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The Knowns Unknowns: Exploring
the Homologous Recombination
Repair Pathway in Toxoplasma gondii

Q1 Q3Ignacio M. Fenoy 1, Silvina S. Bogado 1, Susana M. Contreras 1, Vanesa Gottifredi 2* and

Sergio O. Angel 1*

1 Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Chascomús, Argentina, 2Cell Cycle Genomic

Instability Laboratory, Fundación Instituto Leloir, IIBBA-CONICET, Chascomús, Argentina

Toxoplasma gondii is an apicomplexan parasite of medical and veterinary importance

which causes toxoplasmosis in humans. Great effort is currently being devoted toward

the identification of novel drugs capable of targeting such illness. In this context, we

believe that the thorough understanding of the life cycle of this model parasite will facilitate

the identification of new druggable targets in T. gondii. It is important to exploit the

available knowledge of pathways which could modulate the sensitivity of the parasite

to DNA damaging agents. The homologous recombination repair (HRR) pathway may

be of particular interest in this regard as its inactivation sensitizes other cellular models

such as human cancer to targeted therapy. Herein we discuss the information available

on T. gondii’s HRR pathway from the perspective of its conservation with respect to

yeast and humans. Special attention was devoted to BRCT domain-containing and

end-resection associated proteins in T. gondii as in other experimental models such

proteins have crucial roles in early/late steps or HRR and in the pathway choice for double

strand break resolution. We conclude that T. gondii HRR pathway is a source of several

lines of investigation that allow to to comprehend the extent of diversification of HRR in

T. gondii. Such an effort will serve to determine if HRR could represent a potential targer

for the treatment of toxoplasmosis.

Keywords: Toxoplasma, DNA damage, homologous recombination repair, chromatin, fork collapse, double strand

break

INTRODUCTION

The protozoan parasite Toxoplasma gondii is a medical and veterinary relevant pathogen (Tenter Q6 Q7

Q21

et al., 2000; Pfaff et al., 2014). Toxoplasma belongs to phylum Apicomplexa among other important
human and veterinary parasites such as Plasmodium spp., Cryptosporidium spp., Eimeria spp.
Albeit the toxoplasmic infection is usually asymptomatic, severe complications, and even death
might occur as a result of a congenital infection or in immunocompromised individuals (e.g.,
AIDS, transplantation). Congenital toxoplasmosis causes several types of neurological defects,
chorioretinitis and in some cases even abortion (Cortés et al., 2012; Moncada and Montoya, 2012;
Torgerson and Mastroiacovo, 2013). In immunocompromised patients, the reactivation of the
infection may trigger further complications including neurological defects, and encephalitis (Yan
et al., 2013).
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T. gondii is an intracellular obligated protozoan parasite with
a life cycle that includes sexual and asexual stages. Asexual
replication occurs in a wide variety of intermediate host species
and tissues and is characterized by two stages: the rapidly growing
“tachyzoites” which is sensitive to the immune system of the host
and several drugs, and the slowly dividing encysted “bradyzoites”
which evades both the host immune response and currently
available anti-Toxoplasma drugs (Dubey, 1998; Weiss and Kim,
2000). Besides, anti-folate treatment is only effective against the
tachyzoite stage, but is toxic in that it causes bone marrow
depression; moreover, many patients are allergic to the sulfa
drug component (Baatz et al., 2006; Cortés et al., 2012).TheQ10

pathogenicity of toxoplasmosis has been associated to multiple
cycles of host cell invasion, intracellular division of the parasite
and release from host cells. T. gondii amplification takes place
in any nucleated cell within a parasitophorous vacuole generated
by an internal budding process known as endodiogeny (Gubbels
et al., 2008; Francia and Striepen, 2014).

While many molecular pathways including cell cycle and
cell duplication were thoroughly characterized in the parasite,
the molecular signals ruling DNA replication in T. gondii are
yet poorly characterized. Notably, after host cell invasion, the
tachyzoite replicates with a doubling time of 5–9 h (Radke
et al., 2001). We have recently proposed that such fast and
uninterrupted rounds of DNA replication during the tachyzoite
stage might trigger replication stress. In fact, we have evidenced
a striking increase in the levels of a bona-fide replication-stress
marker, the phosphorylation at Ser132 of γH2A.X, in T. gondii
tachzyoite (Dalmasso et al., 2009). Albeit other replication-
associated defects may also trigger γH2A.X activation, the
classical interpretation of γH2A.X accumulation is the generation
of double strand break (DSB) (Redon et al., 2002; Tu et al., 2013;
Turinetto and Giachino, 2015). DSBs are extremely genotoxic
DNA lesions capable of impairing central DNA process such as
DNA transcription, replication, and segregation. Given that DSBs
can be repaired bymore than onemechanism, DSBs accumulated
during the DNA replication of tachyzoite most likely require a
precise choice of DNA repair pathway. A failure or a delay in the
repair of DSBs may trigger cell death due to the accumulation of
genomic and chromosomic rearrangements as has been showed
in cancer cells (Prakash et al., 2015).

If DSBs accumulate during the DNA replication of tachyzoite,
it is important to discuss the DNA repair pathways available
for the repair of DSBs in T. gondii. In Eukaryotes, two
well-characterized pathways are in charge of DSB Repair:
Homologous Recombination repair (HRR) and Non-
Homologous End Joining (NHEJ). While it is broadly accepted
that HRR is error-free and NHEJ is error-prone, new evidence
suggests that, at least, under certain cirscutances, HRR can also
represent an error-prone mechanism and NHEJ can be very
precise depending on the structure of the DNA ends (Betermier
et al., 2014; Guirouilh-Barbat et al., 2014).

Intriguingly, while most DNA repairs pathways are conserved
in T. gondii, recently reviewed in Smolarz et al. (2014),
differences in the HRR cascade have been reported in
different organisms (Smith, 2012; Blackwood et al., 2013;
Daley et al., 2013; Yoshiyama et al., 2013). Suchdiversification

indicates the existence of a window of opportunity for the
identification of specific HRR components in T.gondii. If
available, such factors could represent attractive candidates
for the development of drug against toxoplasmosis. Hence,
herein we analyze the extent of conservation between the
HRR components of T. gondii and their yeast and human
counterparts.

