UCC Library and UCC researchers have made this item openly available. Please let us know how this has helped you. Thanks!

Title	APPEAL1: A pan-European survey of patient/caregiver perceptions of peanut allergy management
Author(s)	Blumchen, Katharina; Dunn Galvin, Audrey; Timmermans, Frans; Regent, Lynne; Schnadt, Sabine; Podestà, Marcia; Sánchez, Angel; Couratier, Pascale; Feeney, Mary; Hjorth, Betina; Patel, Ram; Lush, Tessa; Ryan, Robert; Vereda, Andrea; Fisher, Helen R.; FernándezRivas, Montserrat
Publication date	2020-05-21
Original citation	Blumchen, K., Dunn Galvin, A., Timmermans, F., Regent, L., Schnadt, S., Podestà, M., Sánchez, A., Couratier, P., Feeney, M., Hjorth, B., Patel, R., Lush, T., Ryan, R., Vereda, A., Fisher, H.R. and FernándezRivas, M. (2020) 'APPEAL1: A pan-European survey of patient/caregiver perceptions of peanut allergy management', Allergy. doi: 10.1111/all. 14414
Type of publication	Article (peer-reviewed)
Link to publisher's version	http://dx.doi.org/10.1111/all. 14414 Access to the full text of the published version may require a subscription.
Rights	© 2020, John Wiley \& Sons, Inc. This is the peer reviewed version of the following article: Blumchen, K., Dunn Galvin, A., Timmermans, F., Regent, L., Schnadt, S., Podestà, M., Sánchez, A., Couratier, P., Feeney, M., Hjorth, B., Patel, R., Lush, T., Ryan, R., Vereda, A., Fisher, H.R. and Fernández-Rivas, M. (2020) 'APPEAL-1: A panEuropean survey of patient/caregiver perceptions of peanut allergy management', Allergy, doi: 10.1111/all.14414, which has been published in final form at https://doi.org/10.1111/all.14414. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
Embargo information	Access to this article is restricted until 12 months after publication by request of the publisher.
Embargo lift date	2021-05-21
Item downloaded from Downioaded on 20	p://hdl.handle.net/10468/10065

6 Article type : Original Article: Food Allergy

This article is protected by copyright. All rights reserved

8 (PwPA) and their caregivers. Allergy to Peanuts imPacting Emotions And Life study 1 (APPEAL-1) was a pan-European survey investigating these perspectives. This first of two articles reports clinical characteristics of PwPA and PA management practices.
ABSTRACT Background

Peanut allergy (PA) is associated with marked quality-of-life (QoL) impairment. However, data are lacking on the experience and impact of living with PA from the perspectives of persons with PA

Methods

APPEAL-1 was a quantitative, online survey conducted in eight European countries, developed by eight representatives of patient advocacy groups and five healthcare professionals and researchers. Eligible participants included adults with PA and parents/caregivers of PwPA who responded by selfreport and provided proxy-report for the PwPA under their care. Data were summarised using nonweighted descriptive statistics.

Results

Of 1846 completed/analysed questionnaires, 528 were from adults with PA (self-report); 437 by proxy for children with PA (34 aged 0-3 years, 287 aged 4-12 years, 116 aged 13-17 years); 881 from parents/caregivers (self-report). Of PwPA ($\mathrm{N}=965$), 95% reported diagnosis by healthcare professionals, mostly by clinical history and peanut-specific allergy testing. Rates of allergic rhinitis, asthma, and other food allergies in PwPA were $50 \%, 42 \%$, and 79%, respectively. Only 31% of PwPA received HCP advice/support following their worst allergic reaction, and 28% had not been prescribed an adrenaline auto-injector. Results were similar by country but varied by age group.

Conclusions

The APPEAL-1 findings contribute to greater understanding of PA impact on PwPA, caregivers, and family members and the need for improved PA management across Europe.

Keywords: clinical history, diagnosis, Europe, peanut allergy, quality of life

This article is protected by copyright. All rights reserved

INTRODUCTION

Peanut allergy (PA) is a common and potentially life-threatening condition that imposes a significant burden of illness. ${ }^{1,2}$ Utilising various methods of detection and diagnosis, including self-report, prevalence estimates for PA in European countries reach up to 2.8%, with estimates higher among older age cohorts than in younger children, and in Western versus other areas of Europe. ${ }^{3-5}$ Increases in PA prevalence have been reported in the United Kingdom (UK) and the United States (US), although the reasons for these trends are unclear. ${ }^{6-8}$ Symptoms of PA typically begin between one and two years of age and persist through adulthood in $\sim 80 \%$ of patients, in contrast to milk and egg allergies that are more likely to resolve in childhood. ${ }^{1,2,-11}$

Multiple factors contribute to the burden of PA. ${ }^{12,13}$ Compared with other food allergies, PA is associated with higher rates of severe reactions and incidence of anaphylactic events requiring emergency care in Western nations. ${ }^{14-18}$ and is an elicitor of anaphylaxis from infancy through adolescence. ${ }^{17} \mathrm{PA}$ is also responsible for the highest proportion of fatal food-related anaphylaxis in most studies. ${ }^{19-21}$ The widespread use of peanut in a broad range of food products; inaccurate, incorrect or absent labeling; misreading of labels by persons with PA (PwPA) or caregivers; manufacturing errors; and inadvertent contamination also contribute to high rates of accidental exposure to peanut. ${ }^{22}$ Accidental exposures have been reported to occur in $\sim 13 \%$ of Canadian peanutallergic children. ${ }^{22-24}$ and 48% of children and adolescents in the UK annually, among whom $\sim 25 \%$ of the reactions were anaphylaxis. ${ }^{25}$ In addition, up to 95% of PwPA have at least one comorbid allergic condition, such as asthma, atopic dermatitis, or another food allergy. ${ }^{26}$

The standard of care for PA and other food allergies consists of avoidance of trigger foods and the use of rescue medication (i.e. adrenaline autoinjector [AAI]) in case of accidental exposure. ${ }^{27-29}$ However, dietary avoidance itself can be a major source of anxiety, stress and impaired health-related quality of life (HRQL). ${ }^{13,30,31}$ Research data in food-allergic and PA populations also indicate that having been prescribed an AAI, and having to use it, are independently associated with decreased HRQL related to fear and uncertainty regarding use of the device, the burden of carrying it, and the trauma of events (e.g. anaphylaxis) necessitating its use. ${ }^{32,33}$ Multiple studies have shown that PA and

6 APPEAL (Allergy to Peanuts imPacting Emotions And Life) is a two-part study conducted across 7 Europe to comprehensively evaluate the burden and psychosocial impact of living with PA. APPEAL-

METHODOLOGY

APPEAL-1 was conducted in Denmark, France, Germany, Ireland, Italy, the Netherlands, Spain, and the UK. It consisted of a 30-minute online survey initially written in English, translated/backtranslated into 6 other languages (Danish, Dutch, French, German, Italian, and Spanish), and adapted to national specifications, such as the types of HCPs involved in PA diagnosis and management. The
questionnaire and study protocol were developed by the APPEAL advisory board, which was comprised of representatives of eight patient advocacy groups (PAGs; one from each of the eight countries represented in the study) and a specialist panel that included five HCPs and research specialists. Ethical approval was obtained from the Freiburg Ethics Commission International (Universitätsklinikum Freiburg; https://www.uniklinik-freiburg.de/ethics-commission.html).

