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ABSTRACT 

Since the discovery of proteins in 1838, the field of protein engineering and our 

understanding of proteins have improved exponentially. Synthetic proteins have found 

applications in various biomedical, food and material-based settings. This rise in 

synthetic proteins was complemented with the parallel expansion in the availability of 

in silico tools for protein modelling. The complexity in the composition and design of 

synthetic proteins requires careful in silico validation to screen for potential pitfalls in 

the design. In silico tools for protein modelling and design have been used extensively 

to computationally validate the structure and functioning of the synthetic proteins prior 

to wet-lab testing. 

 In this thesis, the workflow of design-model-build-test of synthetic 

proteins with novel applications in imaging is described. The in silico-aided design, 

screening and the in vitro testing of synthetic proteins targeting S. aureus surface 

antigen Clumping factor A are discussed in Chapter 2. In this chapter, a suitable 

candidate worthy of examining in a future in vivo setting was identified. During the in 

silico-aided screening, the complexity of data obtained from various in silico tools 

posed new challenges. This was termed as ‘the in silico myriad problem’. In Chapter 

3, a mathematical strategy (Function2Form bridge) was tested to address the in silico 

myriad problem, by combining the scores of different design parameters pertaining to 

the synthetic protein being analysed into a single easily interpreted output describing 

overall performance. The strategy comprises 1. A mathematical strategy combining 

data from a myriad of in silico tools into an Overall Performance-score (a singular 

score informing on a user-defined overall performance); 2. The F2F-Plot, a graphical 

means of informing the wet-lab biologist holistically on designed construct suitability 

in the context of multiple parameters, highlighting scope for improvement. F2F bridge 

was implemented during the design process of all the synthetic proteins in Chapter 4 

and Chapter 5. 

 The synthetic protein design strategy used in Chapter 2 was 

implemented to design synthetic proteins targeting cancer cells, and to assess their 

potential as in vivo imaging agents in Chapter 4. For both MUC1 and ClfA targeted 

proteins, in vivo luminescence imaging studies involving systemic intravenous 

administration of proteins, validated synthetic protein specific accumulation at target 

cell locations within mice as evidenced by localised luminescence. Dose response 
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studies indicated that luminescence output was both target cell and administered 

protein quantity related.  

 In Chapter 5, a self-assembling protein ‘cage’ was designed, built and 

tested in vitro. An accompanying novel fluorescence-based protein-protein interaction 

reporting strategy was introduced, involving incorporation of cysteine residues at the 

interaction interface of monomeric proteins of the self-assembling protein cage. In 

silico tools were used to ensure the conformational and functional stability. FlAsH 

EDT2 (fluorescin arsenical hairpin binder-ethanedithiol) mediated fluorescence was 

used to confirm the self-assembly. This demonstrates the level of accuracy and detail 

that can be incorporated into synthetic protein design using in silico tools.  

In Chapter 6, the scope of introducing miniaturised optical devices to aid 

biological experimentation was explored. A novel handheld device for monitoring 

continuous bacterial growth, with prospects of measuring biofluorescence was 

developed. The device was tested using different bacterial strains and showed 

accuracy levels similar to a standard benchtop spectrophotometer. 

This thesis demonstrates the use of computational methods and various in 

silico tools for protein design. Modern day biomedical science demands novel 

concepts with deployable technology to assist their translation into user-based settings. 

In this thesis, various interdisciplinary concepts have been applied to deliver on a 

holistic end-goal. 

  

https://en.wikipedia.org/wiki/1,2-ethanedithiol
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1.1 ABSTRACT 

Understanding the complexity of nature and introducing controlled modifications to 

biological systems paved the way for game-changing technology in biomedical 

sciences of the 21st century. Since the discovery of proteins in 1838, the field of protein 

engineering and our understanding of proteins have improved significantly. Synthetic 

proteins have found applications in various biomedical, food and material-based 

settings. This rise in synthetic proteins was complemented with the parallel expansion 

in the availability of in silico tools for protein modelling. The complexity in the 

composition and design of synthetic proteins requires careful in silico validation to 

screen for potential pitfalls in the design. Protein modelling, protein design and 

visualisation are the key concepts that need to be understood in this context. In this 

literature review, underlying concepts behind current protein modelling and design 

approaches are discussed.   
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1.2.1 Man’s desire to design 

“What I cannot create I do not understand”, a quote by a theoretical physicist Richard 

Feynman, accurately represents the value of ‘design’ in man’s quest for answers in 

science and also reflects a philosophical comprehension of our shortcomings in 

understanding the complexity of life. Having control over biological design and the 

ability to recreate/redesign life has been man’s dream since the dawn of genetic 

engineering [1]. The commercial and ethical barriers provided the necessary tension 

to contain the scientific creativity within its most useful uses, and this tension between 

scientific creativity and ethical scepticism has resulted in astounding results. 

Understanding the complexity of nature and introducing controlled modifications to 

biological systems paved the way for game-changing technology in biomedical 

sciences of the 21st century [2]. DNA- and protein-based developments in recent years 

have benefited heavily from the arrival of synthetic biology. The availability of large 

databases and computational tools, low-cost DNA synthesis, high-throughput testing 

systems and the parallel rise in deployment-enabling technology have contributed 

immensely towards improving the ease and pace of scientific research.  

 

1.2.2 Proteins for natural and human directed benefits 

The diversity of the functional capabilities of proteins is unmatched with any other 

class of molecules. Proteins have established themselves as the primary building 

blocks of life. Natural proteins perform and mediate many critical functions such as 

providing structure and stability, mobility, pathogen clearing and other molecular 

sensory and regulatory functions [3]. This versatility of protein function is an attribute 

of the (i) amino acid composition (ii) 3D structure and (iii) interaction with other 

proteins and various different molecules. Engineering proteins with added 

functionalities has found numerous biomedical applications. As of 2010, over 200 

protein-based therapeutics have been marketed [4, 5]. Protein-based therapies are 

being developed to target various infectious diseases and cancer , while engineered 

proteins are also extensively used in food, biotech and material technology-based 

industries [4, 6, 7].   
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1.2.3 Milestones and advances in our understanding of proteins 

Since the discovery of proteins in 1838 [8, 9], the field of protein engineering and our 

understanding of proteins have improved significantly. The growth in knowledge and 

products based on proteins has been complimented with the parallel rise in technology 

aiding the study of their structure and functioning. In over a century of exploration in 

protein science, the road towards complete control over protein design has been 

marked with several important technological and regulatory milestones (Figure 1.1).  
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Figure 1.1:  Milestones and advances in our understanding of proteins. The above timeline tracks major events upto 2018.



7 

 

1.2.4 Designing synthetic proteins 

In literature, the term ‘synthetic proteins’ has been used to define various types of 

engineered proteins in various contexts. In simple terms, proteins that are produced by 

human intervention using recombinant DNA are defined as synthetic proteins. 

Synthetic proteins broadly encompass (i) recombinant proteins with added 

functionalities by fusing one or two naturally existing protein/protein fragments, (ii) 

de novo proteins that, as whole or part-wise, never existed in nature, and (iii) proteins 

with unnatural amino acids and protein-like molecules (peptidomimetics). In all these 

cases, proteins are engineered using one or more of the above-mentioned ways to 

perform a user-defined function. A user-defined function may contain multiple 

subfunctions that are associated with different structural parts of the synthetic protein.  

 For any designed protein to function as intended, it is important that the 

structure is stable, energetically feasible, and supports all the subparts in intended 

locations and conformations. Appropriate exposure of the subparts is crucial for the 

protein to perform the user-defined function at its best capability. Techniques such as 

adding small peptide tags, creating point mutations and engineering backbones are 

commonly observed in protein engineering. In certain occasions, completely novel 

peptides are generated by de novo design. Post-modification, the structure is re-

modelled, and the process is repeated until satisfactory mathematical confirmations 

are obtained. In silico aided designing stands to benefit immensely from the 

computational tools that predict protein interactions, perform backbone engineering, 

predict function and toxicity etc. [10]. The complexity in the composition and design 

of synthetic proteins requires careful in silico validation to screen for potential pitfalls 

in the design. 

 

1.2.5 Current in silico tools aiding protein design 

The rise in engineered proteins was complemented with the parallel expansion in the 

availability of in silico tools for protein modelling [10]. In silico tools for proteins 

could be broadly classified either as structure-based tools or sequence-based tools 

based on the input to the program. A majority of these computational tools help 

visualise the 3D structure of the query protein and provide graphical/mathematical 
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readout about the quality of a particular in silico parameter, such as hydrophobicity, 

active site, etc. Such an analysis and visualisation of the proteins provides deep 

insights into protein structure and forms a pivotal component in informed protein 

engineering and de novo protein design. 3D structure prediction, studying protein 

interactions and de novo design are the key aspects that need to be understood in this 

context. Figure 1.2 shows the commonly-used computational tools for protein 

modelling and  design.  
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Figure 1.2 Commonly used in silico tools for protein modeling and design 

  

Figure 1: In silico tools for protein modelling and design. 
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1.2.5.1 Understanding protein folding 

Elucidating the structure of proteins revolutionized the field of protein science and 

paved the way for establishment of massive databases. Traditionally, physical methods 

such as NMR spectroscopy and X-Ray crystallography are deployed to elucidate and 

study the 3D structure of proteins. The recent advances in computational sciences have 

resulted in sophisticated algorithms for predicting and modelling the 3D structure of a 

protein from its corresponding amino acid sequence. The concepts of protein fold 

prediction revolve around free energy models, stereochemistry and nature directed 

homology [11]. The degree of freedom in a conformation (steric and torsional effects), 

chemical interactions with neighbouring residues and physical forces surrounding the 

residues are the main elements that dictate protein folding [12, 13]. Properties such as 

charge, polarity and hydrophobicity of the residues also have significant influence on 

the final structure. This enormous number of variables and the combinatorial 

explosion of the feasible conformations make the protein-folding problem highly 

complicated. 

