

Author's Proof

Carefully read the entire proof and mark all corrections in the appropriate place, using the Adobe Reader commenting tools [\(Adobe Help\)](https://helpx.adobe.com/acrobat/using/mark-text-edits.html), alternatively provide them in the Discussion Forum indicating the line number of the proof. Do not forget to reply to the queries.

We do not accept corrections in the form of edited manuscripts.

In order to ensure the timely publication of your article, please submit the corrections within 48 hours.

If you have any questions, please contact [science.production.office@frontiersin.org.](mailto:science.production.office@frontiersin.org)

Author Queries Form

[The Knowns Unknowns: Exploring](http://journal.frontiersin.org/article/10.3389/fmicb.2016.00627/abstract) the Homologous Recombination Repair Pathway in *Toxoplasma gondii*

Ignacio M. <mark>Fenoy</mark>1, Silvina S. <mark>Bogado</mark>1, Susana M. Contreras¹, Vanesa Gottifredi^{2*} and local ^{71 [[Q1](#page-0-1)}]^{[Q3](#page-0-2)} [Sergio O.](http://loop.frontiersin.org/people/244070/overview) <mark>Angel</mark> 1*

¹ Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Chascomús, Argentina, ² Cell Cycle Genomic Instability Laboratory, Fundación Instituto Leloir, IIBBA-CONICET, Chascomús, Argentina

OPEN ACCESS

Edited by:

Yuji Morita, Aichi Gakuin University, Japan

Reviewed by:

Jorge Enrique Gomez-Marin, Universidad del Quindio, Colombia Sirinart Ananvoranich, University of Windsor, Canada Renata Maria Augusto Da Costa, Universidade Federal do ABC, Brazil

**Correspondence:*

Vanesa Gottifredi $Q2 \mid 37$ $Q2 \mid 37$ [vgottifredi@leloir.org.ar;](mailto:vgottifredi@leloir.org.ar) Sergio O. Angel sangel@intech.gov.ar

Specialty section:

This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology

Received: 16 November 2015 *Accepted:* 18 April 2016 *Published:* xx April 2016

Citation:

Fenoy IM, Bogado SS, Contreras SM, Gottifredi V and Angel SO (2016) The Knowns Unknowns: Exploring the Homologous Recombination Repair Pathway in Toxoplasma gondii. Front. Microbiol. 7:627. doi: [10.3389/fmicb.2016.00627](http://dx.doi.org/10.3389/fmicb.2016.00627)

Toxoplasma gondii is an apicomplexan parasite of medical and veterinary importance which causes toxoplasmosis in humans. Great effort is currently being devoted toward the identification of novel drugs capable of targeting such illness. In this context, we believe that the thorough understanding of the life cycle of this model parasite will facilitate the identification of new druggable targets in T . gondii. It is important to exploit the available knowledge of pathways which could modulate the sensitivity of the parasite to DNA damaging agents. The homologous recombination repair (HRR) pathway may be of particular interest in this regard as its inactivation sensitizes other cellular models such as human cancer to targeted therapy. Herein we discuss the information available on T. gondii's HRR pathway from the perspective of its conservation with respect to yeast and humans. Special attention was devoted to BRCT domain-containing and end-resection associated proteins in T. gondii as in other experimental models such proteins have crucial roles in early/late steps or HRR and in the pathway choice for double strand break resolution. We conclude that T. gondii HRR pathway is a source of several lines of investigation that allow to to comprehend the extent of diversification of HRR in T. gondii. Such an effort will serve to determine if HRR could represent a potential targer for the treatment of toxoplasmosis.

Keywords: *Toxoplasma*, DNA damage, homologous recombination repair, chromatin, fork collapse, double strand break

INTRODUCTION

The protozoan parasite *Toxoplasma gondii* is a medical and veterinary relevant pathogen (Tenter et al., [2000;](#page-16-1) [Pfaff et al., 2014\)](#page-15-3). Toxoplasma belongs to phylum Apicomplexa among other important human and veterinary parasites such as Plasmodium spp., Cryptosporidium spp., Eimeria spp. Albeit the toxoplasmic infection is usually asymptomatic, severe complications, and even death might occur as a result of a congenital infection or in immunocompromised individuals (e.g., AIDS, transplantation). Congenital toxoplasmosis causes several types of neurological defects, chorioretinitis and in some cases even abortion [\(Cortés et al., 2012;](#page-14-4) [Moncada and Montoya, 2012;](#page-15-4) [Torgerson and Mastroiacovo, 2013\)](#page-16-2). In immunocompromised patients, the reactivation of the infection may trigger further complications including neurological defects, and encephalitis (Yan et al., [2013\)](#page-16-3).

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 T. gondii is an intracellular obligated protozoan parasite with a life cycle that includes sexual and asexual stages. Asexual replication occurs in a wide variety of intermediate host species and tissues and is characterized by two stages: the rapidly growing "tachyzoites" which is sensitive to the immune system of the host and several drugs, and the slowly dividing encysted "bradyzoites" which evades both the host immune response and currently available anti-Toxoplasma drugs [\(Dubey, 1998;](#page-14-5) [Weiss and Kim,](#page-16-4) [2000\)](#page-16-4). Besides, anti-folate treatment is only effective against the tachyzoite stage, but is toxic in that it causes bone marrow depression; moreover, many patients are allergic to the sulfa [Q10](#page-1-1) drug component [\(Baatz et al., 2006;](#page-13-3) [Cortés et al., 2012\)](#page-14-4).The pathogenicity of toxoplasmosis has been associated to multiple cycles of host cell invasion, intracellular division of the parasite and release from host cells. T. gondii amplification takes place in any nucleated cell within a parasitophorous vacuole generated by an internal budding process known as endodiogeny (Gubbels et al., [2008;](#page-14-6) [Francia and Striepen, 2014\)](#page-14-7).

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 While many molecular pathways including cell cycle and cell duplication were thoroughly characterized in the parasite, the molecular signals ruling DNA replication in T. gondii are yet poorly characterized. Notably, after host cell invasion, the tachyzoite replicates with a doubling time of 5–9 h (Radke et al., [2001\)](#page-15-5). We have recently proposed that such fast and uninterrupted rounds of DNA replication during the tachyzoite stage might trigger replication stress. In fact, we have evidenced a striking increase in the levels of a bona-fide replication-stress marker, the phosphorylation at Ser132 of γH2A.X, in T. gondii tachzyoite [\(Dalmasso et al., 2009\)](#page-14-8). Albeit other replicationassociated defects may also trigger γH2A.X activation, the classical interpretation of γH2A.X accumulation is the generation of double strand break (DSB) [\(Redon et al., 2002;](#page-15-6) [Tu et al., 2013;](#page-16-5) [Turinetto and Giachino, 2015\)](#page-16-6). DSBs are extremely genotoxic DNA lesions capable of impairing central DNA process such as DNA transcription, replication, and segregation. Given that DSBs can be repaired by more than one mechanism, DSBs accumulated during the DNA replication of tachyzoite most likely require a precise choice of DNA repair pathway. A failure or a delay in the repair of DSBs may trigger cell death due to the accumulation of genomic and chromosomic rearrangements as has been showed in cancer cells [\(Prakash et al., 2015\)](#page-15-7).

156 157 158 159 160 161 162 163 164 165 166 If DSBs accumulate during the DNA replication of tachyzoite, it is important to discuss the DNA repair pathways available for the repair of DSBs in T. gondii. In Eukaryotes, two well-characterized pathways are in charge of DSB Repair: Homologous Recombination repair (HRR) and Non-Homologous End Joining (NHEJ). While it is broadly accepted that HRR is error-free and NHEJ is error-prone, new evidence suggests that, at least, under certain cirscutances, HRR can also represent an error-prone mechanism and NHEJ can be very precise depending on the structure of the DNA ends (Betermier et al., [2014;](#page-13-4) [Guirouilh-Barbat et al., 2014\)](#page-14-9).

167 168 169 170 171 Intriguingly, while most DNA repairs pathways are conserved in T. gondii, recently reviewed in [Smolarz et al. \(2014\)](#page-16-7), differences in the HRR cascade have been reported in different organisms [\(Smith, 2012;](#page-16-8) [Blackwood et al., 2013;](#page-14-10) [Daley et al., 2013;](#page-14-11) [Yoshiyama et al., 2013\)](#page-16-9). Suchdiversification

172 173 174 175 176 177 178 indicates the existence of a window of opportunity for the identification of specific HRR components in T.gondii. If available, such factors could represent attractive candidates for the development of drug against toxoplasmosis. Hence, herein we analyze the extent of conservation between the HRR components of T. gondii and their yeast and human counterparts.

THE HOMOLOGOUS RECOMBINATION IN *T. GONDII*

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 HRR is preferentially an error-free mechanism which represents the preferred pathway chosen in eukaryotes for the repair of DSBs during the late S/G2-phases of cell cycle. This mechanism has been extensively studied in both yeast and higher eukaryotes [\(Daley et al., 2013;](#page-14-11) [Jasin and Rothstein, 2013\)](#page-15-8). The restriction of HRR to S/G2 phases is linked to the requirement of homologous sequences as a template for DNA repair [\(Sancar et al., 2004\)](#page-16-10). Typical substrates for HRR include: (a) direct double-ended DSBs generated by genotoxic agents such as γ -irradiation and X-rays, (b) inter-strand crosslinks generated after exposure to genotoxins such as mitomycin C (MMC), and (c) one-ended DSBs generated after fork collapse resulting from persistent stalling at bulky adduct or at naturally-occurring replication barriers. The resolution of direct DSBs by an HRR subpathway may or may not involve crossing over. One-ended DSBs are expected to be resolved by another HRR sub-pathway involving long range D-loop migration (break-induced repair) (Carr and Lambert, [2013;](#page-14-12) [Malkova and Ira, 2013\)](#page-15-9). If homologous sequences are not available, for example during G1, DSBs are repaired by NHEJ, a pathway that prompts rapid fusion between the ends of double-ended DSBs. In contrast, NHEJ is disfavored during S phase since its activation at one-ended DSBs can jeopardize genomic instability by fusing non-homologous chromosomes. Hence, while NHEJ can function along the cell cycle (Shibata and Jeggo, [2014\)](#page-16-11), NHEJ is the pathway chosen for the repair of DSBs in G1 and HRR is preferentially activated at collapsed replication forks during S and G2 phases [\(Johnson and Jasin, 2000;](#page-15-10) Sancar et al., [2004;](#page-16-10) [Blackwood et al., 2013\)](#page-14-10).