Study population

APPEAL-1 participants were recruited through the PAGs or by a professional recruitment service for research studies. The PAGs operated independently of each other, using varied methods for recruitment, such as announcements on websites or direct email contact to registered individuals who had previously given consent to be contacted for research purposes. The recruitment service contacted individuals in its database who had expressed willingness to participate in online studies and had an interest in allergy and/or health issues. Individuals recruited through the recruitment service received compensation for participating; the individuals recruited via the PAGs did not.

Eligible participants included adults (aged ≥ 18 years) diagnosed with PA who responded for themselves (self-report) and adult caregivers of PwPA (adult or child) who responded regarding the impact of PA on themselves (self-report) (Figure 1). The caregivers were also invited to answer a survey on behalf of the PwPA under their care (proxy-report) (Figure 1). Thus, the total number of potential responses was higher than the total number of participants. All participants had to be residents of one of the eight countries and willing and able to provide informed consent. Potential participants were emailed a link to the survey that described its purpose and procedures; persons interested in participating were asked to check a consent box before participating. The two exclusion criteria for the recruitment service were participation in a market research study of PA during the previous two months and PAG membership.

Questionnaire development and scoring

Questionnaire topics used for the survey were developed by the APPEAL advisory board, with the primary goal of identifying unmet research needs regarding the burden and impact of PA on patients
and caregivers. The initial questionnaire draft was further developed through an interactive process, including online pilot testing with revisions made according to respondent feedback. For most survey questions, a 5-point response scale was used (in general, " 1 " indicated lowest impact and " 5 " highest). The sequence of questionnaire topics moved from clinical characteristics and practical issues of PA management to psychosocial impacts, and ended with cost (Figure 1). The scoring system was developed with reference to standard survey methods to achieve the balance between sensitivity and ease of comprehension and choice for respondents ${ }^{46,47}$.

Statistical analysis plan

There were a total of 1300 survey participants across the 8 countries (much higher than the original target of 800 participants). Given that this study was designed to be exploratory and to provide a descriptive analysis, a power calculation was not conducted. Data were summarised using descriptive statistics and presented as arithmetic means, with no weighting. Explorations of data were conducted at the pan-European level, by country, and respondent subgroups, including caregivers of PwPA reporting by proxy for PwPA, caregivers reporting for themselves, and adults with PA. Where appropriate, between-group comparisons were explored using inferential statistics (t-tests and chi square analysis). Since only descriptive analysis was conducted, no adjustments/corrections for multiple comparisons were performed.

RESULTS

Study participants

Between 10 November and 11 December 2017, 1300 participants (1846 total responses) from eight European countries engaged in the APPEAL-1 survey: 881 caregivers of a PwPA (720 parents and 161 nonparents), of whom 546 reported by proxy for a PwPA , and 419 adults with PA (Figure 1). The number and percentage of APPEAL participants by country were generally proportionate to the relative total populations of each country (Figure 2A). Most participants were recruited via PAGs ($\mathrm{n}=829,63.8 \%$), with the remainder ($\mathrm{n}=471,36.2 \%$) recruited via the recruitment service (Figure 2B). Participants also reporting by proxy for a PwPA under their care included 401 PAG participants (for a total of 1230 respondents) and 145 recruitment service participants (for a total of 616 respondents).

23 The majority of PwPA reported having a "long-term illness which limits your daily activities" (Table 24 1). A total of 30% of adults with PA, and 28% of children and teenagers, reported having a long-term

The proportions of participants recruited via the professional recruitment service varied widely by country (Figure 2B). Proportions of types of respondents (adults, children, parent/nonparent caregivers) were generally similar among countries although the proportion of adults with PA (selfreport) ranged widely, from a high of 40% for Italy to a low of 13% for both Germany and Ireland (Figure C). The response rate from a total of 66,184 invitations via the professional recruitment service was approximately 10% ($\mathrm{n}=616$ completed surveys), and varied among countries with the highest from Italy (155 from 1269 invitations) and the lowest from the United Kingdom (92 from 30,794 invitations). Due to confidentiality constraints, the response rate could not be calculated for surveys distributed by PAGs. Only fully completed surveys were considered for analysis.

Demographics, food allergy prevalence and comorbid conditions

Demographic and clinical characteristics of PwPA in each group (either self- or proxy-reported) are shown in Table 1. Adults with PA had a mean age of 36 years; children aged 0-3, 4-12 and 13-17 years had mean ages of 2,8 , and 15 years, respectively. Most survey participants were female; this included $75 \%(\mathrm{n}=315)$ of the 419 adults with PA. These characteristics were similar across age groups and countries (see Table 1).

Only 28\% of all responding PwPA reported being allergic exclusively to peanut; 54% reported also being allergic to tree nuts, 21% to hen's egg, 18% to soya beans/other legumes, and 18% to cow's milk. The five most common food allergies reported in addition to peanut, and their prevalence, varied depending on the age of the PwPA (Table 1). chronic, comorbid condition. The most common conditions in both adults and children/teenagers were allergic rhinitis, asthma/breathing disorders and skin disorders/eczema (Table 1).

Diagnosis and clinical evaluations

This article is protected by copyright. All rights reserved

19 Peanut allergic reactions, severity and inconvenience

20 A total of 38% of all PwPA reported (by self or proxy) that they visited an HCP in the last six months 21 regarding their peanut allergy (Table 3). Amongst PwPA, 9\% reported that their worst allergic 22 reaction occurred within the past year, most commonly in children aged 0-3 years (27\%). For close to

The survey questions did not provide for any detailed assessment of the development of PA but did assess the diagnostic and clinical evaluation history of respondents. The majority of PwPA (95\%) were reported being diagnosed with PA by HCPs, most commonly allergists, a finding fairly consistent across countries and age groups (Table 2).

The clinical evaluations used for PA diagnosis were also generally consistent across PwPA age groups and regions (Table 2). The reported methods used most frequently to confirm PA diagnosis were peanut-specific immunoglobulin E (IgE) test (53\%), followed by peanut skin prick test (SPT) (50%); 29% of respondents reported that they received diagnosis confirmation with both IgE and peanut SPT (Table 2). Additionally, 6\% reported their first PA diagnosis was based on the combined results of IgE, peanut SPT, and oral food challenge.

