2 + log(1/δ)/(αε)). In contrast, [5] gives a
lower bound of Ω(1/α2ε2) in the local model.

Prior work have shown limits of the shuffled model, albeit under communication constraints.
The first set of results follow from a lemma in [8]: a single-message shuffled protocol implies
a local protocol with a weaker differential privacy guarantee. Specifically, if the shuffled
protocol obeys (ε, δ)-differential privacy, then the local protocol obeys (ε+ lnn, δ)-differential
privacy. Lower bounds for the local model can then be invoked, as done in [8, 13].
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Table 1 Comparison of results for the histogram problem. To simplify the presentation, we
assume constant success probability, ε < 1, δ < 1/ log d for results from [13], and e−O(nε2) ≤ δ < 1/n
for our result.

Model Simultaneous Error No. Messages per User Source

Local Θ
(

1
ε
√
n
·
√

log d
)

1 [3]

Shuffled

O
(

1
εn
·
√

log d · log 1
δ

)
O(d) [8]

O
(

1
εn

√
log3 d · log( 1

δ
log d)

)
O
(

1
ε2 log3 d · log( 1

δ
log d)

)
w.h.p. [13]

O
(

log d
n

+ 1
εn
·
√

log d · log 1
εδ

)
O
(

1
ε2 log 1

εδ

)
[13]

O
(

1
ε2n log 1

δ

)
O(d) [Theorem 12]

Central Θ
(

1
εn

min
(
log d, log 1

δ

))
N/A [9, 7, 4, 14]

Another class of lower bound comes from a lemma in [12]: when a shuffled protocol obeys
ε-differential privacy and bounded communication complexity, the set of messages output
by each user is insensitive to their personal data. Specifically, changing their data causes
the set’s distribution to change by ≤ 1− 2−Oε(m2`) in statistical distance, where m denotes
number of messages and ` the length of each message. This is strong enough to obtain a
lower bound on binary sums.

The amplification-by-shuffling lemmas in [2, 10] show that uniformly permuting the
messages generated by a local protocol improves privacy guarantees: an ε-private local
protocol becomes an (ε′, δ)-private shuffled protocol where ε′ � ε and δ > 0. One might
conjecture weaker versions of these lemmas where δ = 0 but Theorem 3 eliminates that
possibility.

2 Preliminaries

We define a dataset ~x ∈ Xn to be an ordered tuple of n rows where each row is drawn from
a data universe X and corresponds to the data of one user. Two datasets ~x, ~x ′ ∈ Xn are
considered neighbors (denoted as ~x ∼ ~x ′) if they differ in exactly one row.

I Definition 4 (Differential Privacy [9]). An algorithmM : Xn → Z satisfies (ε, δ)-differential
privacy if

∀~x ∼ ~x ′ ∀T ⊆ Z Pr[M(~x) ∈ T ] ≤ eε · Pr[M(~x ′) ∈ T ] + δ.

We say an (ε, δ)-differentially private algorithm satisfies pure differential privacy when
δ = 0 and approximate differential privacy when δ > 0. For pure differential privacy, we
may omit the δ parameter from the notation.

I Definition 5 (Local Model [17]). A protocol P in the (non-interactive1) local model consists
of two randomized algorithms:

A randomizer R : X → Y that takes as input a single user’s data and outputs a message.

1 The literature also includes interactive variants; see [15] for a definition of sequential and full interactivity.

ITC 2020



1:4 Separating Local & Shuffled D.P.

An analyzer A : Y∗ → Z that takes as input all user messages and computes the output
of the protocol.

We denote the protocol P = (R,A). We assume that the number of users n is public and
available to both R and A. Let ~x ∈ Xn. The evaluation of the protocol P on input ~x is The
evaluation of the protocol P on input ~x is

P(~x) = (A ◦R)(~x) = A(R(x1), . . . ,R(xn)).

I Definition 6 (Differential Privacy for Local Protocols). A local protocol P = (R,A) satisfies
(ε, δ)-differential privacy for n users if its randomizer R : X → Y is (ε, δ)-differentially
private (for datasets of size one).