THE HOMOLOGOUS RECOMBINATION IN
T. GONDII

HRR is preferentially an error-free mechanism which represents
the preferred pathway chosen in eukaryotes for the repair of
DSBs during the late S/G2-phases of cell cycle. This mechanism
has been extensively studied in both yeast and higher eukaryotes
(Daley et al., 2013; Jasin and Rothstein, 2013). The restriction of
HRR to S/G2 phases is linked to the requirement of homologous
sequences as a template for DNA repair (Sancar et al., 2004).
Typical substrates for HRR include: (a) direct double-ended
DSBs generated by genotoxic agents such as γ-irradiation and
X-rays, (b) inter-strand crosslinks generated after exposure to
genotoxins such as mitomycin C (MMC), and (c) one-ended
DSBs generated after fork collapse resulting from persistent
stalling at bulky adduct or at naturally-occurring replication
barriers. The resolution of direct DSBs by an HRR subpathway
may or may not involve crossing over. One-ended DSBs are
expected to be resolved by another HRR sub-pathway involving
long range D-loop migration (break-induced repair) (Carr and
Lambert, 2013; Malkova and Ira, 2013). If homologous sequences
are not available, for example during G1, DSBs are repaired by
NHEJ, a pathway that prompts rapid fusion between the ends
of double-ended DSBs. In contrast, NHEJ is disfavored during
S phase since its activation at one-ended DSBs can jeopardize
genomic instability by fusing non-homologous chromosomes.
Hence, while NHEJ can function along the cell cycle (Shibata and
Jeggo, 2014), NHEJ is the pathway chosen for the repair of DSBs
in G1 and HRR is preferentially activated at collapsed replication
forks during S and G2 phases (Johnson and Jasin, 2000; Sancar
et al., 2004; Blackwood et al., 2013).

Effectors of the HRR and NHEJ pathways were identified in
T. gondii (Smolarz et al., 2014). When attempting to establish
the hierarchy between both pathways in the parasite, surprising
results were obtained. The inoculation of linear plasmid in
tachyzoites robustly activates the NHEJ pathway, while gene
replacement by HRR was rarely detected (Fox et al., 2009).
Notably, these results suggested that, in contrast to yeast and
humans, the NHEJ pathway is the pathway preferentially used
by T. gondii. It should however be mentioned that HRR
can efficiently be activated in T. gondii when NHEJ factors
Ku70/Ku80 are eliminated by means of deletion of the Ku80.
In such scenario efficient HRR-dependent integration rate at
correct locus of different plasmid constructions were observed
(Fox et al., 2009; Huynh and Carruthers, 2009). Moreover, when
focusing on events such as crossing over, a high efficiency of
activation was observed, hence indicating active HRR during
sporozoite development (Khan et al., 2014). Together, these
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evidences demonstrate that T. gondii has an intact and functional
HRR molecular pathway.

THE HOMOLOGOUS RECOMBINATION
BASIC MACHINERY IS CONSERVED IN
T. GONDII

The HRR pathway is activated after DSB recognition by DNA
damage sensors (e.g., γH2A.X), and signal transducers (e.g.,
ATM/Tel1 PIKK4 kinase). The commitment of DSBs to HRR
resolution is achieved by mediators/adaptors (e.g., BRCA1
in mammals) and effectors (e.g., Mre11, RAD50, Nbs1/Xrs2
complex; Prakash et al., 2015). HRR core components include
many DNA damage repair (DDR) protein (e.g., RAD51, BRCA2,
RAD52) that regulate homology search and other downstream
events(Jasin and Rothstein, 2013). Herein we evaluate whether
mammalian and yeast factors are present in T. gondii by Gene
Text Search at Toxodb database (Table S1, Figures S1, S2, and
Figure 3). Table S1 also contains putative HRR counterparts
from Plasmodium falciparum, another apicomplexan parasite.
We found 39 putative HRR components in T. gondii (Table S1).
In addition, we have attempted to infer whether the conserved
HRR factors retrieved in T. gondii are sufficient to support
full HRR activation when establishing a direct comparison
with the essential components of the HRR cascade in yeast
and humans (Figures S2, S3). As a result we have generated
a putative basic model of T. gondii HRR (Figure 1). The
more relevant HRR proteins found in T. gondii are listed in
Table 1.

Toxoplasma
HRR will be discussed below and will be organized accordingly
to the following HRR stages: (A) DSB recognition, (B)
end-resection and generation of protruding ends for
homologous search, (C) strand invasion, (D) homologous
DNA synthesis, and (E) resolution of DNA- repair
intermediates.

DSB Recognition
The proteins in charge of DSB recognition are well-conserved in
all three kingdoms. In bacteria, DSBs are recognized by SbcD
and SbcC while in Archaea and Eukaryota these components
are known as Mre11 and RAD50, respectively (Blackwood et al.,
2013). Yeast and vertebrates have an additional highly divergent
protein, Xrs2 (yeast) and Nbs1 (higher eukaryotes), which along
with Mre11 and RAD50 form the MRX/N complex. From
T. gondii database analysis it could be inferred that the Mre11
and RAD50 proteins are present, while Nbs1 was not detected
in the database (Table 1 and Table S1). Recently, a functional
plasmodial Mre11(PF3D7_0107800, Tables S1), similar to
putative T. gondii Mre11, was identified (Badugu et al., 2015).
The lack of Nbs1/Xrs2 is unexpected since Nbs1/Xsr2 is required
for optimal activation of the checkpoint kinase ATM which is
required for the arrest of the cell cycle and to trigger DNA
damage-induced apoptosis (Difilippantonio and Nussenzweig,
2007). Nbs1 senses the conformation of Mre11 dimer, which

is in turn influenced by RAD50-ATP state, promoting the
activation of Mre11 (Lafrance-Vanasse et al., 2015). Nbs1
possesses a forkhead associated (FHA) domain and two breast
cancer-associated 1C terminus (BRCT) domains known to bind
phosphoproteins such as CtIP facilitating its recruitment at DSB
(Williams et al., 2009). Moreover, Nbs1 also interacts with ATM
through its C-terminal FXF/Y motif promoting its activation
(You et al., 2005). We speculate that Nbs1 is not annotated in
T. gondii genome database possibly due to its tendency to diverge.
However, based on the above-mentioned data we believe that the
MR complex, in charge of DSB recognition ismainly conserved in
T. gondii (Figure 1).