Importantly, 95% of all PwPA reported having an allergic reaction to peanut. This percentage was consistent across all age groups. The mean age of PA diagnosis reported among all PwPA was 8.9 years but variability was seen among adults (15.9 years), children aged 0-3 (1.4), children 4-12 years (3.1) and teenagers 13-17 years (4.4) (Table 2). These ages generally coincided with the mean age of first allergic reaction to peanut in each of the age groups (Table 2). half of PwPA (45\%), their worst allergic reaction was rated as severe. Almost one-third of respondents (31%) said their worst PA reaction required hospitalisation and emergency medication; percentages were higher in all younger age groups (children and teenagers, 35% to 42%) compared with adults (26%). Overall percentages were 7% for those reporting hospitalisation only and 36% for emergency medication only (Table 3).

This article is protected by copyright. All rights reserved

7 of respondents, respectively. Anxiety, reported by 25% of respondents, was always accompanied by

27 Rates of AAI prescription also varied by the main symptoms of a worst allergic reaction. Among 28

Among all PwPA who reported on their worst allergic reaction to peanut, most reported more than one symptom (87.4%); 142 (12.6%) reported only one symptom. The most common symptoms reported included swelling (e.g. lips, eyes, and/or tongue) (58\%), breathing difficulties/wheezing (50\%), itching mouth/throat tightness (50\%), and itching of the skin, eyes, and/or nose (38\%). Gastrointestinal symptoms were reported by almost one-third of respondents (vomiting 30\%, nausea 27%, stomach pain/cramps 24%), and dizziness and fainting/collapsing were reported by 13% and 9% other symptoms of a reaction (it was never the only symptom), regardless of the age of the PwPA reporting group or the region (Table 3).

Among all PwPA who reported the circumstances of their worst reaction to peanut, almost one-third (31%) said they received no support or PA management advice/support from HCPs following the reaction; only one-third (33\%) said they received training on how to use emergency medication; and approximately only a quarter (27%) received training on what to do in an emergency (Table 3). Also, only 14% said they received information about patient associations for food allergy and anaphylaxis prevention. Similar responses for these parameters were observed among age groups and countries (Table 3).

Care and management

Among all PwPA, more than one-quarter (28\%) reported having not been prescribed an AAI for PA reaction treatment, varying from 11% for children aged $4-12$ years, 44% for adults, and 22% for teenagers (Table 4). Of all those prescribed an AAI ($\mathrm{n}=897$), two-thirds (66%) had never used it, ranging from 52% in adults to 86% in younger children (aged 0-3 years) (Table 4). Among PwPA who were prescribed an AAI, the highest rate of complete satisfaction with the training they received for using it (score of 5 on a scale of 1-5) was 27%, seen in adults and in teenagers (Table 4). PwPA who were prescribed an AAI, the highest proportions had reported swelling (e.g. of the lips,

7 "much more" expensive varied among age groups, including 20% of respondents for children aged 0 -
eyes, and/or tongue), itching of the mouth/throat tightness, or difficulties breathing/wheezing during their worst allergic reaction.

Costs of living with PA

Almost half of all respondents (46\%) stated that living with PA was "more" (33\%) or "much more" (13\%) expensive (versus not living with PA). Percentages who reported that living with PA was 3 years, 10% of adults and 17% of respondents for teenagers (aged 13-17 years). Most respondents also described as "significant" the indirect costs of the extra time needed for planning day-to-day activities (85%) and special events (91%), with similar rates across age groups.

See Supporting Materials for a video of results from APPEAL-1.

DISCUSSION

The purpose of the APPEAL-1 survey, carried out across eight European countries, was to investigate and evaluate the personal perceptions, experiences, burdens and impacts of living with PA. To this end, a 50-question survey assessing PwPA and caregivers' knowledge, experience and satisfaction was developed by an expert panel. In the current article, we provide demographic and clinical history data for multiple respondent groups, including children, teenagers and adults with PA. These data provide essential insight and data on PA diagnosis, comorbidities, severity of symptoms, management, and other clinical factors. In a companion paper in this issue of Allergy, the psychosocial and quality-of-life impacts of PA are also reported. ${ }^{45}$

The overall demographics, PA symptoms, other food allergies, and coexistence of other allergic conditions in the adult and children/teenager groups in this survey were generally consistent with other population studies on PA. ${ }^{26,48}$ Previous studies in European and Canadian pediatric cohorts have reported a younger mean age of diagnosis (approximately 3 years), ${ }^{26,49}$ than the overall age of diagnosis reported in APPEAL-1 (8.9 years), although similar to the ages reported for the pediatric subgroups. Therefore, the older overall mean age of diagnosis in APPEAL resulted from the older age

This article is protected by copyright. All rights reserved
of diagnosis reported by adults. Of note, adults may have recall bias towards older ages in reporting peanut allergy history whereas caregivers reporting by proxy may more accurately remember the more recent dates of peanut allergy diagnosis in their children. ${ }^{50}$ The rates of children with a history of asthma, atopic dermatitis and/or eczema in our study (Table 1) are similar to those observed in other paediatric PA populations. ${ }^{14,26,44} \mathrm{PwPA}$ are often advised to avoid tree nuts, either because of an allergy to them, the potential for cross-reactivity or -contamination, or uncertainty over the ability of PwPA and caregivers (especially nonparent) to distinguish tree nuts from peanuts. ${ }^{51}$ The APPEAL-1 survey showed that up to 53% of PwPA reported allergy to one or more tree nuts, which is also consistent with previous findings. ${ }^{26,52}$ Several previous studies reported that PA was more common in male children ($>60 \%$) ${ }^{26,44,51,52}$ while the APPEAL-1 survey population included more female children with PA (54\%); however, one other multinational study also reported a slight majority of females in a randomly selected PA population. ${ }^{53}$ Women may also be more inclined than men to participate in healthcare surveys in general. ${ }^{54}$

Our data on diagnostic testing also support previous findings. The APPEAL-1 survey confirms that PA is generally diagnosed early in childhood, similar to data reported in other European/multinational studies. ${ }^{26,53}$ The survey analysis also showed that more than half of PwPA (53\%) had their PA diagnosis confirmed via IgE, and 29% received both IgE and SPT, which validated the presence of PA in the survey population. Only 12% reported having an oral food challenge, which is typically used to confirm diagnosis when clinical history is ambiguous or nonexisting. ${ }^{55}$ Approximately 10% of respondents said they had never experienced a reaction to peanut despite being diagnosed with PA. Such respondents may have been tested for PA despite their lack of reaction history, with resulting diagnosis, based on risk factors such as other allergic conditions (egg allergy or atopic eczema) or having a family member with PA. ${ }^{49,56}$ In addition, study data show that only a minority of patients who have a positive SPT or specific IgE but no known exposure to peanut may have clinical PA. ${ }^{4}$ Taken together, these data suggest that a clearly defined clinical history of PA is still required, as well as diagnostic testing, including detection of sensitisation and oral food challenge, for PA diagnosis. ${ }^{57,58}$

