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Abstract— A nonlinear adaptive time series 

predictor has been developed using a new type of 
piecewise linear (PWL) network for its underlying 
model structure. The PWL Network is a D-FANN 
(Dynamical Functional Artificial Neural Network) 
the activation functions of which are piecewise 
linear. The new realization is presented with the 
associated training algorithm. Properties and 
characteristics are discussed. This network has 
been successfully used to model and predict an 
important class of highly dynamic and non-
stationary signals, namely speech signals.  

Keywords— Adaptive signal processing, 
nonlinear prediction, time series prediction.  

I. INTRODUCTION  

The prediction of a time series can be closely related 
to the modeling of the underlying mechanism respon-
sible for its generation. Many of the real physical 
signals encountered in practice have two characteris-
tics: nonlinearity and non-stationarity. Consider, for 
example, the case of speech signals. It is known that 
the use of prediction plays a key role in the modeling 
and coding of speech signals (Shuzo and Nakata, 
1985). The production of a speech signal is the result 
of a dynamic process that may be both non-stationary 
and nonlinear. To deal with the non-stationary nature 
of speech signals, the customary practice is to invoke 
the use of adaptive filtering. However, the nonlinear 
modeling of the speech production process is of re-
cent vintage (Eltoft and de Figueiredo, 2000) and 
continues to be a research topic of active interest. As 
a sample of the interest in the topic, the results of a 
special competition looking for improved perform-
ance in times series prediction were presented re-
cently in Lendasse et al. (2007).  

In recent years, several structures have been de-
veloped for identification of nonlinear systems, and 
modeling and prediction of time series. Among these, 
the conventional (Schetzen, 1981) and Generalized 
Fock Space (de Figueiredo and Dwyer, 1980; de Fi-
gueiredo, 1983; Zyla and de Figueiredo, 1993) mod-
els of the Volterra series, the multilayer perceptron 
(Knecht, 1994), and the radial basis functions net-
work (Chen et al., 1991) are some of the more evi-
dent. Other works in applying neural networks for 
time series also include Werbos (1988), Weigend et 

al. (1990) and de Figueiredo (1993). In Haykin and Li 
(1995) a pipeline recurrent neural network formed by a 
cascade of recurrent neural network was proposed.  

A class of neural networks especially relevant to 
the developments in this paper is that of Dynamical 
Functional Artificial Neural Networks (D-FANNs). D-
FANNs are artificial neural networks in which the syn-
apses are represented by linear filters rather than mem-
oryless links with prescribed gains or weights. For con-
tinuous-time systems, D-FANN structures without 
being so called, were introduced by Zyla and de Fi-
gueiredo (1993). They were reiterated as neural net-
works by Newcomb and de Figueiredo (1996). In 
1998, generic D-FANNs both for the continuous-time 
and discrete-time cases were proposed and investigated 
by de Figueiredo (1998b). In 2000, Eltoft and de Fi-
gueiredo (2000) proposed a D-FANN for nonlinear 
time series prediction in which the synapses of the first 
layer are implemented by a filter bank built up of dis-
crete cosine transform basis functions (DCT) and the 
activation functions of the first layer are smooth 
nonlinear functions (such as tanh(x)).  

This work is addressed to the class of D-FANNs in 
which the synapses of the first layer are FIR filters and 
the activation functions are piecewise linear functions. 
It is presented here a study of an improved version of 
that class, a Piecewise Linear (PWL) D-FANN, that 
contemplates a recently proposed basis for the PWL 
representation. In addition, the PWL description in the 
present work includes saturation when the input signal 
exceeds the considered domain and allows to a more 
selective effect of the parameters on particular regions. 
In this way, we obtain good convergence properties 
and low complexity in terms of the number of parame-
ters involved in the realization. Also, an associated 
learning algorithm is presented that leads to robust 
results in terms of convergence speed. Preliminary 
results on this subject by the authors were presented in 
Figueroa et al. (2002).  

The paper is organized in the following manner. In 
Section 2 some concepts on time series prediction are 
briefly reviewed. The PWL-DFANN structure is pre-
sented and its properties are introduced in Section 3. In 
addition, an algorithm for training the network is dis-
cussed in Section 4. In Section 5, we present examples 
to illustrate the characteristics and performance of the 
proposed realization in terms of convergence and com-
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plexity in the prediction of speech signals. The paper 
concludes with some final remarks in Section 6.  