 

1.2.5.1.1 Protein modelling algorithms for finding the energy minima(s) of a 

protein 

American biochemist Christian Anfinsen, in his thermodynamic hypothesis, known as 

Anfinsen’s dogma, proposed that “in the right physiological conditions, a protein will 

always fold into its native state”. This native state of a protein is defined as the lowest 

Gibbs-free energy state that can be achieved by its amino acid sequence. This 

argument was backed-up by physical structure determination techniques such as X-

ray crystallography, which soon was adopted as a standard method for protein 

structure determination. Crystallography, however, forces proteins into a single 

diffractible crystal and thus may exhibit only one native structure [14]. This ‘one 

protein – one structure’ supposition was later challenged through the discovery of 

‘chameleonic’ sequences, metamorphic proteins and intrinsically disordered proteins 

[14]. The free energy landscape of a protein has multiple local minima in which a 

protein can settle. This presence of multiple local minima poses the greatest challenge 

in computational protein structure prediction. Over the years, various mathematical 
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strategies were proposed to provide a solution to the free energy landscape problem. 

Figure 1.3 illustrates the free energy landscape of a protein. Table 1.1 details the 

modelling algorithms commonly used in various protein structure prediction tools. 

Understanding the merits and demerits of the type of modelling algorithm used is 

important when choosing an appropriate structure prediction tool. 
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Figure 1.3: Free energy landscape of a protein. The energy landscape of a protein 

has multiple mimima. The first minimum from the starting set of atomic positions is 

called the nearest local minimum. The lowest energy state is the global minimum. 
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Algorithm Description 

Gradient based minimization 

Proceeds in the direction in which free 

energy decreases rapidly.  

Finds the nearest local minimum 

effectively  

Fails to generate global minimum 

Monte Carlo based sampling 

Proceeds by random sampling by 

accepting/rejecting moves based on free 

energy 

Finds global minimum effectively 

Molecular dynamic simulations 

Uses Newton’s laws of motion and 

calculates the force acting on each atom, due 

to surrounding atoms in the protein and 

environment. Alternative to Monte Carlo 

sampling. 

Highly time consuming and requires high 

computational power 

Table 1.1: Commonly used modelling algorithms for protein structure prediction. 

Pros and cons are listed in colour. 
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1.2.5.2 Protein structure prediction 

The protein folding problem was historically solved with appreciable accuracy using 

two strategies: i. Ab initio methods, and ii. Homology-based methods [15]. 

 

1.2.5.2.1 Ab initio methods (Template-free method) 

Ab initio refers to first principle methods. Tools that rely on ab initio methods for 

predicting use laws of physics and do not rely on protein databases [4]. Ab initio 

methods simulate the conformations using free energy function to describe the internal 

free energy of a protein structure and the interactions of the 3D structure with the 

surrounding environment. The ultimate goal of the strategy is to seek the conformation 

with the lowest free energy, that corresponds to the functional state of the protein. [11]. 

 

1.2.5.2.2 Homology-based methods (Template-based method) 

In this method, the secondary structure of a protein is obtained by comparing the 

fragments with sequence homology in existing protein databases [11]. The accuracy 

of prediction depends on the availability of homologous sequences in the databases. 

Therefore, most naturally existing proteins could be modelled using homology 

modelling with high accuracy. However, while predicting the structure of synthetic 

proteins, the confidence in predicted structure depends on how close the synthetic 

protein resembles the naturally existing proteins.  

Today's modelling uses a combination of both homology-based and ab initio methods 

to elucidate the 3D structure. Once the query sequence is given as an input, sequence 

alignment tools perform a thorough analysis to find similarities in the databases. In 

most cases, the similarities occur in small fragments all through the sequence. 

Computational tools are used to model the homologous parts using the proteins in the 

Protein Database (PDB) as a template. The sections of the sequence with minimal or 

no similarity are subjected to ab initio methods. Such an approach provides an optimal 

result in most cases. This process gives a linear chain of secondary structure fragments. 

Once the whole sequence has been modelled, the fragments are assembled by 
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threading, and refined to rank the predicted conformations based on free energy 

principles. Commonly used tools for protein modeling are listed in Table 1.2
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Figure 1.4: Protein structure prediction methods. Sequence of events in ab initio and template-based modelling methods.  
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Computational tools for protein modelling and protein interaction studies 

3D structure prediction tools (based on popularity and CASP) 

I-Tasser [16]  • Iterative Threading ASSEmbly Refinement developed by 

Zhang Lab: Uses fold recognition (threading) and Ab initio 

methods to detect structure templates from existing 

databases (PDB). 3D models of the query sequence are 

constructed by reassembling structural fragments by replica 

exchange Monte Carlo simulations. 

• http://zhanglab.c

cmb.med.umich.

edu/I-TASSER/ 

Modeller [17] Template based homology modelling program developed by 

Andrej Sali (University of California, San Francisco, 

Accelrys). Uses Ab initio structure prediction for regions 

with high variability. 

https://salilab.or

g/modeller/ 

Rosetta Automated protein structure prediction server developed by 

Baker’s lab. Offers non-commercial comparative and ab 

initio modeling. 

• https://www.ros

ettacommons.or

g/ 

• Raptor X [18] • Developed by Xu group, Raptor X uses remote homology 

recognition/protein threading for structure prediction. 

Provided best alignments for difficult targets in CASP 9.  

• http://raptorx.uc

hicago.edu/ 

Tools for studying protein interactions (based on popularity and CAPRI) 

ClusPro [19] • Widely used tool for protein-protein docking, developed by 

S Vajda et al (ABC Group and Structural Bioinformatics 

Lab Boston University and Stony Brook University). 

ClusPro also has an antibody mode. Uses PIPER (FFT 

based) for rigid body docking and refinement by energy 

minimization. 

• https://cluspro.o

rg/ 

• Z Dock [20] • Developed by Weng Z et al (University of Massachusetts 

Medical School and Boston University), predicts structures 

of protein-protein complexes and symmetrical multimers. 

Performs rigid body search for docking interaction between 

two proteins and uses FFT to find possible binding modes 

for the given protein. 

http://zdock.uma

ssmed.edu/ 

SwarmDock 

[21] 

• Uses particle swarm optimization to find low energy 

positions and binding orientations. Works in both full blind 

and restrained modes depending upon the availability of the 

information on residues. It is developed by Paul A. Bates et 

al 

https://bmm.cric

k.ac.uk/~svc-

bmm-

swarmdock/ 

• AutoDock 

[22] 

• Developed at Arthur J. Olson's Laboratory (The Scripps 

Research Institute and University of California). Widely 

known for receptor-ligand docking but also could be used 

for protein-protein docking. 

http://autodock.s

cripps.edu/ 

Table 1.2: Widely used tools for computational protein modelling and protein 

interactions 

http://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://salilab.org/modeller/
https://salilab.org/modeller/
https://www.rosettacommons.org/
https://www.rosettacommons.org/
https://www.rosettacommons.org/
http://raptorx.uchicago.edu/
http://raptorx.uchicago.edu/
https://cluspro.org/
https://cluspro.org/
http://zdock.umassmed.edu/
http://zdock.umassmed.edu/
https://bmm.crick.ac.uk/~svc-bmm-swarmdock/
https://bmm.crick.ac.uk/~svc-bmm-swarmdock/
https://bmm.crick.ac.uk/~svc-bmm-swarmdock/
https://bmm.crick.ac.uk/~svc-bmm-swarmdock/
http://autodock.scripps.edu/
http://autodock.scripps.edu/
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1.2.5.3 De novo design and structural remodelling 

Having partial predictive control on the protein function and redefining the functions 

have driven the field of protein engineering into an era of unprecedented development. 