This article is protected by copyright. All rights reserved

With regard to PA management and clinical care, 28% of PwPA had never been prescribed an AAI, and approximately one-quarter (24%) of those prescribed an AAI were either not at all satisfied with their training for it or received no training. These data were similar across the countries surveyed, suggesting a widespread need in Europe for improved quality of PA health management and education concerning AAI use. This view is supported by a recent 10 -year study of 10,184 cases of anaphylaxis in the European Anaphylaxis Registry, which found that only 27.1\% of patients treated by an HCP received adrenaline "despite clear recommendations" indicating this therapy for anaphylaxis. ${ }^{59}$ In addition, a study of all food-related anaphylactic deaths in the UK for the period of 1999-2006, including 48 deaths, 9 of which were related to peanut, found that only 40% of those who died had been provided AAIs, and less than half had received HCP advice on managing their food allergy. ${ }^{19}$ Marked underuse of AAI for anaphylaxis, at variance with current anaphylaxis management guidelines, has also been reported in Germany. ${ }^{60-62}$

Almost half of respondents reported that PA caused additional living expense, and large majorities cited a cost of extra time for planning of routine and special activities. A EuroPrevall study previously reported that mean annual healthcare costs (international dollars) were increased by I $\$ 927$ for adults and I\$1334 for children with food allergy, compared with age-matched controls, across 12 European countries for the period from 2007 to $2009 .{ }^{63}$ It is clear that more research is necessary to understand and determine how to reduce the financial and economic burden for PwPA living in Europe.

Limitations of the APPEAL-1 survey include use of a self-selecting sample from invitation, which may introduce selection bias, as no randomisation was conducted (e.g., individuals who. perceived/experienced greater impact of PA on themselves/their children may have been more likely to participate in this study versus those who felt less impact). The 2 recruitment methods used may also have influenced the study results since, hypothetically, PAG participants may be more likely to be motivated by emotions associated with PA and panel participants may have greater financial incentive because they received such compensation. Although 5\% of PwPA had not been diagnosed with PA by an HCP and 10% had not experienced a reaction to peanut, the inclusion of such respondents who are, nonetheless, experiencing the impacts of perceived PA helps to broaden our

29 CONFLICT OF INTEREST DISCLOSURES

This article is protected by copyright. All rights reserved

8 FT is chair of the EAACI Patient Organisations Committee and member of Team APPEAL; the

17 TL was an employee of Aimmune Therapeutics at the time of study.
18 HRF is a member of Team APPEAL and reports honorarium from Aimmune Therapeutics. 19 MF-R reports consultancies for Aimmune Therapeutics, DBV, Novartis, Schreiber Foods; research 20 funding from European Commission, MINECO and ISCIII of Spanish government; speakers bureau 21 for ALK, Allergy Therapeutics, Diater, Fundacion SEAIC, HAL Allergy, Thermo Fisher Scientific.

This article is protected by copyright. All rights reserved

REFERENCES

Savage J, Johns CB. Food allergy: epidemiology and natural history. Immunol Allergy Clin North Am. 2015;35(1):45-59.
2. Vander Leek TK, Liu AH, Stefanski K, Blacker B, Bock SA. The natural history of peanut allergy in young children and its association with serum peanut-specific IgE. J Pediatr. 2000;137(6):749-755.
. Nwaru BI, Hickstein L, Panesar SS, et al. Prevalence of common food allergies in Europe: a systematic review and meta-analysis. Allergy. 2014;69(8):992-1007.
4. Nicolaou N, Poorafshar M, Murray C, et al. Allergy or tolerance in children sensitized to peanut: prevalence and differentiation using component-resolved diagnostics. J Allergy Clin Immunol. 2010;125(1):191-197 e191-113.
5. Mackenzie H, Venter, C., Kilburn, S., Mooneshinghe, H.R., Lee, K., Dean, T. Prevalence of peanut allergy: a systematic review [AAAAI 2014 Abstract 699]. J Allergy Clin Immunol. 2014:AB202.

Sicherer SH, Munoz-Furlong A, Godbold JH, Sampson HA. US prevalence of self-reported peanut, tree nut, and sesame allergy: 11-year follow-up. J Allergy Clin Immunol. 2010;125(6):1322-1326.
7. Kotz D, Simpson CR, Sheikh A. Incidence, prevalence, and trends of general practitionerrecorded diagnosis of peanut allergy in England, 2001 to 2005. J Allergy Clin Immunol. 2011;127(3):623-630 e621.
8. Sicherer SH, Sampson HA. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol. 2018;141(1):41-58.
9. Hourihane JO, Roberts SA, Warner JO. Resolution of peanut allergy: case-control study. BMJ. 1998;316(7140):1271-1275.
10. Skolnick HS, Conover-Walker MK, Koerner CB, Sampson HA, Burks W, Wood RA. The natural history of peanut allergy. J Allergy Clin Immunol. 2001;107(2):367-374.

This article is protected by copyright. All rights reserved
11. Begin P, Paradis L, Paradis J, Picard M, Des Roches A. Natural resolution of peanut allergy: a 12-year longitudinal follow-up study. J Allergy Clin Immunol Pract. 2013;1(5):528-530.e521524.
12. Ezendam J, van Loveren, H. Parameters needed to estimate the global burden of peanut allergy. Systematic literature review. In: National Institute for Public Health and the Environment. Ministry of Health W, and Sport, ed. Bilthoven, The Netherlands: World Health Organization/Foodborne Disease Epidemiology Research Group; 2012.

King RM, Knibb RC, Hourihane JO. Impact of peanut allergy on quality of life, stress and anxiety in the family. Allergy. 2009;64(3):461-468.
14. Gupta RS, Warren CM, Smith BM, et al. Prevalence and Severity of Food Allergies Among US Adults. JAMA Netw Open. 2019;2(1): 185630.
15. Parlaman JP, Oron AP, Uspal NG, DeJong KN, Tieder JS. Emergency and Hospital Care for Food-Related Anaphylaxis in Children. Hosp Pediatr. 2016;6(5):269-274.
16. McWilliam VL, Koplin JJ, Field MJ, et al. Self-reported adverse food reactions and anaphylaxis in the SchoolNuts study: A population-based study of adolescents. J Allergy Clin Immunol. 2018;141(3):982-990.
17. Grabenhenrich LB, Dolle S, Moneret-Vautrin A, et al. Anaphylaxis in children and adolescents: The European Anaphylaxis Registry. J Allergy Clin Immunol. 2016;137(4):11281137.e1121.
18. Corriger J. BE, Rothmann C., Penven E., Haumonte Q., Thomas H., et al. . Epidemiological data of anaphylaxis in French emergency departments. J Investig Allergol Clin Immunol. 2019;29(5).
19. Pumphrey RS, Gowland MH. Further fatal allergic reactions to food in the United Kingdom, 1999-2006. J Allergy Clin Immunol. 2007;119(4):1018-1019.
20. Pouessel G, Turner PJ, Worm M, et al. Food-induced fatal anaphylaxis: From epidemiological data to general prevention strategies. Clin Exp Allergy. 2018;48(12):1584-1593.
21. Turner PJ, Jerschow E, Umasunthar T, Lin R, Campbell DE, Boyle RJ. Fatal anaphylaxis: mortality rate and risk factors. J Allergy Clin Immunol Pract. 2017;5(5):1169-1178.