II. TIME SERIES PREDICTION  
Following the developments by Eltoft and de Fi-
gueiredo (2000), we note that forward prediction of a 
time series {x(k)}, where k is the time index, can be 
defined as follows: Given a finite sequence of sam-
ples of a discrete time series x(k), i.e., x(k), x(k-1), … 
, x(k-M), find the continuation x(k+1), x(k + 2), … . 
This involves finding a scalar M and a function f, 
such that x(k + 1) can be estimated by  
 ( ))(,),()1(ˆ Mkxkxfkx −−=+ . (1) 

This is equivalent to model the time series as 
 ( ) )1()(,),()1(ˆ +−=−++ knMkxkxfkx , (2) 

where n(k+1) is a white noise process. If the statistics 
of the time series x(k) is non-Gaussian or the time 
series is the result of some nonlinear operation, the 
function f(.) is nonlinear.  Equation (1) defines a ge-
neric nonlinear AR model and can be expressed con-
cisely in the form  
 )()1(ˆ kfkx x−=+ , (3) 
where [ ]Tk Mkxkxkx )(,),1(),( −−=x . 

III. PWL-DFANN STRUCTURE  
In this section, the basic structure for the 
PWLDFANN is described, and its general properties 
are discussed. 

The PWL-DFANN for time series prediction is 
defined as a parallel connection of the L PWL neu-
rons (PWLN) as illustrated in Fig. 1.  Each PWLN 
performs the mathematical operations shown in Fig. 
2, where the activation function is a piecewise linear 
(PWL) function on the interval comprising its do-
main.  Specifically, the activation function for neuron 
q, is represented as  
 ))(())(()( kvkvgky q

T
qqq Λ== c , (4) 

where 
 [ ]TqqqT

q ccc σ10=c , (5) 
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Figure 3 illustrates the contribution of each com-
ponent in the definition of a general PWL function. 
Note that the parameters βi (i =1, ..., σ) define the 
partition of the PWL function (Figueroa et al., 2004).  

The linear combination of the inputs of PWLN q 
represents an M-order FIR structure, that can be writ-
ten as 

 kT
q

M

j

q
jq jkxhkv xh∑

=

=−=
0

)()( , (8) 

where [ ]Tq
M

qq
q hhh 10=h .  Indeed, using the descrip-

tion for each PWLN given by (8) and (4), the predic-
tion (3) can be written as  
 ( )∑

=

Λ−=+
L

q

kT
q

T
qkx

1
)1(ˆ xhc , (9) 

 
Figure 1: PWL-DFANN realization for time series predic-
tion. 

 
Figure 2: Basic structure of the PWL neuron. 

 

Figure 3: Effect of each parameter on the description of PWL 
function.  

where the parameters to be estimated are the FIR filter 
bank coefficients (hq) and the parameters of the PWL 
functions (cq).  

Note that the prediction error for this structure is 
given by  
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Some particular aspects observations related with 
this structure are the following, 
• The largest improvement in the definition of the 

PWLN if compared with any classical neuron 
found in the literature, is that in our case, the 
nonlinearity can be adjusted for each particular 
application. Let us study this fact in detail. From 
Fig. 2 it is clear that the proposed PWLN can be 
thought as a linear FIR filter cascaded with a 
nonlinear gain. This realization characterizes the 
D-FANN nature of the proposed neural network. 
It was shown in de Figueiredo (1998a) that one 
can obtain a similar D-FANN as a best approxi-
mation to the Wiener model. For a recent such 
interpretation, see Figueroa and Cousseau 
(2001). 

• A complete analysis of the particular network of 
a single neuron, with a detailed analysis of its 
properties, can be found in Figueroa et al. 
(2004). 

• The use of PWL to represent the activation func-
tion allows the representation of any well-
behaved continuous nonlinear function. In fact, a 
piecewise linear function is an approximate rep-
resentation of a nonlinear function. It substitutes 
the global nonlinear function by a series of linear 
sub-functions which are defined in properly par-
titioned sub-regions of the original nonlinear 
function domain. Traditionally, a general expres-
sion for this representation is given by (Lin and 
Unbehauen, 1990) 

∑ =
−++=

σ βα
1

)(
j j

T
jj

T caf xxbx , where b and 

αj (j=1, …,σ) are M-dimensional weight vectors, 
a and βj (j=1, …, σ) are scalar weights. Geomet-
rically, this function divides the input space in 
regions, and for each region, a linear affine 
model represents the system. This representation 
has found extensive use in the study of nonlinear 
circuits and systems, but can only represent 
nonlinearities with domain in R1 (Julián et al., 
1999). 