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 Effectors of the HRR and NHEJ pathways were identified in T. gondii [\(Smolarz et al., 2014\)](#page-16-7). When attempting to establish the hierarchy between both pathways in the parasite, surprising results were obtained. The inoculation of linear plasmid in tachyzoites robustly activates the NHEJ pathway, while gene replacement by HRR was rarely detected [\(Fox et al., 2009\)](#page-14-13). Notably, these results suggested that, in contrast to yeast and humans, the NHEJ pathway is the pathway preferentially used by T. gondii. It should however be mentioned that HRR can efficiently be activated in T. gondii when NHEJ factors Ku70/Ku80 are eliminated by means of deletion of the Ku80. In such scenario efficient HRR-dependent integration rate at correct locus of different plasmid constructions were observed [\(Fox et al., 2009;](#page-14-13) [Huynh and Carruthers, 2009\)](#page-14-14). Moreover, when focusing on events such as crossing over, a high efficiency of activation was observed, hence indicating active HRR during sporozoite development [\(Khan et al., 2014\)](#page-15-11). Together, these

298 299

319 320

229 230 evidences demonstrate that T. gondii has an intact and functional HRR molecular pathway.

THE HOMOLOGOUS RECOMBINATION BASIC MACHINERY IS CONSERVED IN *T. GONDII*

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 The HRR pathway is activated after DSB recognition by DNA damage sensors (e.g., γH2A.X), and signal transducers (e.g., ATM/Tel1 PIKK4 kinase). The commitment of DSBs to HRR resolution is achieved by mediators/adaptors (e.g., BRCA1 in mammals) and effectors (e.g., Mre11, RAD50, Nbs1/Xrs2 complex; [Prakash et al., 2015\)](#page-15-7). HRR core components include many DNA damage repair (DDR) protein (e.g., RAD51, BRCA2, RAD52) that regulate homology search and other downstream events[\(Jasin and Rothstein, 2013\)](#page-15-8). Herein we evaluate whether mammalian and yeast factors are present in T. gondii by Gene Text Search at Toxodb database (Table S1, Figures S1, S2, and **[Figure 3](#page-9-0)**). Table S1 also contains putative HRR counterparts from Plasmodium falciparum, another apicomplexan parasite. We found 39 putative HRR components in T. gondii (Table S1). In addition, we have attempted to infer whether the conserved HRR factors retrieved in T. gondii are sufficient to support full HRR activation when establishing a direct comparison with the essential components of the HRR cascade in yeast and humans (Figures S2, S3). As a result we have generated a putative basic model of T. gondii HRR (**[Figure 1](#page-5-2)**). The more relevant HRR proteins found in T. gondii are listed in **[Table 1](#page-6-2)**.

Toxoplasma

259 260

267 268

261 262 263 264 265 266 HRR will be discussed below and will be organized accordingly to the following HRR stages: (A) DSB recognition, (B) end-resection and generation of protruding ends for homologous search, (C) strand invasion, (D) homologous DNA synthesis, and (E) resolution of DNA- repair intermediates.

DSB Recognition

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 The proteins in charge of DSB recognition are well-conserved in all three kingdoms. In bacteria, DSBs are recognized by SbcD and SbcC while in Archaea and Eukaryota these components are known as Mre11 and RAD50, respectively [\(Blackwood et al.,](#page-14-10) [2013\)](#page-14-10). Yeast and vertebrates have an additional highly divergent protein, Xrs2 (yeast) and Nbs1 (higher eukaryotes), which along with Mre11 and RAD50 form the MRX/N complex. From T. gondii database analysis it could be inferred that the Mre11 and RAD50 proteins are present, while Nbs1 was not detected in the database (**[Table 1](#page-6-2)** and Table S1). Recently, a functional plasmodial Mre11(PF3D7_0107800, Tables S1), similar to putative T. gondii Mre11, was identified [\(Badugu et al., 2015\)](#page-13-5). The lack of Nbs1/Xrs2 is unexpected since Nbs1/Xsr2 is required for optimal activation of the checkpoint kinase ATM which is required for the arrest of the cell cycle and to trigger DNA damage-induced apoptosis [\(Difilippantonio and Nussenzweig,](#page-14-15) [2007\)](#page-14-15). Nbs1 senses the conformation of Mre11 dimer, which

286 287 288 $28c$ 290 291 292 293 294 295 296 297 is in turn influenced by RAD50-ATP state, promoting the activation of Mre11 [\(Lafrance-Vanasse et al., 2015\)](#page-15-12). Nbs1 possesses a forkhead associated (FHA) domain and two breast cancer-associated 1C terminus (BRCT) domains known to bind phosphoproteins such as CtIP facilitating its recruitment at DSB [\(Williams et al., 2009\)](#page-16-12). Moreover, Nbs1 also interacts with ATM through its C-terminal FXF/Y motif promoting its activation [\(You et al., 2005\)](#page-16-13). We speculate that Nbs1 is not annotated in T. gondii genome database possibly due to its tendency to diverge. However, based on the above-mentioned data we believe that the MR complex, in charge of DSB recognition is mainly conserved in T. gondii (**[Figure 1](#page-5-2)**).

End-Resection

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 In order to generate protruding ssDNA ends with invasion capacity, DSBs need to be extensively processed after MRN loading. Central enzymes capable of achieving such processing are the single strand 3′ -5′ exonuclease and endonuclease Mre11 and the endonuclease CtIP [CtBP (C-terminal-binding protein) interacting protein] (Sae2 in yeast). After an initial cleavage by Mre11, a second end-resection in eukaryotes depends mainly upon the Exo1 5′ -3′ exonuclease which exerts long end resection forming the protruding DNA ends required for invasion and homologous search. An alternative pathway to end resection involves the Dna2 exonuclease and the BLM helicase (Figures S1, S2). Although CtIP (Sae2) is not identified in T. gondii database (there is a Sae2/CtIP annotated protein [TGVEG_252280] in toxodb but to our knowlege with no BLASTP evidence that support it.), a conserved Mre11 (see above) and a putative Exo1 exonuclease (**[Table 1](#page-6-2)**) are present. Therefore, the endresection stage of HRR is potentially conserved in this organism (**[Figure 1](#page-5-2)**).

Strand-Invasion

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 In this phase, the protruding ssDNA is coated with a factor known as RecA in bacteria, RAD51 in eukaryotes or RadA in Archae. RAD51 facilitates strand invasion and homology search [\(Jasin and Rothstein, 2013\)](#page-15-8). To promote RAD51 loading, factors known as mediators facilitate the displacement of the ssDNA coating factor, RPA. In eukaryotes, RAD51 is recruited by RAD52 or BRCA2 [\(Liu and Heyer, 2011\)](#page-15-13). RAD51-coated ssDNA actively searches for homologus DNA, an event which is facilitated by increased chromosome moving (ICM) promoted by protein such as Rad9, RAD51, RAD54, Mec1/ATR, among others (Mine-Hattab and Rothstein, [2013\)](#page-15-14) The analysis of T. gondii database revealed a putative sequence for RAD51 and BRCA2 but not RAD52 (**[Table 1](#page-6-2)**). In fact, TgRad51 has been characterized by [Achanta et al. \(2012\)](#page-13-6). When the authors compared it to a yeast cell model, they concluded that TgRad51 is less efficient in gene targeting and gene conversion than yeast Rad51. We speculate that a slight defect in this particular event may support the puzzling preponderance of NHEJ in T.gondii which has been discussed in previous sections. In fact, in the next section we will present the multiple levels of cross-regulation between HRR and NHEJ mediators and their major influence in the DSBs repair pathway choice.

detected by annotation but have compatible features with the respective protein are shown as yellow shapes.

 $Q5$ ₄₅₇

TABLE 1 | DNA damage checkpoint and homologous recombinantion putative proteins in *T. gondii.*

(Continued)

571 TABLE 1 | Continued

587 *Comment at toxodb (see respective geneID).

590

⁺T. gondii database has several RecQ family proteins.

589 $^{++}$ T. gondii database has several Ubiquitin-conjugating enzyme F2 family proteins

591 592 593 Homologous DNA Synthesis and Resolution of DNA- Repair Intermediates

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 From mammals to yeast, once RAD51 bounds to ssDNA it generates a contiguous helical nucleoprotein filament, which searches for an intact homologous dsDNA template (**[Figure 2](#page-8-2)** and Figure S1). When the homologous region is found, RAD51 promotes the exchange of DNA strands leading to the formation of joint molecules and D-loops [\(Mehta and Haber, 2014\)](#page-15-15). RAD54, a member of the Snf2-family of SF2 helicases also binds to RAD51 (**[Figure 1](#page-5-2)**). Instead of taking part in the separation of the DNA duplex, RAD54 acts as a motor protein that translocates on duplex DNA and remodels specific protein–duplex DNA complexes [\(Pazin and Kadonaga, 1997;](#page-15-16) [Ceballos and Heyer,](#page-14-16) [2011\)](#page-14-16). The homology between RAD54 and Snf2/Swi2 further supports a role of RAD54 in chromatin relaxation during HRR, which could facilitate many HRR events such as Rad51 filament assembly, homology search, DNA strand invasion, or even later HRR stages [\(Ceballos and Heyer, 2011\)](#page-14-16). In fact, RAD54 is crucial to promote branch migration [\(Mazin et al., 2010\)](#page-15-17) when the DNA polymerase polη extends DNA from D loop recombination intermediates, using an invading strand as a primer, (McIlwraith et al., [2005\)](#page-15-18), that generate a Holliday junction (HJ).

614 615 616 617 618 619 620 621 622 623 624 625 626 627 Nucleases in charge of HJ resolution are the ERCC1- XPF/SLX1/SLX4 and the Mus81-EME1/Mms4 complexes [\(Cejka,](#page-14-17) [2015\)](#page-14-17). A third complex which may also resolve HJ when SLX4 is absent is the BLM/GEN1 nuclease [\(Garner et al.,](#page-14-18) [2013\)](#page-14-18). MUS81-EME1/Mms4 are essential components of HJ resolvase [\(Boddy et al., 2001\)](#page-14-19) and seems to be the preferred nuclease in charge of the processing of crossover events while GEN1 seems to work as a backup pathway (Garner et al., [2013\)](#page-14-18). Such hierarchy is also influenced by the cell cyle. During unperturbed duplication, different kinases (e.g., Mitosis phase CDKs) and phosphatases restrict the activity of MUS81-EME1 and GEN1 to different cell cycle phases. As a consequence of such regulation MUS82-EME/Mms4 are active during pro-metaphase and metaphase whereas GEN1/Yen1

are active during metaphase and anaphase [\(Matos and West,](#page-15-19) [2014\)](#page-15-19).

T. gondii possess a conserved machinery responsible of HJ resolution (**[Table 1](#page-6-2)** and **[Figure 2](#page-8-2)**). Still, to this date none of their components were experimentally characterized. Based on T. gondii annotation, RAD54, and TOPOIIIα are potentially expressed in the parasite (**[Table 1](#page-6-2)**). MUS81 and SLX1 nucleases and the SLX4 scafolding factor are present in T. gondii. The same analysis provided modest evidence supporting the presence of the BLM helicase, the GEN1 nuclease and the RecQ-mediated genome instability protein 1 (RMI1). EME1/Mms4 was not found in T. gondii database (Table S1). Moreover, T. gondii database only retrieved two putative ERCC4 domain containing proteins, one resembling MUS81 and another displaying similatities with the RAD1/ERCC4-XPF endonuclease. The absence of EME1/Mms4 may indicate the existence of divergent proteins which were not yet identified. Alternatively, it is also possible that most crossover events in T. gondii relay exclusively on the GEN1 pathway. Further studies should reveal the mechanism supporting crossover and HJ resolution in the parasite.