This article is protected by copyright. All rights reserved
22. Yu JW, Kagan R, Verreault N, et al. Accidental ingestions in children with peanut allergy. J Allergy Clin Immunol. 2006;118(2):466-472.
23. Nguyen-Luu NU, Ben-Shoshan M, Alizadehfar R, et al. Inadvertent exposures in children with peanut allergy. Pediatr Allergy Immunol. 2012;23(2):133-139.
24. Cherkaoui S, Ben-Shoshan M, Alizadehfar R, et al. Accidental exposures to peanut in a large cohort of Canadian children with peanut allergy. Clin Transl Allergy. 2015;5:16.
Noimark L, Wales J, Du Toit G, et al. The use of adrenaline autoinjectors by children and teenagers. Clin Exp Allergy. 2012;42(2):284-292.
26. Deschildre A, Elegbede CF, Just J, et al. Peanut-allergic patients in the MIRABEL survey: characteristics, allergists' dietary advice and lessons from real life. Clin Exp Allergy. 2016;46(4):610-620.
27. Sicherer SH, Allen K, Lack G, Taylor SL, Donovan SM, Oria M. Critical Issues in Food Allergy: A National Academies Consensus Report. Pediatrics. 2017.
28. Pajno GB, Fernandez-Rivas M, Arasi S, et al. EAACI Guidelines on allergen immunotherapy: IgE-mediated food allergy. Allergy. 2018;73(4):799-815.
29. Sampson HA, Aceves S, Bock SA, et al. Food allergy: a practice parameter update-2014. J Allergy Clin Immunol. 2014;134(5):1016-1025 e1043.
30. Shaker MS, Schwartz J, Ferguson M. An update on the impact of food allergy on anxiety and quality of life. Curr Opin Pediatr. 2017;29(4):497-502.
Bollinger ME, Dahlquist LM, Mudd K, Sonntag C, Dillinger L, McKenna K. The impact of food allergy on the daily activities of children and their families. Ann Allergy Asthma Immunol. 2006;96(3):415-421.

Roy KM, Roberts MC. Peanut allergy in children: relationships to health-related quality of life, anxiety, and parental stress. Clin Pediatr (Phila). 2011;50(11):1045-1051.

Ward CE, Greenhawt MJ. Treatment of allergic reactions and quality of life among caregivers of food-allergic children. Ann Allergy Asthma Immunol. 2015;114(4):312-318 e312.
Fong AT, Katelaris CH, Wainstein B. Bullying and quality of life in children and adolescents with food allergy. J Paediatr Child Health. 2017;53(7):630-635.

This article is protected by copyright. All rights reserved
35. Antolin-Amerigo D, Manso L, Caminati M, et al. Quality of life in patients with food allergy. Clin Mol Allergy. 2016;14:4.
36. Marklund B, Ahlstedt S, Nordstrom G. Health-related quality of life in food hypersensitive schoolchildren and their families: parents' perceptions. Health Qual Life Outcomes. 2006;4:48.
37. Knibb RC, Barnes C, Stalker C. Parental confidence in managing food allergy: development and validation of the Food Allergy Self-Efficacy Scale for Parents (FASE-P). Clin Exp Allergy. 2015;45(11):1681-1689.
Saleh-Langenberg J, Goossens NJ, Flokstra-de Blok BM, et al. Predictors of health-related quality of life of European food-allergic patients. Allergy. 2015;70(6):616-624.
39. Goossens NJ, Flokstra-de Blok BM, van der Meulen GN, et al. Health-related quality of life in food-allergic adults from eight European countries. Ann Allergy Asthma Immunol. 2014;113(1):63-68 e61.
40. Birdi G, Cooke R, Knibb R. Quality of Life, Stress, and Mental Health in Parents of Children with Parentally Diagnosed Food Allergy Compared to Medically Diagnosed and Healthy Controls. J Allergy (Cairo). 2016;2016:1497375.
41. Avery NJ, King RM, Knight S, Hourihane JO. Assessment of quality of life in children with peanut allergy. Pediatr Allergy Immunol. 2003;14(5):378-382.
42. Cummings AJ, Knibb RC, King RM, Lucas JS. The psychosocial impact of food allergy and food hypersensitivity in children, adolescents and their families: a review. Allergy. 2010;65(8):933-945.
43. Dyer AA, Rivkina V, Perumal D, Smeltzer BM, Smith BM, Gupta RS. Epidemiology of childhood peanut allergy. Allergy Asthma Proc. 2015;36(1):58-64.
44. Leickly FE, Kloepfer KM, Slaven JE, Vitalpur G. Peanut allergy: an epidemiologic analysis of a large database. J Pediatr. 2018;192:223-228 e221.
45. Dunn Galvin A, Blumchen, K., Timmermans, F., Regent, L., Schnadt, S., Podestà, M., Sánchez, A., Couratier, P., Feeney, M., Hjorth, B., Patel, R., Lush, T., Ryan, R., Vereda, A., Fernández-Rivas, M., Fisher, H.R. APPEAL-1: A multiple country European survey assessing the psychosocial impact of peanut allergy Allergy. In press.

This article is protected by copyright. All rights reserved
46. Tafforeau J, Lopez Cobo M, Tolonen H, Scheidt-Nave C, Tinto A. Guidelines for the development and criteria for the adoption of health survey instruments. Luxembourg, Belgium: European Commission, Eurostat; Office for National Statistics: Partnership on Health Statistics;2005.

McDowell I. Measuring Health: A Guide to Rating Scales and Questionnaires, Third Edition. New York, NY: Oxford University Press; 2006.

Green TD, LaBelle VS, Steele PH, et al. Clinical characteristics of peanut-allergic children: recent changes. Pediatrics. 2007;120(6):1304-1310.
49. Ben-Shoshan M, Kagan R, Primeau M-N, et al. Establishing the diagnosis of peanut allergy in children never exposed to peanut or with an uncertain history: a cross-Canada study. Pediatric Allergy and Immunology. 2010;21(6):920-926.
50. Ben-Shoshan M, Harrington DW, Soller L, et al. A population-based study on peanut, tree nut, fish, shellfish, and sesame allergy prevalence in Canada. J Allergy Clin Immunol. 2010;125(6):1327-1335.
51. Neuman-Sunshine DL, Eckman JA, Keet CA, et al. The natural history of persistent peanut allergy. Ann Allergy Asthma Immunol. 2012;108(5):326-331 e323.
Fleischer DM, Conover-Walker MK, Christie L, Burks AW, Wood RA. The natural progression of peanut allergy: Resolution and the possibility of recurrence. J Allergy Clin Immunol. 2003;112(1):183-189.
Vereda A, van Hage M, Ahlstedt S, et al. Peanut allergy: Clinical and immunologic differences among patients from 3 different geographic regions. J Allergy Clin Immunol. 2011;127(3):603-607. participate in health research surveys. BMC Public Health. 2015;15:1017.
55. Sampson HA, Gerth van Wijk R, Bindslev-Jensen C, et al. Standardizing double-blind, placebo-controlled oral food challenges: American Academy of Allergy, Asthma \& Immunology-European Academy of Allergy and Clinical Immunology PRACTALL consensus report. J Allergy Clin Immunol. 2012;130(6):1260-1274.