End-Resection
In order to generate protruding ssDNA ends with invasion
capacity, DSBs need to be extensively processed after MRN
loading. Central enzymes capable of achieving such processing
are the single strand 3′-5′ exonuclease and endonuclease Mre11
and the endonuclease CtIP [CtBP (C-terminal-binding protein)-
interacting protein] (Sae2 in yeast). After an initial cleavage by
Mre11, a second end-resection in eukaryotes depends mainly
upon the Exo1 5′-3′ exonuclease which exerts long end resection
forming the protruding DNA ends required for invasion and
homologous search. An alternative pathway to end resection
involves the Dna2 exonuclease and the BLM helicase (Figures S1,
S2). Although CtIP (Sae2) is not identified in T. gondii database
(there is a Sae2/CtIP annotated protein [TGVEG_252280] in
toxodb but to our knowlege with no BLASTP evidence that
support it.), a conserved Mre11 (see above) and a putative
Exo1 exonuclease (Table 1) are present. Therefore, the end-
resection stage of HRR is potentially conserved in this organism
(Figure 1).

Strand-Invasion
In this phase, the protruding ssDNA is coated with a factor
known as RecA in bacteria, RAD51 in eukaryotes or RadA in
Archae. RAD51 facilitates strand invasion and homology search
(Jasin and Rothstein, 2013). To promote RAD51 loading, factors
known as mediators facilitate the displacement of the ssDNA
coating factor, RPA. In eukaryotes, RAD51 is recruited by RAD52
or BRCA2 (Liu and Heyer, 2011). RAD51-coated ssDNA actively
searches for homologus DNA, an event which is facilitated by
increased chromosomemoving (ICM) promoted by protein such
as Rad9, RAD51, RAD54, Mec1/ATR, among others (Mine-
Hattab and Rothstein, 2013) The analysis of T. gondii database
revealed a putative sequence for RAD51 and BRCA2 but not
RAD52 (Table 1). In fact, TgRad51 has been characterized by
Achanta et al. (2012). When the authors compared it to a yeast
cell model, they concluded that TgRad51 is less efficient in gene
targeting and gene conversion than yeast Rad51. We speculate
that a slight defect in this particular event may support the
puzzling preponderance of NHEJ in T.gondii which has been
discussed in previous sections. In fact, in the next section we will
present the multiple levels of cross-regulation between HRR and
NHEJ mediators and their major influence in the DSBs repair
pathway choice.
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FIGURE 1 | Homologous recombination repair in T. gondii. Potential components of the HRR pathway in T. gondii. The pathway was build by taking the HRRQ4 Q5

components described in mammals, in yeast as references and using the information regarding the putative HRR protein retrieved from www.toxodb.org.Q22

TGME49_258480, TGME49_239790, and TGME49_237480 are putative BRCT domain containing proteins. PIKK4 is the putative ATM/Tel1 kinase TGME49_248530.

UCE is a ubiquitin conjugate enzyme. High levels of conservation between T. gondii and humans/yeast protein domains are indicated in green. Proteins which are not

detected by annotation but have compatible features with the respective protein are shown as yellow shapes.
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TABLE 1 |Q5 DNA damage checkpoint and homologous recombinantion putative proteins in T. gondii.

MammalianQ24 Yeast T. gondii Toxodb annotation

53BP1

BRCA1

MDC1

RAD9 TGME49_239790

TGME49_237480

TGME49_258480

BRCA1 C Terminus domain-containing protein

BRCA1 C Terminus domain-containing protein

Hypothetical protein*

Abraxas ND ND ND

ATM Tel1 TGME49_248530 FATC domain containing protein

Bard1 ND ND ND

BLM+ Sgs1 ND ND

BRCA2 ND TGME49_243265 Protamine P1 protein*

BRCC36 ND TGME49_308590 Mov34/MPN/PAD-1 family protein

CK2alpha CKA2 TGME49_263070 CMGC kinase, CK2 family

CK2beta CKB1 TGME49_272400 Casein kinase ii regulatory subunit protein

CtIP Sae2 ND ND

DNA2 Dna2 TGME49_269740 R3H domain-containing protein*

DNAPd DNAPd TGME49_258030 DNA polymerased

DNAPh ND TGME49_237830 DNA polymerase I

EME1 MMS4 ND ND

ERCC1ii Rad10 TGME49_249330 Rad10 subfamily protein

ERCC4 Rad1 TGME49_305310 ERCC4 domain-containing protein

EXO1 Exo1 TGME49_233090 XPG N-terminal domain-containing protein

FANCD2 ND ND ND

FANCF ND ND ND

FANCM Mph1 ND ND

GEN1 Yen1 TGME49_251620 Flap structure-specific endonuclease 1

MRE11 Mre11 TGME49_278060 Mre11

MUS81/ERCC4ii Mus81 TGME49_261610 Hypotetical protein*

Nbs1 Xrs2 ND ND

H2A.X HTA2 TGME49_261580 H2A.X

Hop2 Hop2 ND ND

PALB2/FANCN ND ND ND

PCNA PCNA TGME49_247460 Proliferating cell nuclear antigen 1

TGME49_320110 Proliferating cell nuclear antigen 2

RAD50 Rad50 TGME49_257180 RecF/RecN/SMC N terminal domain-containing

protein*

RAD51 Rad51 TGME49_272900** DNA repair protein RAD51

RAD51AP1 ND ND ND

RAD52 Rad52 ND ND

RAD54 TGME49_232450 SWI2/SNF2-containing protein RAD54

RAP80 ND ND ND

RMI1+ Rmi1 ND ND

RMI2+ ND ND ND

RNF168 Rad18 ND ND

RNF8 Dma2 ND ND

RPA1A RFA1 TGME49_236080 Replication factor a protein 1

RPA2 RFA2 ND ND

RPA3 RFA3 TGME49_214480 Replication factor a protein 3

GIY-

YIG_SLX1

GIY-

YIG_SLX1

TGME49_212170 GIY-YIG catalytic domain-containing protein

SLX4

(FANCP)

Slx4 TGME49_277540 Hypotetical protein*

SMC1 Smc1 TGME49_288700 RecF/RecN/SMC N terminal domain-containing

protein

SMC3 Smc3 TGME49_297800 RecF/RecN/SMC N terminal domain-containing

protein

(Continued)
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TABLE 1 | Continued

Mammalian Yeast T. gondii Toxodb annotation

SPO11 Spo11 ND ND

TIP60 Esa1 TGME49_207080 Histone lysine acetyltransferase MYST-B

TOPOIII Top3 TGME49_264450 DNA topoisomerase III beta-1

UBC13++ Ubc13 ND ND

WRN ND TGME49_306080 ATP-dependent DNA helicase, RecQ family

protein

XRCC2 ND ND ND

XRCC3 ND ND ND

ChK1 Chk1 ND ND

ChK2 Rad53 TGME49_207820 Cell-cycle-associated protein kinase MAPK*

p53 ND ND ND

CDC25 YCH1 ND ND

*Comment at toxodb (see respective geneID).

