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Abstract 

Human respiratory syncytial virus (HRSV) is the main viral cause of acute lower 

respiratory tract infections (LRTI) in children worldwide. In recent years, several 

preclinical trials with vaccine candidates have been reported. It is in this sense 

that molecular epidemiological studies become important. Understanding viral 

dispersion patterns before and after the implementation of a vaccine can 

provide insight into the effectiveness of the control strategies. In this work we 

analyzed the molecular epidemiology of HRSV-A over a period of sixteen years 

(1999-2014) in Buenos Aires. By bioinformatic tools we analyzed 169 

sequences of the G glycoprotein gene from hospitalized pediatric patients with 

LRTI. We found that GA2 was the most prevalent genotype (73.35%). GA5 

genotype co-circulated in our region until 2009 when it was no longer detected, 

except in 2011. The recently globally emerging ON1 lineage with a 72-nt 

duplication increased its frequency to become the only lineage detected in 

Buenos Aires in 2014. By discrete phylogeographic analysis of global ON1 

strains we could determine that Panama could be the location of the MRCA 

dated June 20, 2010; and this lineage could be introduced in Argentina from 

Spain in April, 2011. This analysis also showed temporary and geographical 

clustering of ON1 strains observed as phylogenetic clades with strains 

exclusively associated from a single country, nevertheless among our 44 ON1 

strains from three outbreaks (2012-2014) we could also detect posterior 

reintroductions and circulation from United States, Cuba, South Korea, and 

Spain. The continuous phylogeographic analysis of one sublineage of Argentine 

ON1 strains allowed us to establish that there could be a local clustering of 

some strains even in neighborhoods. This work shows the potential of this type 

of bioinformatic tools in the context of a future vaccine surveillance network to 

trace the spread of new genetic lineages in human populations.  
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1. Introduction 

Human respiratory syncytial virus (HRSV) is the main viral cause of acute lower 

respiratory tract infections (LRTI) in children under five years of age, being the 

major cause of pediatric hospital admissions during autumn and winter in 

developing countries. In Argentina, HRSV has contributed yearly to 

approximately 78.8% of all viral LRTI among the cited age group (Carballal et 

al., 2001; Videla et al., 1998; Viegas et al., 2004). 

HRSV is an enveloped virus with a non-segmented negative-strand RNA 

genome. It was classified as a member of the Pneumovirus genus of the 

Paramyxoviridae family ( Collins and Karron, 2013)). HRSV exists as a single 

serotype, but has two antigenic subgroups A and B (Coates et al., 1966). 

Among the proteins of HRSV, the G protein stands out for its high degree of 

both sequence and antigenic diversity among different strains, and it has been 

used to classify the circulating viral strains in different genotypes (Peret et al., 

1998). The diversity resides mainly in the ectodomain, which has only 44% of 

amino acid identity between both HRSV subgroups A and B, compared with 

83% for the transmembrane and cytoplasmic domain. This great diversity is 

located in the two variable regions on both sides of a conserved central domain 

rich in Cys (Collins and Karron, 2013). 

Epidemics are commonly produced by both antigenic subgroups, classified in 

more than one genotype. Thirteen HRSV subgroup A (HRSV-A) genotypes 

have been described from different geographical areas, and they have been 

designated from GA1 to GA7 (Peret et al., 2000, 1998), SAA1 (South Africa  

A1) (Venter et al., 2001) and most recently, NA1-NA4 (Cui et al., 2013; 

Shobugawa et al., 2009) and ON1 with a 72-nt duplication (Eshaghi et al., 

2012). HRSV subgroup B (HRSV-B) genotypes include GB1 to GB4 (Peret et 

al., 1998), SAB1 to SAB3 (Venter et al., 2001), URU1-2 (Blanc et al., 2005) and 

BA1 to BA10 (Buenos Aires) with a 60-nt duplication (Dapat et al., 2010; Trento 

et al., 2006, 2003).  

Abbreviations: BA Buenos Aires, BF Bayes factor; ESS effective sample size; IFA 

immunofluorescence assay; LRTI lower respiratory tract infection; MCCT maximum clade 
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credibility tree; MCMC Markov Chain Monte Carlo; MRCA most recent common ancestor; NPA 

nasopharyngeal aspirates; SE standard error. 

Although several studies have reported that both subgroups have shown an 

alternating dominance among outbreaks, in recent years subgroup A has 

prevailed over subgroup B (Duvvuri et al., 2015; Pretorius et al., 2013). 