This article is protected by copyright. All rights reserved
56. Lavine E, Clarke A, Joseph L, et al. Peanut avoidance and peanut allergy diagnosis in siblings of peanut allergic children. Clin Exp Allergy. 2015;45(1):249-254.
57. Heinzerling L, Mari A, Bergmann KC, et al. The skin prick test - European standards. Clin Transl Allergy. 2013;3(1):3.
Worm M, Reese I, Ballmer-Weber B, et al. Guidelines on the management of IgE-mediated food allergies: S2k-Guidelines of the German Society for Allergology and Clinical Immunology (DGAKI) in collaboration with the German Medical Association of Allergologists (AeDA), the German Professional Association of Pediatricians (BVKJ), the German Allergy and Asthma Association (DAAB), German Dermatological Society (DDG), the German Society for Nutrition (DGE), the German Society for Gastroenterology, Digestive and Metabolic Diseases (DGVS), the German Society for Oto-Rhino-Laryngology, Head and Neck Surgery, the German Society for Pediatric and Adolescent Medicine (DGKJ), the German Society for Pediatric Allergology and Environmental Medicine (GPA), the German Society for Pneumology (DGP), the German Society for Pediatric Gastroenterology and Nutrition (GPGE), German Contact Allergy Group (DKG), the Austrian Society for Allergology and Immunology (Æ-GAI), German Professional Association of Nutritional Sciences (VDOE) and the Association of the Scientific Medical Societies Germany (AWMF). Allergo J Int. 2015;24:256-293.
59. Grabenhenrich LB, Dolle S, Rueff F, et al. Epinephrine in severe allergic reactions: The European Anaphylaxis Register. J Allergy Clin Immunol Pract. 2018;6(6):1898-1906 e1891.
60. Worm M, Eckermann O, Dolle S, et al. Triggers and treatment of anaphylaxis: an analysis of 4,000 cases from Germany, Austria and Switzerland. Dtsch Arztebl Int. 2014;111(21):367375.
61. Epimetrix. Terminology Used in Food Oral Immunotherapy Including Clinical Trial Endpoints. 2018;
https://education.acaai.org/system/files/Food_Allergy_Lexicon_Slides_03_24_18_Final_BC.p df. Accessed March 23, 2020.

This article is protected by copyright. All rights reserved
62. Beyer K, Eckermann O, Hompes S, Grabenhenrich L, Worm M. Anaphylaxis in an emergency setting - elicitors, therapy and incidence of severe allergic reactions. Allergy. 2012;67(11):1451-1456.

Fox M, Mugford M, Voordouw J, et al. Health sector costs of self-reported food allergy in Europe: a patient-based cost of illness study. Eur J Public Health. 2013;23(5):757-762.

FIGURES and TABLES

TABLES

Table 1. Demographic and other allergic associations in PwPA

Characteristic	Respondent type												
	Total (either self- report or proxy- report) $(\mathrm{n}=1300)$	Adults (≥ 18 years; either self-report or proxy- report) $(\mathrm{n}=610)$	Children (0-3 years) $(\mathrm{n}=61)$	$\begin{gathered} \text { Children } \\ (4-12 \\ \text { years }) \\ (\mathrm{n}=442) \end{gathered}$	Teenagers (13-17 years) $(\mathrm{n}=187)$	Denmark ($\mathrm{n}=60$)	$\begin{aligned} & \text { France } \\ & (\mathrm{n}=198) \end{aligned}$			Ireland ($\mathrm{n}=63$)	$\begin{gathered} \text { The } \\ \text { Nether- } \\ \text { lands } \\ (\mathrm{n}=150) \end{gathered}$	Spain ($\mathrm{n}=170$)	$\begin{gathered} \text { UK } \\ (\mathrm{n}=221) \end{gathered}$
Mean age, years (SD)	$\begin{gathered} 21.8 \\ (17.2) \end{gathered}$	$\begin{gathered} 35.9 \\ (15.4) \end{gathered}$	$\begin{gathered} \hline 2.3 \\ (0.8) \end{gathered}$	$\begin{aligned} & \hline 8.0 \\ & (2.5) \end{aligned}$	$\begin{aligned} & 14.9 \\ & (1.4) \end{aligned}$	$\begin{gathered} 26.5 \\ (21.6) \end{gathered}$	$\begin{aligned} & 23.2 \\ & (17.6) \end{aligned}$	$\begin{aligned} & 15.5 \\ & (16.5) \end{aligned}$	$\begin{aligned} & 28.0 \\ & (16.1) \end{aligned}$	$\begin{gathered} 17.9 \\ (13.2) \end{gathered}$	$\begin{aligned} & 20.3 \\ & (15.3) \end{aligned}$	$\begin{aligned} & \hline 21.0 \\ & (16.6) \end{aligned}$	$\begin{gathered} 25.3 \\ (17.3) \end{gathered}$
Sex, n (\%) Female Male	$\begin{aligned} & 53 \\ & 47 \end{aligned}$	$\begin{aligned} & 67 \\ & 33 \end{aligned}$	$\begin{aligned} & 31 \\ & 69 \end{aligned}$	43 57	44 56	55 45	58 42	$\begin{aligned} & 47 \\ & 53 \end{aligned}$	$\begin{aligned} & 58 \\ & 42 \end{aligned}$	$\begin{aligned} & 52 \\ & 48 \end{aligned}$	$\begin{aligned} & 57 \\ & 43 \end{aligned}$	54 46	$\begin{aligned} & 52 \\ & 48 \end{aligned}$
Diagnosed with PA only, ${ }^{\text {a \% }}$	28	24	39	33	28	33	24	34	13	24	27	15	47
Diagnosed with other food allergies, ${ }^{\text {b }}$ \%													

