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Abstract. We study the performance of Hammerstein pre-
distorters (PD) to model and compensate nonlinear effects
produced by a high power amplifier with memory. A novel
Hammerstein model is introduced that includes, as the basic
static nonlinearity, the complex simplicial canonical piece-
wise linear (CS-CPWL) description. Previous results by the
authors have shown that the use of this kind of static nonlin-
earity leads to an efficient representation of basic nonlinear
models. Furthermore, different tradeoffs between modeling
capability and performance are considered.
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1. Introduction
Highly efficient power amplifiers (PA) form an im-

portant building block for modern wireless communication
systems such as Wireless Local Area Network (WLAN),
WiMAX and the Long Term Evolution of the 3G system
(LTE of 3GPP). Real power amplifiers (PAs) have a non-
linear transfer function causing signal compression and clip-
ping that result in signal waveform distortion and adjacent
channel interference. Power backoff and PAPR reduction
techniques reduce the nonlinear distortion effects but result
in low power efficiency. In other words, there is a clear trade-
off between the allowed level of nonlinear distortion and sys-
tem power efficiency. In order to maintain satisfactory per-
formance levels while increasing the power efficiency, tech-
niques for compensating the nonlinear distortion are needed.
A number of techniques exist to linearize the operating re-
gion of the PA, see, e.g., [1] and [2]. Examples of lineariza-
tion techniques are feedforward and feedback linearizer, en-
velope elimination and restoration and digital predistortion
(PD). In addition to the nonlinear distortion, broadband PAs
introduce memory effects, mainly due to impedance mis-
match and thermal effects, which do not only increase the
computational complexity of the behavioral modeling prob-
lem, but also the complexity of the linearization techniques
[3], [4]. In this paper we consider digital PDs that efficiently
take into account both the nonlinear characteristic and mem-
ory effects of broadband PAs.

Traditionally, finite Volterra models [5], [6] were con-
sidered for nonlinear digital predistortion mainly because
they can describe the ”fading memory behavior” of modern
(low cost) PA with acceptable accuracy, and also because
specific (not necessarily simple) measurements can be used
to obtain their parameters [3].

To overcome the exponential number of parameters re-
quired by finite Volterra models, different approaches have
been considered. In addition to the known block models, i.e.
Hammerstein and Wiener models, there exist different alter-
natives that combine serially or in parallel the basic building
blocks (a linear filter and a static polynomial nonlinearity).
Even though Hammerstein and Wiener models have limited
modeling capabilities, their simplicity turns them very at-
tractive from the computational point of view.

Recently, a modified finite Volterra model was consid-
ered to design a digital predistorter [7]. Particular cases of
this model are the more popular ”memory polynomial” pre-
distorter [8] and the ”generalized memory polynomial” [9].
The main concern with these Volterra-based predistorters is
perhaps the number of parameters required to obtain a suit-
able performance in terms of linearization.

In this paper, adaptive Hammerstein model PDs are
proposed for linearization of a broadband nonlinear PA
using indirect-learning architecture, considering computa-
tional complexity as a main issue. The nonlinear part of the
proposed Hammerstein PD is parameterized using the Com-
plex Simplicial Canonical Piecewise Linear (CS-CPWL)
function [10], [11], while the linear part is modeled with an
FIR filter. The CS-CPWL function is able to model general
complex static nonlinearities with high accuracy. In addi-
tion, and different to polynomial models that tend to cause
compression in their output level in response to high input
signal level, it does not exhibit compression for high input
level. Rather, it saturates after a user-defined maximum input
level. That behavior results in better and more efficient mod-
eling capabilities for the kind of strong nonlinearities related
to the application at hand. Since the high accuracy obtained
with this complete model comes at the cost of high number
of parameters, a simplified alternative is also presented that
allows to obtain good compromise between modeling capa-
bility and complexity.

This paper is organized as follows. The system mod-
els are introduced in Section 2. In Section 3, the proposed
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two-step adaptive predistorter based on indirect learning is
presented. An efficient modification of that predistorter is
presented in Section 4. Simulation evaluation of the indirect-
learning PD is presented in Section 5 using the compact be-
havioral model of a commercial PA in a high bandwidth ap-
plication. Finally conclusions are drawn in Section 6.