The sexual cycle of T. gondii occurs in felines which serve as the definitive host and shed infectious oocysts in their feces. Meiosis events take place after oocyst sheed to generate haploid sporozoites. In a recent study, the mixture of Me49 and VAND strains in cats revealed both conventional and double-crossover HRR events [\(Khan et al., 2014\)](#page-15-11). Moreover, [Khan et al. \(2014\)](#page-15-11) has reported elevated frequency of small double-crossover events (less 1000 bp). Interestingly, double crossover events within the 1000 bp are classified as gene conversion, a mechanism associated with HRR-dependent resolution of DSB in other systems (Haber et al., [2004;](#page-14-20) [Chen et al., 2007\)](#page-14-21).

681 682 683 684 Collectively, the examination of the different HRR steps in T. gondii indicates that the basic HRR machinery is conserved, with the unanticipated exception of few but very important players including Nbs1/Xrs2, CtIP, RAD52 and EME1/Mms4. It is however important to mention that the evidences of a

⁵⁸⁸ **AFN55127.

nicks at equivalent positions of the DHJ. In both scenarios non-crossover o crossover resolutions are possible. Single Holliday junctions are intermediates of meiotic recombination. Proteins with high level of conservation are colored in green. Proteins which are not detected by annotation but have compatible features with the respective protein are shown as yellow shapes and factors wich have not been yet identified in in T. gondii are colored in red.

functional HRR pathway in T. gondii is solid (as it will be discussed in the next section). Thereafter we propose that the "missing" HRR components may have diverged to the point of not being recognized by data mining. Alternatively they may have been replaced by functional paralogs. In both scenarios, the identification of those central HRR components may serve as a tool to boost the rational design of drugs that may specifically impair HRR in the parasite.

THE DSB REPAIR PATHWAY CHOICE IN *T.GONDII*

The current understanding of the DSB repair pathway choice **[Q12](#page-1-5)** $_{737}$ in mammals is summarized in **[Figure 3](#page-9-0)** [\(Ceccaldi et al., 2016\)](#page-14-23). In the case of mammals, the cell cycle majorly influences the DSB pathway choice. While HRR is the preferent choice during S/G2, NHEJ is the best option during the G1 phase[\(Sancar et al.,](#page-16-10) [2004;](#page-16-10) [Kass and Jasin, 2010\)](#page-15-20). Such a strong influence of the cell

 cycle is accepted to depend on the availabity of intact sister chromatid during late S and G2 phases of the cell cycle (Kass and Jasin, [2010\)](#page-15-20). Therefore, It's crucial to understand why NHEJ is dominant over HRR in T. gondii. On one hand, T. gondii tachyzoite has a cell cycle with a long G1 and no G2 phase [\(Radke et al., 2001\)](#page-15-5). On the other hand, as we discuss bellow, the diversification in the molecules in charge of the commitment of a DSB to a given resolution pathway may, at least partially, explain why different pathway choice strategies may have evolved in T. gondii in comparison with mammals.

 The generation of a 5' long end resected DNA, which prevents NHEJ process, is the key event that commits DSBs to HRR [\(Daley et al., 2013;](#page-14-11) [Daley and Sung, 2014\)](#page-14-24). The end resection requires different exonucleases (Exo1 and DNA2), the exo- and endonuclease Mre11, endonucleases (CtIP/Sae2), and helicases (BLM/Sgs1) (Figures S1, S2). Almost all the abovementioned nucleases are positively regulated by cyclin dependent kinases (CDKs) mediated phosphorylations during G2/S-phase [\(Huertas et al., 2008;](#page-14-25) [Huertas and Jackson, 2009;](#page-14-26) [Ferretti et](#page-14-27) al.,

[2013\)](#page-14-27). These data consolidate CtIP as a key player which redirects DSBs into HRR [\(Kakarougkas and Jeggo, 2014\)](#page-15-21). In fact, phosphorylated CtIP cooperate with MRN (MRX in yeast) to facilitate end resection [\(Lafrance-Vanasse et al., 2015\)](#page-15-12), reducing the chances for NHEJ activation. In mammals, phosphorylated

 CtIP also favors HRR activation by recruiting the mediator tumor suppressor protein breast cancer 1 (BRCA1) which is a BRCA1 C-terminal (BRCT) domain containing protein. BRCA1 evicts another BRCT-containing mediator, the NHEJ factor 53BP1 from the DSB [\(Daley and Sung, 2014\)](#page-14-24). Intriguingly,

913 914 915 916 917 918 919 920 921 53BP1 also has a BRCT domain but, in opposition to BRCA1, 53BP1 function is that of inhibiting end resection (Chapman et al., [2012\)](#page-14-28). In fact, 53BP1 binds canonical double-ended DSBs upstream the Ku heterodimer loading during G1, facilitating NHEJ [\(Bothmer et al., 2010\)](#page-14-29). Interestingly, at one-ended DSBs the depletion of BRCA1 suffices to promote NHEJ while the simultaneous depletion of BRCA1 and 53BP1 restores HRR, therefore demonstrating an exquisite cross-regulation of HRR or NHEJ at DSBs [\(Bunting et al., 2010\)](#page-14-30).

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 The lack of conservation in the above mentioned pathway choice step, that we postulate may happen in T. gondii, is intriguing. In fact, in yeast, only one BRCT-containing protein domain associated to HRR was found: Rad9 in Saccharomyces cerevisiae or Crb2 in Schizosaccharomyces pombe. The conservation between Rad9/Crb2 and mammalian BRCT containing proteins such as 53BP1 or BRCA1 is very low. Nevertheless, Rad9/Crb2 and 53BP1 functionally overlap. Similarly to 53BP1, Rad9 blocks end resection, and inhibits Exo1- and RAD50-dependent nucleases therefore inhibiting the formation of HRR-proficient substrates [\(Lazzaro et al., 2008\)](#page-15-22). In concordance, NHEJ is facilitated when Rad9 is recruited to DSBs by the 9-1-1 checkpoint clamp loader [\(Ngo and Lydall, 2015\)](#page-15-23). In addition, Rad9 acts as an adaptor that favors the activation of checkpoint kinases Mec1 (ATR) or Tel1 (ATM) and RAD53 and Chk1, which in turn facilitates successful finalization of S phase and promotes cell cycle arrest in G2 and G1, creating a time window for replication-dissociated DNA repair [\(Gilbert et al.,](#page-14-31) [2001;](#page-14-31) [Blankley and Lydall, 2004;](#page-14-32) [Sweeney et al., 2005\)](#page-16-15). Hence, the pathway choice in yeast may be tilted toward the choice of NHEJ, as we predict it may happen also in T. gondii.

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 Remarkably, according to the T. gondii database, homologs of BRCA1, 53BP1, or Rad9/Crb2 were so far not reported. We speculate that it is unlikely that such regulatory factors are completely missing in T. gondii. As the degree of conservation is low between yeast and mammals, it is possible that similar diversification may have taken place in T. gondii. In fact, similar functions were showed to be accomplished by different BRCT domains-containing proteins that share only few residues including hydrophobic amino acids which may facilitate the generation of appropriate secondary structure [\(Bork et al.,](#page-14-33) [1997;](#page-14-33) [Gabrielse et al., 2006\)](#page-14-34). Interestingly, in Toxoplasma database are at least three putatives BRCT domain-containingprotein (**[Table 1](#page-6-2)**). More work is required to establish whether such proteins are functional during the DSB pathway choice. Remarkably as well, homologous of CtIP and Nbs1 (Sae2 and Xrs2 in yeast, respectively) were also not present in T. gondii database (**[Table 1](#page-6-2)**). While, Mre11 and RAD50 are conserved in all three domains of life and therefore also in T. gondii (Blackwood et al., [2013\)](#page-14-10), the existence of a functional complex lacking Nsb1 is unconvincing to us. As it was already mentioned in Section DSB Recognition, the absence of Nbs1/Xrs2 annotation in Toxoplasma database, could be explained by the fact that this protein represents a highly divergent component of the MRN complex. Hence, in order to solve the molecular bases for the apparent defect in HRR activation in T. gondii, missing components need to be identified or their absence needs to be actively proved. In any case, the strong diversification of

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 the HRR pathway that may have taken place in T . gondii may provide initial mechanistic bases for the predominant role of NHEJ in the repair of DSBs in the tachyzoite. We still believe that such conclusion may be precipitous since it is still unclear if different sets of proteins associated with the DSBs repair pathway choice has diversified in T. gondii. This is why in our opinion, the identification of mediators that rule the DSB pathway choice in T. gondii is a field that deserves much attention. Future work may ultimately address the role in DDR of TGME49_258480, TGME49_239790, and TGME49_237480, the three putative BRCT domain containing proteins. The search and identification of other putative BRCT containing proteins may also serve to comprehend HRR activation in T. gondii and to identify species-specific druggable targets for the treatment of toxoplamosis.

γH2A.X SPREADING AND FOCI **FORMATION**

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 While H2A.X may be incorporated randomly in the genome of resting cells, its phosphorylated form γH2A.X, which is modified at its C-terminal motif SQEF/Y, can accumulate in discrete subnuclear foci at replication factories. γH2A.X is directly recruited to the site of DSBs or collapsed replication forks, a complex signaling network promotes the spreading of the γH2A.X signal along the chromosome from the damaged site up to 2-Mb [\(Redon et al., 2002\)](#page-15-6). Such an increase in γH2A.X has also been reported when replication forks collapse in cells undergoing fast replication, such as precancerous and cancerous cells, showing an 8-fold increase both in levels of H2A.X and in γH2A.X when compared to resting cells [\(Bartkova et al.,](#page-13-7) [2005\)](#page-13-7). T. gondii tachyzoites also undergo fast DNA duplication and, similarly to cancer cells, increase γ H2A.X as revealed by Western blot and mass spectrometry analysis [\(Dalmasso et al.,](#page-14-8) [2009;](#page-14-8) [Nardelli et al., 2013\)](#page-15-24). The phosphorylation of the SQE motif of H2A.X in response to DSB relies on PIKK4 kinases ATM, ATR, or DNA-PK [\(van Attikum and Gasser, 2009\)](#page-16-16), all of them apparently present in T. gondii (ATM and ATR are shown in Table S1). Intriguingly, while H2A.X is conserved in T. gondii, it is not present in all apicomplexas as well as other protozoan organisms [\(Dalmasso et al., 2009\)](#page-14-8). This may suggest that the spreading of γH2A.X and foci formation in response of DSBs, while conserved in T. gondii, is not essential for HRR activation in all species.