Although the use of PWL descriptions is not 
new (Fujisawa and Kuh, 1972; Girosi et al., 
1994), we choose for the PWL-DFANN a re-
cently proposed representation that allows a very 
compact parameterization of the realization. We 
assume the PWL description as defined in Julián 
et al. (1999). This description is based on a sim-
plicial partition (v=βj ,with the βj values dividing 
the domain in equal partitions).  As a result, it is 
easy to verify that fixing any set of adjustable pa-
rameters (hi or ci), the approximation error is lin-
ear in the other set. These facts lead to a very 
low complexity realization and a simple associ-

ated training algorithm, as will be discussed in the 
next section.  

• Compared with preliminary studies (Figueroa et 
al., 2002), the PWL description in the present 
work includes saturation when the input signal ex-
ceeds the considered domain and allows a more 
selective effect of the parameters on particular re-
gions (i.e., each entry in the vector ci involves only 
the function values on a portion of the domain). 
These two characteristics lead to improved con-
vergence properties of the training algorithms.  

• The PWL requires the selection of the partition 
parameters βi for i =1, …,σ. The interval [β1,βσ] 
must contain the range of the signal v(k), keeping 
in mind that the parameters h are time varying. 
This is solved by choosing the interval [β1,βσ] 
wide enough with respect to the variation of the 
linear filter parameters and the input-signal range. 
After choosing [β1,βσ], it remains to determine the 
interior points. Despite that some specific applica-
tion could demand for a particular (irregular) den-
sity of the interior points (Hagenblad, 1999), the 
common sense is to use an uniform distribution for 
these points. This will be the usual choice in the 
application examples illustrated in next sections.  

• Selection of the number of neurons L, is equiva-
lent to the selection of the number of neurons in 
any traditional neural network. This is in general a 
non trivial task because there are no generally ac-
ceptable theories for the subject, and the solutions 
available in the literature are valid only for special 
cases. Usually, it is recommended to start with a 
small L, and if the fitting obtained is not fair, the 
number of neurons is increased. In general, a small 
L leads to an insufficient number of parameters to 
characterize the model and therefore a poor per-
formance. On the other hand, a large L will give a 
good training and a bad generalization due to over 
fitting. 

• Another improvement of the present formulation 
over the preliminary studies carried out by the au-
thors is related to the number of parameters. In Fi-
gueroa et al. (2002), the realization is formed by 
the linear combination of the neurons. However, in 
order to reduce the complexity of the realization, 
the linear coefficients considered there (called wi) 
can be modeled using the parameters of the PWL 
function (ci), without loss in the approximation 
capabilities. 

• Note that within the space of PWL structures con-
sidered, the current method allows the best nonlin-
ear approximation (in the least squares sense) of 
the desired predictor (de Figueiredo, 2000). 

IV. ALGORITHM FOR PWLN TRAINING 
In this section it is presented an adaptive algorithm to 
adjust the parameters to the time series data. To this 
purpose, the objective is to minimize the mean squared 
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prediction error given by  
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adjusting the parameters hq and cq, for q = 1, …, L. 
We consider the following particular updating 
scheme for each set of parameters. Since the error 
signal is linear in the set of parameters cq, we pro-
posed a Recursive Least Squares (RLS) algorithm for 
their estimation. On the other hand, since the pro-
posed realization is conceptually related to the struc-
ture introduced in Eltoft and de Figueiredo (2000), 
where a DCT is used for the (fixed) linear part, and in 
order to maintain a low complexity realization, an 
stochastic gradient algorithm is proposed for the FIR 
coefficients hq. 