This article is protected by copyright. All rights reserved

Celery	7	10	3	4	6	10	13	7	6	3	9	2	4
Cow milk and dairy products	18	19	23	14	24	27	15	13	30	13	24	21	12
Egg (hen's)	21	15	31	24	26	20	21	14	25	32	19	26	18
Fish	7	9	10	5	8	10	11	3	7	8	7	10	5
Fruit	14	18	7	9	15	10	18	8	14	10	21	18	10
Meat or poultry	2	2	0	2	2	3	5	0	2	2	1	2	1
Mustard	5	5	2	4	6	3	13	1	7	2	3	4	3
Peach	10	15	7	5	7	5	10	5	18	3	10	25	4
Seeds (e.g. poppy, sunflower)	9	12	0	7	5	8	12	4	14	5	7	12	8
Sesame	11	12	2	10	14	5	16	5	16	8	13	7	14
Shellfish/crustacean/molluscs	13	17	3	9	13	18	18	4	19	11	9	22	9
Soya beans / other legumes	18	16	13	21	22	18	27	23	17	10	23	16	7
Sulphites	3	4	0	1	3	0	3	1	11	0	3	2	1
Tree nuts	54	55	43	54	53	42	63	41	53	51	70	62	48
Wheat/gluten	8	11	5	sre4	11	5	11	5	16	13	9	6	6
Comorbid conditions, ${ }^{\text {b \% }}$ \%													
Allergic rhinitis (hay fever)	40	50	21	36	48	60	35	33	48	41	49	38	42
Asthma / breathing disorder	43	42	32	44	57	47	34	39	40	57	59	38	46
Diabetes type 1	1	3	0	<0.5	0	0	3	1	3	0	2	1	0
Diabetes type 2	2	3	0	0	2	2	2	1	5	2	0	0	3
Eating disorders	4	6	3	2	3	2	8	3	13	3	1	2	0
Gastrointestinal disorder	12	20	9	6	9	7	17	6	23	8	15	14	8
Heart disease	1	1	3	<0.5	2	0	2	1	1	2	1	1	0
Mood disorders / depression	4	10	0	1	3	2	6	5	5	8	4	4	7
Skin disorders / eczema	40	34	35	44	41	45	34	35	29	48	53	38	43
None	19	16	32	22	13	15	24	22	15	17	8	20	24

${ }^{\mathrm{a}}$ No other reported food allergies; ${ }^{\mathrm{b}}$ Subjects were instructed to select all that applied from a list.
HCP, healthcare professional; PA, peanut allergy; PwPA, persons with peanut allergy; SD, standard deviation; UK, United Kingdom.

This article is protected by copyright. All rights reserved

Table 2. Peanut allergy diagnostics in PwPA

This article is protected by copyright. All rights reserved

	(12.3)	(14.9)	(0.6)	(2.2)	(3.7)	(16.2)	(13.2)	(10.2)	(12.1)	(8.4)	(9.6)	(13.2)	(12.8)
Reported PA reaction to HCP, \%	($\mathrm{N}=1235$)	($\mathrm{n}=610$)	($\mathrm{n}=61$)	($\mathrm{n}=442$)	($\mathrm{n}=187$)	($\mathrm{n}=60$)	($\mathrm{n}=198$)	($\mathrm{n}=273$)	($\mathrm{n}=165$)	($\mathrm{n}=63$)	($\mathrm{n}=150$)	($\mathrm{n}=170$)	($\mathrm{n}=221$)
	95	91	92	99	100	83	93	97	98	86	99	99	91
HCP making first diagnosis, \%	($\mathrm{n}=1236$)	($\mathrm{n}=554$)	($\mathrm{n}=56$)	($\mathrm{n}=439$)	($\mathrm{n}=187$)	($\mathrm{n}=50$)	($\mathrm{n}=185$)	($\mathrm{n}=266$)	($\mathrm{n}=161$)	($\mathrm{n}=54$)	($\mathrm{n}=149$)	($\mathrm{n}=149$)	($\mathrm{n}=202$)
Allergist (paediatric or general)	54.2	54.5	53.6	50.8	61.5	36	66	52	31	79	36	64	40
Emergency doctor	11.7	13.7	12.5	9.3	10.7	10	10	6	17	7	9	17	20
Paediatrician	16.0	6.5	23.2	28.2	13.4	32	6	32	15	6	20	8	10
Immunologist/immunology specialist	2.2	2.9	1.8	1.1	2.7	0	2	0	11	4	1	1	4
Primary care/family/GP	10.3	15.7	3.6	5.2	8.0	10	11	5	9	4	21	4	19
Nurse (allergy, other)	1.5	1.6	0.0	1.4	1.6	2	0	0	4	0	4	2	4
Other	4.2	5.1	5.4	3.9	2.1	10	5	5	13	1	8	4	3
Method of diagnosis, ${ }^{\text {a }}$ \%	($\mathrm{n}=1236$)	($\mathrm{n}=554$)	($\mathrm{n}=56$)	($\mathrm{n}=439$)	($\mathrm{n}=187$)	($\mathrm{n}=50$)	($\mathrm{n}=185$)	($\mathrm{n}=266$)	($\mathrm{n}=161$)	($\mathrm{n}=54$)	($\mathrm{n}=149$)	($\mathrm{n}=169$)	($\mathrm{n}=202$)
Clear clinical reaction to PA	48	50	54	46	47	62	49	52	47	31	52	46	44
SPT to peanut	50	53	39	44	60	38	57	26	65	63	44	51	67
Blood test (IgE to peanut)	53	36	68	70	60	56	45	69	42	74	61	43	44
OFC in hospital/clinic	12	9	9	16	16	20	14	14	7	15	21	6	9
Both SPT and IgE	29	22	29	32	39	28	34	16	33	46	35	25	31
Both SPT and OFC	7	5	4	8	13	14	8	4	5	11	14	4	7

This article is protected by copyright. All rights reserved

Both IgE and OFC	9	5	7	12	13	14	9	11	6	13	15	4	5
SPT and IgE and OFC	6	4	2	7	11	12	8	4	5	9	12	2	4
Never diagnosed by an HCP, \%	($\mathrm{n}=1300$)	($\mathrm{n}=610$)	($\mathrm{n}=61$)	($\mathrm{n}=442$)	($\mathrm{n}=187$)	($\mathrm{n}=60$)	($\mathrm{n}=198$)	($\mathrm{n}=273$)	($\mathrm{n}=165$)	($\mathrm{n}=63$)	($\mathrm{n}=150$)	($\mathrm{n}=170$)	($\mathrm{n}=221$)
)	5	9	8	1	0	17	7	3	2	9	1	1	9

${ }^{\text {a }}$ Subjects were instructed to select all that applied from a list of single diagnostic methods.
GP, general practitioner; HCP, healthcare professional; IgE, immunoglobulin E; OFC, oral food challenge; PA, peanut allergy; PwPA, persons with peanut allergy; SD, standard deviation; SPT, skin prick test; UK, United Kingdom.