However, the total number of existing proteins in nature is finite and the combinations 

using recombinant engineering also has limitations on what can be achieved. Nature 

has sampled only a fraction of total possible combinations in the total sequence space 

[13]. For example, a typical 100 amino acid protein can have about 20100 different 

sequence variations. Given the multiple sizes of each protein, the number of total 

possible proteins is beyond magnitudes of human interpretation. Nature on the other 

hand has a little over 1012 different proteins. This huge gap forms the drawing canvas 

for de novo protein design [13] Figure 1.5.  
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Figure 1.5: Protein sequence space representation. Natural proteins occupy a minute 

fraction of the total sequence space. Directed evolution and recombinant technology 

in recent years have stretched the used sequence space. De novo protein design stands 

to capture the vast unused sequence space and promises a huge potential [13]. 
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De novo protein design breaks the evolutionary constraints placed by nature and 

explores all the mathematically feasible structures in the protein canvas. In theory, de 

novo design is the opposite of protein modelling. Protein modelling asks the question 

of whether it is possible to predict the protein structure of a given amino acid sequence. 

While the de novo design on the other hand, asks whether it is possible to determine 

an amino acid sequence that would fold into a specified query structure [4] (Figure 

1.6).  

Despite the immense potential of rational de novo protein design, more than 95% of 

protein engineering is still being carried out by inserting random mutations and 

selecting those which confer an advantage [23]. The rational design of proteins falls 

into two categories - the redesign of existing proteins in a process analogous to 

directed evolution, and the de novo design of completely novel proteins. Protein 

redesign uses naturally occurring proteins as scaffolds, and then engineers them to 

introduce desired changes, such as increased stability or new functional properties 

[24]. This will produce novel proteins, but their origins will be firmly based in the 

naturally occurring protein fold space. The majority of protein engineering to date has 

been of this nature. This method is convenient as it provides a protein backbone 

starting block, particularly if the desired effect represents a minor alteration in the 

protein’s function. This becomes complicated when large numbers of amino acids are 

altered, since it becomes inevitable that the structure will also be altered. Native 

proteins are only marginally stable in many cases, so even small sequence changes can 

lead to dramatic changes such as aggregation or unfolding [25]. Major advances in 

medical science directly resulting from this degree of protein design include the 

humanisation of antibodies from other animal species, which entails modifying the 

wild type antibody to resemble human antibodies while retaining the original function. 

Two examples are Alemtuzumab [26] and Mepozulimab [27] for the treatment of 

multiple sclerosis and eosinophilic asthma respectively.  

True de novo protein design explores the entirety of protein sequence space, guided 

only by the physical interactions that control protein folding. The scale of possible 

proteins, once naturally occurring proteins are left behind, is enormous. De novo 

protein design is based on the hypothesis that a protein will always fold into the shape 

associated with the lowest free energy state allowable by the amino acid sequence. 

Therefore, if an accurate method for measuring the energy of protein chains is 
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available, in addition to a method to sample different structures and sequences, it 

should be possible to identify sequences that fold into novel structures [25]. Once the 

desired shape has been reached, the stability of the novel protein can be improved by 

making minor adjustments, maximising the difference in free energy between the 

desired conformation and alternatives. De novo design brings the possibility of 

producing protein structures with novel functions that never existed in nature. Various 

researchers have utilised de novo design concepts to produce an array of repeat 

proteins, symmetry aided design of self-assembly and designing interfaces with 

special affinity towards a target [28]. However, the de novo design process relies 

entirely on computational simulations. This can hinder the accuracy of the predictions 

by small margins.  
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Figure 1.6: Difference between protein modelling and design. Protein design can be 

understood as the inverse of protein modeling. In protein design, computational 

algorithms are used to predict an amino acid sequence for a user-defined structure. 
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The principles of de novo design could also be used for structural remodelling. In 

protein engineering, structural modelling is performed when a small region on a 

protein structure requires a modification. Deleting certain residues, reconstructing 

backbones, disarming functional regions etc., require changes in amino acids without 

causing significant changes to the original protein structure. In such cases, de novo 

design principles are used for structural remodelling. 

 

1.2.5.4 Predicting protein-protein interactions 

Proteins perform and mediate various life functions by their interactions. Predicting 

protein interactions is crucial to understand protein function. Acquiring atomic level 

information of protein interactions from a wet lab study is extremely difficult to 

achieve. Thus, predicting protein interactions computationally is gaining popularity. 

Predicting protein interactions is a challenge, even using sophisticated computational 

algorithms. The range of potential interactions with the surroundings (medium), 

structural rearrangement associated with binding, flexibility, time scale and other 

physical factors are some of the well-known hurdles. In computational terminology, 

inter-molecule binding interaction is termed as docking. Docking is widely used 

method to study interactions of small molecules. The motion of the molecules post-

interaction and structural changes while binding, are not considered. Thus, the rigid 

body docking falls out of agreement with large proteins. Tools such as RosettaDock 

have used Monte Carlo minimization-based methods to implement semi-flexible 

docking, specifically for proteins [29]. However, a universally reliable docking tool 

for full chain protein-protein interaction is a topic under research. Commonly used 

computational tools for studying protein interactions are listed in Table 1.2. 

1.2.5.5 Visualisation tools aiding protein design 

Visualisation of the 3D structure of a protein is an important component in both 

modelling protein structure (Physical methods and/or computational prediction) and 

protein design. Visualisation (i) For biochemists: Provides insights into various 

protein domains such as hydrophobic regions, active sites and catalytic sites. (ii) For 

evolutionary biologists: Visualising and mapping 3D structures aids in studying 

homology in structure. (iii) In drug designing: Visualising protein-protein 
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interactions and protein interactions with small-molecules is key to understand 

binding. (iv) In de novo protein design: Visualizing the designed backbone structures 

and superimposing the designed structures with experimental structures are very 

commonly performed using the molecular visualisation.  
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Figure 1.7: Applications of molecular visualisation. Interior graphics: Connection 

between computational ‘protein modeling and design’ and visualisation.  
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1.2.6.1 Current tools for visualising proteins 

The early 20th century saw a sudden increase in the number of protein structures 

deposited in protein databases [30] and thus a need for better visualisation tools 

increased in parallel. Over the years, a wide variety of visualisation tools have been 

developed and deployed for protein structure visualisation. Pymol [31], VMD [32], 

Chimera [33] and Rasmol [34] are some examples of widely used standalone 

applications. Later, web-based applications such as Jmol [35] and iView [36] gained 

interest in the scientific community. Recently, several mobile-based applications for 

android and iOS have also been developed by various groups for molecular 

visualisation. Visualising biomolecules (proteins in particular) in virtual reality has 

gained wide attention recently [37]. Tools such as ChimeraX [38], BioVR [39], 

StarCave [40] (cave based) have been developed for visualising the 3D structure of 

proteins in virtual reality. Although the current technology provides a plethora of 

functionalities for the user, the potential of molecular visualisation in VR is still a 

maturing field. Easier navigation in the VR environment, better UI (user interface), 

faster rendering, and simplified instrumentation are some areas that are expected to 

see some improvements in the near future. Parallel advances in affordable VR 

headsets, increasing computational power and graphics, project interesting times 

ahead. 

1.2.7 Commercial landscape of protein design technology 

The protein engineering market value is estimated to reach $3.9 billion by 2024 at a 

CAGR of 12.4% [41]. Biotech industries and Big Pharma have successfully taken the 

commercial advantage of the ‘build’, ‘test’ and ‘production’ phases of the protein 

production chain. By expanding the protein canvas, de novo design opened an 

enormous opportunity for business. As a consequence, the in silico design and 

modeling phase gained new commercial interests. Although the ‘build’ and ‘product’ 

phases still remain as the major money generating stages, the recent surge of start-ups 

focusing on the design phase is an early indicator of the in silico revolution. Figure 

1.8 shows various phases of the protein production chain.  

Table 1.3 details the services, technology used and information on the commercial 

stage of recent companies focusing on the ‘design and modelling’ phase of protein 
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production chain. The association of these protein design companies and their parent 

institutions with Big Pharma and biotech industries indicates that designer synthetic 

proteins are approaching the market [42]. 
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Figure 1.8: Various phases of protein production chain and commercial entities at 

each phase. Top: Technologies and services involved in the protein production chain. 

Bottom: List of companies involved in each respective phase of protein production 

chain. 
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Company 

Name 
Description Services Technology Origin Commercial Stage* 

Funding

/Revenu

e* 

Amai 

proteins[43] 

Design of protein-

based sweeteners 

Hyper-sweet and thermostable designer 

proteins 

Agile Integrative 

Computational Protein 

Design 

Israel 

Seed level 

Lead investor: 

• Yakumi 

• The kitchen-

FoodTech hub 

$850k/- 

Arzeda[44] 

Computationally 

engineered and 

computationally 

designed de novo 

proteins for 

agriculture, 

diagnostics and 

food-based 

products 

• De novo protein design 

• Enzyme development 

• Small molecules for therapeutics 

• Computational services for protein 

engineering 

• AI based prediction 

models, 

• Rosetta protein suite 

Institute of 

protein design, 

University of 

Washington 

Early Stage Venture 

 

Series A 

 

Lead investor: 

Universal materials 

incubator 

OS fund 

$15.2M/$5

M 

Codexis[45] 

Engineered 

enzyme services 

for biomedical, 

Food and 

diagnostic 

applications 

Software services 

Sage: Directed evolution 

ProSAR: Makes mathematical models for 

sequence-function relationships based on 

experimental data. 