**AFN55127.
+T. gondii database has several RecQ family proteins.
++T. gondii database has several Ubiquitin-conjugating enzyme E2 family proteins.

Homologous DNA Synthesis and
Resolution of DNA- Repair Intermediates
From mammals to yeast, once RAD51 bounds to ssDNA it
generates a contiguous helical nucleoprotein filament, which
searches for an intact homologous dsDNA template (Figure 2
and Figure S1). When the homologous region is found, RAD51
promotes the exchange of DNA strands leading to the formation
of jointmolecules andD-loops (Mehta andHaber, 2014). RAD54,
a member of the Snf2-family of SF2 helicases also binds to
RAD51 (Figure 1). Instead of taking part in the separation of the
DNA duplex, RAD54 acts as a motor protein that translocates
on duplex DNA and remodels specific protein–duplex DNA
complexes (Pazin and Kadonaga, 1997; Ceballos and Heyer,
2011). The homology between RAD54 and Snf2/Swi2 further
supports a role of RAD54 in chromatin relaxation during HRR,
which could facilitate many HRR events such as Rad51 filament
assembly, homology search, DNA strand invasion, or even later
HRR stages (Ceballos and Heyer, 2011). In fact, RAD54 is crucial
to promote branch migration (Mazin et al., 2010) when the
DNA polymerase polη extends DNA from D loop recombination
intermediates, using an invading strand as a primer, (McIlwraith
et al., 2005), that generate a Holliday junction (HJ).

Nucleases in charge of HJ resolution are the ERCC1-
XPF/SLX1/SLX4 and theMus81-EME1/Mms4 complexes (Cejka,
2015). A third complex which may also resolve HJ when
SLX4 is absent is the BLM/GEN1 nuclease (Garner et al.,
2013). MUS81-EME1/Mms4 are essential components of HJ
resolvase (Boddy et al., 2001) and seems to be the preferred
nuclease in charge of the processing of crossover events
while GEN1 seems to work as a backup pathway (Garner
et al., 2013). Such hierarchy is also influenced by the cell
cyle. During unperturbed duplication, different kinases (e.g.,
Mitosis phase CDKs) and phosphatases restrict the activity of
MUS81-EME1 and GEN1 to different cell cycle phases. As a
consequence of such regulation MUS82-EME/Mms4 are active
during pro-metaphase and metaphase whereas GEN1/Yen1

are active during metaphase and anaphase (Matos and West,
2014).

T. gondii possess a conserved machinery responsible of HJ
resolution (Table 1 and Figure 2). Still, to this date none of
their components were experimentally characterized. Based on
T. gondii annotation, RAD54, and TOPOIIIα are potentially
expressed in the parasite (Table 1). MUS81 and SLX1 nucleases
and the SLX4 scafolding factor are present in T. gondii. The same
analysis provided modest evidence supporting the presence of
the BLM helicase, the GEN1 nuclease and the RecQ-mediated
genome instability protein 1 (RMI1). EME1/Mms4was not found
in T. gondii database (Table S1). Moreover, T. gondii database
only retrieved two putative ERCC4 domain containing proteins,
one resembling MUS81 and another displaying similatities
with the RAD1/ERCC4-XPF endonuclease. The absence of
EME1/Mms4 may indicate the existence of divergent proteins
which were not yet identified. Alternatively, it is also possible
that most crossover events in T. gondii relay exclusively on the
GEN1 pathway. Further studies should reveal the mechanism
supporting crossover and HJ resolution in the parasite.

The sexual cycle of T. gondii occurs in felines which serve
as the definitive host and shed infectious oocysts in their feces.
Meiosis events take place after oocyst sheed to generate haploid
sporozoites. In a recent study, the mixture of Me49 and VAND
strains in cats revealed both conventional and double-crossover
HRR events (Khan et al., 2014). Moreover, Khan et al. (2014)
has reported elevated frequency of small double-crossover events
(less 1000 bp). Interestingly, double crossover events within the
1000 bp are classified as gene conversion, a mechanism associated
with HRR-dependent resolution of DSB in other systems (Haber
et al., 2004; Chen et al., 2007).

Collectively, the examination of the different HRR steps in

T. gondii indicates that the basic HRR machinery is conserved,

with the unanticipated exception of few but very important

players including Nbs1/Xrs2, CtIP, RAD52 and EME1/Mms4.

It is however important to mention that the evidences of a
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FIGURE 2 | Holliday junction resolution pathways. Double Holliday junction dissolution is a conserved mechanism by which crossover is prevented andQ11

noncrossover HRR events are facilitated (Sarbajna and West, 2014). The Double Holliday junction (DHJ) dissolution is promoted by the BLM helicase, the TopoIIIα

topoisomerase and the RMI1, which influencing the dynamics of TopIIIα (Bocquet et al., 2014). Double Holliday junctions are resolved by two mechanisms. (A) The

nuclease complex MUS81, EME1, SLX1, and SLX4 generate asymmetric cleavage at two positions in the DHJ. (B) The GEN1 resolvase introduces two symmetrical

nicks at equivalent positions of the DHJ. In both scenarios non-crossover o crossover resolutions are possible. Single Holliday junctions are intermediates of meiotic

recombination. Proteins with high level of conservation are colored in green. Proteins which are not detected by annotation but have compatible features with the

respective protein are shown as yellow shapes and factors wich have not been yet identified in in T. gondii are colored in red.

functional HRR pathway in T. gondii is solid (as it will be
discussed in the next section). Thereafter we propose that the
“missing” HRR components may have diverged to the point of
not being recognized by data mining. Alternatively they may
have been replaced by functional paralogs. In both scenarios, the
identification of those central HRR components may serve as a
tool to boost the rational design of drugs that may specifically
impair HRR in the parasite.