This article is protected by copyright. All rights reserved

Table 3. Peanut Allergy Reaction and Treatment History

This article is protected by copyright. All rights reserved

last $1-2$ years	14	13	37	15	9	14	15	18	13	15	12	14	10
last 6 - 12 months	9	8	27	8	6	4	10	10	11	5	5	10	7
6 months ago	6	5	7	6	7	4	5	7	11	3	7	7	1
Severity rating of worst allergic	($\mathrm{n}=1128$)	($\mathrm{n}=545$)	($\mathrm{n}=48$)	($\mathrm{n}=378$)	($\mathrm{n}=157$)	($\mathrm{n}=54$)	($\mathrm{n}=170$)	($\mathrm{n}=250$)	($\mathrm{n}=128$)	($\mathrm{n}=55$)	($\mathrm{n}=137$)	($\mathrm{n}=137$)	($\mathrm{n}=197$)
reaction to peanut, \% Severe	45	38	45	48	44	52	43	43	27	36	74	35	47
Moderate	43	50	40	43	45	44	46	42	63	45	17	47	44
Mild	8	8	10	7	7	2	9	8	7	16	3	14	6
ot sur	4	4	5	2	4	2	2	6	3	2	6	4	4
Healthcare for worst allergic	($\mathrm{n}=1128$)	($\mathrm{n}=545$)	($\mathrm{n}=48$)	($\mathrm{n}=378$)	($\mathrm{n}=157$)	($\mathrm{n}=54$)	($\mathrm{n}=170$)	($\mathrm{n}=250$)	($\mathrm{n}=128$)	($\mathrm{n}=55$)	($\mathrm{n}=137$)	($\mathrm{n}=137$)	($\mathrm{n}=197$)
Both hospitalisation and EM	31	26	42	35	36	24	23	42	36	14	52	12	34
Hospitalisation only	7	7	6	7	8	13	9	6	13	10	2	2	8
EM only	36	40	29	32	36	22	39	28	25	52	29	62	29
No, neither	23	24	23	23	18	39	24	24	25	23	15	20	25
Do not remember	3	3	0	2	2	2	5	1	0	2	2	3	4
Main symptoms for worst allergic reaction to peanut, ${ }^{\mathrm{b}} \%(\mathrm{n}=1593)$	($\mathrm{n}=1128$)	($\mathrm{n}=545$)	($\mathrm{n}=48$)	($\mathrm{n}=378$)	($\mathrm{n}=157$)	($\mathrm{n}=54$)	($\mathrm{n}=170$)	($\mathrm{n}=250$)	($\mathrm{n}=128$)	($\mathrm{n}=55$)	($\mathrm{n}=137$)	($\mathrm{n}=137$)	($\mathrm{n}=197$)
Nausea	27	29	10	25	29	28	14	37	25	33	45	10	23

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

None	33	26	50	41	32	19	22	42	37	25	34	35	30
Training on use of EM	27	24	31	32	27	11	14	39	37	16	22	37	21
Training in case of emergency	27	21	46	33	27	31	6	50	34	4	47	26	4
Psychological Counselling	14	14	17	13	18	4	15	15	21	15	11	12	16
Information about PA associations	8	11	4	5	5	3	9	4	5	5	6	8	14
Do not remember													

${ }^{\text {a }}$ Subjects were instructed to pick one of the choices shown; ${ }^{\text {b }}$ Subjects were instructed to select all that applied.
EM, emergency medication; HCP, healthcare professional; PA, peanut allergy; UK, United Kingdom.

This article is protected by copyright. All rights reserved

Table 4. Care management for PA

Variable	Respondent type, by Age					Country							
	Total (either self-report or proxy- report)	Adults (≥ 18 years; either selfreport or proxyreport)	Children (0-3 years)	Children (4-12 years)	Teenagers $\begin{aligned} & (13-17 \\ & \text { years }) \end{aligned}$	Denmark	France	Germany	Italy	Ireland	The Netherlands	Spain	UK
Prescribed an AAI?, \%	($\mathrm{n}=1300$)	($\mathrm{n}=610$)	(n=61)	($\mathrm{n}=442$)	($\mathrm{n}=187$)	($\mathrm{n}=60$)	($\mathrm{n}=198$)	($\mathrm{n}=273$)	($\mathrm{n}=64$)	($\mathrm{n}=165$)	($\mathrm{n}=150$)	($\mathrm{n}=170$)	($\mathrm{n}=221$)
Yes	69	53	82	86	75	52	58	78	79	46	87	63	80
No	28	44	15	11	22	45	39	20	21	52	11	31	19
Other	3	3	3	3	3	3	3	2	0	2	3	6	1
Time since AAI last used, \%	($\mathrm{n}=897$)	($\mathrm{n}=325$)	($\mathrm{n}=50$)	($\mathrm{n}=381$)	($\mathrm{n}=141$)	($\mathrm{n}=31$)	($\mathrm{n}=115$)	($\mathrm{n}=212$)	($\mathrm{n}=76$)	($\mathrm{n}=50$)	($\mathrm{n}=130$)	($\mathrm{n}=107$)	($\mathrm{n}=176$)
<6 months ago	6	6	0	4	10	3	11	4	8	4	6	3	5
6-12 months ago	6	9	10	4	5	3	4	3	17	10	3	6	8
1-2 years ago	7	10	4	6	6	10	10	3	12	4	13	6	5
2-5 years ago	8	9	0	6	12	3	9	6	8	10	8	8	8
≥ 5 years ago	8	14	0	3	8	3	3	3	8	18	16	6	10

This article is protected by copyright. All rights reserved

Never	66	52	86	77	60	77	63	81	47	54	53	72	64
Satisfaction with training on use	($\mathrm{n}=1330$)	($\mathrm{n}=387$)	($\mathrm{n}=79$)	($\mathrm{n}=632$)	($\mathrm{n}=232$)	($\mathrm{n}=48$)	($\mathrm{n}=174$)	($\mathrm{n}=346$)	($\mathrm{n}=103$)	($\mathrm{n}=80$)	($\mathrm{n}=180$)	($\mathrm{n}=163$)	($\mathrm{n}=236$)
1-Completely satisfied	24	27	16	21	27	40	13	21	34	18	24	25	28
2	20	21	22	19	19	25	22	17	26	21	19	16	20
3	20	17	22	23	20	17	27	24	10	24	17	26	14
4	13	13	13	12	15	6	14	12	19	13	15	12	11
5 - Not at all satisifed	9	9	9	9	8	2	7	8	8	10	8	15	7
Did not receive training	15	13	19	16	12	10	17	18	3	15	16	6	20

${ }^{\text {a }}$ The respondent base for this question is PwPA who have been prescribed an $\mathrm{AAI}+$ their parents/carers
AAI, adrenaline auto-injector; EM, emergency medication; GP, general practitioner; HCP, healthcare professional; PA, peanut allergy; PwPA, persons with peanut allergy; UK, United Kingdom.

This article is protected by copyright. All rights reserved

FIGURES

Figure 1. APPEAL-1 questionnaire structure and respondent groupings. (A) Question categories. (B)
Flow chart shows the number of subjects surveyed and number of responses from each population.
(C) Number of respondents from each age group (self- or proxy-reported).

PA, peanut allergy; PwPA, people with peanut allergy.

Figure 2. Respondents by country (A), recruitment source (B), and type (C) (adult with PA selfreport; parent/caregiver of PwPA self-report; parent/nonparent caregiver proxy-report for person with PA aged <18 years under their care).

PAGs, patient advocacy groups; UK, United Kingdom.