Recently, Trento et al. reported a reclassification of HRSV-A genotypes on the 

basis of the p-distance method, and they defined the maximum p-distance 

within the GA1 genotype as a cut-off value which defines genotypes. As a 

consequence, they determined that NA1, NA2, NA4 and ON1 which were 

previously classified as emerging genotypes corresponded to emerging genetic 

lineages within the GA2 genotype (Trento et al., 2015).  

Although numerous new genotypes and genetic lineages of HRSV have been 

reported and some emerged recently and others have stopped circulating in the 

population, during the last years, GA2 was the most frequent genotype among 

the studied HRSV-A strains (Trento et al., 2015). The new genetic lineages 

NA1-NA4 and the strain recently described in Canada, ON1probably descended 

from GA2 (Agoti et al., 2014; Cui et al., 2013; Eshaghi et al., 2012; Trento et al., 

2015). 

The emergence in 2010 of the ON1 strain with such a drastic molecular event 

as a 72-nt duplication and the bioinformatic tools based on the Coalescent 

Theory developed in recent years, can allow to describe the population 

dynamics of this new genetic lineage and may provide insights into parameters, 

such as evolutionary rate, location and time of the most recent common 

ancestor (MRCA) and demographic histories that are difficult to assess using 

traditional surveillance analyses. These tools also allow to describe the 

temporospatial diffusion at local and global levels of the ON1 genetic lineage, 

thus describing the transmission chains of HRSV in a simplest way. Our 

laboratory has been conducting the molecular characterization of HRSV for 

sixteen years, and we have found that GA2 (HRSV-A) was the most frequent 

genotype (Viegas and Mistchenko, 2005), and since 2012 we have detected 

almost entirely ON1 strains within HRSV-A. In this context, the aim of this study 

was to perform phylodynamic and phylogeographic analyses of HRSV-A over a 

period of sixteen years at local and global levels by taking advantage of the 
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emergence of the new genetic lineage ON1 to reconstruct viral dispersion 

patterns in space and time. 
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2. Materials and methods 

2.1 Ethical statements 

The study was reviewed and approved by the Medical Ethics and Research 

Committees of Hospital de Niños “Ricardo Gutiérrez”, Buenos Aires, Argentina 

(IRB N° 10.27). Informed consent was not obtained, as patient information was 

anonymized and de-identified prior to analysis. 

2.2 Clinical samples 

The clinical samples were nasopharyngeal aspirates (NPA) which resulted 

positive for HRSV by an indirect immunofluorescence assay (IFA) with 

monoclonal antibodies (Light Diagnostics, Chemicon Int. Inc., USA) (Gardner 

and McQuilin, 1968).They belonged to pediatric patients (<5 years of age) 

hospitalized with acute LRTI at  Hospital de Niños “Ricardo Gutiérrez”, in 

Buenos Aires, Argentina, during 1999-2014. 

The HRSV analyzed in this study corresponds to subgroup A. The subgroup 

was determined on randomly-selected clinical samples by multiplex nested RT-

PCR previously described by Stockton et al. (Stockton et al., 1998). Samples 

which proved positive for HRSV-A were kept frozen at -70ºC until the molecular 

analysis was performed. 

2.3 RNA extraction, G gene amplification and sequencing 

Nucleic acids were extracted directly from NPA samples with a PureLink viral 

RNA/DNA minikit (Invitrogen Life Technologies, Carlsbad, CA, USA) following 

the manufacturer’s instructions. RNA was reverse-transcribed and the 

ectodomain of G glycoprotein gene amplified using the Qiagen OneStep RT-

PCR kit (Qiagen, GmbH, Hilden, Germany) following the manufacturer’s 

instructions with the primers RSVABG10 5'-CGCAATGATAATCTCAACCTC-3' 

and RSVABF1 5'-CAACTCCATKGTTATTTGCC-3'. The retrotranscription and 

amplification conditions for the ectodomain of G glycoprotein gene were: 50ºC 

for 30 min; 95ºC for 15 min followed by 34 cycles of 94ºC for 60 sec, 59ºC for 

60 sec, 72ºC for 120 sec, and a final extension of 72°C for 7 min. 
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PCR products were electrophoresed in a 1.5% agarose gel stained with 

ethidium bromide and purified with the Zymoclean™ Gel DNA Recovery Kit 

(Applied Biosystems, Foster City, CA, USA). The purified PCR products were 

labelled with the BigDye Terminator v3.1 sequencing kit (Applied Biosystems, 

Foster City, CA, USA) and electrophoresed in an ABI3500 genetic analyzer 

(Applied Biosystems, Foster City, CA, USA). 