The design of an RLS algorithm (Haykin, 1996) 
for cq parameters is straightforward. To that purpose 
it is convenient to compile these parameters in a sin-
gle matrix, C = [c1 c2 … cL], and also to define the 
following vector, 
 [ ]TkT

L
kTkT )()()( 21 xhxhxhΛ ΛΛΛ= . (12) 

On the other hand, the stochastic gradient algorithm 
used to update hq is described by 
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where µ is the step-size. In our description, the gradi-
ent can be computed as 
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where, if [.]j represents the j-th vector component, 
and 
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Regarding a suitable definition of PWL gradient 
at the partition edges, the gradient at the partitions 
boundaries is defined as zero to avoid any numerical 
inconsistency. In Eq. 16 it is used that sign(0)=-1.  

The complete learning algorithm for the PWL-
DFANN realization is presented in Table 1.  

In order to guarantee convergence of the coeffi-
cients in the mean, the step-size of the LMS algo-
rithm must be chosen as a small positive number that 
satisfy (Figueroa et al., 2004). 
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where ρ represents the maximum eigenvalue of ma-
trix E[(xk)T 

xk]. Note that this expression is a simple 
bound for µ since ρ depends on the data and, in gen-
eral, it is easy to obtain a reasonable upper bound for 
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Table 1: Learning algorithm for the PWL-DFANN realiza-
tion.  

Parameters: L = number of FIR filters  
M = order of FIR filters  
σ = number of partitions  
µ = step-size related to h coefficients  
λ = forgetting factor related to c coefficients  
δ = initialization of P(0)  

Data: x  
Initialization:  

hq(0) = DCT coefficients  
cq(0) = [-1 1 0  … 0]T 

· 
P(0) = δ-1I 

For each k =1, 2, … 
For q =1, …, L.···  

kT
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C(k +1) = C(k)+ g(k)e(k)  
P(k)= λ-1P(k-1)-λ-1g(k)ΛT

 
P(k-1)  

An important aspect for this updating algorithm, 
and for any nonlinear adaptive filter, is the selection of 
the initial condition for the parameters. In particular, 
considering the same parameters for all FIR filters hq, 
this will move to a ill-conditioned problem. To avoid 
this, a good choice for the initial condition of these 
parameters is the DCT basis proposed in Eltoft and de 
Figueiredo (2000). In addition to avoid the ill-
conditioned problem, this selection can take profit of 
the orthogonality properties of these filters.  

In the next section, the proposed PWL-DFANN 
scheme is applied in the context of speech prediction 
and illustrative practical results are discussed. . 

V. SIMULATION EXAMPLES 
Speech signals are an important class of signals that, 
on a short time period (5-100 ms), have statistical 
properties that are slowly varying. On the other hand, 
over longer periods of time (of the order of 1/5 s) they 
are highly dynamical and non-stationary. To illustrate 
the performance of the proposed realization, we pre-
sent in this section examples of the use of PWL-
DFANN realization for time series prediction speech 
signals.  

A. Speech signals  
In this section we will apply the PWL-DFANN realiza-
tion for time series prediction to predict the next sam-
ple of the speech signal depicted in Fig. 4. The re-
corded time series is made up of 10000 samples, sam-
pled at 8 kHz. This is the same sample signal studied in 
Haykin and Li (1995) and in Eltoft and de Figueiredo 
(2000), and is selected for specific comparison pur-
poses.  

The input signal segment was projected on to 12 
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filters of 12-order (Eltoft and de Figueiredo, 2000)) 
(L = 12, M = 12). The activation function was ap-
proximated using a partition of 10 sectors, to allow a 
smooth approximation (σ = 10). Looking for fast 
convergence, the step-size of the LMS algorithm is 
set equal to µ =0.02, the forgetting factor of the RLS 
algorithm is set equal to λ =0.998 (similar to the 
value used in Eltoft and de Figueiredo, 2000), and the 
initial correlation matrix coefficient is fixed as δ=50. 
The squared prediction error is depicted in Fig. 5. For 
quantitative comparison with other prediction algo-
rithms, we used the following performance index 
introduced by Haykin and Li (1995),  

 
k

p
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⎛
= 2

2

10log10
δ
δ , (18) 

where 2
sδ  is the mean square value of the incoming 

signal, and 2
pδ  is the corresponding value of the pre-

diction error.  
Comparison results using previous index are sum-

marized in Table 2, where other values found in the 
literature are also included for this example. Nomi-
nally, a linear adaptive predictor (LAP), a pipeline 
recurrent neural network (PRNN; Haykin and Li, 
1995), a multilayer perceptron (MP) and the DFANN 
(Eltoft and de Figueiredo, 2000).  