THE DSB REPAIR PATHWAY CHOICE IN
T.GONDII

The current understanding of the DSB repair pathway choice
in mammals is summarized in Figure 3 (Ceccaldi et al., 2016).Q12

In the case of mammals, the cell cycle majorly influences the
DSB pathway choice. While HRR is the preferent choice during
S/G2, NHEJ is the best option during the G1 phase(Sancar et al.,
2004; Kass and Jasin, 2010). Such a strong influence of the cell

cycle is accepted to depend on the availabity of intact sister
chromatid during late S and G2 phases of the cell cycle (Kass
and Jasin, 2010). Therefore, It’s crucial to understand why NHEJ
is dominant over HRR in T. gondii. On one hand, T. gondii
tachyzoite has a cell cycle with a long G1 and no G2 phase
(Radke et al., 2001). On the other hand, as we discuss bellow,
the diversification in the molecules in charge of the commitment
of a DSB to a given resolution pathway may, at least partially,
explain why different pathway choice strategies may have evolved
in T. gondii in comparison with mammals.

The generation of a 5′ long end resected DNA, which
prevents NHEJ process, is the key event that commits DSBs
to HRR (Daley et al., 2013; Daley and Sung, 2014). The end
resection requires different exonucleases (Exo1 and DNA2), the
exo- and endonuclease Mre11, endonucleases (CtIP/Sae2), and
helicases (BLM/Sgs1) (Figures S1, S2). Almost all the above-
mentioned nucleases are positively regulated by cyclin dependent
kinases (CDKs) mediated phosphorylations during G2/S-phase
(Huertas et al., 2008; Huertas and Jackson, 2009; Ferretti et al.,

Frontiers in Microbiology | www.frontiersin.org 7 April 2016 | Volume 7 | Article 627

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

Fenoy et al. Toxoplasma gondii Homologous Recombination Repair Pathway

FIGURE 3 | The DSB pathway choice. DSB could be repaired either by homologous recombination repair (HRR) during S/G2/M phases or by non-homologous

end-joining (NHEJ) during G1 phase. The endonuclease CtIP (Sae3 in yeast) is a target of cyclin dependent kinases (CDKs) during G2/S-phase and is recruited to the

DSB by the MRN (MRX in yeast) complex. In mammals, CtIP recruits BRCA1 to DSBs, a BRCT-containing factor that releases the NHEJ factor 53BP1 from the DBS

site. 53BP1, in opposition to BRCA1, inhibits end resection, and promotes NHEJ activation. In yeast, the BRCT domain containing protein Rad9/Crb2 has shown

similar role than 53BP1 in mammals. Phosphorylated CtIP also promotes end resection which evicts Ku70/Ku80 and commits the DSB to HRR. Proteins with high

level of domain conservation are represented as green shapes, Proteins that are not present in T. gondii are represented as red shapes.

2013). These data consolidate CtIP as a key player which
redirects DSBs into HRR (Kakarougkas and Jeggo, 2014). In fact,
phosphorylated CtIP cooperate with MRN (MRX in yeast) to
facilitate end resection (Lafrance-Vanasse et al., 2015), reducing
the chances for NHEJ activation. In mammals, phosphorylated

CtIP also favors HRR activation by recruiting the mediator
tumor suppressor protein breast cancer 1 (BRCA1) which is a
BRCA1 C-terminal (BRCT) domain containing protein. BRCA1
evicts another BRCT-containing mediator, the NHEJ factor
53BP1 from the DSB (Daley and Sung, 2014). Intriguingly,
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53BP1 also has a BRCT domain but, in opposition to BRCA1,
53BP1 function is that of inhibiting end resection (Chapman
et al., 2012). In fact, 53BP1 binds canonical double-ended DSBs
upstream the Ku heterodimer loading during G1, facilitating
NHEJ (Bothmer et al., 2010). Interestingly, at one-ended DSBs
the depletion of BRCA1 suffices to promote NHEJ while the
simultaneous depletion of BRCA1 and 53BP1 restores HRR,
therefore demonstrating an exquisite cross-regulation of HRR or
NHEJ at DSBs (Bunting et al., 2010).

The lack of conservation in the above mentioned pathway
choice step, that we postulate may happen in T. gondii,
is intriguing. In fact, in yeast, only one BRCT-containing
protein domain associated to HRR was found: Rad9 in
Saccharomyces cerevisiae or Crb2 in Schizosaccharomyces pombe.
The conservation between Rad9/Crb2 and mammalian BRCT
containing proteins such as 53BP1 or BRCA1 is very low.
Nevertheless, Rad9/Crb2 and 53BP1 functionally overlap.
Similarly to 53BP1, Rad9 blocks end resection, and inhibits
Exo1- and RAD50-dependent nucleases therefore inhibiting the
formation of HRR-proficient substrates (Lazzaro et al., 2008). In
concordance, NHEJ is facilitated when Rad9 is recruited to DSBs
by the 9-1-1 checkpoint clamp loader (Ngo and Lydall, 2015).
In addition, Rad9 acts as an adaptor that favors the activation
of checkpoint kinases Mec1 (ATR) or Tel1 (ATM) and RAD53
and Chk1, which in turn facilitates successful finalization of S
phase and promotes cell cycle arrest in G2 and G1, creating a time
window for replication-dissociated DNA repair (Gilbert et al.,
2001; Blankley and Lydall, 2004; Sweeney et al., 2005). Hence, the
pathway choice in yeast may be tilted toward the choice of NHEJ,
as we predict it may happen also in T. gondii.

Remarkably, according to the T. gondii database, homologs
of BRCA1, 53BP1, or Rad9/Crb2 were so far not reported. We
speculate that it is unlikely that such regulatory factors are
completely missing in T. gondii. As the degree of conservation
is low between yeast and mammals, it is possible that similar
diversification may have taken place in T. gondii. In fact,
similar functions were showed to be accomplished by different
BRCT domains-containing proteins that share only few residues
including hydrophobic amino acids which may facilitate the
generation of appropriate secondary structure (Bork et al.,
1997; Gabrielse et al., 2006). Interestingly, in Toxoplasma
database are at least three putatives BRCT domain-containing-
protein (Table 1). More work is required to establish whether
such proteins are functional during the DSB pathway choice.
Remarkably as well, homologous of CtIP and Nbs1 (Sae2 and
Xrs2 in yeast, respectively) were also not present in T. gondii
database (Table 1).While, Mre11 and RAD50 are conserved in all
three domains of life and therefore also in T. gondii (Blackwood
et al., 2013), the existence of a functional complex lacking
Nsb1 is unconvincing to us. As it was already mentioned in
Section DSB Recognition, the absence of Nbs1/Xrs2 annotation
in Toxoplasma database, could be explained by the fact that
this protein represents a highly divergent component of the
MRN complex. Hence, in order to solve the molecular bases
for the apparent defect in HRR activation in T. gondii, missing
components need to be identified or their absence needs to
be actively proved. In any case, the strong diversification of

the HRR pathway that may have taken place in T. gondii may
provide initial mechanistic bases for the predominant role of
NHEJ in the repair of DSBs in the tachyzoite. We still believe
that such conclusion may be precipitous since it is still unclear
if different sets of proteins associated with the DSBs repair
pathway choice has diversified in T. gondii. This is why in
our opinion, the identification of mediators that rule the DSB
pathway choice in T. gondii is a field that deserves much
attention. Future work may ultimately address the role in DDR
of TGME49_258480, TGME49_239790, and TGME49_237480,
the three putative BRCT domain containing proteins. The search
and identification of other putative BRCT containing proteins
may also serve to comprehend HRR activation in T. gondii and
to identify species-specific druggable targets for the treatment of
toxoplamosis.