The consensus nucleotide sequences were analyzed, assembled and 

generated with the SeqScape Software v2.7 (Applied Biosystems, 

Massachusetts, USA) and aligned with CLUSTAL W v2 software (Thompson et 

al., 1994). Most of the sequences corresponding to the period between 1999 

and 2004 were previously published by our group in 2005 (Viegas and 

Mistchenko, 2005). All new sequences were submitted to GenBank (GenBank 

accession numbers: KU350758-KU350870).The viral strains nomenclature 

indicates the country of isolation (Argentina, ARG), the number of the isolate 

(internal laboratory coded number) and the date of sample collection. All 

reference sequences of known genotype were downloaded from GenBank. 

2.4 Phylogenetic analyses 

For the phylogenetic and evolutionary analyses, the general time reversible plus 

gamma distribution (GTR+G) was the most suitable model for the alignment and 

was selected with jModelTest v0.1.1 software (Darriba et al., 2012). The 

Bayesian inference was performed with MrBayes v.3.2.1 software (Ronquist 

and Huelsenbeck, 2003), whereas PhyML v.3.1 software was used for 

Maximum Likelihood (ML) (Guindon et al., 2010) and MEGA v6 software 

(Tamura et al., 2013) for Distance Methods (Neighbor joining, NJ) . Consensus 

trees were visualized with FigTree v.1.4.0. 

2.5 Molecular characterization  

Estimates of mean genetic distances (the number of base differences per site 

from averaging over all sequence pairs, p-distances) were used to calculate the 

divergence among sequences within and between genotypes and genetic 

lineages by using MEGA v6. Standard error (SE) estimates were obtained by 

the bootstrap method (1000 replicates) (Tamura et al., 2013).  
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2.6 Evolutionary rates, population dynamics and phylogeographic analyses 

Evolutionary rates, time of the MRCA, demographic histories, and discrete and 

continuous phylogeographic analyses were estimated from the sequences 

stamped with date and location (latitude and longitude) using the Bayesian 

approach with the BEAST v1.8.2 package (Drummond et al., 2012). The 

uncorrelated lognormal relaxed clock model and the Bayesian skyline 

demographic model were the most suitable implemented models evaluated with 

Bayes Factor (BF)among all molecular clock and demographic models 

available. The convergence of the Markov Chain Monte Carlo (MCMC) 

implemented in the Bayesian criteria was evaluated in TRACER v.1.5 with an 

effective sample size (ESS) >200; the initial 10% of the run length was 

discarded as burn-in. Furthermore, Tracer v1.5 was used to determine the time 

of the MRCA, evolutionary rates and to plot the demographic histories. The 

latter were used to estimate the changes in the effective population size (Ne.τ). 

These results were also analyzed using Tree-Annotator v1.8.2 to infer a 

maximum clade credibility trees (MCCT). The trees were visualized with 

FigTree v1.4.0. The SPREAD v1.0.6 program (Spatial Phylogenetic 

Reconstruction of Evolutionary Dynamics) (Bielejec et al., 2011) was used to 

summarize the phylogeographic analyses in the diffusion dynamic plots and to 

generate the interactive virtual global animations (KML archives) which were 

played by Google Earth (https://earth.google.com). In addition, SPREAD was 

used to calculate the BF to provide substantial strength to migration events 

between two locations (cut-off value BF>10).  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

3. Results 

This study includes a period of sixteen years with a total of 578 HRSV IFA-

positive samples. A total of 371 samples tested positive for subgroup A 

(64.18%) by multiplex nested RT-PCR. Of these, 169 sequences of the 

ectodomain of G glycoprotein gene (593-665 bp) were obtained in our 

laboratory (Table 1). Twenty-six sequences were identical. Fifty-five sequences 

covering the period 1999-2004 had been previously reported by our group 

(Viegas and Mistchenko, 2005) plus a total of 114 new sequences from 2004 to 

2014. 