I Definition 7 (Shuffled Model [6, 8]). A protocol P in the shuffled model consists of three
randomized algorithms:

A randomizer R : X → Y∗ that takes as input a single user’s data and outputs a vector of
messages whose length may be randomized. If, on all inputs, the probability of sending a
single message is 1, then the protocol is said to be single-message. Otherwise, the protocol
is said to be multi-message.
A shuffler S : Y∗ → Y∗ that concatenates all message vectors and then applies a uniformly
random permutation to (the order of) the concatenated vector. For example, when there
are three users each sending two messages, there are 6! permutations and all are equally
likely to be the output of the shuffler.
An analyzer A : Y∗ → Z that takes a permutation of messages to generate the output of
the protocol.

As in the local model, we denote the protocol P = (R,A) and assume that the number of
users n is accessible to both R and A. The evaluation of the protocol P on input ~x is

P(~x) = (A ◦ S ◦ R)(~x) = A(S(R(x1), . . . ,R(xn))).

I Definition 8 (Differential Privacy for Shuffled Protocols [8]). A shuffled protocol P = (R,A)
satisfies (ε, δ)-differential privacy for n users if the algorithm (S ◦ R) : Xn → Y∗ is (ε, δ)-
differentially private.

We note a difference in robustness between the local and shuffled models. A user in a
local protocol only has to trust that their own execution of R is correct to ensure differential
privacy. In contrast, a user in a shuffled protocol may not have the same degree of privacy
when other users deviate from the protocol.

For any d ∈ N, let [d] denote the set {1, . . . , d}. For any j ∈ [d], we define the function
cj : [d]n → R as the normalized count of j in the input:

cj(~x) = (1/n) · |{i ∈ [n] : xi = j}|.

We use histogram to refer to the vector of normalized counts (c1(~x), . . . , cd(~x)). For measuring
the accuracy of a histogram protocol P : [d]n → Rd, we use the following metrics:

I Definition 9. A histogram protocol P : [d]n → Rd has (α, β)-per-query accuracy if

∀~x ∈ [d]n ∀j ∈ [d] Pr[|P(~x)j − cj(~x)| ≤ α] ≥ 1− β.

I Definition 10. A histogram protocol P : [d]n → Rd has (α, β)-simultaneous accuracy if

∀~x ∈ [d]n Pr[∀j ∈ [d] |P(~x)j − cj(~x)| ≤ α] ≥ 1− β.
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3 The Power of Multiple Messages for Histograms

In this section, we present an (ε, δ)-differentially private histogram protocol in the shuffled
model whose simultaneous error does not depend on the universe size. We start by presenting
a private protocol for releasing a binary sum that always outputs 0 if the true count is 0
and otherwise outputs a noisy estimate. The histogram protocol uses this counting protocol
to estimate the frequency of every domain element. Its simultaneous error is the maximum
noise introduced to the nonzero counts. There are at most n such counts.

For comparison, a protocol in [8] adds independent noise to all counts without the zero-
error guarantee. The simultaneous error is therefore the maximum noise over all d counts,
which introduces a log d instead of a logn factor.

3.1 A Two-Message Protocol for Binary Sums

In the protocol Pzsum
ε,δ (Figure 1), each user reports a vector whose length is the sum of

their data and a Bernoulli random variable. The contents of each vector will be copies
of 1. Because the shuffler only reports a uniformly random permutation, the observable
information is equivalent to the sum of user data, plus noise. The noise is distributed as
Bin(n, p), where p is chosen so that there is sufficient variance to ensure (ε, δ)-differential
privacy. We take advantage of the fact that the binomial distribution is bounded: if the sum
of the data is zero, the noisy sum is never more than n. Hence, the analyzer will perform
truncation when the noisy sum is small. We complete our proof by arguing that it is unlikely
for large values to be truncated.

To streamline the presentation and analysis, we assume that
√

(100/n) · ln(2/δ) ≤ ε ≤ 1
so that p ∈ (1/2, 1). We can achieve (ε, δ) privacy for a broader parameter regime by setting
p to a different function; we refer the interested reader to Theorem 4.11 in [8].

Randomizer Rzsum
ε,δ (x ∈ {0, 1}) for ε, δ ∈ [0, 1]:

1. Let p← 1− 50
ε2n ln(2/δ).

2. Sample z ∼ Ber(p).
3. Output ( 1, . . . , 1︸ ︷︷ ︸

x+z copies

).

Analyzer Azsum
ε,δ (~y ∈ {1}∗) for ε, δ ∈ [0, 1]:

1. Let p← 1− 50
ε2n ln(2/δ).

2. Let c∗ = 1
n · |~y|, where |~y| is the length of ~y.

3. Output
{
c∗ − p if c∗ > 1
0 otherwise

.