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 The function of γ H2A.X at DSB site and its spreading to both side of the DSB has been associated with the facilitation of homology search [\(Renkawitz et al., 2013\)](#page-15-25) and with the recruitment of different components of DDR at the foci (Figures S1, S2). In mammals, one of the proteins that is recruited by γH2A.X is the BRCT-containing sensor MDC1 (mediator of DNA damage checkpoint protein 1), which was initially identified as a positive regulator of cell-cycle checkpoints effectors SMC1 and Chk1 during the S-phase and G2/M phases of the cell cycle [\(Stewart et al., 2003;](#page-16-17) [Scully and Xie, 2013\)](#page-16-18). MDC1 phosphorylation at its N-terminal region by casein kinase 2 (CK2) increases its interaction with Nbs1, enhancing the

1045

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 recruitment of the MRN complex at DSB site [\(Stewart et al.,](#page-16-17) [2003;](#page-16-17) [Melander et al., 2008;](#page-15-26) [Spycher et al., 2008;](#page-16-19) [Wu et al.,](#page-16-20) [2008\)](#page-16-20). Similarly, in yeast the checkpoint mediator Rad9/Crb2 relies on its C-terminal BRCT domain to interact with γH2A.X and to be recruited to the DSB [\(van Attikum and Gasser,](#page-16-16) [2009\)](#page-16-16). In opposition to mammals, yeast has only one BRCT containing protein and therefore it is likely that a lower eukaryote as T. gondii may also have few BRCT-containing protein with HRR-regulating abilities. As mentioned above, T. gondii has three putative BRCT domain containing protein (TGME49_258480TGME49_239790 and TGME49_237480). In the future it will be important to determine whether these proteins have a function during DNA damage response and if that is the case, whether they act as mediator and/or has the ability to interact with γH2A.X.

1044 RAD52- INDEPENDENT HR PATHWAY

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 Once the DSB is commited to HRR, the ssDNA generated by nucleases is immediately protected by RPA/RFA proteins. An important step is then the removal of RPA/RFA to allow the binding of the homology searching RAD51 recombinase to ssDNA. In Figures S1, S2 we summarize the current understanding of the mechanisms that regulate RAD51 loading to DNA [\(Zhang et al., 2009;](#page-16-21) [Buisson et al., 2010,](#page-14-35) [2014;](#page-14-36) [Dray et al.,](#page-14-37) [2010;](#page-14-37) [Ramadan, 2012;](#page-15-27) [Mermershtain and Glover, 2013;](#page-15-28) Park et al., [2014\)](#page-15-29). RAD52 is crucial both for displacement of RPA by RAD51 and for the stimulation of RAD51-mediated homologous DNA pairing [\(Baumann and West, 1999;](#page-13-8) [Jackson et al., 2002\)](#page-15-30). In S. cerevisiae, RAD52 plays a key role in HRR, but in vertebrates, RAD52 knockouts only have reduced HRR but do not have hypersensitivity to agents that induce DSBs [\(Rijkers et al., 1998;](#page-16-22) [Paques and Haber, 1999\)](#page-15-31). However, in vertebrates, the absence of both BRCA2 and RAD52 is synthetic lethal and is associated with severe chromosomal fragility [\(Feng et al., 2011\)](#page-14-38). Hence, RAD52 and BRCA2 represent alternative pathways that converge to support RAD51-mediated HRR [\(Liu and Heyer, 2011;](#page-15-13) Lok and Powell, [2012\)](#page-15-32). Moreover, BRCA2 displaces RPA from ssDNA and promotes RAD51 filament formation and strand exchange more efficiently than yeast and human RAD52 [\(Jensen et al., 2010\)](#page-15-33). To this date it is unclear if Caenorhabditis elegans and Drosophila melanogaster have a RAD52 homolog but they do have a BRCA2 protein [\(Liu and Heyer, 2011\)](#page-15-13). In C. elegans, BRCA2 (CeBRC-2) stimulates both RAD51-mediated D-loop formation and single strand annealing of RPA-oligonucleotide complexes [\(Petalcorin et al., 2006\)](#page-15-34). This suggests that CeBRC-2 may have taken over the role of vertebrate RAD52 in DNA single-strand annealing.

1076 1077 1078 1079 1080 1081 1082 1083 As for other mediators, we and others have found no evidence of RAD52 expression in T. gondii, Plasmodium spp., and trypanosomatids genome [\(Passos-Silva et al., 2010;](#page-15-35) Lee et al., [2014;](#page-15-36) [Smolarz et al., 2014\)](#page-16-7). In contrast, RAD52 has been identified in Entamoeba hystolytica and Giardia spp. (Lopez-Camarillo et al., [2009\)](#page-15-37). Hence, it is possible that RAD52 may indeed not be part of the DNA damage response pathway in T. gondii and protozoan parasites. In such scenario, the

1084 1085 1086 1087 1088 1089 recruitment of T. gondii RAD51 to the DSB might be controlled by a RAD52-independent mechanism as proposed [Smolarz et al.](#page-16-7) [\(2014\)](#page-16-7). Interestingly, it is also possible that the putative BRCA2 may represent the sole protein in charge of displacing RPA and recruiting RAD51 to ssDNA in this organisms, a scenario which is not exceptional [\(Petalcorin et al., 2006;](#page-15-34) [Liu and Heyer, 2011\)](#page-15-13).

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 BRCA2 is a protein with multiple domains, including oligonucleotide/oligosaccharide-binding (OB) domains, BRC tandem repeats, and TR2 C-terminal domain. In human BRCA2, the three OB repeats are implicated on ssDNA binding, whereas the BRC repeats promote the protein-protein interactions that facilitate the DNA binding and the focal organization of RAD51[\(Flynn and Zou, 2010\)](#page-14-39). Moreover, the TR2 domain in the BRCA2 C-terminus stabilizes RAD51 nucleoprotein filament [\(Lee, 2014\)](#page-15-38). Depending on the organisms, the interaction of BRC domains with RAD51 can be weak or strong therefore positively or negatively impacting on the control over RAD51's activities [\(Davies et al., 2001\)](#page-14-40). For the putative BRCA2 protein, TGME49_243265, that we have found in T. gondii database (**[Table 1](#page-6-2)**), it could be identified two BRCA2 domains. One at position 2505-2619 (pfam09103) and other at position 760 to 1838. Hence, near 16 repeat sequences in TGME49_243265 presents striking similarities to the BRC repeats present in humans or Trypanosoma brucei [\(Trenaman et al., 2013;](#page-16-23) [Lee,](#page-15-38) [2014\)](#page-15-38). Interestingly, in T. brucei, RAD51 encodes a high number of BRC repeats which facilitate RAD51 foci formation. As the number of cells with detectable RAD51 foci is proportional to the number of BRC-repeats [\(Trenaman et al., 2013\)](#page-16-23), the increased BRC repeats in RAD51, might be relevant when attempting RAD51 loading in the absence of multiple mediators.

1114 1115 1116 1117 1118 1119 1120 1121 In mammals, ubiquitylated H2A.X recruits a complex of proteins which promote BRCA2 loading to DNA [\(Scully and Xie,](#page-16-18) [2013\)](#page-16-18). Hence, the analysis of post-translational modifications in histones of T. gondii may be informative. Recent reports indicates that this organism has four detectable ubiquitylation on H2A.X [\(Silmon de Monerri et al., 2015\)](#page-16-24). It will be of interest to determine the role of these PTMs on T. gondii H2A.X in HRR.

THE ROLE OF CHROMATIN IN HRR

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 In addition to H2A.X, several PTMs of histones such as acetylation, phosphorylation, methylation, and ubiquitination, occur at regions of damaged DNA[\(Gospodinov and Herceg,](#page-14-41) [2013\)](#page-14-41). Moreover, chromatin-remodeling complexes INO80, SWR1, SWI/SNF, RSC, and NuRD are all important initiators of the DSB repair pathway in both low and high eukaryotes [\(van Attikum and Gasser, 2009\)](#page-16-16). Likewise, H2A.Z may have a crucial role in defining the extent of the nucleosome-free DNA regions, restricting DNA resection by CtIP and favoring the recruitment of NHEJ initiators such as the Ku70/Ku80 complex [\(Xu et al., 2012\)](#page-16-25). The remodeling of chromatin not only facilitates DNA repair but also prevents stalled forks from collapsing and promotes their subsequent restart [\(Vassileva et al., 2014\)](#page-16-26).

1139 1140 Histone acetylations are generated by histone acetyl transferases (HAT) as the members of the MYST (e.g., Tip60,

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 Esa1) or GCN5 family [\(Gardner et al., 2011\)](#page-14-42). NuA4-Tip60 complex participates in two major DDR steps which are the remodeling of chromatin at DSBs and the acetylation and activation of the ATM kinase [\(Sun et al., 2010\)](#page-16-27). The Tip60 chromodomain interacts with H3 trimethylated on lysine 9 (H3K9me3) at DSB and then the NuA4-Tip60 complex acetylates H4 to generate H4K16Ac [\(Kusch et al., 2004;](#page-15-39) Daley and Sung, [2014\)](#page-14-24). Once recruited to chromatin, Tip60 also acetylates ATM in the proximity of DSB, facilitating the phosphorylation of several HRR proteins required to achieve efficient HRR [\(Sun et al., 2007\)](#page-16-28) (Figure S1 and **[Figure 2](#page-8-2)**). At the same time, the acetylation of lysine 16 on H4 (H4K16Ac) disfavors the recruitment of 53BP1 to H4K20me and prompts HRR by enhancing the loading of BRCA1 to DSB [\(Tang et al.,](#page-16-29) [2013\)](#page-16-29). A recent report showed that H3K56Ac is important for the activation of a HRR-dependent events known as sister chromatid exchange [\(Munoz-Galvan et al., 2013\)](#page-15-40).

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 As mentioned above, H3K9me is crucial to recruit a NuA4-Tip60 complex to DSBs. Defective H3K9 methylation negatively regulates HRR favoring NHEJ [\(Ayrapetov et al.,](#page-13-9) [2014\)](#page-13-9). Other methylations of histones such as H3K79me and H4K20me2 are also relevant for NHEJ-directed DSB repair, potentially acting as docking sites for the recruitment of DNA repair factors including 53BP1 [\(Hsiao and Mizzen, 2013\)](#page-14-43). In yeast, Set2-dependent H3K36 methylation (H3K36me) reduces the chromatin accessibility of HRR factors and the resection of DNA-ends promoting NHEJ. In contrast, GCN5-dependent H3K36 acetylation promotes HRR by increasing the chromatin accessibility to HRR factors and the resection of DNA-ends [\(Pai et al., 2014\)](#page-15-41). As mentioned in previous sections, histone ubiquitination, in particular histone H2A, is another PTM relevant for the recruitment of different HRR associated proteins to DSBs (see above and Figure S1).