In order to genotype all Argentine sequences, phylogenetic analyses were 

performed by Bayesian inference, ML and NJ. All phylogenetic analyses were 

carried out using an alignment consisting of all Argentine sequences plus 59 

sequences of known genotype that had been downloaded from GenBank. All 

the phylogenetic analyses were congruent and gave the same association of 

sequences (only Bayesian analysis is shown in Fig. 1, other phylogenetic 

analyses under request). The phylogenetic analyses showed that Argentine 

strains are associated with two clearly defined and well-supported genetic 

clades which correspond with the previously described GA2 and GA5 

genotypes. From the 169 analyzed Argentine sequences, GA2 was the most 

frequent genotype (124/169) and circulated almost all the studied period, except 

during 2002, when only GA5 strains were found, and during 2005 when no 

HRSV-A sequences were detected in Buenos Aires. Both genotypes co-

circulated between 1999 and 2001, 2003 and 2004, 2006 and 2008 and during 

2011. After 2008, GA2 circulated almost exclusively, except in 2011 when GA5 

was also detected (Table 1). It should be noted that only two sequences from 

2007 and three sequences from 2010 were obtained. Unfortunately, due to a 

technical problem, it was not possible to molecularly characterize more strains 

during these years. 

In order to determine the demographic history of both HRSV-A genotypes in 

Buenos Aires, a population dynamics analysis was performed with the 

Argentine sequences. Fig. 2 shows that both genotypes alternated their 

effective populations during the sixteen consecutive years, with a stationary 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

interval during the first years of analysis (1999-mid 2001). After that, there was 

a marked decrease of GA5 between the end of 2000 and the end of 2001, and 

also accompanied by a slight decrease in the effective population of GA2. After 

2002, there was an exponential growth in the population of GA5 which 

surpassed that of GA2 in 2003. Both genotype populations have remained 

almost constant until the period between 2010 and 2011, when the effective 

population of GA5 totally fell. During such period when GA5 was no longer 

detected among the HRSV studied population, a new genetic lineage ON1 had 

emerged globally. 

In the phylogenetic tree of Fig. 1, within GA2 genotype, Argentine sequences 

are distributed throughout the entire clade, associated with sequences reported 

from several parts of the world, except for those belonging to the genetic 

lineages NA3 and NA4. The reference-sequences previously assigned to 

genetic lineages NA1and NA2 do not represent monophyletic clusters in the 

tree, thus the Argentine sequences could not be associated with these lineages. 

A different scenario is observed with the Argentine sequences with 72-nt 

duplication which are associated with reference sequences from ON1 strains in 

a well-defined genetic clade in the tree. In order to determine if this clade 

corresponds to a new genotype, the genetic distances (p-distances) between 

and within genetic clades were calculated for GA2 and ON1. The genetic 

distance was 0.016 (SE 0.002) within ON1, 0.0035 (SE 0.003) within GA2, and 

0.040 (SE 0.005) between GA2 and ON1. Considering that 0.049 was defined 

by Trento et al. as the cut-off value to determine a genotype, ON1 constituted a 

new genetic lineage within GA2 genotype instead of a new genotype (Trento et 

al., 2015). Nevertheless, the frequency of this genetic lineage increased from 

42% (8/19) in 2012, 94.4% in 2013 (17/18) to 100% (19/19) of all HRSV-A 

detected in our laboratory in 2014.  

In order to infer the probable location and the time of the MRCA of ON1 strains 

and how they have been spread throughout the world from its origin, 

phylodynamic and phylogeographic analyses were performed.  

The phylodynamic analysis of 177 ON1 sequences of 665-nt from Argentina 

plus those downloaded from GenBank until June 01,2015, showed that the time 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

of the MRCA for Argentine strains was April 22, 2011 (95% HPD interval; 

January 02, 2011, August 02, 2011) one year before the first ON1 strain was 

detected in our laboratory (April 10, 2012). At the global level the time of the 

MRCA for ON1 strains was June 20, 2010 (95% HPD interval; January 28, 

2010, October 16, 2010), the first ON1 strain analyzed in this study dated from 

October 14, 2010 and was reported in Panama (GenBank accession number 

KF300973.1).The estimated mean evolutionary rate of ON1 strains was 4.87E-

03 subs/site/yr (95% HPD interval: 3.89E03-5.81E-03). 

The discrete phylogeographic analysis depicted by the MCCT (Fig. 3) and 

summarized in the diffusion dynamic plot (Fig. 4), shows that Panama could be 

the location of the MRCA with a probability value of 0.95. It also reveals how the 

different ON1 strains were globally disseminated from Panama. The interactive 

animation (Supplementary KML1) also shows how ON1 strains spread from 

Panama to Canada (BF=54), Spain (BF=29.9), Thailand (BF=18) and China. 