MOSAIC: Evaluates the interactions of 

multiple mutations 

• Machine learning 

• Neural networks 

• AI for prediction 

models 

San Francisco, 

US 

Post IPO Equity 

 

Lead Investor 

• Casdin capital 

• EDBI 

$87M/$65.

9M 
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Other services 

• Protein engineering 

• Scale-up and Supply 

Screening kits based on proteins 

Neoleukin 

Therapeutics[4

6] 

De novo – 

therapeutic 

proteins for 

immunological 

disorders 

De Novo Protein Design 

Custom de novo designed proteins for 

therapeutic applications 

The Neoleukin Platform 

Proving protein modification, de novo 

reengineering, property modifications etc. 

Rosetta suite 

Institute of 

protein design, 

University of 

Washington 

Acquired by Aquinox 

Pharmaceuticals 

-/- 

ProteinQure[47

] 

Computational 

platform for 

designing protein 

therapeutics 

• Protein structure determination 

• Protein design and 

• Protein property optimisation services 

• Quantum computing 

• Molecular dynamic 

simulations 

• Artificial intelligence 

and  

Machine learning models 

Toronto 

Seed level 

 

Privately owned company 

 

Lead Investor: 

Felicis Ventures 

$4.6M/- 

Peptone[48] 

AI based 

computational 

protein 

assessment and 

design 

• Antibody Design and Optimization 

• Protein Developability Assessment 

• Automated Thermostability Engineering 

• AI — Assisted Survey of "Dark 

Proteome" 

• Computational 

biophysics 

• non-linear modeling 

• statistical approaches 

• progressive AI 

• Cloud based 

technology 

London 

Seed level 

Privately owned company 

 

Lead Investor: 

Founders Factory 

$350k/- 

PvP 

biologics[49] 

Oral enzyme for 

Celiac disease 

KUMAMAX – an oral enzyme for the 

treatment of celiac disease 
Rosetta suite 

Idea: iGEM 

competition  

Private company 

 

$35/$3M 



31 
 

Development: 

Institute of 

protein design, 

University of 

Washington 

Lead investor: 

Takeda Pharmaceutical 

Cyrus 

Biotechnology[50] 

Offers service and 

solutions for 

protein design and 

modeling 

problems 

Software solutions 

Rosetta based protein modeling, design and 

interaction prediction 

Service solutions 

• Cryo-EM 

• Protein design 

• Protein structure prediction 

NMR and X-Ray crystallography 

Cyrus Bench: Rosetta 

based suite for molecular 

modeling and design 

 

Cyrus Bench is an easy-

to-use version of various 

Rosetta based tools packed 

into one suite.  

 

Institute of 

protein design, 

University of 

Washington 

Early stage venture 

Privately-owned company 

Lead investor: 

Trinity Ventures 

$10.4M/$1

M 

LabGenius[51] 

Evolving novel 

proteins using 

machine learning 

driven approaches 

Protein based therapeutics 

• Improved targeting 

• Adding custom properties 

• Exploring potential drug candidates 

 

• EVA- machine learning-

driven evolution engine. 

• Deep-learning neural 

networks to explore and 

improve protein 

properties 

London 

Early stage venture 

Privately-owned company 

Lead investor: Obvious 

ventures 

Lux capital 

Acequia capital 

13.7M/$1

M 

Table 1: Services, technology used and the commercial stage of recent companies focusing on the ‘design and modelling’ phase of 

protein production chain 

*Information on commercial stage, lead investors, estimated revenue and investment amounts was obtained from Crunchbase [52].
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1.2.8 How far are we from designer proteins 

1.2.8.1 Costs of protein production and testing  

The advent of synthetic biology has brought down the costs associated with DNA 

sequencing and analysis dramatically [53,54]. This had a profound effect in lowering 

research costs which involve studying DNA and technology and products that depend on 

synthetic DNA. Miniaturised and portable devices for sequencing, handheld alternatives 

for PCRs, spectrophotometers have enabled the deployment of DNA based technology 

into commercial settings [55-57]. Protein based technology, on the other hand, is playing 

a catching-up game, the reliance on large bench top instrumentation such as NMR, X-Ray 

crystallography, Cryo-EM based methods and traditional testing methods involving 

expensive reagents such as antibodies and a lack of robust and affordable in vitro testing 

systems are some hurdles to overcome in coming future. 

1.2.8.2 Reliability of in silico tools 

The reliability of outputs of the current in silico tools for protein modelling and design 

depends on several factors, such as protein complexity, sequence and structural homology 

and the choice of individual algorithms and methods used in the in silico workflow. 

However, on a global scale, community-wide experiments such as Critical Assessment 

of protein Structure Prediction (CASP), Critical Assessment of PRediction of Interactions 

(CAPRI) and the Critical Assessment of Functional Annotation (CAFA) have been 

benchmarking the computational tools for structure prediction, protein interaction 

prediction and function prediction. This is achieved by ranking the in silico tools based 

on their blind-folded prediction ability of various sets of queries. CASP, CAPRI and 

CAFA are conducted once every two years. The improvement in the performance shown 

by the tools in the community-wide experiments assures increasing reliability. 

 



33 

 

1.2.8.3 Deploying synthetic proteins 

The applications of synthetic proteins expand into various sectors such as food-based 

industries, materials technology, and biomedicine. The advent of de novo protein design 

has only increased the ever-expanding canvas of protein structures. The advances in 

synthetic biology are promoting lab-based novel scientific concepts to translate into 

deployable and commercially-viable products. Commercial viability requires 

transforming a scientific outcome into a deployable product. For example, a protein based 

diagnostic tool would additionally require an appropriate hardware for testing and a 

software to analyse and report the results. The deployability factor becomes crucial while 

these lab-based concepts shift to commercial or consumer-based settings. 

Interdisciplinary approaches form a bridge connecting a scientific concept and a 

consumer.  

1.2.8.4 Regulations and ethics  

Use of purified engineered proteins presents lower environmental, food and drug 

regulatory barriers than ‘live’ products featuring genetically engineered DNA, given a 

typical protein’s ‘terminal’ state. Nonetheless, immunotherapy with engineered 

antibodies, CAR-T cell technology, Crisper-Cas9, protein-based drugs for autoimmune 

diseases and Gene Therapy have multiple forms of protein engineering as a key integral 

component and have always been a topic in scientific ethics and policy making [58-60]. 

Having control over biological design and the ability to recreate/redesign life has been 

man’s dream since the dawn of genetic engineering [1]. Commercial and ethical barriers 

provided the necessary tension to contain the scientific creativity within its most useful 

uses, and this tension between scientific creativity and ethical scepticism is producing a 

range of products, including protein-based, with capacity to improve the world.  
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1.3 CONCLUSION 

Our ability to design and engineer proteins has advanced considerably over the last 

decade. In this review, various in silico tools that are crucial for synthetic protein design 

have been highlighted. Special focus was placed on (i) protein structure prediction, (ii) de 

novo protein design and (iii) protein visualisation techniques, all of which are studied in 

this thesis. The value of integrating multidisciplinary approaches in transforming a 

scientific concept into a commercially viable product has been discussed. 
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2.1 ABSTRACT 

Background  Incorporation of minimal regions of antibodies within engineered proteins 

presents an attractive strategy to target proteins to specific molecules or cells. Such 

targeted synthetic proteins have an enormous potential in various diagnostic and 

therapeutic applications. Designing a synthetic protein involves modeling and testing 

multiple test variants. A typical synthetic protein with 5 defined subparts can be 

assembled into 5! i.e. 120 different variants. Current in silico tools help identify merits 

and pitfalls of the design and aid in screening for potential best performers. Such an in 

silico aided screening reduces the costs and labour involved in wet-lab experimentation. 

Aims  The aim of this work was to (i) computationally design and model multiple 

variants of a bacterial targeted synthetic protein and screen for potential best performers, 

and (ii) build and test the synthetic protein test variants using wet-lab assays. 

Methods  Over 50 different multi-part test constructs targeted to S. aureus surface 

antigen ClfA were modelled and validated using various computational tools to inform 

and guide downstream wet-lab experiments. For targeting, constructs featured either 

mono-valent ScFVs or bi-valent mono-specific diabody fragment sequences. Gaussia 

luciferase (Gluc) was used as a luminescence reporter on all test variants. All test construct 

variants were subjected to computational screening of predicted functionality. The best 

predicted performers were appropriately modified to ensure required hydrophobicity, net 

surface charge, active site exposure and valid 3D structure. After a thorough in silico 

validation, wet-lab studies were conducted to validate protein production and functioning 

(lumiescence and specific target binding) in vitro.  

Results  Following in silico design and analyses, 10 test constructs against ClfA 

were produced in CHO cells and tested for specific target binding in vitro. Based on 

luminescence readouts, a ScFv-featuring test construct was identified as the best 

performer, in terms of S. aureus specific binding, as evidenced by luminescence-based 

assays.  