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 In T. gondii, MYST-B were proposed to function as putative TIP60 HATs [\(Vonlaufen et al., 2010\)](#page-16-30). Furthermore, two GCN5 (isoforms A and B) were also reported in the parasite (Sullivan and Hakimi, [2006\)](#page-16-31). Histones H2A.Z, H2A.X and a novel histone variant H2B.Z, which forms a novel nucleosome integrating a double variant of H2A.Z/H2B.Z were also described in T. gondii [\(Dalmasso et al., 2009\)](#page-14-8). These observations suggest the conservation in T. gondii of the chromatin remodeling factors required during the onset of DSB repair. As mentioned above, overexpression of tagged TgMYST-B reduces growth rate in vitro and confers protection from the methyl methanesulfonate DNA-alkylating agent [\(Vonlaufen et al., 2010\)](#page-16-30). These results suggest a role of this HAT in the activation of DNA repair and/or in the prevention of fork collapse. Despite the high homology between the HAT domains, the two TgGCN5s exhibit differential substrate specificities. While TgGCN5-A exclusively targets lysine 18 of H3 (H3K18), TgGCN5-B acetylates multiple lysines in the H3 tail [\(Bhatti et al., 2006\)](#page-13-10). TgGCN5-A is dispensable for the proliferation of the parasite in vitro, but it is required for the parasite recovery when challenged with alkaline stress [\(Naguleswaran et al., 2010\)](#page-15-42). In contrast, the expression of a catalytically inactive TgGCN5-B arrests the cell outside S-phase [\(Wang et al., 2014\)](#page-16-32). Despite the initial evidences discussed above,

1198 1199 further investigation is required to determine whether one or both TgGCN5 participate in HRR.

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 Interestingly, some of the DSB-triggered histone's PTMs are conserved in T. gondii. The phosphorylation of the SQE motif in TgH2A.X was observed in RH strain treated with oxidative stress agents such as H_2O_2 [\(Dalmasso et al., 2009\)](#page-14-8). Other conserved PTMs in T. gondii include HRR- (H4K16Ac and H3K9me) and NHEJ-associated marks (H3K36me, H3K79me, and H4K20me2) [\(Nardelli et al., 2013\)](#page-15-24) T. gondii H4K16me3 was also detected, suggesting a putative regulation of this mark by signals arising from the accumulation of damaged DNA [\(Nardelli et al., 2013\)](#page-15-24). To note, the PTM map of T. gondii histones was generated from tachyzoites samples grown in unperturbed conditions. In light of these facts, it can be proposed that in T.gondii the remodeling of chromatin and the changes in histones PTMs may also participate in the choice between NHEJ- and HRRdirected repair of DSBs. However, clear differences with other species such as the undetectable acetylation of histone H3 at K3 and 36 were also revealed. Moreover, the identification of a novel H2B.Z isoform specific for T. gondii, confirms a certain level of diversification with other species. We believe that the biological relevance of such differential regulation should be promptly explored as it can provide tools for the design of specific treatments that impair DSBs repair in T. gondii but not in its host.

CONCLUSIONS AND FUTURE PERSPECTIVES FOR NOVEL DRUG TARGETS

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 This review has discussed the multiple evidences that support the conservation of pathways in charge of DSB repair such as HRR in T. gondii and its parent Plasmodium spp. Since HRR requires sister chromatids as a template for DNA repair we reasoned that the highly proliferative stages of T. gondii would highly depend on HRR after DSB accumulation. The tachyzoite stage is characterized by the highest replication rate in T. gondii, while the bradyzoite replicates within the cyst in vivo [\(Watts et al., 2015\)](#page-16-33). It is therefore expected that at least in the tachyzoite, HRR would be the preferred pathway choice. However, the insertion of DSBlike plasmid suggests that NHEJ is the preferential mechanism of DSBs in tachyzoites while HRR events are evidenced only if NHEJ is blocked by elimination of Ku80 [\(Fox et al., 2009\)](#page-14-13). Whether NHEJ is always the preferred pathway chosen under all conditions of DSB generation remains to be tested. We anticipate that this is highly unlikely, at least for single-ended DSBs at collapsed forks, as the repair of such lesions by the NHEJ pathway should cause lethal chromosomal fusions.

1246 1247 1248 1249 1250 1251 1252 1253 1254 To improve the understanding of the DSB repair pathway choice in T.gondii, the identification of all parasite factors regulating such decision is required. Our analysis suggests that the basic components of the HRR machinery are conserved in T. gondii. However, the picture is incomplete particularly when focusing on the factors in charge of the choice between HRR/NHEJ (mediators, CtIP, Nbs1, EME1, etc). Similar limitations were reported in Plasmodium spp. (Table S1), an organism that clearly chooses HRR in many instances such as

1255 1256 1257 1258 1259 1260 the generation of var gene antigen in the subtelomeric gene family and the sequence diversification and var gene family composition during mitosis [\(Lee et al., 2014\)](#page-15-36). Hence, it is possible that, by identifying key mediators in T.gondii and Plasmodium spp., specific druggable factors useful for the treatment of toxoplasmosis may be revealed.

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 Another important subject that requires further investigation is the evaluation of the extent of DSB accumulation and HRR activation during the tachyzoite stage. High rates of DNA replication may increase the rates of replication forks collapse generating one-ended DSB which require the HRR for fork restart and cell survival [\(Lee et al., 2014\)](#page-15-36). In that context, HRR might be essential for the repair of collapsed forks, in particularly after treatment with anti-tumoral compounds such as topoisomerase I inhibitors including Camptothecin (CPT), irinotecan, topotecan [\(Tomicic and Kaina, 2013\)](#page-16-34). Interestingly, the combination of treatments that increase one-ended DSB with an HRR defect emerged as a novel, potent and synthetic lethal alternative for cancer treatment [\(Batey et al., 2013\)](#page-13-11). Moreover, it has been recently suggested that HRR regulators can represent suitable candidates for anti-cancer therapy [\(Batey et al., 2013;](#page-13-11) [Krajewska et al., 2015\)](#page-15-43). In fact, there are some drugs that target factors such as the MRN/X complex or the ATM kinase that show synergism when used with DNA damage drugs such as cisplatin and PARP inhibitors including Olaparib. Moreover, a repertoire of small and microRNAs and peptides that target different HRR proteins such as BRCA1, BRCA2, RAD51, BLM among others, also cause synthetic lethal effects when combined with PARP inhibitors [\(Farmer et al., 2005\)](#page-14-44). We postulate that the knowledge of the structural basis of protein-protein interactions required for HRR activation [\(Mermershtain and Glover, 2013\)](#page-15-28) may serve to design small molecule inhibitors specific for the DSB repair pathway in T.gondii. We therefore consider that it is crucial to promptly identify the missing components of the HRR pathway in T. gondii. If factors that have diversified from humans are validated they may represent a unique source of druggable targets, which could be used along with clasical DNA damaging agents to improve current anti-toxoplasmic therapies.

REFERENCES

- 1298 1299 1300 1301 Achanta, S. S., Varunan, S. M., Bhattacharyya, S., and Bhattacharyya, M. K. (2012). Characterization of Rad51 from apicomplexan parasite Toxoplasma gondii: an implication for inefficient gene targeting. PLoS ONE 7:e41925. doi: 10.1371/journal.pone.0041925
- 1302 1303 1304 Ayrapetov, M. K., Gursoy-Yuzugullu, O., Xu, C., Xu, Y., and Price, B. D. (2014). DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. Proc. Natl. Acad. Sci. U.S.A. 111, 9169–9174. doi: 10.1073/pnas.1403565111
- 1305 1306 1307 Baatz, H., Mirshahi, A., Puchta, J., Gümbel, H., and Hattenbach, L. O. (2006). Reactivation of toxoplasma retinochoroiditis under atovaquone therapy in an immunocompetent patient. Ocul. Immunol. Inflamm. 14, 185–187. doi: 10.1080/09273940600659740
- 1308 1309 1310 1311 Badugu, S. B., Nabi, S. A., Vaidyam, P., Laskar, S., Bhattacharyya, S., and Bhattacharyya, M. K. (2015). Identification of Plasmodium falciparum DNA repair protein Mre11 with an evolutionarily conserved nuclease function. PLoS ONE 10:e0125358. doi: 10.1371/journal.pone.0125358

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 Last but not least, HRR independent functions of BRCA2, RAD51 and the exonucleases Mre11, DNA2 were recently reported. These factors can initiate and/or regulate the extent of exonucleolytic cleavage of nascent DNA in conditions of persistent stalling of replication forks [\(Schlacher et al., 2011;](#page-16-35) [Thangavel et al., 2015\)](#page-16-36). Such events are independent from DSBs formation and other HRR factors such as RAD54. The HRRindpendent function of the above-mentioned factors is required to protect the genomic stability of human cells. Therefore, it will be important to evaluate if there is a HRR-independent contribution of the putative BRCT-containing proteins and the RAD51 of T. gondii in the protection of stalled forks. The evaluation of the level of conservation of such cascade and the evaluation of its contribution to the genomic stability of the parasite will be very important when attempting to design specific targeted theapies for the treatment of toxoplasmosis.

AUTHOR CONTRIBUTIONS

1331 1332 1333 1334 1335 All of the authors reviewed the data from the literature and organized and wrote the manuscript. IF, SC, and SA were involved in design the figures. IF, VG, and SA were involved in editing the final version of the manuscript. All of the authors read and approved the final version of the manuscript.