Figure 1 The pseudocode for Pzsum
ε,δ , a private shuffled protocol for normalized binary sums.

I Theorem 11. For any ε, δ ∈ [0, 1] and any n ∈ N such that n ≥ (100/ε2) · ln(2/δ), the
protocol Pzsum

ε,δ = (Rzsum
ε,δ ,Azsum

ε,δ ) has the following properties:

(i) Pzsum
ε,δ is (ε, δ)-differentially private in the shuffled model.

ITC 2020



1:6 Separating Local & Shuffled D.P.

(ii) For every β ≥ δ25 , the error is |Pzsum
ε,δ (~x)− 1

n

∑
xi| ≤ α with probability ≥ 1−β where

α = 50
ε2n

log 2
δ

+ 1
εn
·
√

200 log 2
δ
· log 2

β

= O

(
1
ε2n

log 1
δ

)
(iii) Pzsum

ε,δ ((0, . . . , 0)︸ ︷︷ ︸
n copies

) = 0.

(iv) Each user sends at most two one-bit messages.

Proof of Part (i). If we let zi be the random bit generated by the i-th user, the total number
of messages is |~y| =

∑n
i=1 xi + zi. Observe that learning |~y| is sufficient to represent the

output of shuffler since all messages have the same value. Thus, the privacy of this protocol
is equivalent to the privacy of

M(~x) =
n∑
i=1

xi + Bin(n, p) ∼ −
(
−

n∑
i=1

xi + Bin(n, 1− p)
)

+ n.

By post-processing, it suffices to show the privacy ofMneg(~x) = −
∑n
i=1 xi + Bin(n, 1− p)

where 1− p = 50
ε2n ln 2

δ . Because privacy follows almost immediately from technical claims in
[13], we defer the proof to Appendix A. J

Proof of Part (ii). Fix any ~x ∈ {0, 1}n. For shorthand, we define α′ = 2 ·
√

p(1−p)
n · ln(2/β)

so that α = (1− p) + α′. A Chernoff bound implies that for β ≥ 2e−np(1−p), the following
event occurs with probability ≥ 1− β:∣∣∣∣∣ 1n ·

n∑
i=1

zi − p

∣∣∣∣∣ ≤ α′ (1)

The inequality β ≥ 2e−np(1−p) follows from our bounds on ε, β, and n.
The remainder of the proof will condition on (1). If c∗ > 1, then the analyzer outputs

c∗ − p. We show that the error of c∗ − p is at most α′:∣∣∣∣∣(c∗ − p)− 1
n
·
n∑
i=1

xi

∣∣∣∣∣ =

∣∣∣∣∣ 1n ·
n∑
i=1

(xi + zi)− p−
1
n
·
n∑
i=1

xi

∣∣∣∣∣ (By construction)

=

∣∣∣∣∣ 1n ·
n∑
i=1

zi − p

∣∣∣∣∣
≤ α′ (By (1))

If c∗ ≤ 1, then the analyzer will output 0. In this case, the error is exactly 1
n

∑
xi. We

argue that c∗ ≤ 1 implies 1
n

∑
xi ≤ α.

1 ≥ c∗

= 1
n
·
n∑
i=1

(xi + zi) (By construction)

≥ 1
n
·
n∑
i=1

xi + p− α′ (By (1))
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Rearranging terms yields

1
n
·
n∑
i=1

xi ≤ (1− p) + α′ = α

which concludes the proof. J

Proof of Part (iii). If ~x = (0, . . . , 0), then |~y| is drawn from 0 + Bin(n, p), which implies
c∗ ≤ 1 with probability 1. Hence, Pzsum

ε,δ (~x) = 0. J

3.2 A Multi-Message Protocol for Histograms
In the protocol Phist

ε,δ (Figure 2), users encode their data xi ∈ [d] as a one-hot vector~b ∈ {0, 1}d.
Then protocol Pzsum

ε,δ is executed on each coordinate j of ~b. The executions are done in one
round of shuffling. To remove ambiguity between executions, each message in execution j
has value j.