Conclusion  The outputs of this study were i) a validated in silico and wet-lab strategy 

for design, build and test of targeting synthetic proteins, and ii) a target-specific reporter 

protein platform for bacterial imaging. 
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2.2 INTRODUCTION 

2.2.1 Synthetic proteins with minimal regions of antibodies 

Over the last decade, the number of protein-based imaging and therapeutic applications 

have grown considerably. Engineering proteins to target specific cells or proteins is a 

common approach used in protein-based biomedical applications [1]. This targeting 

requires the binding of proteins to targets of interest. Using antibodies as targeting leads 

is a well-known strategy. Radioactive labeling of antibodies and chemical conjugations 

with fluorescent labels and nanoparticles are some of the common ways of exploiting 

antibodies. However, due to the large size, full antibodies present many disadvantages 

such as risk of immunogenicity, slow clearance and low tissue penetration [2-4]. 

 Incorporating minimal antibody regions into a synthetic protein as a 

binding domain is an attractive strategy for targeting a subject of interest. The small size 

of the minimal regions improves the pharmacokinetic properties and reduces the risk of 

immunogenicity. A typical synthetic protein consists of multiple subparts with individual 

functions. The small size of the minimal regions provides great flexibility in design. 

Depending on the user requirement, the minimal regions can be assembled into multiple 

variants of antibody fragments such as ScFvs, diabodies, nanobodies etc. The valency and 

specificity of the synthetic protein could be altered by using multiple minimal regions of 

antibodies with different targets. Figure 2.1 illustrates a few examples of antibody 

fragments constructed from the minimal regions of a full IgG antibody. 

 The functional versatility of proteins and modular aspects of recombinant 

protein engineering paved the way towards designing proteins with multiple added 

functionalities. In the last decade, engineering antibodies for customised applications took 

an unprecedented development [5]. Engineered antibody fragments are fragmented small 

antibody parts assembled by researchers for diversifying and improving the functionality. 

With current computational tools and engineering of appropriate genetic elements, 

antibodies could be engineered to have customised affinity, half-life, valency, minimal 

toxicity, avidity and other specific biological functions [5, 6]. Examples of such 

engineered antibody fragments are shown in Figure 2.1.  
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Figure 2.1: Original IgG antibody format and various engineered antibody fragments. 

The engineered antibody fragments differ in their specificity, stability and valency. VH 

and VL domains are the minimal regions of the antibody that primarily contribute to 

binding to the target. The presence of multiple copies of minimal regions increases the 

valency of the antibody fragment and the presence of minimal regions from two or more 

different antibodies adds multiple target specificity (shown in different colors). The 

minimal regions are often connected by small rigid/flexible linkers.  
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2.2.2 Designing a synthetic protein with multiple ‘parts’ 

Designing a synthetic protein with a defined function requires building and testing of a 

range of variants. For any designed protein to function as intended, it is important that the 

structure is stable, energetically feasible, and supports all the subparts in the intended 

locations and conformations. In most cases, the synthetic protein is composed of smaller 

subparts with unique subfunctions. These parts are connected to each other directly or by 

using small peptide linkers. The subparts may also include additional enhancer elements 

to improve the stability, solubility and secretion as appropriate. As the number of subparts 

increases, the choice of subpart types, variants and the number of ways to assemble these 

also increases (Figure 2.2).  

  



46 

 

 

Figure 2.2: Number of variants possible for a synthetic protein with 4 subparts. For a 

protein with 4 subparts where there are n different choices available for a secretion 

signal, m different choices for the linkers, o different choices for the solubility enhancer 

and p different choices for the detection tag. In most cases the order of the assembly also 

is a variant in itself. 
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For 4 subpart construct, with each subpart belonging to a subset (n,m,o,p), the total 

possible variants are given in the formula below.  

[𝑛 + 𝑚 + 𝑜 + 𝑝]!/[(𝑛 + 𝑚 + 𝑜 + 𝑝) − 4]!  

For an R subparts construct, the equation changes to: 

[𝑛 + 𝑚 + 𝑜 + 𝑝+. . . . . . . ]!/[(𝑛 + 𝑚 + 𝑜 + 𝑝+. . . . . ) − 𝑅]!  

Wet lab synthesis and testing of all variants is a laborious and highly expensive process. 

Such methods are also not suitable for high throughput applications. Computationally 

modeling the test variants and in silico screening provides a screening rationale and also 

assists the wet-lab biologist by informing about the pitfalls and merits of an engineered 

protein, prior to synthesis. The final design variants can also be improved continuously 

based on the feedback from the computational tools.  

2.2.3 Bacterial Imaging 

Bacteria present both a beneficial and a detrimental role for various human needs. 

Understanding the pathogenicity of bacteria is crucial clinically, in preventing and curing 

infectious diseases. For research purposes, monitoring bacterial trafficking in the body is 

valuable. Non-invasive detection of specific bacteria also benefits diagnosis and treatment 

of infectious diseases. Developing a non-invasive imaging strategy to detect bacteria 

within a living host would benefit various fields including, infectious diseases, gene 

therapy and cancer.   

2.2.4 Staphylococcus aureus 

S. aureus is a Gram-positive, clinically important pathogen that can cause a range of 

diseases from superficial skin infections to pneumonia, endocarditis and fatal sepsis in 

humans [7]. S. aureus is often found in skin and nostrils and is a formidable opportunistic 

type. The ability of S. aureus to survive in a variety of locations in the body is an attribute 

of its range of virulence factors such as toxins, adhesins and proteins that help it to evade 

the immune system [8, 9]. Understanding the mechanism of S. aureus interactions with 

the host provides insights to develop novel imaging and therapeutic strategies. Biofilm 

formation and aggregation or microcolony establishment are the two main modes of S. 
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aureus infections [10]. Biofilm based S. aureus infections are common in medical devices 

and other surface-based settings [11]. However, microcolony establishments are 

increasingly seen in host infections. In microcolony based infections, S. aureus aggregates 

are embedded into the extracellular matrix composed of proteins such as fibrinogen and 

collagen [10]. S. aureus also interacts directly with fibrinogen and thus forms large 

clusters of cells (Figure 2.3).  
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Figure 2.3: Crystal structure of human fibrinogen (PDB ID: 3GHG). The 𝛼, 𝝱 and 𝜸 

chains are depicted in red, green and blue respectively. The MSCRAMM, microbial 

surface component recognizing adhesive matrix molecules binding site is highlighted in 

red box.  
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This ability to interact with fibrinogen is a hallmark feature of S. aureus and is known as 

clumping (Figure 2.4). The clumping of S. aureus is facilitated by its virulence factor 

ClfA (Clumping factor A) [12]. Targeting the virulence factor ClfA (clumping factor A) 

is a promising strategy to detect and prevent S. aureus based infections. 
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Figure 2.4: Schematic showing clumping of S. aureus. ClfA facilitates clumping by 

binding to distal ends of fibrinogen dimer. This allows the dimer to act as a connecting 

bridge between the bacterial cells.  
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2.2.5 Gaussia Luciferase as a reporter protein 

Bioluminescence is the liberation of energy in the form of light by a reporter protein 

which, in most cases, oxidises a substrate molecule in an ATP (or FMNH2) dependent 

manner [13]. Bioluminescence reactions do not require light absorption/excitation. 

Bioluminescence depends on an enzyme called luciferase, a substrate, commonly known 

as luciferin and oxygen. Some reactions also would require, ATP and Mg2+ as cofactors 

for their activity. The term luciferase encompasses all the enzymes that produce light on 

catalysis. There are a wide variety of luciferases found in nature ranging from fireflies to 

deep ocean algae. Firefly (Fluc), Click Beetle (CBluc), Renilla (Rluc) and Gaussia (Gluc) 

are a few of the most widely studied luciferases [14-16]. Amongst all the luciferases 

mentioned above, Gluc is an ATP independent luciferase. The working mechanism of 

Gluc is shown in figure 2.5. Due to its small size, ATP independent working, high stability 

at elevated temperatures, ability to be secreted outside the cells and bright signal, Gluc is 

suitable to be integrated recombinantly as a reporter into any synthetic construct. 
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Figure 2.5: Working mechanism of Gaussia luciferase catalysed bioluminescence. 

Gaussia luciferase catalyses the conversion of its substrate Coelenterazine to 

coelenteramide, in presence of oxygen. During this process energy is emitted in the form 

of light at 480nm (blue). 
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The potential of bioluminescence imaging has been explored previously in various disease 

settings. Bioluminescence has been previously used to study mRNA stability, miRNA 

expression, studying signaling pathways, post translational modifications, protein-protein 

interactions, understanding kinetics of proteins, imaging tumors, etc [17]. 

Bioluminescence represents an efficient and affordable method, as the instrumentation 

required is relatively inexpensive, low-cost and minimal consumables are required, 

minimal technical expertise is required to learn the imaging methodology and easy data 

analysis [18]. Considering the above-mentioned advantages, bioluminescence based 

Optical Imaging promises a huge potential to be deployed as a novel imaging strategy 

towards various fields of medicine.  