1328 1329 1330

[Q9](#page-1-6) [Q23](#page-1-7)

1361 1362

ACKNOWLEDGMENTS

We thank Alejandra Goldman for critically reading the manuscript. SA (Researcher), VG (Researcher), IF (Post-doctorla Fellow), SB (Fellow), and SC (Fellow) are members of National Research Council of Argentina (CONICET). This work was supported by ANPCyT PICT 2011 0623 (SA) and ANPCyT PICT 2013 1049 (VG).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found [online at: http://journal.frontiersin.org/article/10.3389/fmicb.](http://journal.frontiersin.org/article/10.3389/fmicb.2016.00627) 2016.00627

- Bartkova, J., Horejsí, Z., Koed, K., Krämer, A., Tort, F., Zieger, K., et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870. doi: 10.1038/nature 03482
- 1357 1358 1359 1360 Batey, M. A., Zhao, Y., Kyle, S., Richardson, C., Slade, A., Martin, N. M., et al. (2013). Preclinical evaluation of a novel ATM inhibitor, KU59403, in vitro and in vivo in p53 functional and dysfunctional models of human cancer. Mol. Cancer Ther. 12, 959–967. doi: 10.1158/1535-7163.MCT-12-0707
- Baumann, P., and West, S. C. (1999). Heteroduplex formation by human Rad51 protein: effects of DNA end-structure, hRP-A and hRad52. J. Mol. Biol. 291, 363–374. doi: 10.1006/jmbi.1999.2954
- 1363 1364 Betermier, M., Bertrand, P., and Lopez, B. S. (2014). Is non-homologous endjoining really an inherently error-prone process? PLoS Genet. 10:e1004086. doi: 10.1371/journal.pgen.1004086
- 1365 1366 1367 1368 Bhatti, M. M., Livingston, M., Mullapudi, N., and Sullivan, W. J. Jr. (2006). Pair of unusual GCN5 histone acetyltransferases and ADA2 homologues in the protozoan parasite Toxoplasma gondii. Eukaryotic Cell 5, 62–76. doi: 10.1128/EC.5.1.62-76.2006

1455 1456 1457

1472 1473

- 1369 1370 1371 Blackwood, J. K., Rzechorzek, N. J., Bray, S. M., Maman, J. D., Pellegrini, L., and Robinson, N. P. (2013). End-resection at DNA double-strand breaks in the three domains of life. Biochem. Soc. Trans. 41, 314–320. doi: 10.1042/BST20120307
- 1372 1373 1374 Blankley, R. T., and Lydall, D. (2004). A domain of Rad9 specifically required for activation of Chk1 in budding yeast. J. Cell Sci. 117, 601–608. doi: 10.1242/jcs.00907
- 1375 1376 1377 Bocquet, N., Bizard, A. H., Abdulrahman, W., Larsen, N. B., Faty, M., Cavadini, S., et al. (2014). Structural and mechanistic insight into Holliday-junction dissolution by topoisomerase IIIalpha and RMI1. Nat. Struct. Mol. Biol. 21, 261–268. doi: 10.1038/nsmb.2775
- 1378 1379 1380 Boddy, M. N., Gaillard, P. H., McDonald, W. H., Shanahan, P., Yates, J. R. III, and Russell, P. (2001). Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell 107, 537–548. doi: 10.1016/S0092-8674(01)00536-0
- 1381 1382 Bork, P., Hofmann, K., Bucher, P., Neuwald, A. F., Altschul, S. F., and Koonin, E. V. (1997). A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J. 11, 68–76.
- 1383 1384 1385 Bothmer, A., Robbiani, D. F., Feldhahn, N., Gazumyan, A., Nussenzweig, A., and Nussenzweig, M. C. (2010). 53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination. J. Exp. Med. 207, 855–865. doi: 10.1084/jem.20100244
- 1386 1387 1388 1389 Buisson, R., Dion-Cote, A. M., Coulombe, Y., Launay, H., Cai, H., Stasiak, A. Z., et al. (2010). Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat. Struct. Mol. Biol. 17, 1247–1254. doi: 10.1038/nsmb.1915
- 1390 1391 1392 Buisson, R., Niraj, J., Pauty, J., Maity, R., Zhao, W., Coulombe, Y., et al. (2014). Breast cancer proteins PALB2 and BRCA2 stimulate polymerase eta in recombination-associated DNA synthesis at blocked replication forks. Cell Rep. 6, 553–564. doi: 10.1016/j.celrep.2014.01.009
- 1393 1394 Bunting, S. F., Callen, E., Wong, N., Chen, H. T., Polato, F., Gunn, A., et al. (2010). 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254. doi: 10.1016/j.cell.2010.03.012
- 1395 1396 1397 Carr, A. M., and Lambert, S. (2013). Replication stress-induced genome instability: the dark side of replication maintenance by homologous recombination. J. Mol. Biol. 425, 4733–4744. doi: 10.1016/j.jmb.2013.04.023
- 1398 1399 1400 Ceballos, S. J., and Heyer, W. D. (2011). Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination. Biochim. Biophys. Acta 1809, 509–523. doi: 10.1016/j.bbagrm.2011.06.006
- 1401 1402 Ceccaldi, R., Rondinelli, B., and D'Andrea, A. D. (2016). Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. doi: 10.1016/j.tcb.2015.07.009
- 1403 1404 1405 Cejka, P. (2015). DNA End Resection: nucleases team up with the right partners to initiate homologous recombination. J. Biol. Chem. 290, 22931–22938. doi: 10.1074/jbc.R115.675942
- 1406 1407 Chapman, J. R., Taylor, M. R., and Boulton, S. J. (2012). Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47, 497–510. doi: 10.1016/j.molcel.2012.07.029
- 1408 1409 Chen, J. M., Cooper, D. N., Chuzhanova, N., Ferec, C., and Patrinos, G. P. (2007). Gene conversion: mechanisms, evolution and human disease. Nat. Rev. Genet. 8, 762–775. doi: 10.1038/nrg2193
- 1410 1411 1412 1413 Cortés, J. A., Gómez Marin, J., Silva, P., Arévalo, L., Arevalo, I., Alvarez, M. I., et al. (2012). Guía de atención integral para la prevención, detección temprana y tratamiento de las complicaciones del embarazo, parto y puerperio: sección toxoplasmosis en el embarazo. Infectio 16, 230–246. doi: 10.1016/S0123- 9392(12)70018-8
- 1414 1415 [Q16](#page-1-9) ¹⁴¹⁴ Daley, J. M., Kwon, Y., Niu, H., and Sung, P. (2013). Investigations of homologous recombination pathways and their regulation. Yale J. Biol. Med. 86, 453–461.
	- 1416 1417 1418 Daley, J. M., and Sung, P. (2014). 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks. Mol. Cell. Biol. 34, 1380–1388. doi: 10.1128/MCB.01639-13
	- 1419 1420 1421 Dalmasso, M. C., Onyango, D. O., Naguleswaran, A., Sullivan, W. J. Jr., and Angel, S. O. (2009). Toxoplasma H2A variants reveal novel insights into nucleosome composition and functions for this histone family. J. Mol. Biol. 392, 33–47. doi: 10.1016/j.jmb.2009.07.017
	- 1422 1423 1424 1425 Davies, A. A., Masson, J. Y., McIlwraith, M. J., Stasiak, A. Z., Stasiak, A., Venkitaraman, A. R., et al. (2001). Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol. Cell 7, 273–282. doi: 10.1016/S1097-2765(01)00175-7
- 1426 1427 Difilippantonio, S., and Nussenzweig, A. (2007). The NBS1-ATM connection revisited. Cell Cycle 6, 2366–2370. doi: 10.4161/cc.6.19.4758
- Dray, E., Etchin, J., Wiese, C., Saro, D., Williams, G. J., Hammel, M., et al. (2010). Enhancement of RAD51 recombinase activity by the tumor suppressor PALB2. Nat. Struct. Mol. Biol. 17, 1255–1259. doi: 10.1038/nsmb.1916
- Dubey, J. (1998). Advances in the life cycle of Toxoplasma gondii. Int. J. Parasitol. 28, 1019–1024. doi: 10.1016/S0020-7519(98)00023-X
- El Bissati, K., Suvorova, E. S., Xiao, H., Lucas, O., Upadhya, R., Ma, Y., et al. (2016). Toxoplasma gondii Arginine Methyltransferase 1 (PRMT1) Is necessary for centrosome dynamics during tachyzoite cell division. MBio 7, e02094–e02015. doi: 10.1128/mBio.02094-15
- Farmer, H., McCabe, N., Lord, C. J., Tutt, A. N. J., Johnson, D. A., Richardson, T. B., et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921. doi: 10.1038/nature03445
- Feng, Z., Scott, S. P., Bussen, W., Sharma, G. G., Guo, G., Pandita, T. K., et al. (2011). Rad52 inactivation is synthetically lethal with BRCA2 deficiency. Proc. Natl. Acad. Sci. U.S.A. 108, 686–691. doi: 10.1073/pnas.1010959107
- Ferretti, L. P., Lafranchi, L., and Sartori, A. A. (2013). Controlling DNA-end resection: a new task for CDKs. Front. Genet. 4:99. doi: 10.3389/fgene.2013.00099
- 1444 Flynn, R. L., and Zou, L. (2010). Oligonucleotide/Oligosaccharide-Binding (OB) fold proteins: a growing family of genome guardians. Crit. Rev. Biochem. Mol. Biol. 45, 266–275. doi: 10.3109/10409238.2010.488216
- 1445 1446 1447 Fox, B. A., Ristuccia, J. G., Gigley, J. P., and Bzik, D. J. (2009). Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining. Eukaryotic Cell 8, 520–529. doi: 10.1128/EC.00357-08
- 1448 Francia, M. E., and Striepen, B. (2014). Cell division in apicomplexan parasites. Nat. Rev. Microbiol. 12, 125–136. doi: 10.1038/nrmicro3184
- 1449 1450 1451 1452 Gabrielse, C., Miller, C. T., McConnell, K. H., DeWard, A., Fox, C. A., and Weinreich, M. (2006). A Dbf4p BRCA1 C-terminal-like domain required for the response to replication fork arrest in budding yeast. Genetics 173, 541–555. doi: 10.1534/genetics.106.057521
- 1453 1454 Gardner, K. E., Allis, C. D., and Strahl, B. D. (2011). Operating on chromatin, a colorful language where context matters. J. Mol. Biol. 409, 36–46. doi: 10.1016/j.jmb.2011.01.040
- Garner, E., Kim, Y., Lach, F. P., Kottemann, M. C., and Smogorzewska, A. (2013). Human GEN1 and the SLX4-associated nucleases MUS81 and SLX1 are essential for the resolution of replication-induced Holliday junctions. Cell Rep. 5, 207–215. doi: 10.1016/j.celrep.2013.08.041
- 1458 1459 Gilbert, C. S., Green, C. M., and Lowndes, N. F. (2001). Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol. Cell 8, 129–136. doi: 10.1016/S1097-2765(01)00267-2
- Gospodinov, A., and Herceg, Z. (2013). Chromatin structure in double strand break repair. DNA Repair (Amst). 12, 800–810. doi: 10.1016/j.dnarep.2013.07.006
- Gubbels, M.-J., White, M., and Szatanek, T. (2008). The cell cycle and Toxoplasma 1463 [Q16](#page-1-9) gondii cell division: tightly knit or loosely stitched? Int. J. Parasitol. 38, 1343–1358.
- Guirouilh-Barbat, J., Lambert, S., Bertrand, P., and Lopez, B. S. (2014). Is homologous recombination really an error-free process? Front. Genet. 5:175. doi: 10.3389/fgene.2014.00175
- 1468 1469 1470 1471 Haber, J. E., Ira, G., Malkova, A., and Sugawara, N. (2004). Repairing a doublestrand chromosome break by homologous recombination: revisiting Robin Holliday's model. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 79–86. doi: 10.1098/rstb.2003.1367
- Hsiao, K. Y., and Mizzen, C. A. (2013). Histone H4 deacetylation facilitates 53BP1 DNA damage signaling and double-strand break repair. J. Mol. Cell Biol. 5, 157–165. doi: 10.1093/jmcb/mjs066
- 1474 1475 1476 Huertas, P., Cortes-Ledesma, F., Sartori, A. A., Aguilera, A., and Jackson, S. P. (2008). CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455, 689–692. doi: 10.1038/nature 07215
- 1477 1478 Huertas, P., and Jackson, S. P. (2009). Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J. Biol. Chem. 284, 9558–9565. doi: 10.1074/jbc.M808906200
- 1480 1481 1482 Huynh, M. H., and Carruthers, V. B. (2009). Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80. Eukaryotic Cell 8, 530–539. doi: 10.1128/EC.00358-08