2. System Description

u(k)
H N

PA model
r(k)

QP

PD
y(k)v(k)w(k)

Fig. 1. Adaptive PD system for a Wiener model PA.

In this paper we consider the linearization of a Wiener
model PA using a Hammerstein model PD as illustrated in
Fig. 1. The Wiener model consists of a linear subsystem H(·)
followed by a static nonlinear subsystem N(·), while the
Hammerstein model is described by cascading a static non-
linear subsystem P(·) and a linear subsystem Q(·). As can
be inferred from Fig. 1, the PD parameters shall be adapted
such that Q(·) equalizes the effects of H(·), and P(·) com-
pensates the nonlinear effect of the static nonlinearity N(·).

The linear subsystem Q(·) is parameterized by an L-th
order FIR filter, i.e., the PD output is given by

u(k) = qH(k)w(k) (1)

where

qH(k) =
[
q∗0(k) q∗1(k) · · · q∗L−1(k)

]
w(k) =

[
w(k) w(k−1) · · · w(k−L+1)

]T
.

(2)

To parameterize the static nonlinear block P(·), we use the
complex-valued simplicial canonical piecewise linear (CS-
CPWL) function [10] (see also [12]). Given the baseband
(complex-valued) input r(k) = rI(k)+jrQ(k) ∈ C, we can
form the complex-valued output w(k) from the nonlinearity
of the Hammerstein model using a two-dimensional simpli-
cial CPWL function [11]. Based on the efficient representa-
tion proposed in [10], we can build the mapping P[·] : C→C
as

w(k) = P[r(k)] := cH
ΛΛΛ[r(k)] (3)

where c ∈ CM is a vector containing the parameters associ-
ated with the nonlinear static representation, and ΛΛΛ : C→
RM is a vector function depending on the partition of the
input r(k), in P equal sectors. Based on this partition of
each dimension of the mapping the number of parameters
in c is M = 1 + 2P + P2 [10]. To complete the description
of the static nonlinearity, each sector of the simplicial par-
tition [11] is given by [βi−1,βi], where i = 1,2, · · · ,P and

β0 ≤ β1 ≤ ·· · ≤ βP. These sectors divide real and imaginary
components of the input signal into P partitions, and based
on this description, ΛΛΛ is defined by

ΛΛΛ(r(k)) =

 Λ0
ΛΛΛ1[r(k)]
ΛΛΛ2[r(k)]

 (4)

where Λ0 = 1 is the zero-order basis (nesting level),

ΛΛΛ1(r(k)) =
[

ϒ
1[Re{r(k)}]

ϒ
1[Im{r(k)}]

]
(5)

is the first-order basis with ϒ
1 : R→ RP whose i-th entry is

given by

ϒ
1
i (ν) =

{ 1
2 (ν−βi + |ν−βi|) if ν≤ βP
1
2 (βP−βi + |βP−βi|) if ν > βP

, (6)

and ΛΛΛ2[r] = ϒ
2[Re{r}, Im{r}] : R2 → RP2

is the second-
order basis, whose [(i−1)P+ j]-th entry is defined by

ϒ
2
(i−1)P+ j(ν1,ν2) =

{
ϒ1

i (ν1) if ϒ1
i (ν1)≤ ϒ1

j(ν2)
ϒ1

j(ν2) if ϒ1
i (ν1) > ϒ1

j(ν2)
(7)

for i, j = 1, ...,P. Thus, (4) and the terms (6) and (7) define
a second-order SCPWL suitable for complex filtering.

3. A CS-CPWL Based Predistorter
The parameters of the Hammerstein-based PD, P(·)

and Q(·) (see, Fig. 1), can be adaptively identified using an
indirect learning strategy, e.g., [14], [13]. It is well-known
that the identification of block models, such as the Wiener
and Hammerstein models, is often complicated by their non-
convex cost function [16], [17], [15]. In order to avoid this
problem, we employ a modified Wiener model estimator that
provides us with estimates of P(·) and H(·).

The estimate of P(·) is then copied online to the PD
while the estimate of H(·) is used to adapt an estimate of
Q(·). Thus, the indirect learning algorithm proposed in the
following consists of a Wiener model estimation loop and a
PD linear filter adaptation loop working in tandem.