Randomizer Rhist
ε,δ (x ∈ [d]) for ε, δ ∈ [0, 1]:

1. For each j ∈ [d], let bj ← 1[x = j] and compute scalar product ~mj ← j · Rzsum
ε,δ (bj).

2. Output the concatenation of all ~mj .

Analyzer Ahist
ε,δ (~y ∈ [d]∗) for ε, δ ∈ [0, 1]:

1. For each j ∈ [d], let ~y(j) ← all messages of value j, then compute c̃j ← Azsum
ε,δ (~y(j)).

2. Output (c̃1, . . . , c̃d).

Figure 2 The pseudocode for Phist
ε,δ , a private shuffled protocol for histograms.

I Theorem 12. For any ε, δ ∈ [0, 1] and any n ∈ N such that n ≥ (100/ε2) · ln(2/δ), the
protocol Phist

ε,δ = (Rhist
ε,δ ,Ahist

ε,δ ) has the following properties:
(i) Phist

ε,δ is (2ε, 2δ)-differentially private in the shuffled model.
(ii) For every β ≥ δ25, Phist

ε,δ has (α, β)-per-query accuracy for

α = O

(
1
ε2n

log 1
δ

)
(iii) For every β ≥ n · δ25, Phist

ε,δ has (α, β)-simultaneous accuracy for

α = O

(
1
ε2n

log 1
δ

)
(iv) Each user sends at most 1 + d messages each of length O(log d).

The accuracy guaranteed by this protocol is close to what is possible in the central
model: there is a stability-based algorithm with simultaneous error O((1/(εn)) · ln(1/δ)) [7].
However, in Phist

ε,δ , each user communicates O(d) messages of O(log d) bits. It remains an
open question as to whether or not this can be improved while maintaining similar accuracy.

Because the simultaneous error of a single-message histogram protocol is at least
Ω((1/(εn)) · poly(log d)) [8], this protocol is also proof that the single-message model is

ITC 2020
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a strict subclass of the multi-message model. This separation was previously shown by [2, 1]
for the summation problem.2

Proof of Part (i). Fix any neighboring pair of datasets ~x ∼ ~x ′. Let ~y ← (S ◦ Rhist
ε,δ )(~x) and

~y ′ ← (S ◦ Rhist
ε,δ )(~x ′). For any j 6= j′, the count of j in output of the shuffler is independent

of the count of j′ in the output because each execution of Rzsum
ε,δ is independent. As in Step

(1) of Ahist
ε,δ , for j ∈ [d], let ~y(j) (~y ′(j) resp.) be the vector of all messages in ~y (~y ′ resp.) that

have value j.
For any j ∈ [d] where cj(~x) = cj(~x ′), ~y(j) is identically distributed to ~y ′(j). For each of

the two j ∈ [d] where cj(~x) 6= cj(~x ′), we will show that the distribution of ~y(j) is close to
that of ~y ′(j). Let ~r, ~r ′ ∈ {0, 1}n where ri = 1[xi = j] and r′i = 1[x′i = j]. Now,

~y(j) ∼ j · (S ◦ Rzsum
ε,δ )(~r) and ~y ′(j) ∼ j · (S ◦ Rzsum

ε,δ )(~r ′).

So by Theorem 11 Part (i), for any T ⊆ {j}∗,

Pr[~y(j) ∈ T ] ≤ eε · Pr[~y ′(j) ∈ T ] + δ.

(2ε, 2δ)-differential privacy follows by composition. J

Proof of Part (ii)-(iii). Notice that the j-th element in the output c̃j is identically distributed
with an execution of the counting protocol on the bits bi,j indicating if xi = j. Formally,
c̃j ∼ Pzsum

ε,δ ({bi,j}i∈[n]) for all j ∈ [d]. Per-query accuracy immediately follows from Theorem
11 Part (ii).

To bound simultaneous error, we leverage the property that when cj(~x) = 0, the counting
protocol will report a nonzero value with probability 0. Let Q = {j ∈ [d] : cj(~x) > 0} and
let α be the error bound defined in Theorem 11 Part (ii) for the failure probability β/n.