Then, one lineage from Spain disseminated to Argentina (BF=2206.5), and from 

Argentina to Cuba (BF=64.8) and USA (BF=104). It is interesting to note that 

after the first introduction to our country, there were multiple independent 

entries from USA, Cuba, South Korea, and Spain. Another interesting 

observation is how Argentine strains spread to Paraguay and strains from Spain 

entered this neighboring country simultaneously. Nevertheless, if sequences 

published during the preparation of this work from different parts of the world 

had been added to this analysis, it might have been different, however the high 

probability values and BF for each country supports the described dispersions. 

Taking into account the multiple introductions observed in the discrete analysis, 

we really wondered if all ON1 strains have a common ancestor, thus, two 

phylogenetic analyses were performed with an alignment consisted of all 

Argentine sequences from GA2 genotype with and without the duplication. 

Supplementary Fig. 1 shows that the two analyses gave the same association 

of sequences, and all ON1 sequences remained associated on the same cluster 

regardless of not having duplication, supporting the idea that these viruses 

could be generated in a single genetic event. 
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In addition, evaluating the circles around each analyzed country in Fig.4, it is 

possible to see that there are many sampled lineages in our country, supporting 

the idea of multiple reintroductions (determined by the diameter of the circles 

and the color scale). However, it can also be explained by the diversity 

generated in our country. Despite the rapid global distribution of the ON1 

strains, some of these have been circulating only in our region. In the MCCT 

there is a well-supported clade of Argentine strains sampled from 2012 to 2014, 

which displays only local circulation (Fig. 3). In order to analyze the spreading of 

the ON1 strains associated in this Argentine clade exclusively, we performed a 

continuous phylogeographic analysis. The diffusion dynamic plot is shown in 

Fig. 5A (Supplementary KML2). In this figure, it can be seen how these strains 

would have been dispersed in a circumscribed geographical region northwest of 

Buenos Aires . Somehow all these strains would have a geographical 

connection, while the other ON1 Argentine strains without distinction of 

association in the MCCT are distributed homogenously in Buenos Aires (Fig. 

5B). Both the discrete and the continuous phylogeographic analyses can 

explain the circulation of HRSV ON1 strains at the global and local levels.  
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4. Discussion 

Since its discovery in 1955, the HRSV has been the leading cause of acute 

LRTI in children younger than five years of age and older adults, representing a 

public health problem in every studied country. Despite this, there is still no 

approved vaccine for prevention. However, in recent years, several preclinical 

trials have been reported and most are coming to an end, thus the possibility of 

preventing this viral infection seems promising (Karron et al., 2015, 2013). It is 

in this sense that epidemiological studies become important before and after the 

approval of a vaccine. Understanding the phylodynamic shapes of a virus 

spreading before and after the implementation of a vaccine would help to 

quantify the change of the evolutionary rate over time and therefore provide 

insight into the effectiveness of control strategies (Volz et al., 2013).  

In the Virology Laboratory of Hospital de Niños “Ricardo Gutiérrez”, in Buenos 

Aires we have been conducting an active surveillance of acute LRTI in children 

less than five years of age since 1999 (Maffey et al., 2010; Viegas et al., 2004; 

Viegas and Mistchenko, 2005). In this scenario we analyzed the molecular 

epidemiology of HRSV-A over a period of sixteen years (1999-2014).  We found 

that HRSV-A has prevailed over the subgroup B during the study, as it was 

reported in many studies (Pretorius et al., 2013; Shobugawa et al., 2009; Trento 

et al., 2015).  

Despite the long period of time analyzed, we found only two genotypes among 

all HRSV-A virus detected between 1999 and 2014, GA2 and GA5. It is 

important to mention that a lack of detection of any given HRSV genotype does 

not mean that the lineage may have been extinct, since it may be experiencing 

circulation in a different population, such as older people, or it may be still 

circulating in other areas where we did not obtain samples. Thus, we are 

currently conducting a molecular epidemiology analysis of HRSV expanded into 

other areas of our region. Nevertheless, during the last years, many 

researchers have reported that these two genotypes of HRSV-A are almost the 

currently circulating genotypes in many parts of the world (Pretorius et al., 2013; 

Trento et al., 2015). Even more, in bordering countries, such as Brazil, Katzov-
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Eckert et al. reported that these two genotypes were the main responsible for 

HRSV-A outbreaks between 1996 and 2006 (Katzov-Eckert et al., 2012). 