γH2A.X SPREADING AND FOCI
FORMATION

While H2A.X may be incorporated randomly in the genome
of resting cells, its phosphorylated form γH2A.X, which is
modified at its C-terminal motif SQEF/Y, can accumulate in
discrete subnuclear foci at replication factories. γH2A.X is
directly recruited to the site of DSBs or collapsed replication
forks, a complex signaling network promotes the spreading of
the γH2A.X signal along the chromosome from the damaged site
up to 2-Mb (Redon et al., 2002). Such an increase in γH2A.X
has also been reported when replication forks collapse in cells
undergoing fast replication, such as precancerous and cancerous
cells, showing an 8-fold increase both in levels of H2A.X and
in γH2A.X when compared to resting cells (Bartkova et al.,
2005). T. gondii tachyzoites also undergo fast DNA duplication
and, similarly to cancer cells, increase γH2A.X as revealed by
Western blot and mass spectrometry analysis (Dalmasso et al.,
2009; Nardelli et al., 2013). The phosphorylation of the SQEmotif
of H2A.X in response to DSB relies on PIKK4 kinases ATM,
ATR, or DNA-PK (van Attikum and Gasser, 2009), all of them
apparently present in T. gondii (ATM and ATR are shown in
Table S1). Intriguingly, while H2A.X is conserved in T. gondii,
it is not present in all apicomplexas as well as other protozoan
organisms (Dalmasso et al., 2009). This may suggest that the
spreading of γH2A.X and foci formation in response of DSBs,
while conserved in T. gondii, is not essential for HRR activation
in all species.

The function of γH2A.X at DSB site and its spreading to
both side of the DSB has been associated with the facilitation
of homology search (Renkawitz et al., 2013) and with the
recruitment of different components of DDR at the foci (Figures
S1, S2). In mammals, one of the proteins that is recruited
by γH2A.X is the BRCT-containing sensor MDC1 (mediator
of DNA damage checkpoint protein 1), which was initially
identified as a positive regulator of cell-cycle checkpoints
effectors SMC1 and Chk1 during the S-phase and G2/M phases
of the cell cycle (Stewart et al., 2003; Scully and Xie, 2013).
MDC1 phosphorylation at its N-terminal region by casein kinase
2 (CK2) increases its interaction with Nbs1, enhancing the
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recruitment of the MRN complex at DSB site (Stewart et al.,
2003; Melander et al., 2008; Spycher et al., 2008; Wu et al.,
2008). Similarly, in yeast the checkpoint mediator Rad9/Crb2
relies on its C-terminal BRCT domain to interact with γH2A.X
and to be recruited to the DSB (van Attikum and Gasser,
2009). In opposition to mammals, yeast has only one BRCT
containing protein and therefore it is likely that a lower
eukaryote as T. gondii may also have few BRCT-containing
protein with HRR-regulating abilities. As mentioned above, T.
gondii has three putative BRCT domain containing protein
(TGME49_258480TGME49_239790 and TGME49_237480). In
the future it will be important to determine whether these
proteins have a function duringDNAdamage response and if that
is the case, whether they act as mediator and/or has the ability to
interact with γH2A.X.

RAD52- INDEPENDENT HR PATHWAY

Once the DSB is commited to HRR, the ssDNA generated
by nucleases is immediately protected by RPA/RFA proteins.
An important step is then the removal of RPA/RFA to allow
the binding of the homology searching RAD51 recombinase
to ssDNA. In Figures S1, S2 we summarize the current
understanding of the mechanisms that regulate RAD51 loading
to DNA (Zhang et al., 2009; Buisson et al., 2010, 2014; Dray et al.,
2010; Ramadan, 2012; Mermershtain and Glover, 2013; Park
et al., 2014). RAD52 is crucial both for displacement of RPA by
RAD51 and for the stimulation of RAD51-mediated homologous
DNA pairing (Baumann and West, 1999; Jackson et al., 2002). In
S. cerevisiae, RAD52 plays a key role in HRR, but in vertebrates,
RAD52 knockouts only have reduced HRR but do not have
hypersensitivity to agents that induce DSBs (Rijkers et al., 1998;
Paques and Haber, 1999). However, in vertebrates, the absence
of both BRCA2 and RAD52 is synthetic lethal and is associated
with severe chromosomal fragility (Feng et al., 2011). Hence,
RAD52 and BRCA2 represent alternative pathways that converge
to support RAD51-mediated HRR (Liu and Heyer, 2011; Lok and
Powell, 2012). Moreover, BRCA2 displaces RPA from ssDNA and
promotes RAD51 filament formation and strand exchange more
efficiently than yeast and human RAD52 (Jensen et al., 2010). To
this date it is unclear if Caenorhabditis elegans and Drosophila
melanogaster have a RAD52 homolog but they do have a
BRCA2 protein (Liu and Heyer, 2011). In C. elegans, BRCA2
(CeBRC-2) stimulates both RAD51-mediated D-loop formation
and single strand annealing of RPA-oligonucleotide complexes
(Petalcorin et al., 2006). This suggests that CeBRC-2 may have
taken over the role of vertebrate RAD52 in DNA single-strand
annealing.