Pr (∃j ∈ [d] s.t. |c̃j − cj(~x)| > α)
≤Pr (∃j ∈ Q s.t. |c̃j − cj(~x)| > α) + Pr (∃j /∈ Q s.t. |c̃j − cj(~x)| > α)
= Pr (∃j ∈ Q s.t. |c̃j − cj(~x)| > α) (Theorem 11 Part (iii))

≤
∑
j∈Q

Pr (|c̃j − cj(~x)| > α)

≤
∑
j∈Q

β/n (Theorem 11 Part (ii))

≤β (|Q| ≤ n)

This concludes the proof. J

3.3 Applications
In this section, we use our histogram protocol to solve two distributional problems; one
of these results implies a very strong separation in sample complexity between the non-
interactive local model and the shuffled model. Both distributional problems reduce to what
we call support identification:

2 In particular, a private unbiased estimator for
∑

i
xi with real-valued xi ∈ [0, 1] in the single-message

shuffled model must have error Ω(n1/6) [2] while there exists a multi-message shuffled model protocol
for estimating summation with error O(1/ε) [1].
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I Definition 13 (Support Identification Problem). The support identification problem has
positive integer parameters h ≤ d. Let D be a set of size d and let UH be the uniform
distribution over any H ⊆ D. The set of problem instances is {UH : H ⊆ D and |H| = h}.
A protocol solves the (h, d)-support identification problem with sample complexity n if, given
n users with data independently sampled from any problem instance UH , it identifies H with
probability at least 99/100.

We now show how to solve this problem in the shuffled model.

B Claim 14. Fix any ε ∈ (0, 1] and δ < (1/200h)1/25. Under (ε, δ)-differential privacy, the
sample complexity of the (h, d)-support identification problem is O(h log h · (1/ε2) · log(1/δ))
in the shuffled model.

Proof. For the purposes of this proof, we assume there is some bijection f between D and
[d] so that any reference to j ∈ [d] corresponds directly to some f(j) ∈ D and vice versa.
Consider the following protocol: execute Phist

ε,δ on n samples from UH and then choose
the items whose estimated frequencies are at least (t + 1)/n (the magnitude of t will be
determined later). We will prove that the items returned by the protocol are precisely those
of H, with probability at least 99/100.

Let Esamp be the event that every element in support H has frequency at least (2t+ 1)/n
in the sample. Let Epriv be the event that the histogram protocol estimates the frequency of
every element in D with error at most t/n. If both events occur, every element in H has
estimated frequency at least (t+ 1)/n and every element outside H has estimated frequency
at most t/n. Hence, it suffices to show that Esamp and Epriv each occur with probability
≥ 199/200.

We lower bound the probability of Esamp via a coupon collector’s argument. That is, if
we have n = O(kh log h) samples from UH then each element of H appears at least k times
with probability at least 199/200. Hence we set k = (2t+ 1).

To lower bound the probability of Epriv, we simply invoke Theorem 12: given that
ε ∈ (0, 1] and δ > (1/200h)1/25, the frequency of every item in D is estimated up to error
t/n for some t = O((1/ε2) · log(1/δ)) with probability ≥ 199/200.3 C

In the above analysis, if we had used a protocol with simultaneous error that depends
on the domain size d, then t would in turn depend on d. For example, using the histogram
protocol in [8] would give t = Ω((1/ε) ·

√
log d · log(1/δ)). This results in a protocol whose

sample complexity grows with d in addition to h.
So having shown how to solve the support identification problem with few samples, we

now describe two different problems and explain how to reduce these to support identification.
This will imply low sample complexity in the shuffled model.

I Definition 15 (Pointer-Chasing Problem [16]). The pointer chasing problem is denoted
PC(k, `) where k, ` are positive integer parameters. A problem instance is U{(1,a),(2,b)} where
a, b are permutations of [`]. A protocol solves PC(k, `) with sample complexity n if, given
n independent samples from any U{(1,a),(2,b)}, it outputs the k-th integer in the sequence
a1, ba1 , aba1

. . . with probability at least 99/100.

To solve PC(k, `), note that it suffices to identify {(1, a), (2, b)} and directly perform
the pointer chasing. Because the support has size h = 2, Phist

ε,δ can be used to solve the
problem with just O((1/ε2) · log(1/δ)) samples, independent of k and `. But in the case

3 The bound on δ in Theorem 12 is a function of n. This is derived from a pessimistic bound on the
number of unique values in the input. But in this reduction, we know that data takes one of h values.
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where k = 2, [16] gives a lower bound of Ω(`/eε) for non-interactive local protocols. So there
is an arbitrarily large separation between the non-interactive shuffled and non-interactive
local models (Theorem 2).