Regarding demographic history of both HRSV-A genotypes of Fig. 2, it is 

interesting to note that the stationary interval of effective populations during the 

first years of the analysis coincides with the globally emergence of BA genotype 

of HRSV-B  (Trento et al., 2010, 2003). It is possible that the emergence of this 

new genotype with a drastic genetic event such as a 60-nt duplication could 

affect the diversity of HRSV-A genotypes. Then the marked decrease of GA5 

between the end of 2000 and the end of 2001 coincides with the appearance 

and fast dissemination of new BA lineages as was described by Trento et al. 

(2010). After this, the exponential growth of GA5 occurred in a period in which 

they reported that the effective population of BA genotype showed a 

depression. In addition, during 2002 GA5 was the only genotype detected 

among all the HRSV-A analyzed strains in our laboratory. After 2004, the 

effective population of both genotypes (GA2 and GA5) remained stationary and 

this was coincident with an exponential growth of BA genotype worldwide due to 

the replacement of all circulating BA lineages by the BA-IV lineage (Trento et 

al., 2010).As it was described by Trento et al. (2015), two events of 

diversification have occurred throughout the history of HRSV-A: one that gave 

rise to GA1, which apparently would be extinct today, and the other that gave 

origin to the currently circulating genotypes (GA2-GA7). While the force that 

gives rise to the phylogenetic tree branching is not entirely known, it is clear that 

we need to unify criteria for designation of genotypes and genetic lineages or 

variants. In the context of a nearby vaccine, global molecular surveillance of 

HRSV should be unified in order to compare data. Some studies, such as those 

of Venter in 2001 (Venter et al., 2001) and Trento in 2015, defined the 

assignment of new genotypes on the basis of genetic distances (p-distances). 

Thus, in their last work, Trento et al. determined a cut-off value of genetic 

distance to define genotype, as the highest intragenotypic p-distance within 

GA1, the oldest genotype far described. This value was obtained analyzing 

2,167 sequences downloaded from GenBank resulting in a value of 0.049. 

Therefore, all the previously defined genotypes NA1-NA4 and ON1 

corresponded to genetic lineages within the GA2 genotype (Trento et al., 2015). 
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Most of the analyzed sequences of HRSV-A in this work were associated with 

GA2 genotype (73.37%). Within this genotype, 44 sequences presented a 72-nt 

duplication in their terminal third and were associated with the previously 

defined ON1 lineage in a well-defined, well-supported genetic clade. It was 

speculated that large epidemics occurred due to the emergence of new genetic 

lineages, as it was observed with NA1 and NA2 in Japan between 2005 and 

2007 (Shobugawa et al., 2009). Since the first detection of ON1 strains in our 

laboratory in 2012, ON1 frequency has been increasing to be the only genetic 

lineage detected within genotype GA2 of HRSV-A in 2014. This result is in 

contrast with the report of Duvvuri et al., where a low prevalence of 13% was 

found in 2011-2012 in Canada, however they explained that it could be due to 

the lack of active surveillance in that country (Duvvuri et al., 2015). In addition, 

the increase in global HRSV surveillance has demonstrated that ON1 lineage is 

disseminating very fast and diversifying in different sublineages as reported in 

Kilifi, Kenya, where two waves of ON1 strains were detected in 2012 with a 

prevalence of 74% (Agoti et al., 2014), as well as an increasing prevalence 

ranging from 60% in 2011-2012 to 89% in 2012-2013, in Texas, USA 

(Avadhanula et al., 2015) and 94.6% in Korea in 2012-2013  (Kim et al., 2014). 

The ON1 genetic lineage, like the BA genotype for HRSV-B, has spread all over 

the world in a very short period of time and it has almost completely replaced 

the other genotypes of HRSV-A, as shown in the phylodynamic analysis of Fig. 

2, where the effective population of GA5 totally fell between 2010 and 

2011concomitant with the emergence of ON1lineage within GA2 genotype 

(Trento et al., 2010). To date we do not know if this drastic duplication provides 

some advantage over related viruses lacking this duplication. However, it is 

interesting that this advantage has not modified the occurrence of the subgroup 

B during the last outbreaks (Table 1). Although subgroup A has prevailed over 

subgroup B during the last three years of this study, a higher percentage of 

subgroup B was detected in 2015 in our laboratory (63.3%) despite this, all 

strains of HRSV-A were ON1 (study currently conducted, data not shown). The 

mechanism by which the 72-nt duplication provides a selective advantage to 

ON1 strains is unknown; but recently Hotard et al. suggested a mechanism 

explaining how BA strains became predominant after their emergence, and a 
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comparable hypothesis could be applied to ON1 strains. They showed that the 