As for other mediators, we and others have found no
evidence of RAD52 expression in T. gondii, Plasmodium spp.,
and trypanosomatids genome (Passos-Silva et al., 2010; Lee
et al., 2014; Smolarz et al., 2014). In contrast, RAD52 has been
identified in Entamoeba hystolytica and Giardia spp. (Lopez-
Camarillo et al., 2009). Hence, it is possible that RAD52 may
indeed not be part of the DNA damage response pathway
in T. gondii and protozoan parasites. In such scenario, the

recruitment of T. gondii RAD51 to the DSB might be controlled
by a RAD52-independent mechanism as proposed Smolarz et al.
(2014). Interestingly, it is also possible that the putative BRCA2
may represent the sole protein in charge of displacing RPA and
recruiting RAD51 to ssDNA in this organisms, a scenario which
is not exceptional (Petalcorin et al., 2006; Liu and Heyer, 2011).

BRCA2 is a protein with multiple domains, including
oligonucleotide/oligosaccharide-binding (OB) domains, BRC
tandem repeats, and TR2 C-terminal domain. In human BRCA2,
the three OB repeats are implicated on ssDNA binding, whereas
the BRC repeats promote the protein-protein interactions that
facilitate the DNA binding and the focal organization of
RAD51(Flynn and Zou, 2010). Moreover, the TR2 domain in
the BRCA2 C-terminus stabilizes RAD51 nucleoprotein filament
(Lee, 2014). Depending on the organisms, the interaction of
BRC domains with RAD51 can be weak or strong therefore
positively or negatively impacting on the control over RAD51’s
activities (Davies et al., 2001). For the putative BRCA2 protein,
TGME49_243265, that we have found in T. gondii database
(Table 1), it could be identified two BRCA2 domains. One at
position 2505-2619 (pfam09103) and other at position 760 to
1838. Hence, near 16 repeat sequences in TGME49_243265
presents striking similarities to the BRC repeats present in
humans or Trypanosoma brucei (Trenaman et al., 2013; Lee,
2014). Interestingly, in T. brucei, RAD51 encodes a high number
of BRC repeats which facilitate RAD51 foci formation. As the
number of cells with detectable RAD51 foci is proportional to the
number of BRC-repeats (Trenaman et al., 2013), the increased
BRC repeats in RAD51, might be relevant when attempting
RAD51 loading in the absence of multiple mediators.

In mammals, ubiquitylated H2A.X recruits a complex of
proteins which promote BRCA2 loading to DNA (Scully and Xie,
2013). Hence, the analysis of post-translational modifications
in histones of T. gondii may be informative. Recent reports
indicates that this organism has four detectable ubiquitylation
on H2A.X (Silmon de Monerri et al., 2015). It will be of interest
to determine the role of these PTMs on T. gondii H2A.X
in HRR.

THE ROLE OF CHROMATIN IN HRR

In addition to H2A.X, several PTMs of histones such as
acetylation, phosphorylation, methylation, and ubiquitination,
occur at regions of damaged DNA(Gospodinov and Herceg,
2013). Moreover, chromatin-remodeling complexes INO80,
SWR1, SWI/SNF, RSC, and NuRD are all important initiators
of the DSB repair pathway in both low and high eukaryotes
(van Attikum and Gasser, 2009). Likewise, H2A.Z may have a
crucial role in defining the extent of the nucleosome-free DNA
regions, restricting DNA resection by CtIP and favoring the
recruitment of NHEJ initiators such as the Ku70/Ku80 complex
(Xu et al., 2012). The remodeling of chromatin not only facilitates
DNA repair but also prevents stalled forks from collapsing and
promotes their subsequent restart (Vassileva et al., 2014).

Histone acetylations are generated by histone acetyl
transferases (HAT) as the members of the MYST (e.g., Tip60,
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Esa1) or GCN5 family (Gardner et al., 2011). NuA4-Tip60
complex participates in two major DDR steps which are the
remodeling of chromatin at DSBs and the acetylation and
activation of the ATM kinase (Sun et al., 2010). The Tip60
chromodomain interacts with H3 trimethylated on lysine
9 (H3K9me3) at DSB and then the NuA4-Tip60 complex
acetylates H4 to generate H4K16Ac (Kusch et al., 2004; Daley
and Sung, 2014). Once recruited to chromatin, Tip60 also
acetylates ATM in the proximity of DSB, facilitating the
phosphorylation of several HRR proteins required to achieve
efficient HRR (Sun et al., 2007) (Figure S1 and Figure 2). At
the same time, the acetylation of lysine 16 on H4 (H4K16Ac)
disfavors the recruitment of 53BP1 to H4K20me and prompts
HRR by enhancing the loading of BRCA1 to DSB (Tang et al.,
2013). A recent report showed that H3K56Ac is important for the
activation of a HRR-dependent events known as sister chromatid
exchange (Munoz-Galvan et al., 2013).

As mentioned above, H3K9me is crucial to recruit a
NuA4-Tip60 complex to DSBs. Defective H3K9 methylation
negatively regulates HRR favoring NHEJ (Ayrapetov et al.,
2014). Other methylations of histones such as H3K79me and
H4K20me2 are also relevant for NHEJ-directed DSB repair,
potentially acting as docking sites for the recruitment of DNA
repair factors including 53BP1 (Hsiao and Mizzen, 2013).
In yeast, Set2-dependent H3K36 methylation (H3K36me)
reduces the chromatin accessibility of HRR factors and
the resection of DNA-ends promoting NHEJ. In contrast,
GCN5-dependent H3K36 acetylation promotes HRR by
increasing the chromatin accessibility to HRR factors and
the resection of DNA-ends (Pai et al., 2014). As mentioned
in previous sections, histone ubiquitination, in particular
histone H2A, is another PTM relevant for the recruitment
of different HRR associated proteins to DSBs (see above and
Figure S1).

In T. gondii, MYST-B were proposed to function as putative
TIP60 HATs (Vonlaufen et al., 2010). Furthermore, two GCN5
(isoforms A and B) were also reported in the parasite (Sullivan
and Hakimi, 2006). Histones H2A.Z, H2A.X and a novel histone
variant H2B.Z, which forms a novel nucleosome integrating
a double variant of H2A.Z/H2B.Z were also described in
T. gondii (Dalmasso et al., 2009). These observations suggest the
conservation in T. gondii of the chromatin remodeling factors
required during the onset of DSB repair. As mentioned above,
overexpression of tagged TgMYST-B reduces growth rate in
vitro and confers protection from the methyl methanesulfonate
DNA-alkylating agent (Vonlaufen et al., 2010). These results
suggest a role of this HAT in the activation of DNA repair
and/or in the prevention of fork collapse. Despite the high
homology between the HAT domains, the two TgGCN5s exhibit
differential substrate specificities. While TgGCN5-A exclusively
targets lysine 18 of H3 (H3K18), TgGCN5-B acetylates multiple
lysines in the H3 tail (Bhatti et al., 2006). TgGCN5-A is
dispensable for the proliferation of the parasite in vitro, but it is
required for the parasite recovery when challenged with alkaline
stress (Naguleswaran et al., 2010). In contrast, the expression of
a catalytically inactive TgGCN5-B arrests the cell outside S-phase
(Wang et al., 2014). Despite the initial evidences discussed above,

further investigation is required to determine whether one or
both TgGCN5 participate in HRR.