 

This study demonstrates the proof-of-concept of the design-model-build-test strategy of 

targeted synthetic proteins, using S. aureus surface antigen ClfA as a target.  
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2.3 MATERIALS AND METHODS 

2.3.1 Overview of in silico design of synthetic proteins 

Synthetic proteins contained multiple subparts with individual subfunctions. Over 200 

different variants were made and manually screened for potential best performers. Various 

in silico tools were used during this process and several iterations of each test variant were 

validated until desired structural conformations were achieved. VH and VL domains of 

anti ClfA antibody MAb 12-9 was used as the binding domain to target ClfA on S. aureus. 

The amino acid sequence was obtained from a patent application. 

http://www.google.ch/patents/US20050287164  

Gluc was used as the luminescent imaging part. The test variants differed in their part 

arrangement order, presence and absence of additional domains. The process workflow 

and methods are explained in the sections below. 

2.3.2 Computational tools used for in silico -aided design and validation 

2.3.2.1 Protein structure modeling 

All the amino acid sequences of the test variants were subjected to protein modeling to 

predict their 3D conformation. The protein modeling was performed primarily using the 

I-Tasser protein modeling suite [19]. Both web server and the standalone suite were used 

to perform modeling of multiple constructs in parallel. C-score from the I-Tasser output 

was used to determine the best model after each modeling experiment. Higher C-Score 

indicates higher confidence in the predicted model. The test constructs were also modeled 

using Rosetta modeling suite to increase the prediction reliability [20, 21].  

2.3.2.2 Superimposing predicted models 

The models predicted by I-Tasser and Rosetta were superimposed onto each other to 

calculate the agreement of the relative position of each atom in space. Root Mean Square 

Distance (RMSD) was used as parameter to judge the agreement between the models 

predicted by the two modeling tools. R-algorithms, developed in-house at the Tangney 

lab, were used for this purpose. 

http://www.google.ch/patents/US20050287164
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2.3.2.3 3D visualisation 

Visualising protein structures in 3D is a central element of protein modeling. The 

alignment of important parts in right conformation was ensured by visually validating 

each individual test variant. UCSF Chimera was used for all protein visualisation 

throughout this work [22]. Highlighting various domains and specific sequences in the 

3D structure, hydrophobicity and polarity depiction were all carried out using the internal 

options in Chimera. Chimera was also used to visualise protein-protein interactions after 

protein docking which was carried in the later stages of this workflow.   

2.3.2.4 Protein-protein interactions 

Protein-protein interactions were studied using protein docking. AutoDock Vina was used 

for protein docking [23]. Free energy change (ΔG) was used as an indicator for judging 

the quality of interactions. The negative sign indicates the energy released during the 

interaction. Higher numerical values of ΔG reflect stronger interactions. All the bound 

conformations were visualised in UCSF Chimera to screen for conformations that bind at 

the active sites (epitope-paratope interaction).  

2.3.2.5 Theoretical structure validation 

Ramachandran plots (RC plots) were used to validate the theoretical stability of the 

modeled structures. RC plots inform the percentages of residues that occur in the 

theoretically favored, allowed and disallowed regions. This information could be used to 

verify the structural stability of the model to exist in a natural environment. 

2.3.2.6 Total hydrophobicity vs Surface hydrophobicity 

Hydrophobicity of the 3D models explains the integrity of the conformation in a water 

based medium. Large sections of hydrophobic residues on the surface of the structure 

result in structural deformation when dissolved in an aqueous medium. Regular 

hydrophobicity calculators inform the summative hydrophobicity of the entire protein. 

However, the hydrophobic residues deprived of external exposure do not contribute to the 

instability. Surface hydrophobicity was mathematically calculated by identifying the 
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residues which have over 40 % exposure. The hydrophobicity is then calculated for these 

surface residues using in-house R algorithms. 

2.3.2.7 Structural remodeling and affinity improvements 

Improvements to the backbones, linkers and single residue replacements required 

structural remodeling. This was performed using Rosetta package. In cases where the 

modification is very small, the specific region is remodeled instead of modeling the whole 

structure. 

2.3.3 DNA design  

Following the in silico validation of all the test sequence. The finalised constructs were 

reverse translated into their corresponding DNA sequences using backtranseq feature on 

EBI website (https://www.ebi.ac.uk/Tools/st/emboss_backtranseq/). The DNA sequences 

were codon optimised for CHO cells using the codon optimisation tool available on IDT 

website (https://eu.idtdna.com/codonopt). The final constructs were obtained from Twist 

Bioscience company. Due to fragment size restriction on DNA synthesis, some of the 

constructs were synthesised in multiple parts. NEB and SnapGene’s Gibson assembly 

simulators were used to design the homologous arms to facilitate Gibson assembly. 

Amplification and sequencing primers were designed using Benchling’s primer design 

tool. The primers were cross verified using Primer3Plus. All primers were sourced from 

Integrated DNA Technologies. 

  

https://www.ebi.ac.uk/Tools/st/emboss_backtranseq/
https://eu.idtdna.com/codonopt
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Primer name Sequence 

FullSeqFWd AATTCAAAGGAGGTACCCACCA  

FullSeqREV AGGTAGATATCGCGGTACCCTTA 

StaphDia1aREV GTG ATA CTA AGG CTT TGA GAA GGT 

StaphDia1bFWD  TCT CAA AGC CTT AGT ATC ACT TGT GC 

StaphDia3aREV CAA GCG AGG TAG TTC TTT TGA 

StaphDia3bFWD CAA AAG AAC TAC CTC GCT TGG 

StaphDia4aREV  TTT TGT TGA TAC CAT GCC AAA T 

StaphDia4bFWD TTG GCA TGG TAT CAA CAA AAG 

StaphDia5aREV  GAG TTC ATC TTC AAA AAG ACC TGT G 

StaphDia5bFWD GTC TTT TTG AAG ATG AAC TCT CTG C 

Table 1.1: Primer sequences 
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2.3.4 Plasmid scale-up 

OG176 plasmid (Oxford genetics) with Kanamycin resistance was chosen for producing 

the synthetic proteins. E. coli BL21 cells were used for plasmid scale-up. E. coli BL21 

Cells were made competent using Cohen et al. 1972 protocol. 100 ng OG176 was mixed 

with 30 µl competent E. coli BL21 cells and were placed on ice for 20 min. The suspension 

was subjected to heat shock at 42◦Cfor 20 min. The cells were again placed on ice for 2 

min and 1 ml of LB broth was added. 100 µl of the transformed cells were plated on LB 

agar containing 50 µg/ml Kanamycin. The colonies were then subcultured and stored in -

80 ◦Cfor further use. For plasmid extraction, overnight subcultures of the transformed 

bacteria are subjected through Monarch Plasmid miniprep kit (New England Biolabs) 

protocol.  

2.3.5 Restriction digestion 

OG176 was digested by restriction enzyme Nco1 HiFI with CutSmart reaction buffer 

(NEB) at 37 ◦C for 1 h. Manufacturer’s protocol was followed to adjust the reaction 

volumes as per the need. Following the restriction digest, the DNA was purified using 

PCR purification kit (Qiagen) protocol. In all cases, the restriction digest was verified by 

Agarose gel electrophoresis and the DNA concentration was determined using a 

NanoDrop spectrophotometer (Thermofisher). 

2.3.6 Gibson Assembly 

Gibson Assembly was carried out using the Gibson Assembly master mix described by 

DG Gibson et al (2009). The plasmid and DNA gene blocks were mixed in 1:3 ratio in a 

Gibson Assembly master mix and incubated at 50 ◦C. E. coli BL21 cells were transformed 

with the assembled plasmids and plated on LB agar medium.  

2.3.7 Validating cloning using colony PCR and Sanger sequencing 

The selected colonies were added to NEB PCR master mix with 2.5 µl of corresponding 

primers. PCR was carried out as per NEB Q5 polymerase PCR protocol. Sanger 
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sequencing (GATC light-run) was also performed on the selected colonies to confirm the 

assembly. 

2.3.8 In vitro transfection 

CHO K1 cells were transfected using Turbofect transfection reagent (Thermofisher). 

Manufacturer's protocol was used to perform transfection. Supernatant from the cells were 

collected at 24 h and 48 h intervals. 

2.3.9 Binding assays  

S. aureus TCH959 (naturally bearing ClfA) cells (108 cells per sample) were blocked with 

5 % BSA for 2 h followed by incubation with supernatant containing each test construct. 

Cells were washed 3 times and resuspended in PBS. 10 µl of each sample is taken in 

triplicates into a corning 96 well white plate. 50 µl of Coelenterazine substrate was added 

to each well and luminescence was measured using Promega GloMax® 96 luminometer.  
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2.4 RESULTS 

2.4.1 Design elements and design rationale 

Targeted luminescence is the overall function of these synthetic proteins. Several test 

variations of the synthetic proteins were made during the design phase. Heavy and light 

chains of anti-ClfA antibody MAb 12-9, were used as the binding site (T-domain). A 

monospecific monovalent monobody (single chain variable fragment (ScFv)) and a 

monospecific bivalent diabody versions were chosen as the binding site variants. The 

choice of subparts and the design rationale are shown in Table 2. A secretion signal has 

been placed to allow the protein secretion into the supernatant. This eliminates the need 

for laborious downstream processing after protein synthesis. GLuc’s native secretion 

peptide was used in all the test constructs. A Flag tag has been added to aid 

troubleshooting if the luminescence domain doesn't function. GLuc was used as a 

luminescence reporter. The positioning of Gluc part differs between the test variants. Trx 

tag was used as a solubility enhancer. The presence and absence of the tag changes 

between the test variants. Figure 2.6 showed various subparts of an antiClfA synthetic 

protein. 
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Figure 2.6: 3D model showing different subparts of a synthetic protein. The Targeting 

domain (T-domain) coloured in magenta, is either a ScFv version or a diabody version. 