3.1 Estimation of P(·) and H(·)

8

Thus, the relationship of the SCPWL coefficients and the gradients of the linear affine segments can

be expressed by (14) or (15).

IV. PA MODEL ESTIMATOR
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Ĥ P̂

y(k)

n(k)

u(k)

v̂(k) ṽ(k)
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Fig. 2. Identification scheme for the Wiener model PA.

Figure 2 illustrates the auxiliary Wiener model estimator that is incorporated in the adaptive PD

algorithms. The configuration of the estimator allows the model parameter to enter the error equation

linearly, resulting in a convex cost function [27]. It identifies the linear subsystem and the inverse of

the PA nonlinear subsystem.

The linear subsystem is modeled by an FIR filter withN coefficients{ĥi}N−1
i=0 , and the nonlinear

subsystem is modeled by an SCPWL function withσ coefficients{ĉi}σ−1
i=0 . The coefficients of the

linear and nonlinear systems are updated simultaneously using the least mean square (LMS) algorithm.

In order to avoid the trivial solution of all zeros for the filter coefficients{ĥi}N−1
i=0 and{ĉi}N−1

i=0 , ĥ0

is anchored to a constant value. Then, the error signal that drives the LMS algorithm can be written

as

e0(k) = ṽ(k)− v̂(k)

= ĉH(k)λyn
(k) exp(j∠yn(k)) (16)

−ĥH(k)u(k) − ĥ∗
0u(k),

Fig. 2. Identification scheme for the Wiener model PA.
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Fig. 2 shows the Wiener model estimator. This config-
uration allows the model parameters to enter the error equa-
tion linearly, resulting in a convex cost function [18]. The
basic idea here is to identify the linear subsystem H and the
nonlinear subsystem P, the inverse of N. The proposed algo-
rithm estimates the intermediate signal v(k) in Fig. 1 of the
Wiener model from the PA input-output signals {u(k), y(k)}
by forming the error e0(k) = ṽ(k)− v̂(k) where

ṽ(k) = ĉH
ΛΛΛ[y(k)]

v̂(k) =
N−1

∑
i=0

ĥ∗i (k)u(k− i),
(8)

and the vectors ĉ(k)∈CM×1 and ΛΛΛ[y(k)]∈CM×1 are defined
in Section 2. To avoid ambiguity in the filter gain, ĥ0(k)≡ ĥ0
is anchored to a fixed value [16]. The error to be minimized
can now be written as

e0(k) = ṽ(k)− v̂(k) = θθθ
H(k)φφφ(k)− ĥ∗0u(k) (9)

where the parameter vector θθθ(k) ∈ C(M+N−1)×1 and regres-
sion vector φφφ(k) ∈ C(M+N−1)×1 are given by

θθθ(k) =
[
ĉT(k) ĥ1(k) · · · ĥN−1(k)

]T
, (10)

φφφ(k) =
[
ΛΛΛ

T[y(k)] −u(k−1) · · · −u(k−N +1)
]T

.

Using the instantaneous squared error |e0(k)|2 as an objec-
tive function, a stochastic gradient algorithm that updates
θθθ(k) is given by

θθθ(k +1) = θθθ(k)−µ0
∂|e0(k)|2
∂θθθ
∗(k)

= θθθ(k)−µ0φφφ(k)e∗0(k)
(11)

where µ0 is the adaptation step size that controls the conver-
gence speed and final error. To ensure convergence, µ0 is
chosen in the range

0 < µ0 <
1

ρmax
(12)

where ρmax is the maximum eigenvalue of E[φφφφφφ
H]. Conver-

gence behavior and stability of algorithm (11) is discussed
in detail in [10].

The estimate P̂, defined by the elements of parameter
vector ĉ(k) ({ĉ∗i (k)}M−1

i=0 ), is directly copied to the PD. The
estimate of Ĥ, or {h∗i (k)}N−1

i=0 , is further used for adapting
the linear part Q̂ of the PD as detailed next. This copying
mechanism is illustrated in Fig. 3.