 
 

 
Figure 4: Speech signal and prediction obtained using 
PWL-DFANN.  

 
Figure 5: Squared prediction error using PWL-DFANN 
realization.  

As can be concluded from this, and other exhaustive 
computer simulations, the index performance obtained 
for the PWL-DFANN is highly competitive if com-
pared with the other approaches. Table 2 includes also 
the number of parameters to be updated in each im-
plementation1.  An important aspect to consider is the 
benefit of the adaptation of parameters h. Note that the 
DFANN (Eltoft and de Figueiredo, 2000) uses a fixed 
set of parameters. When we consider these parameters 
fixed at the initial condition, the performance obtained 
is given by Rp = 27.81. This value is slightly lower 
than the performance obtained when these parameters 
are adjusted. As a consequence, maintain fixed h pa-
rameters is an interesting alternative, mostly because 
the set of parameters to be adjusted is reduced to 132. 
As mentioned above, the initial values of h are set as 
the DCT basis (Eltoft and de Figueiredo, 2000). 

Figure 6 illustrates the dependence of Rp with the 
number of neurons L. It can be observed with this fig-
ure that with an increase of L leads to an improvement 
in the index performance Rp. However, use of large L 
(higher than 12 for this example) leads in general to 
produce over-fitting. Figure 7 illustrates the depend-
ence of performance index Rp with the step-size µ. 
From this figure it is clear that, for reasonable values 
of the step size µ, the adaptation of h allows a small 
improvement of the performance index.  

Finally, a study of the dependence on the estima-
tion of C of the RLS forgetting factor λ is illustrated in 
Fig. 8. In this plot the values of Rp are depicted for 
several values of λ. As can be concluded, the selection 
of λ is not critical to obtain a good performance using 
the PWL-DFANN.  
B. Handel’s Hallelujah Chorus  
In this example a set of 72000 samples, extracted from 
the Handel’s Hallelujah Chorus, is used for quantita-
tive comparison. The prediction algorithms used in the 
comparison are: a linear adaptive predictor (LAP), the 
pipeline recurrent neural network (PRNN; Haykin and 
Li, 1995), the D-FANN (Eltoft and de Figueiredo, 
2000) and the proposed PWLDFANN. Comparison 
results, using previous performance index, are summa-
rized in Table 3.  
 
Table 2: Comparative results for different non linear predic-

tors in Example 1.  
Technique Rp Parameters   

PWL-DFANN  27.8945  276  
DCT-DFANN  27.55  36 (†)  

PWL-DFANN(‡)  27.2869  288  
PRNN  25.14  52  
LAP  22.01  12  
MP  ≈ 18  169(*)  

(†) Plus 144 fixed coefficients taken as DCT.; (‡) 
 
Figueroa et al. 

(2002); (*) 
 
MP with 12 neurons on the hidden layer 

                                                            
1 The results used for comparison purposes are taken 

from the literatura (Eltoft and de Figueiredo, 2000; Figueroa 
et al., 2002; Haykin and Li, 1995). 
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Figure 6: Dependence of Rp as function of the number of 
neurons L.  

 
Figure 7: Dependence of Rp as function of the step-size µ.  

Table 3: Comparative results for different non linear pre-
dictors in Example 2.  

Technique Rp 
PWL-DFANN  18.0771  
DCT-DFANN  17.0065  

PRNN  16.0899  
LAP  15.0008 

From this data the values of the performance index 
obtained for the PWL-DFANN shows to be high-ly 
competitive if compared with the other approaches.  

 
Figure 8: Dependence of Rp as function of the forgetting 
factor λ for the RLS-algorithm.  

VI. CONCLUSIONS  
In this paper, we have used a PWL-DFANN to build a 
nonlinear, adaptive time series predictor. The compact 
PWL description utilized for the PWL-DFANN in-
cludes saturation when the input signal exceeds the 
considered domain. This particular definition allows a 
selective effect of the parameters on particular regions. 
Training is a combination of a stochastic gradient algo-
rithm and a RLS algorithm, leading to robust experi-
mental results. The resulting realization is simple and 
the performance shows that this structure can be suc-
cessfully used to perform prediction of highly non-
stationary and dynamic speech signals.  
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