The bar depiction shows the arrangement order and the amino acid length of each 

domain. The arrow mark indicates the direction from the N terminus to the C terminus of 

the protein. (SS = Secretion signal, ST = Solubility tag) 
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Design elements Commonly used 
Notes on reviewed 

elements for the design 

Comments on the 

chosen elements 
Design Variants 

Secretion Signal 

Peptide 

GLuc SP, Kappa light 

chain SS 
Gluc SP* Eukaryotic   

G-luc signalling peptide is 

preferred for its greater 

reliability, greater 

efficiency. 

Linkers 
(GGGGS)3, (Gly)8, 

(EAAAK)3, Di-Sulfide 

linkers, PAPAP   

(GGGGS)3 – Flexible -  

smaller size of the amino 

acids provides flexibility, 

hydrophilic, suitable for 

ScFv construction [24-28] 

 

(EAAAK)3 – Rigid – Forms 

alpha helix structures, keeps 

the distance between the two 

domains and to maintain 

their independent functions  

Can separate functional 

domains more effectively 

than the flexible linkers [24, 

29] 

(GGGGS)n was chosen 

where flexible linker 

was needed. This is rich 

in hydrophilic amino 

acids and allows the 

interaction between the 

domains due to its 

flexible nature [24]. 

Thus, increasing the 

stability and folding 

[24, 25, 30]. 

 

(EAAAK)n is chosen 

where the domains 

were supposed to stay 

rigid with reduced/no 

interaction between 

them, increased 

expression,  

 

Diabody only* - A 

combination of the 

above has been used to 

put the VH and VL of the 

same chains separate 

but allowing the two 

different ScFvs to 

interact forming the 

diabody complex. 

• Only with flexible 

linkers varying in 

number of (GGGGS)n 

• Only with rigid linkers 

with varying in 

number of (EAAAK)n 

• Alternating flexible 

and rigid linkers 

between the two 

variable chains and 

between the two ScFv 

fragments 

• Flexible linker 

between the VH and 

VL, with one rigid 3 

flexible and one rigid 

between the ScFv 

fragments 

• Without linkers 

• Linkers between each 

distinct element such 

as secretion tag-ScFv-

solubility tag-

detection tag 

Binding domain 
VH fragment, ScFv 

fragments, Diabody, 

Minibody, Antibody 

Smaller have faster blood 

and renal clearance 
 

ScFv and Diabody 

versions were modelled. 

The test variants differed 

in the order of 

arrangements. 
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Imaging element Gluc  

Gluc was chosen for its 

small size and that is 

secreted out of the 

cells 

All the design variants 

have Gluc domain. The 

arrangement of the domain 

order differs between the 

constructs 

Solubility Tag 
MBP, GST 

Trx, NusA, SUMO 

[31, 32] 

• MBP- Huge size[33, 34], 

may change fusion 

protein structure,  

doesn’t require affinity 

tag, regarded as one of 

the best solubility 

tags[35, 36] 

 

• Trx – Small size, highly 

soluble, heat stable, 

requires affinity tag[31, 

37] 

One of the most used 

Tags 

 

• SUMO – small size, tight 

and rapid folding soluble 

structure[38], available 

for bacterial, yeast, 

insect and mammalian 

systems [39] 

Best for N-terminal 

fusion [38] 

contain His6 Tag  

SUMO* - Chosen for 

its small size  

Models with +/- SUMO 

placed both at N and C 

terminus of the POI 
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Detection/Purification 

Tag 

Poly-His Tag,  

Flag, c-Myc [40, 41] 

• Flag – Short, readily 

available commercial 

assays and is more 

hydrophilic than His [42] 

 

• His – Most common 

purification tag, short, 

commercially available 

assays, denaturing 

purification is possible 

[43]   

not preferred for 

antibody detection [43] 

Both Flag and Poly-

His are considered for 

computational 

modelling 

• Positioning of the tag 

was modelled both at 

N and C terminus of 

the POI, C terminus 

might show better 

results because signal 

peptide is at N- 

terminus[32] 

Table 1.2: Choice of subparts and design rationale for targeted synthetic proteins against ClfA 
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2.4.2 In silico-aided screening 

In silico screening involved rationally eliminating test variants with high chances of 

failing. For a synthetic protein with multiple subparts, each subpart serves for a defined 

function. The choice of the individual subpart depends on the overall function intended. 

In this case of designing proteins targeting S. aureus surface antigen ClfA, Table 1.2 

provides the decision rationale for selecting individual subparts. This is the first step in 

funnelling down the sample space of total possible test variants.  

Once the subparts are chosen, as mentioned in earlier, a synthetic protein with ‘n’ 

number of parts would have n! number of ways into which it could be assembled. All the 

logically possible assembly combinations have been modelled using I-Tasser. Multiple 

iterations of test construct variants have been generated while optimising linker types and 

sizes. During this process test variants were compared and noted for their structure quality, 

proper exposure of relevant tags and display of the paratope. Protein modeling and 

visualisation helped screening of several failed constructs. For example, in the model 

shown in Figure 2.7a the secretion tag is buried deep inside. This could potentially result 

in improper secretion. By increasing the linker sizes, the model on shown in Figure 2.7b 

shows an exposed secretion tag. Similar design corrections were made to ensure all the 

relevant domains are exposed appropriately. Solvent accessibility was used as an 

empirical measure for assessing proper exposure of a segment on the protein. For 

example, test variants with less than 60% exposure of an active site were screened out.  
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Figure 2.7: Informed screening using protein modelling and visualisation. (a) Showing 

the secretion tag in red, buried inside the structure. (b) Increasing the size of the linkers 

produced a conformation with appropriate exposures of relevant domains. (The above 

structures are obtained from protein modeling using I-Tasser) 
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2.4.3 Test constructs for wet lab testing 

4 ScFv variants and 4 diabody variants were screened for wet lab synthesis and testing. 2 

test constructs were designed without the T-domain (binding site) which would act as 

internal negative controls for binding and as a positive control for luminescence. All the 

final test constructs are shown in Figure 2.8. 
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Figure 2.8: Test constructs for wet-lab testing. SD2 and SD6 lack the binding domain 

and were designed as internal negative control for binding. Constructs S1, S2, S3 and S4 

represent the ScFv version and the constructs SD1, SD3, SD4 and SD5 represent the 

diabody format. All the structures are obtained by computational modeling using I-

Tasser. 
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2.4.4 Protein-Protein Docking 

Amino acid sequence and structural information of ClfA were obtained from the RCSB 

PDB server. The structure of ClfA was modeled using I-Tasser (Figure 2.9.)  
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Figure 2.9: 3D structure of ClfA (PDB ID - 1N67). The minimal binding segment of S. 

aureus ClfA, containing two similarly folded domains is shown here.   

 

In silico docking was used to test the interaction of the test constructs with ClfA. The 

ClfA structure modelled by I-Tasser was used as the receptor. Active site on ClfA was 

highlighted and the boundaries for binding were defined. Upon docking, the highest free 

energy conformations were noted. Figure 2.10 shows the ScFv S3 bound to ClfA. The 

docking results and all the in silico data corresponding to the finalised 10 constructs are 

shown in Table 3. 
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Figure 2.10: S3 ScFv (blue) docked with ClfA (red). Free energy change for the 

interaction was found to be (ΔG) -18.3. Protein docking was performed using AutoDock 

Vina and the assembly was visualised using UCSF Chimera. 
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ID C 

Score 

TM 

score 

RC 

score 

(%) 

Hydrophobicity 

(%) 

Solvent 

accessibility 

of the active 

site (%) 

 (ΔG) Size 

(kDa) 

Instability 

(%) 

SD1 0.045 0.11 74.9 46.11 67.7 -13.6 99.03 38.42 

SD2 0.167 0.19 89 45.33 86.6 -11.7 37.53 30.92 

SD3 0.182 0.14 80.2 46.88 64.4 -15.2 85.83 35.97 

SD6 0.077 0.212 86.9 47.77 73.3 -11.2 24.33 18.42 

S1 0.057 0.24 78.1 45.88 60 -15.1 67.67 36.21 

S2 0.114 0.16 86.2 47.11 65.5 -15.4 54.47 31.08 

S3 0.071 0.162 82.8 46.66 64.4 -18.3 67.67 35.39 

S4 0.147 0.205 86.5 47.11 58.8 -16.9 54.47 31.08 

Table 1.3: In silico data obtained from various computational tools. From left to right, 

C-score (confidence score) from I-Tasser, TM score (template modeling score) as 

agreement between Rosetta and I-Tasser models, RC score (Ramachandran plot score), 

solvent accessibility of the active site (paratope regions), Free energy change from 

docking, size and instability index were tabulated for all the test variants.  
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2.4.5 Wet-lab experimentation 

2.4.5.1 Protein production and secretion 

To validate the production of all the test constructs, luminescence being emitted from 

CHO cell supernatant was measured. 10 µl of each test construct was taken in a white 

corning 96 well plate. Supernatant media from a batch of non-transfected cells was used 

as a negative control. GLuc protein (NanoLight technologies) was used as a positive 

control. Figure 2.11 shows the luminescence from various constructs. The concentrations 

of the test constructs were calculated using the standard curve obtained from Gluc protein 

standards. As expected, both the control proteins SD2 and SD6 were the best produced. 