I Definition 16 (Multi-Party Pointer Jumping Problem [15]). The multi-party pointer jumping
problem is denoted MPJ(s, h) where s, h are positive integer parameters. A problem instance
is U{Z1,...,Zh} where each Zi is a labeling of the nodes at level i in a complete s-ary tree.
Each label Zi,j is an integer in {0, . . . , s− 1}. The labeling implies a root-leaf path: if the
i-th node in the path has label Zi,j, then the (i+ 1)-st node in the path is the (Zi,j)-th child
of the i-th node. A protocol solves MPJ(s, h) with sample complexity n if, given n samples
from any U{Z1,...,Zh}, it identifies the root-leaf path with probability at least 99/100.

As with pointer-chasing, we can solve MPJ(s, h) when the support is identified. This
takes O(h log h · (1/ε2) · log(1/δ)) samples in the shuffled model. But [15] gives a lower
bound of Ω(h3/(ε2 log h)) in the local model when s = h4, even allowing for sequential
interactivity. However, we do not claim a polynomial separation between the shuffled model
and sequentially interactive local model. This would require a proof that every sequentially
interactive local protocol has a counterpart in the shuffled model.

Note that the reductions we employ can also be applied in the central model. That is,
instead of executing Phist

ε,δ in the reduction (Claim 14), execute the central model algorithm,
from [7], with simultaneous error O((1/(εn)) · log(1/δ)). This improves the bounds by 1/ε.

Table 2 The sample complexity of private pointer-chasing (PC) and multi-party pointer jumping
(MPJ). Shuffled and central results follow from a reduction to histograms.

Model PC(k, `) MPJ(s, h)

Local Ω(`/eε) [16] Ω(h3/(ε2 log h)) [15]

for k = 2 for s = h4, seq. interactive

Shuffled O
(

1
ε2 log 1

δ

) O
(
h log h · 1

ε2 log 1
δ

)
for δ < (1/200h)1/25

Central O
(

1
ε

log 1
δ

)
O
(
h log h · 1

ε
log 1

δ

)

4 Pure Differential Privacy in the Shuffled Model

In this section, we prove that any single-message shuffled protocol that satisfies ε-differential
privacy can be simulated by a local protocol under the same privacy constraint.

I Theorem 17 (Formalization of Thm. 3). For any single-message shuffled protocol P =
(R,A) that satisfies ε-differential privacy, there exists a local protocol PL = (RL,AL) that
satisfies ε-differential privacy and PL(~x) is identically distributed to P(~x) for every input
~x ∈ Xn.

We start with the following claim, which strengthens a theorem in [8] for the special case
of pure differential privacy in the shuffled model:

B Claim 18. Let P = (R,A) be any single-message shuffled protocol that satisfies ε-
differential privacy. Then R is an ε-differentially private algorithm.
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Proof. Assume for contradiction that R is not ε-differentially private. So there are values
x, x′ ∈ X and a set Y ⊆ Y such that

Pr[R(x) ∈ Y ] > eε · Pr[R(x′) ∈ Y ].

Let ~x = (x, . . . , x︸ ︷︷ ︸
n copies

) and ~x ′ = (x′, x, . . . , x︸ ︷︷ ︸
n−1 copies

). Now consider Y n, the set of message vectors

where each message belongs to Y .

Pr[(S ◦ R)(~x) ∈ Y n] = Pr[R(~x) ∈ Y n]
= Pr[R(x) ∈ Y ]n

> eε · Pr[R(x′) ∈ Y ] · Pr[R(x) ∈ Y ]n−1

= eε · Pr[(S ◦ R)(~x ′) ∈ Y n]

which contradicts the fact that S ◦ R is ε-differentially private. C

Now we are ready to prove Theorem 17.

Proof of Theorem 17. Consider the aggregator AL that applies a uniformly random per-
mutation to its input and then executes A. Then PL = (R,AL) is a local protocol that
simulates P, in the sense that PL(~x) is identically distributed to P(~x) for every ~x ∈ Xn.
And by Claim 18, the randomizer is ε-differentially private. J

4.1 Roadblocks to Generalizing Theorem 17
One might conjecture Claim 18 also holds for multi-message protocols and thus immediately
generalize Theorem 17. However, this is not the case:

B Claim 19. There exists a multi-message shuffled protocol that is ε-differentially private
for all ε ≥ 0 but its randomizer is not ε-differentially private for any finite ε.