- $\overline{Q17}|_{1483}$ 1484 1485 1486 1487 1488 Israelski, D. M., and Remington, J. S. (1993). Toxoplasmosis in patients with cancer. Clin Infect Dis 17(Suppl. 2), S423–S435. doi: 10.1093/clinids/17.Supplement_2.S423 Jackson, D., Dhar, K., Wahl, J. K., Wold, M. S., and Borgstahl, G. E. (2002). Analysis of the human replication protein A:Rad52 complex: evidence for crosstalk between RPA32, RPA70, Rad52 and DNA. J. Mol. Biol. 321, 133–148. doi: 10.1016/S0022-2836(02)00541-7
	- 1489 1490 Jasin, M., and Rothstein, R. (2013). Repair of strand breaks by homologous recombination. Cold Spring Harb. Perspect. Biol. 5:a012740. doi: 10.1101/cshperspect.a012740
	- 1491 1492 1493 Jensen, R. B., Carreira, A., and Kowalczykowski, S. C. (2010). Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467, 678–683. doi: 10.1038/nature09399
	- 1494 1495 Johnson, R. D., and Jasin, M. (2000). Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 19, 3398–3407. doi: 10.1093/emboj/19.13.3398
	- 1496 1497 1498 Kakarougkas, A., and Jeggo, P. A. (2014). DNA DSB repair pathway choice: an orchestrated handover mechanism. Br. J. Radiol. 87:20130685. doi: 10.1259/bjr.20130685
	- 1499 1500 Kass, E. M., and Jasin, M. (2010). Collaboration and competition between DNA double-strand break repair pathways. FEBS Lett. 584, 3703–3708. doi: 10.1016/j.febslet.2010.07.057
	- 1501 1502 1503 1504 Khan, A., Shaik, J. S., Behnke, M., Wang, Q., Dubey, J. P., Lorenzi, H. A., et al. (2014). NextGen sequencing reveals short double crossovers contribute disproportionately to genetic diversity in Toxoplasma gondii. BMC Genomics 15:1168. doi: 10.1186/1471-2164-15-1168
	- 1505 1506 Krajewska, M., Fehrmann, R. S., de Vries, E. G., and van Vugt, M. A. (2015). Regulators of homologous recombination repair as novel targets for cancer treatment. Front. Genet. 6:96. doi: 10.3389/fgene.2015.00096
	- 1507 1508 Kusch, T., Florens, L., Macdonald, W. H., Swanson, S. K., Glaser, R. L., Yates, J. R. III, et al. (2004). Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306, 2084–2087. doi: 10.1126/science.1103455
	- 1509 1510 1511 1512 Lafrance-Vanasse, J., Williams, G. J., and Tainer, J. A. (2015). Envisioning the dynamics and flexibility of Mre11-Rad50-Nbs1 complex to decipher its roles in DNA replication and repair. Prog. Biophys. Mol. Biol. 117, 182–193. doi: 10.1016/j.pbiomolbio.2014.12.004
	- 1513 1514 1515 Lazzaro, F., Sapountzi, V., Granata, M., Pellicioli, A., Vaze, M., Haber, J. E., et al. (2008). Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres. EMBO J. 27, 1502–1512. doi: 10.1038/emboj.2008.81
	- 1516 1517 1518 Lee, A. H., Symington, L. S., and Fidock, D. A. (2014). DNA repair mechanisms and their biological roles in the malaria parasite Plasmodium falciparum. Microbiol. Mol. Biol. Rev. 78, 469–486. doi: 10.1128/MMBR.00059-13
	- 1519 Lee, H. (2014). Cycling with BRCA2 from DNA repair to mitosis. Exp. Cell Res. 329, 78–84. doi: 10.1016/j.yexcr.2014.10.008
	- 1520 1521 1522 Liu, J., and Heyer, W. D. (2011). Who's who in human recombination: BRCA2 and RAD52. Proc. Natl. Acad. Sci. U.S.A. 108, 441–442. doi: 10.1073/pnas.1016614108
	- 1523 1524 Lok, B. H., and Powell, S. N. (2012). Molecular pathways: understanding the role of Rad52 in homologous recombination for therapeutic advancement. Clin. Cancer Res. 18, 6400–6406. doi: 10.1158/1078-0432.CCR-11-3150
	- 1525 1526 1527 1528 Lopez-Camarillo, C., Lopez-Casamichana, M., Weber, C., Guillen, N., Orozco, E., and Marchat, L. A. (2009). DNA repair mechanisms in eukaryotes: special focus in Entamoeba histolytica and related protozoan parasites. Infect. Genet. Evol. 9, 1051–1056. doi: 10.1016/j.meegid.2009.06.024
- 1529 [[Q18](#page-1-13)] ¹⁵²⁶ Luft, B. J., and Remington, J. S. (1992). Toxoplasmic encephalitis in AIDS. Clin. Infect. Dis. 15, 211–222. doi: 10.1093/clinids/15.2.211
	- 1530 1531 1532 Malkova, A., and Ira, G. (2013). Break-induced replication: functions and molecular mechanism. Curr. Opin. Genet. Dev. 23, 271–279. doi: 10.1016/j.gde.2013.05.007
	- 1533 1534 Matos, J., and West, S. C. (2014). Holliday junction resolution: regulation in space and time. DNA Repair (Amst). 19, 176–181. doi: 10.1016/j.dnarep.2014. 03.013
	- 1535 1536 1537 Mazin, A. V., Mazina, O. M., Bugreev, D. V., and Rossi, M. J. (2010). Rad54, the motor of homologous recombination. DNA Repair (Amst). 9, 286–302. doi: 10.1016/j.dnarep.2009.12.006
	- 1538 1539 McIlwraith, M. J., Vaisman, A., Liu, Y., Fanning, E., Woodgate, R., and West, S. C. (2005). Human DNA polymerase eta promotes DNA synthesis from strand

invasion intermediates of homologous recombination. Mol. Cell 20, 783–792. doi: 10.1016/j.molcel.2005.10.001

- 1541 1542 1543 Mehta, A., and Haber, J. E. (2014). Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 6:a016428. doi: 10.1101/cshperspect.a016428
- 1544 1545 1546 1547 Melander, F., Bekker-Jensen, S., Falck, J., Bartek, J., Mailand, N., and Lukas, J. (2008). Phosphorylation of SDT repeats in the MDC1 N terminus triggers retention of NBS1 at the DNA damage-modified chromatin. J. Cell Biol. 181, 213–226. doi: 10.1083/jcb.200708210
- 1548 Mermershtain, I., and Glover, J. N. (2013). Structural mechanisms underlying signaling in the cellular response to DNA double strand breaks. Mutat. Res. 750, 15–22. doi: 10.1016/j.mrfmmm.2013.07.004
- Mine-Hattab, J., and Rothstein, R. (2013). DNA in motion during double-strand break repair. Trends Cell Biol. 23, 529–536. doi: 10.1016/j.tcb.2013.05.006
- Moncada, P. A., and Montoya, J. G. (2012). Toxoplasmosis in the fetus and newborn: an update on prevalence, diagnosis and treatment. Expert Rev. Anti Infect. Ther. 10, 815–828. doi: 10.1586/eri.12.58
- Munoz-Galvan, S., Jimeno, S., Rothstein, R., and Aguilera, A. (2013). Histone H3K56 acetylation, Rad52, and non-DNA repair factors control double-strand break repair choice with the sister chromatid. PLoS Genet. 9:e1003237. doi: 10.1371/journal.pgen.1003237
- 1557 1558 1559 1560 Naguleswaran, A., Elias, E. V., McClintick, J., Edenberg, H. J., and Sullivan, W. J. Jr. (2010). Toxoplasma gondii lysine acetyltransferase GCN5-A functions in the cellular response to alkaline stress and expression of cyst genes. PLoS Pathog. 6:e1001232. doi: 10.1371/journal.ppat.1001232
- 1561 1562 1563 Nardelli, S. C., Che, F.-Y., de Monerri, N. C. S., Xiao, H., Nieves, E., Madrid-Aliste, C., et al. (2013). The histone code of Toxoplasma gondii comprises conserved and unique posttranslational modifications. MBio 4, e00922–e00913. doi: 10.1128/mBio.00922-13
- 1564 1565 Ngo, G. H., and Lydall, D. (2015). The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks. Nucleic Acids Res. 43, 5017–5032. doi: 10.1093/nar/gkv409
- 1566 1567 1568 Pai, C. C., Deegan, R. S., Subramanian, L., Gal, C., Sarkar, S., Blaikley, E. J., et al. (2014). A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice. Nat. Commun. 5, 4091. doi: 10.1038/ncomms5091
- 1569 1570 1571 Paques, F., and Haber, J. E. (1999). Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404.
- Park, J. Y., Zhang, F., and Andreassen, P. R. (2014). PALB2: the hub of a network of tumor suppressors involved in DNA damage responses. Biochim. Biophys. Acta 1846, 263–275. doi: 10.1016/j.bbcan.2014.06.003
- Passos-Silva, D. G., Rajao, M. A., Nascimento de Aguiar, P. H., Vieira-da-Rocha, J. P., Machado, C. R., and Furtado, C. (2010). Overview of DNA repair in Trypanosoma cruzi, Trypanosoma brucei, and Leishmania major. J. Nucleic Acids 2010:840768. doi: 10.4061/2010/840768
- Pazin, M. J., and Kadonaga, J. T. (1997). What's up and down with histone deacetylation and transcription? Cell 89, 325–328.
- Petalcorin, M. I., Sandall, J., Wigley, D. B., and Boulton, S. J. (2006). CeBRC-2 stimulates D-loop formation by RAD-51 and promotes DNA single-strand annealing. J. Mol. Biol. 361, 231–242. doi: 10.1016/j.jmb.2006.06.020
- 1581 1582 1583 1584 Pfaff, A. W., de-la-Torre, A., Rochet, E., Brunet, J., Sabou, M., Sauer, A., et al. (2014). New clinical and experimental insights into Old World and neotropical ocular toxoplasmosis. Int. J. Parasitol. 44, 99–107. doi: 10.1016/j.ijpara.2013.09.007
- Prakash, R., Zhang, Y., Feng, W., and Jasin, M. (2015). Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb. Perspect. Biol. 7:a016600. doi: 10.1101/cshperspect.a016600
- Radke, J. R., Striepen, B., Guerini, M. N., Jerome, M. E., Roos, D. S., and White, M. W. (2001). Defining the cell cycle for the tachyzoite stage of *Toxoplasma gondii.* Mol. Biochem. Parasitol. 115, 165–175. doi: 10.1016/S0166-6851(01)00284-5
- Ramadan, K. (2012). p97/VCP- and Lys48-linked polyubiquitination form a new signaling pathway in DNA damage response. Cell Cycle 11, 1062–1069. doi: 10.4161/cc.11.6.19446
- Redon, C., Pilch, D., Rogakou, E., Sedelnikova, O., Newrock, K., and Bonner, W. (2002). Histone H2A variants H2AX and H2AZ. Curr. Opin. Genet. Dev. 12, 162–169. doi: 10.1016/S0959-437X(02)00282-4
- Renkawitz, J., Lademann, C. A., and Jentsch, S. (2013). gammaH2AX spreading linked to homology search. Cell Cycle 12, 2526–2527. doi: 10.4161/cc.25836