60-nt duplication in a recombinant HRSV strain with a consensus G protein from 

BA genotypes provides advantages in attachment and in a in vitro competitive 

infection assay, rather than the escape from antibody neutralization. They 

hypothesized that the duplication in BA strains which harbor 10 potential O-

glycosylation sites is responsible for the enhanced binding and could lead to 

greater transmission of HRSV in humans. Thereby, the 72-nt duplication of ON1 

strains encodes 11 additional potential glycosylation sites to the existing in the 

previously circulating strains without the duplication (Hotard et al., 2015).  

The discrete phylogeographic analysis with an alignment of ON1 strains (177 

sequences of 665-nt) allowed us to infer that the time of the MRCA for 

Argentine strains dated one year before we detected the first ON1 strain, it is 

important to note that this analysis is restricted to Buenos Aires city and it is 

possible that ON1 strains might be previously circulating in other non-sampled 

locations in Argentina. This analysis also allowed us to infer with a high 

probability that Panama could be the location of the MRCA, dated June, 2010 

with a very narrow HPD interval (January, 2010 to October, 2010). Taking into 

account that the first ON1 strain reported in GenBank is from Panama and 

dated October 14, 2010, it is possible that this place could be the real location 

of the ancestor or a location very close to this country. Duvvuri et al. in 2015 

compared the time of the MRCA among their analyses with multiple set of 

sequences with different lengths and other reports and they found that the 

estimated time of the MRCA ranged from 2007 to 2010, with a median date of 

2008 (Agoti et al., 2014; Duvvuri et al., 2015), we detected a more accurately 

date as seen by the narrow HPD range. It is possible that the longer the 

sequences used in the alignment, the greater the accuracy obtained. In this 

sense, Agoti et al. have demonstrated that the analysis of whole genome 

sequences provided more precise estimates of times of the MRCA and rates of 

nucleotide substitutions (Agoti et al., 2015). Further analyses with whole 

genomes of ON1 strains will help to confirm this observation.  

The discrete phylogeographic analysis also showed temporary and 

geographical clustering of ON1 strains observed as phylogenetic clades with 

strains exclusively associated from a single country (Fig. 3); however the 
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studies reported to date analyzed one or two outbreaks, which could narrow the 

interpretation. Because among our 44 ON1 strains from three outbreaks (2012-

2014) there was geographical clustering since the first introduction from Spain, 

but also posterior reintroductions from USA, Cuba, South Korea, and Spain. As 

more strains will be reported, more interconnections will be observed in the 

future, as it has been found for the other HRSV-A genotypes in previous studies 

(Katzov-Eckert et al., 2012; Pretorius et al., 2013). In addition, we found that 

some GA5 Argentine strains from 2002 to 2004 were closely related to one 

American strain from 2006, and Brazilian strains from 2005 and 2007 were 

closely related with Argentine strains from 2006 to 2008. For GA2 genotype 

(non-lineage ON1), we found a phylogenetic clade with sequences from 

Paraguay, Canada, Saudi Arabia and Argentina, very distant countries, but 

during the same period of time (2009-2011) (Fig. 1). 

In our region, the persistence of one sublineage of ON1 strains allowed us to 

perform a continuous phylogeographic analysis and to establish that there could 

be a local clustering of some strains even in neighborhoods. This study shows 

the potential of this type of bioinformatic tools to trace the spread of a new 

genetic lineage in human populations and to determine precisely in what 

locations will emerge (Holmes, 2008). It is in this sense that we should take 

advantage of this type of genetic events to increase the understanding of the 

evolutionary patterns of HRSV not only for historical significance, but also in the 

context of a future vaccine surveillance network. 
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Table 1. 