3.2 Estimation of Q
In order to estimate the linear part Q of the PD, we ac-

knowledge the fact that Q should equalize the memory H in
the Wiener model. In other words, the intermediate signals

1
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Ĥ

Eq. (14)
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Copy
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Fig. 3. Indirect-learning configuration for adaptive PD.

w(k) and v(k) should ideally be identical. Since the Wiener
model estimator, detailed in previous section, provides us
with an estimate of H, we can reproduce an estimate of v(k)
through (8). By forming the error

e1(k) = v̂(k)−w(k), where

w(k) = cH
ΛΛΛ[r(k)], (13)

a stochastic gradient algorithm that updates parameter vector
q(k) = [q0(k) · · · qM−1(k)]T, describing Q, is given by

q(k +1) = q(k)−µ1
∂[|e1(k)|2]

∂q∗(k)

= q(k)−µ1e∗1(k)
N−1

∑
i=0

ĥ∗i (k)
∂u(k− i)
∂q∗(k)

≈ q(k)−µ1e∗1
N−1

∑
i=0

ĥ∗i (k)w(k− i)

(14)

where w(k) = [w(k) · · · w(k−L +1)]T. The last approxima-
tion in (14) is valid for sufficiently small value of µ1 so that
q(k)≈ q(k− i) for i = 1, · · · , N−1.

Equations (11) and (14) constitute the indirect learning
Hammerstein PD algorithm. Note that (14) is a filtered-x
LMS algorithm. Thus, the stability of the recursion in (14)
depends on the quality of the estimates {ĥ(k)}N−1

i=0 (k). To
ensure stability, the phase response error between the esti-
mate and the actual PA dynamics must be within the range
−π

2 and π

2 [20], [19]. The CS-CPWL adaptive predistorter is
summarized in Tab. 3.2.

4. Simplified PWL Based Predistorter

The main characteristic of the Hammerstein predis-
torter design is the utilization of the CS-CPWL represen-
tation to obtain a complex mapping of the baseband (com-
plex) linear filtered input. This complete complex mapping
allows us to approximate a Wiener model with high accu-
racy when the number of sectors P is increasing. The main
drawback of the CS-CPWL representation is that the number
of parameters or, equivalently, the PD complexity increases
quadratically with the number of employed sectors (parti-
tions). In order to maintain a low complexity at the expense
of a reduced modeling capability we may replace the general
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Definitions: For each k = 1,2, · · ·
r(k) predistorter input For i = 1 to P,
ΛΛΛ[r] ϒ1

yi
= eq.(6) with Re{y(k)}.

w(k) predistorter output ϒ
1
yi

= eq.(6) with Im{y(k)}.
u(k) estimator input For i = 1 to P, for j = 1 to P,
y(k) estimator output ϒ2

y(i−1)P+ j
= eq.(7) with y(k).

Parameters: ΛΛΛ[y] = [1 ϒ
1
y ϒ

1
y ϒ

2
y ]

T

N = number of q coefficients For i = 1 to P,
βi, i = 1, · · · ,P = sectors of (Re{r}, Im{r}) ϒ1

ri
= eq.(6) with Re{y(k)}.

M = number of c coefficients ϒ
1
ri

= eq.(6) with Im{y(k)}.
µc = step size of c For i = 1 to P, for j = 1 to P,
µh = step size of h ϒ2

r(i−1)P+ j
= eq.(7) with r(k).

µq = step size of q ΛΛΛ[r] = [1 ϒ
1
r ϒ

1
r ϒ

2
r ]

T

Initialization: v̂(k) = hH(k)u(k)
c(0) = [−1+ j 1− j 0 · · · 0]H e0(k) = cH(k)ΛΛΛ[y]− v̂(k)
h(0) = 0 w(k) = cH(k)ΛΛΛ[r]
q(0) = 0 u(k) = qH(k)w(k)

e1(k) = v̂(k)−w(k)
c(k +1) = c(k)−µce∗0(k)ΛΛΛ[y]
h(k +1) = h(k)+µhe∗0(k)u(k)
q(k +1) = q(k)+µqe∗1(k)∑

N−1
i=0 hi(k)w(k− i)

Tab. 1. Indirect learning CS-CPWL predistorter algorithm.