Proof. Consider the randomizer R∞ that on input x ∈ {0, 1} outputs two messages x and
1− x. The output of the shuffler S ◦ R∞ is 0-differentially private since for all inputs the
output is a random permutation of exactly n 0s and n 1s. However, R∞ is not ε-differentially
private for any finite ε as the first message of R∞(x) is that user’s bit x. C

We note that it is without loss of accuracy or privacy to suppose that a randomizer shuffles
its messages prior to sending them to the shuffler. We call these pre-shuffle randomizers.
Observe that the pre-shuffle version of R∞ (i.e. S ◦ R∞ for 1 user) satisfies 0-differential
privacy. So one might conjecture Claim 18 holds for pre-shuffle randomizers and thus
generalize Theorem 17. But this too is not the case:

B Claim 20. There exists a multi-message shuffled protocol that is ε-differentially private
for some finite ε but its pre-shuffle randomizer is not ε-differentially private for any finite ε.

Proof. Consider any randomizer Rgap that takes binary input and outputs four binary
messages with the following constraint: the messages can take any value when the input is 0
but on input 1, there cannot be exactly two 1s. Formally, the supports are supp(Rgap(0)) =
{0, 1}4 and supp(Rgap(1)) = {~y ∈ {0, 1}4 :

∑
i yi 6= 2}.

The pre-shuffle randomizer S ◦ Rgap cannot satisfy pure differential privacy because
(0, 0, 1, 1) ∈ supp(Rgap(0)) but (0, 0, 1, 1) /∈ supp(Rgap(1)). On the other hand, for all n ≥ 2
and ~x ∈ {0, 1}n,

supp(S ◦ Rgap(~x)) = {0, 1}4n

ITC 2020



1:12 Separating Local & Shuffled D.P.

This follows from the fact that every number in {0, . . . , 4n} – the number of 1s sent to the
shuffler – can be expressed as the sum of n numbers from {0, 1, 3, 4}. Thus, there is some
finite ε for which the protocol with randomizer Rgap is ε-differentially private. C
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A Privacy via Smooth Distributions

Ghazi, Golowich, Kumar, Pagh and Velingker [13] identify a class of distributions and argue
that, if η is sampled from such a distribution, adding η to a 1-sensitive sum ensures differential
privacy of that sum.

I Definition 21 (Smooth Distributions, [13]). A distribution D over Z is (ε, δ, k)-smooth if
for all k′ ∈ [−k, k],

Pr
Y∼D

[
PrY ′∼D[Y ′ = Y ]

PrY ′∼D[Y ′ = Y + k′] ≥ e
|k′|ε

]
≤ δ.

I Lemma 22 (Smoothness for Privacy, [13]). Let f : Zn → Z be a function such that
|f(~x)− f(~x ′)| ≤ 1 for all ~x ∼ ~x ′. Let D be an (ε, δ, 1)-smooth distribution. The algorithm
that takes as input ~x ∈ Zn, then samples η ∼ D and reports f(~x)+η satisfies (ε, δ)-differential
privacy.

I Lemma 23 (Binomial Distribution is Smooth, [13]). For any positive integer n, γ ∈ [0, 1/2],
α ∈ [0, 1], and any k ≤ αγn/2, the distribution Bin(n, γ) is (ε, δ, k)-smooth with

ε = ln 1 + α

1− α and δ = exp
(
−α

2γn

8

)
+ exp

(
− α2γn

8 + 2α

)
.
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I Corollary 24. Fix any ε, δ ∈ [0, 1]. Let n ≥ (100/ε2) · ln(2/δ). The algorithmMneg that
takes as input ~x ∈ {0,−1}n then samples

η ∼ Bin
(
n, 50 · ln(2/δ)

nε2

)
and reports η +

∑
xi satisfies (ε, δ)-differential privacy.

Proof. When α = (eε − 1)/(eε + 1) observe that α ∈ [ε/
√

5, 1) and Lemma 23 implies that η
is sampled from an (ε, δ, 1)-smooth distribution:

ln 1 + α

1− α = ln (eε + 1) + (eε − 1)
(eε + 1)− (eε − 1) = ε

and

exp
(
−α

2γn

8

)
+ exp

(
− α2γn

8 + 2α

)
≤ 2 exp

(
−α

2γn

10

)
(α < 1)

≤ 2 exp
(
−γε

2n

50

)
= δ.

So by Lemma 22, we haveMneg is (ε, δ)-differentially private. J
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