Interestingly, some of the DSB-triggered histone’s PTMs are
conserved in T. gondii. The phosphorylation of the SQE motif in
TgH2A.X was observed in RH strain treated with oxidative stress
agents such as H2O2 (Dalmasso et al., 2009). Other conserved
PTMs in T. gondii include HRR- (H4K16Ac and H3K9me) and
NHEJ-associated marks (H3K36me, H3K79me, and H4K20me2)
(Nardelli et al., 2013) T. gondii H4K16me3 was also detected,
suggesting a putative regulation of this mark by signals arising
from the accumulation of damaged DNA (Nardelli et al., 2013).
To note, the PTM map of T. gondii histones was generated
from tachyzoites samples grown in unperturbed conditions. In
light of these facts, it can be proposed that in T.gondii the
remodeling of chromatin and the changes in histones PTMs
may also participate in the choice between NHEJ- and HRR-
directed repair of DSBs. However, clear differences with other
species such as the undetectable acetylation of histone H3 at
K3 and 36 were also revealed. Moreover, the identification of a
novel H2B.Z isoform specific for T. gondii, confirms a certain
level of diversification with other species. We believe that the
biological relevance of such differential regulation should be
promptly explored as it can provide tools for the design of specific
treatments that impair DSBs repair in T. gondii but not in its host.

CONCLUSIONS AND FUTURE
PERSPECTIVES FOR NOVEL DRUG
TARGETS

This review has discussed the multiple evidences that support the
conservation of pathways in charge of DSB repair such as HRR
in T. gondii and its parent Plasmodium spp. Since HRR requires
sister chromatids as a template for DNA repair we reasoned
that the highly proliferative stages of T. gondii would highly
depend on HRR after DSB accumulation. The tachyzoite stage is
characterized by the highest replication rate in T. gondii,while the
bradyzoite replicates within the cyst in vivo (Watts et al., 2015).
It is therefore expected that at least in the tachyzoite, HRR would
be the preferred pathway choice. However, the insertion of DSB-
like plasmid suggests that NHEJ is the preferential mechanism
of DSBs in tachyzoites while HRR events are evidenced only
if NHEJ is blocked by elimination of Ku80 (Fox et al., 2009).
Whether NHEJ is always the preferred pathway chosen under all
conditions of DSB generation remains to be tested. We anticipate
that this is highly unlikely, at least for single-ended DSBs at
collapsed forks, as the repair of such lesions by the NHEJ pathway
should cause lethal chromosomal fusions.

To improve the understanding of the DSB repair pathway
choice in T.gondii, the identification of all parasite factors
regulating such decision is required. Our analysis suggests that
the basic components of the HRR machinery are conserved
in T. gondii. However, the picture is incomplete particularly
when focusing on the factors in charge of the choice
between HRR/NHEJ (mediators, CtIP, Nbs1, EME1, etc). Similar
limitations were reported in Plasmodium spp. (Table S1), an
organism that clearly chooses HRR in many instances such as
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the generation of var gene antigen in the subtelomeric gene
family and the sequence diversification and var gene family
composition during mitosis (Lee et al., 2014). Hence, it is possible
that, by identifying key mediators in T.gondii and Plasmodium
spp., specific druggable factors useful for the treatment of
toxoplasmosis may be revealed.

Another important subject that requires further investigation
is the evaluation of the extent of DSB accumulation and HRR
activation during the tachyzoite stage. High rates of DNA
replication may increase the rates of replication forks collapse
generating one-ended DSB which require the HRR for fork
restart and cell survival (Lee et al., 2014). In that context,
HRR might be essential for the repair of collapsed forks, in
particularly after treatment with anti-tumoral compounds such
as topoisomerase I inhibitors including Camptothecin (CPT),
irinotecan, topotecan (Tomicic and Kaina, 2013). Interestingly,
the combination of treatments that increase one-ended DSB with
an HRR defect emerged as a novel, potent and synthetic lethal
alternative for cancer treatment (Batey et al., 2013). Moreover, it
has been recently suggested that HRR regulators can represent
suitable candidates for anti-cancer therapy (Batey et al., 2013;
Krajewska et al., 2015). In fact, there are some drugs that target
factors such as the MRN/X complex or the ATM kinase that
show synergism when used with DNA damage drugs such as
cisplatin and PARP inhibitors including Olaparib. Moreover, a
repertoire of small and microRNAs and peptides that target
different HRR proteins such as BRCA1, BRCA2, RAD51, BLM
among others, also cause synthetic lethal effects when combined
with PARP inhibitors (Farmer et al., 2005). We postulate that the
knowledge of the structural basis of protein-protein interactions
required for HRR activation (Mermershtain and Glover, 2013)
may serve to design small molecule inhibitors specific for the
DSB repair pathway in T.gondii. We therefore consider that
it is crucial to promptly identify the missing components of
the HRR pathway in T. gondii. If factors that have diversified
from humans are validated they may represent a unique source
of druggable targets, which could be used along with clasical
DNA damaging agents to improve current anti-toxoplasmic
therapies.

Last but not least, HRR independent functions of BRCA2,
RAD51 and the exonucleases Mre11, DNA2 were recently
reported. These factors can initiate and/or regulate the extent
of exonucleolytic cleavage of nascent DNA in conditions of
persistent stalling of replication forks (Schlacher et al., 2011;
Thangavel et al., 2015). Such events are independent from DSBs
formation and other HRR factors such as RAD54. The HRR-
indpendent function of the above-mentioned factors is required
to protect the genomic stability of human cells. Therefore, it
will be important to evaluate if there is a HRR-independent
contribution of the putative BRCT-containing proteins and the
RAD51 of T. gondii in the protection of stalled forks. The
evaluation of the level of conservation of such cascade and the
evaluation of its contribution to the genomic stability of the
parasite will be very important when attempting to design specific
targeted theapies for the treatment of toxoplasmosis.
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