CS-CPWL representation in (3) by [12]

w(k) = Ps[Re{r(k)}]+ jPs[Im{r(k)}] (15)
= Re{cs}T

ΛΛΛ[Re{r(k)}]+ jIm{cs}T
ΛΛΛ[Im{r(k)}]

where Re{cs}, Im{cs} ∈ RM are vectors containing the pa-
rameters associated with the simplified nonlinear static rep-
resentation, and ΛΛΛ : R→ RM is a vector function depending
on the partition of the input r(k) into P equal sectors. Based
on this partition of each dimension of the mapping the num-
ber of parameters in cs is M = 2(1 + 2P) (see [12]). Based
on this description, ΛΛΛ is now given by

ΛΛΛ(ν(k)) =
[

Λ0
ΛΛΛ1[ν(k)]

]
(16)

where Λ0 and Λ1 are as in (4). We see that employing the
simplified representation in (16) avoids the cross terms (7)
required in the fully complex mapping. As a consequence,
considerable computational savings are possible in the pre-
distorter design, because the complexity of each PWL repre-
sentation is now linear in the number of partitions P. To ob-
tain the simplified CS-CPWL based predistorter we simply
employ (16) in the corresponding updating equation. Fur-
thermore, update equation (14) is replaced by

qs(k +1) = qs(k)−µ1e∗1(k)
N−1

∑
i=0

ĥi(k)ws(k− i). (17)

Tab. 4 provides the computational complexity of the PD
implementations in terms of number of multiplications and
additional operations. For comparison purposes, the mem-
ory polynomial predistorter [8] is included. The parameters
in each case are

• Memory polynomial PD with a memory of Lmp lags
and a polynomial order of P.

• CS-CPWL complete PD with a memory of L lags and
a Complex PWL with P sectors.

• Simplified CS-CPWL PD with a memory of L lags and
a Complex PWL with P Sectors.

Clearly, the simplified algorithm requires lower num-
ber of parameters than the complete CS-CPWL. Consider-
ing similar memory length, the number of parameters of the
simplified algorithm PS−PWL and of the memory polynomial
algorithm PMP are equal when PMP = 1+(1+2PS−PWL)/L.
For example, for L = 5 and PS−PWL = 10 partitions in the
simplified CS-CPWL algorithm, this algorithm is more ef-
ficient if the order required for the memory polynomial al-
gorithm is higher than 5. Considering the number of multi-
plications, for the same example, the simplified CS-CPWL
algorithm requires 26, the memory polynomial 45 and the
complete CS-CPWL scheme 126 multiplications.

PD Parameters Multiplications Other∗
[8] LmpP LmpP+Lmp(P−1) Lmp
Complete L+1+2P+P2 L+1+2P+P2 2P+P2

Simplified L+1+2P L+1+2P 2P

∗ Absolute value

Tab. 2. Algorithm complexity.

5. Simulations
The performance of the algorithms was evaluated us-

ing Agilent Advanced Design System (ADS) [21] and Mat-



174 M. BRUNO, J. COUSSEAU, S. WERNER, J. FIGUEROA, M. CHEONG, R. WICHMAN, AN EFFICIENT CS-CPWL . . .

(a) (b)

(c) (d)

Fig. 4. Low and high third-order harmonic intermodulation (IMD3) products. Tone separation: (a) 100 kHz, (b) 1 MHz, (c) 2 MHz, (d) 10 MHz.

lab. This allows us to use realistic nonlinear power amplifier
models with memory in ADS and at the same time do system
identification in Matlab. The simulations are carried out in
both analog and digital domain. Baseband symbols are gen-
erated with ADS and imported to Matlab to design the pre-
distorter as described in Section 3. The analog response of
the amplifier to the pre-distorted baseband symbols is evalu-
ated with a Time Domain Envelope analysis technique [21]
in RF domain.

Baseband signal: The signal is generated according to
WLAN 802.11g standard with 54 Mbps data rate, 20 MHz
bandwidth, and an FFT of 64 bins.