1594 1595 1596

- 1597 1598 1599 Rijkers, T., Van Den Ouweland, J., Morolli, B., Rolink, A. G., Baarends, W. M., Van Sloun, P. P., et al. (1998). Targeted inactivation of mouse RAD52 reduces homologous recombination but not resistance to ionizing radiation. Mol. Cell. Biol. 18, 6423–6429. doi: 10.1128/MCB.18.11.6423
- 1600 1601 1602 1603 Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K., and Linn, S. (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85. doi: 10.1146/annurev.biochem.73.011303.073723
- 1604 1605 Sarbajna, S., and West, S. C. (2014). Holliday junction processing enzymes as guardians of genome stability. Trends Biochem. Sci. 39, 409-419. doi: 10.1016/j.tibs.2014.07.003
- 1606 1607 1608 Schlacher, K., Christ, N., Siaud, N., Egashira, A., Wu, H., and Jasin, M. (2011). Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529–542. doi: 10.1016/j.cell.2011.03.041
- 1609 1610 Scully, R., and Xie, A. (2013). Double strand break repair functions of histone H2AX. Mutat. Res. 750, 5–14. doi: 10.1016/j.mrfmmm.2013.07.007
- 1611 1612 1613 Shibata, A., and Jeggo, P. A. (2014). DNA double-strand break repair in a cellular context. Clin. Oncol. (R. Coll. Radiol). 26, 243–249. doi: 10.1016/j.clon.2014.02.004
- 1614 1615 1616 Silmon de Monerri, N. C., Yakubu, R. R., Chen, A. L., Bradley, P. J., Nieves, E., Weiss, L. M., et al. (2015). The ubiquitin proteome of Toxoplasma gondii reveals roles for protein ubiquitination in cell-cycle transitions. Cell Host Microbe 18, 621–633. doi: 10.1016/j.chom.2015.10.014
- 1617 1618 Smith, G. R. (2012). How RecBCD enzyme and Chi promote DNA break repair and recombination: a molecular biologist's view. Microbiol. Mol. Biol. Rev. 76, 217–228. doi: 10.1128/MMBR.05026-11
- 1619 1620 1621 Smolarz, B., Wilczynski, J., and Nowakowska, D. (2014). DNA repair mechanisms and Toxoplasma gondii infection. Arch. Microbiol. 196, 1–8. doi: 10.1007/s00203-013-0944-0
- 1622 1623 1624 Spycher, C., Miller, E. S., Townsend, K., Pavic, L., Morrice, N. A., Janscak, P., et al. (2008). Constitutive phosphorylation of MDC1 physically links the MRE11- RAD50-NBS1 complex to damaged chromatin. J. Cell Biol. 181, 227–240. doi: 10.1083/jcb.200709008
- 1625 1626 1627 Stewart, G. S., Wang, B., Bignell, C. R., Taylor, A. M., and Elledge, S. J. (2003). MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421, 961–966. doi: 10.1038/nature01446
- 1628 1629 Sullivan, W. J. Jr., and Hakimi, M. A. (2006). Histone mediated gene activation in Toxoplasma gondii. Mol. Biochem. Parasitol. 148, 109–116. doi: 10.1016/j.molbiopara.2006.03.010
- 1630 1631 Sun, Y., Jiang, X., and Price, B. D. (2010). Tip60: connecting chromatin to DNA damage signaling. Cell Cycle 9, 930–936. doi: 10.4161/cc.9.5.10931
- 1632 1633 Sun, Y., Xu, Y., Roy, K., and Price, B. D. (2007). DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity. Mol. Cell. Biol. 27, 8502–8509. doi: 10.1128/MCB.01382-07
- 1634 1635 1636 Sweeney, F. D., Yang, F., Chi, A., Shabanowitz, J., Hunt, D. F., and Durocher, D. (2005). Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation. Curr. Biol. 15, 1364–1375. doi: 10.1016/j.cub.2005.06.063
- 1637 1638 1639 Tang, J., Cho, N. W., Cui, G., Manion, E. M., Shanbhag, N. M., Botuyan, M. V., et al. (2013). Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nat. Struct. Mol. Biol. 20, 317–325. doi: 10.1038/nsmb.2499
- 1640 1641 1642 Tenter, A. M., Heckeroth, A. R., and Weiss, L. M. (2000). Toxoplasma gondii: from animals to humans. Int. J. Parasitol. 30, 1217–1258. doi: 10.1016/S0020- 7519(00)00124-7
- 1643 1644 Thangavel, S., Berti, M., Levikova, M., Pinto, C., Gomathinayagam, S., Vujanovic, M., et al. (2015). DNA2 drives processing and restart of reversed replication forks in human cells. J. Cell Biol. 208, 545–562. doi: 10.1083/jcb.201406100
- 1645 1646 1647 Tomicic, M. T., and Kaina, B. (2013). Topoisomerase degradation, DSB repair, p53 and IAPs in cancer cell resistance to camptothecin-like topoisomerase I inhibitors. Biochim. Biophys. Acta 1835, 11–27. doi: 10.1016/j.bbcan.2012.09.002
- 1648 1649 1650 Torgerson, P. R., and Mastroiacovo, P. (2013). The global burden of congenital toxoplasmosis: a systematic review. Bull. World Health Organ. 91, 501–508. doi: 10.2471/BLT.12.111732
- 1651 1652 Trenaman, A., Hartley, C., Prorocic, M., Passos-Silva, D. G., van den Hoek, M., Nechyporuk-Zloy, V., et al. (2013). Trypanosoma brucei BRCA2 acts in a

life cycle-specific genome stability process and dictates BRC repeat numberdependent RAD51 subnuclear dynamics. Nucleic Acids Res. 41, 943–960. doi: 10.1093/nar/gks1192

- Tu, W.-Z., Li, B., Huang, B., Wang, Y., Liu, X.-D., Guan, H., et al. (2013). γH2AX foci formation in the absence of DNA damage: Mitotic H2AX phosphorylation is mediated by the DNA-PKcs/CHK2 pathway. FEBS Lett. 587, 3437–3443. doi: 10.1016/j.febslet.2013.08.028
- Turinetto, V., and Giachino, C. (2015). Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions. Nucleic Acids Res. 43, 2489–2498. doi: 10.1093/nar/gkv061
- van Attikum, H., and Gasser, S. M. (2009). Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol. 19, 207–217. doi: 10.1016/j.tcb.2009.03.001
- Vassileva, I., Yanakieva, I., Peycheva, M., Gospodinov, A., and Anachkova, B. (2014). The mammalian INO80 chromatin remodeling complex is required for replication stress recovery. Nucleic Acids Res. 42, 9074–9086. doi: 10.1093/nar/gku605
- 1668 1669 1670 1671 Vonlaufen, N., Naguleswaran, A., Coppens, I., and Sullivan, W. J. Jr. (2010). MYST family lysine acetyltransferase facilitates ataxia telangiectasia mutated (ATM) kinase-mediated DNA damage response in Toxoplasma gondii. J. Biol. Chem. 285, 11154–11161. doi: 10.1074/jbc.M109.066134
- Wang, J., Dixon, S. E., Ting, L. M., Liu, T. K., Jeffers, V., Croken, M. M., et al. (2014). Lysine acetyltransferase GCN5b interacts with AP2 factors and is required for Toxoplasma gondii proliferation. PLoS Pathog. 10:e1003830. doi: 10.1371/journal.ppat.1003830
- Watts, E., Zhao, Y., Dhara, A., Eller, B., Patwardhan, A., and Sinai, A. P. (2015). Novel approaches reveal that Toxoplasma gondii bradyzoites within tissue cysts are dynamic and replicating entities in vivo. MBio 6. doi: 10.1128/mBio. 01155-15
- Weiss, L. M., and Kim, K. (2000). The development and biology of bradyzoites of Toxoplasma gondii. Front. Biosci. 5, D391–D405. doi: 10.2741/Weiss
- Williams, R. S., Dodson, G. E., Limbo, O., Yamada, Y., Williams, J. S., Guenther, G., et al. (2009). Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139, 87–99. doi: 10.1016/j.cell.2009.07.033
- Wu, L., Luo, K., Lou, Z., and Chen, J. (2008). MDC1 regulates intra-S-phase checkpoint by targeting NBS1 to DNA double-strand breaks. Proc. Natl. Acad. Sci. U.S.A. 105, 11200–11205. doi: 10.1073/pnas.0802885105
- Xu, Y., Ayrapetov, M. K., Xu, C., Gursoy-Yuzugullu, O., Hu, Y., and Price, B. D. (2012). Histone H2A. Z controls a critical chromatin remodeling step required for DNA double-strand break repair. Mol. Cell 48, 723–733. doi: 10.1016/j.molcel.2012.09.026
- Yan, J., Huang, B., Liu, G., Wu, B., Huang, S., Zheng, H., et al. (2013). Meta-analysis of prevention and treatment of toxoplasmic encephalitis in HIV-infected patients. Acta Trop. 127, 236–244. doi: 10.1016/j.actatropica.2013.05.006
- Yoshiyama, K. O., Sakaguchi, K., and Kimura, S. (2013). DNA damage response in plants: conserved and variable response compared to animals. Biology (Basel) 2, 1338–1356. doi: 10.3390/biology2041338
- You, Z., Chahwan, C., Bailis, J., Hunter, T., and Russell, P. (2005). ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol. Cell Biol. 25, 5363–5379. doi: 10.1128/MCB.25.13.5363-53 79.2005
- Zhang, F., Fan, Q., Ren, K., and Andreassen, P. R. (2009). PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2. Mol. Cancer Res. 7, 1110–1118. doi: 10.1158/1541-7786.MCR-09-0123

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

1706 Copyright © 2016 Fenoy, Bogado, Contreras, Gottifredi and Angel. This is an openaccess article distributed under the terms of the [Creative Commons Attribution](http://creativecommons.org/licenses/by/4.0/) [License \(CC BY\).](http://creativecommons.org/licenses/by/4.0/) The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

1708 1709 1710

1707