Number of HRSV positive samples according to its genotypic characteristics per 

year 

Year 

No. of 

HRSV 

samples* 

No. of 

HRSV-B 

samples (%) 

No. of HRSV-

A samples 

(%) 

No. of HRSV-A  

G sequences 

HRSV-A Genotype 

GA2 GA5 

1999 56 35 (62.50) 21 (37.50) 11 7 4 

2000 44 0 (0) 44 (100) 10 3 7 

2001 41 7 (17.07) 34 (82.93) 11 5 6 

2002 63 45 (71.43) 18 (28.57) 10 0 10 

2003 92 24 (26.09) 68 (73.91) 9 7 2 

2004 57 10 (17.54) 47 (82.46) 15 8 7 

2005 31 31 (100) 0 (0) 0 0 0 

2006 13 3 (23.08)  10 (76.92) 6 5 1 

2007 10 6 (60) 4 (40) 2 1 1 

2008 22 6 (27.27) 16 (72.73) 11 9 2 

2009 12 0 (0) 12 (100) 8 8 0 

2010 12 6 (50) 6 (50) 3 3 0 

2011 28 11 (39.28) 17 (60.72) 17 12 5 

2012 30 0 (0) 30 (100) 19 19 0 

2013 35 10 (28.57) 25 (71.43) 18 18 0 

2014 32 13 (40.62) 19 (59.38) 19 19 0 

Total 578 207 371 169 124 45 

* Number of HRSV IFA-positive samples grouped by multiplex RT-PCR 

(Stockton et al., 1998). The relative percentage of HRSV-A and HRSV-B 

respect to the total of the positive samples is shown in brackets. 

Abbreviation: No., Number. 
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Fig. 1. Bayesian phylogenetic tree. The evolutionary model GTR+G was used 

for Bayesian reconstruction. Bayesian Markov Chain Monte Carlo (MCMC) 

chains were run for 10 million ngen, 10,000 samplefreq to reach convergence 

(split value<0.01; ESS>200) and 10% burnin. The pool sequences include 114 

new sequences from Buenos Aires, 45 sequences from Buenos Aires 

previously reported (Viegas and Mistchenko, 2005) and 59 sequences of known 

genotype from other countries downloaded from GenBank. Node labels 
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represent posterior probabilities (only values above 0.7 are shown). The scale 

bar represents nucleotide substitutions per site. Genotypes GA1-7 and the ON1 

lineage are denoted with vertical lines. Sequences from Buenos Aires are 

remarked with a black circle. 

 

 

Fig. 2. Bayesian skyline plot of HRSV-A genotypes circulating in Buenos Aires. 

Population dynamics of genetic diversity in the genotypes GA2 and GA5, and 

the recent GA2 genetic lineage ON1. The horizontal axis represent time in 

years, the vertical axis represent the population sizes (Ne.Ƭ ). The line with 

diamonds represents GA2, the line with crosses represents GA5 and the 

smooth line represents ON1. The shaded areas show the 95% highest 

probability density interval of these estimates. 
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Fig. 3. Maximum Clade Credibility Tree (MCCT) from the discrete 

phylogeography analysis of ON1 sequences. The branches are in color by 

location of viral samples. The acronym above the branch indicates the country 

of origin for the common ancestor for each clade, and the node labels indicate 

the probability support for this inference. The scale axis is represented inyear. A 

local sublineage is highlighted in grey. 

Acronyms: ARG Argentina, CAN Canada, CB Cuba, CH China, IND India, JP 

Japan, KEN Kenya, PAN Panama, PER Peru, PHI Philippines, PY Paraguay, 

SK South Korea, SPA Spain, THA Thailand ,USA United States. 
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Fig. 4. Diffusion dynamic plot of the discrete phylogeographic analysis of HRSV-

A ON1 genetic lineage. The lines represent the significant connections by 

Bayes Factor (BF) over than 10. White line corresponds to maximum BF and 

black line corresponds to minimum BF. Dates in each location correspond to the 

year of isolation of analyzed strains. The KML file for visualization in Google 

Earth is available as a supplementary file (KML file 1). 

 

 

Fig. 5A. Diffusion dynamic plot of the continuous phylogeographic analysis of 

sequences from local ON1 sublineage (highlighted in MCCT in Fig.3). The KML 

file for visualization in Google Earth is available as a supplementary file 2 (KML 

file 2) 

Fig. 5B. Location of the ON1 Argentine strains without distinction of association 

in the MCCT and showed in Fig.5A. The map is based on satellite images made 

available in Google Earth (http://earth.google.com). 
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Highlights 

 HRSV-A was the most prevalent subgroup during 1999-2014 in BA, 

Argentina. 

 GA2 was the most prevalent genotype and co-circulated with GA5. 

 First ON1 strain emerged in BA in 2012, its frequency increased to 100% in 

2014. 

 Panama could be the location of the MRCA of globally ON1 strains, dated 

June 20, 2010 

 ON1 strains showed temporary and geographical clustering even in 

neighborhoods. 