Radio frequency PA: Our single stage amplifier design is
based on Freescale MRF9742 FET model. The model is ac-
curate up to 3 GHz and includes some parasitics effects of
circuits design. The specified power gain is PG = 9.5 dB,
and the input and output impedances of the amplifier are
matched to 50 Ω by matching networks implemented in the
simulator with discrete and micro strip components. These
networks are almost flat in the bandwidth of interest cen-
tered at 850 MHz. The design also includes via hole induc-
tors connecting to the printed circuit board ground plane, and
the DC bias filters [24]. This allows us to include the effect
of baseband impedance and determine baseband memory ef-
fects from intermodulation products [25], [26], in the case
they occur.

Operating conditions: Firstly, to avoid excessive clipping

noise, the baseband signal power must be adjusted to a
proper PA operating region. To this purpose, the harmonic
balance simulator (HBS) using one-tone test setup [22],
[23], was used to find the 1 dB compression point PCP
of the PA that results in 28 dBm output power (HBS is
configured up to the ninth order of carrier frequency, 7.65
GHz, in order to include the higher order inter modulation
terms). The average baseband input signal power obtained is
PAV = PCP−PPAPR−PG, where PPAPR is the output peak-to-
average power ratio (PAPR). Verifying that, for the specified
signal PPAPR ∼= 8 dB1, the result is PAV ∼= 10.5 dBm.

Next, in order to have a coarse estimation of memory
length of the PA circuit, HBS using two-tone test setup [22]
is performed to obtain third order intermodulation products
(IMD3) [3]. The memory effect is reflected by the asymme-
try of low and high IMD3 products. The frequency range in
which the asymmetry is visible is defined as memory band-
width LBW. The memory bandwidth of the test PA is approx-
imately 10 MHz as illustrated in Fig. 4. This asymmetry
can also be observed by the abrupt change in the phases of
the lower and upper IMD3 products, as illustrated in Fig. 5.
Since the chosen sampling frequency is fs = 80 MHz (four
samples per symbol), a coarse estimation of the PA memory
is: ( fs/2)/LBW ∼= 4.

Predistorter parameters: The parameters used in the pre-
distorter algorithms are the following: Memory Polynomial:
Lmp = 5, P = 8 (number of parameters= 40); Complete CS-

1Despite that its ideal value is equal to the number of subcarriers, PAPR is in general a statistical value [27]. The best output to our modeling purposes is
obtained using an ad hoc input power adjustment (close to the calculated value) observing the distortion at the output spectrum.
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Fig. 5. Low and high IMD3 phases. Phase dispersion vs. differ-
ent frequencies of tones spacing.
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Fig. 6. Output power spectrum obtained with the different pre-
distorters.
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Fig. 7. Power spectrum at the output of the PA obtained with the
different predistorters.

CPWL: L = 10, P = 10 (number of parameters= 131) and
Simplified CS-CPWL: L = 10, P = 10 (number of parame-
ters= 31).

Results: The output power spectral density of the differ-
ent predistorters, is illustrated in Fig. 6. This figure shows
the 80 MHz signal bandwidth with a spectral resolution of
50 KHz (1600 frequency bins). It provides an estimate of the
actual sampling frequency required by each algorithm.

Fig. 7 compares the PA output power spectral density.
We see that both complete and simplified CS-CPWL algo-
rithms outperform memory polynomial algorithm in terms
of adjacent channel interference (ACI) reduction. More-
over, simplified CS-CPWL presents the best trade-off be-
tween complexity and performance.

Fig. 8 depicts the AM-AM characteristics of the PA
without predistortion and using the different predistorters.
Scattering of samples in Fig. 8(a) clearly shows the presence
of memory effects. We see that the complete CS-CPWL pre-
distorter results in the best performance followed by the sim-
plified CS-CPWL while the memory polynomial predistorter
has the worst performance. This is coherent with the better
modeling capability of the complete CS-CPWL predistorter.
This shows again that the simplified CS-CPWL predistorter
offers good trade-off between complexity and reduction of
memory effects.

6. Conclusions
We introduced efficient adaptive predistortion based on

complex simplicial canonical piecewise linear (CS-CPWL)
model emphasizing low computational complexity. The per-
formance of the predistorter was verified with the behavioral
model of actual high memory PA. Resulting output power
spectral density curves show that the CS-CPWL approach
offers good trade-off between performance and complex-
ity.
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