In the test constructs with T-domain, ScFv test variant S1 was the highest produced. 
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Figure 2.11: Secretion of various test constructs. Relative luminescence units were 

corelated to concentration in mg/ml using a standard curve obtained from Gluc protein 

standards. SD2 and SD6 lack the T-domain and were used as internal controls. All the 

measurements were taken in triplicates. 
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2.4.5.2 Binding to S. aureus ClfA 

In vitro binding was confirmed by measuring and comparing luminescence signals after 

binding. 108 S. aureus cells were treated with 1000 ng of each test construct. Experiments 

were performed on fresh subcultures of S. aureus to avoid the exopolysaccharide 

formation. Bound luminescence from each test construct is plotted in Figure 2.12. S. 

aureus cells only (without synthetic protein) were considered to measure the background 

luminescence. The construct SD2 and SD6 had the lowest bound luminescence signal. 

Both the constructs lack the binding domain and hence cannot bind to ClfA. ScFv S1 

showed the highest luminescence signal. The data were plotted again in different graph 

format to determine the difference between ScFvs vs Diabodies, but no significant 

correlation was observed. The data set size was also too small for such comparisons. With 

S1 outperforming all the other test constructs, all the further emphasis was placed in S1.  
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Figure 2.12: Bound luminescence. Luminescence after binding to ClfA on S. aureus. 108 

S. aureus cells were incubated with 1µg of each test construct for 1 h. Cells without 

treatment were used as a background. SD2 and SD6 were used as negative controls for 

binding. S1 (ScFv) emitted highest bound luminescence. All the measurements were taken 

in triplicates. 
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2.4.5.3 Dose response experiments 

Dose response experiments were performed using two Gram-positive and two Gram-

negative strains. Three different concentrations of the synthetic proteins and three 

different bacterial concentrations were used during optimisation. 

2.4.5.3.1 Synthetic protein dose response 

3 different concentrations of the test constructs were tested for their binding to ClfA. 0, 

0.50µg and 1µg of test construct were incubated with 108 cells of S. aureus 959. Bacterial 

cells were washed 3 times and resuspended in PBS. All the samples in triplicates were 

placed in a corning 96 well white plate. Luminescence was measured after adding 50µl of 

coelenterazine. E. coli DH5alpha, Salmonella enterica Typhimurium 7207 and 

Streptococcus agalactae (GBS) strains were used as negative controls to measure 

selectivity towards S. aureus. Optimisation was carried out on all test constructs using the 

above mentioned 4 bacterial strains. ScFv S1 construct was again the best performer. The 

results of the synthetic protein dose response of S1 were shown in Figure 2.13. The 

selectivity of binding in Figure 2.13b is the ratio between luminescence from S1 bound to 

S. aureus and Streptococcus agalactae. The data in Figure 2.13 clearly shows the 

selectivity of S1 towards S. aureus. 
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Figure 2.13: Synthetic proteins dose response of S1 with 108 bacteria: a. shows the 

relative luminescence units from four different bacterial strains treated with 3 different 

concentrations of S1. b. shows the selectivity of S1 towards S. aureus when compared with 

Streptococcus (Gram-positive). 
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2.4.5.3.2 Bacterial cell dose response 

Three different concentrations of four bacterial strains (two gram-positive and two gram-

negative) were treated with 1000ng of each test construct. Bacterial cell dose response 

was carried out on S. aureus 959. E. coli DH5alpha, S. Typhimurium and S. agalactae 

(GBS) strains. Bacterial cells were washed 3 times and resuspended in PBS. All the 

samples in triplicates were placed in a corning 96 well white plate. Luminescence was 

measured after adding 50µl of coelenterazine. ScFv S1 showed the highest luminescence 

signal once again. Figure 2.14 shows the bacterial cell dose response for 1000 ng of S1. 
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Figure 2.14: Bacterial cell dose response of S1 (a). Relative luminescence units from 

four different bacterial strains with 3 different concentrations of bacterial cells. (b) 

Difference in signal intensity of the luminescence emitted by S1bound to S. aureus when 

compared with S1 bound to S. agalactae. 
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2.4.5.4 Blocking with human fibrinogen 

To confirm the binding of S1 specifically to ClfA, the S. aureus cells were incubated with 

different volumes of human fibrinogen to block ClfA. 108 S. aureus cells were incubated 

with 0, 10 and 250 µg of human fibrinogen for one hour at room temperature. The cells 

were washed 3 times with PBS and then incubated with 10 µl of S1 supernatant, 1 h at 

room temperature. Bacterial cells were washed 3 times and resuspended in PBS. All the 

samples in triplicates were placed in a corning 96 well white plate. Luminescence was 

measured after adding 50 µl of coelenterazine. No binding was expected upon addition of 

S1. The luminescence readings were plotted in Figure 2.15. As expected, the increase in 

fibrinogen concentrations led to decrease in luminescence. Fibrinogen successfully 

ensured restricted access to ClfA. This confirms the specificity of S1 towards ClfA. 
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Figure 2.15: Blocking with human fibrinogen. (a) Shows decreasing luminescence 

intensity with increase in fibrinogen concentration. (b) showing percentage decrease in 

signal upon fibrinogen addition. 250 µg of fibrinogen resulted in 68 % decrease in 

luminescence. 
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2.4.5.5 Optimal performer (Selectivity + Intensity +Normalised performance) 

After the wet-lab validation of all the 10 test variants, it was intended to carry out an in 

vivo imaging study using the best performing test construct. The choice of the best 

construct depends on overall performance. Overall performance can be defined as the 

degree to which the designed protein would perform ultimately on the user defined 

function(s) (Figure 2.16).  
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Figure 2.16: Schematic showing the optimal decision process for choosing an optimal 

performer. 
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Although all the test constructs performed the user defined function, they differed in their 

performance quality. Arbitrary numbers were given to the coefficients reflecting the 

relative importance of each parameter. However, in this case S1 was outperforming all 

the other test constructs. After choosing S1 as the best performer, keeping in mind the 

demands of in vivo imaging, efforts have been made to improve the signal intensity of S1.  

2.4.5.6 Nanoluc as the luminescence part 

Previous literature has reported that an engineered luciferase obtained from a deep-sea 

shrimp (Oplophorus gracilirostris) (Nanoluc) has better brightness than Gluc in vivo [44]. 

In an effort to improve the brightness of S1, the Gluc domain was swapped with Nanoluc, 

and a new Nanoluc version of S1 (NS1) was synthesised. Synthetic protein dose response 

and bacterial cell dose response for NS1 were examined using S. aureus as the target and 

E. coli as a negative control. 20 µl of protein supernatant was added to each sample and 

incubated for 1 h at room temperature. Luminescence was measured after adding 50 µl of 

coelenterazine. After 3 subsequent PBS washes, the samples were taken into a 96 well 

corning white plate. The data for the dose response experiments are plotted in Figure 2.17. 

However, the brightness (RLU) in in vitro experiments of NS1 was found to be 

significantly lower than Gluc S1.  
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Figure 2.17: Synthetic protein dose response and bacterial cell dose response of NS1 

(a) Synthetic protein dose response was carried out on 108 bacterial cells of S. aureus 

and E. coli. The bacterial cells were treated with varied volumes of the protein 

supernatants. (b) Bacterial cell dose response was carried out using 0, 106, 107 and 108 

cells. The luminescence signal from the S. aureus samples were significantly higher than 

that of E. coli samples, indicating binding to S. aureus. The dose response experiments 

showed an increase in signal intensity with respect to protein/cell concentrations. 

  

0u
l o

f S
1

1u
l o

f S
1

10
ul o

f S
1

20
ul o

f S
1

0u
l o

f S
1

1u
l o

f S
1

10
ul o

f S
1

20
ul o

f S
1

0
2.0102

4.0102

6.0102

8.0102

1.0103

3.0103

6.0103

9.0103

1.2104

1.5104
4.0104

4.5104

5.0104

5.5104

6.0104

Ecoli Staph

Antibody dose response

R
L

U

Bacterial dose response

0

10
^6

10
^7

 

10
^8 0

10
^6

10
^7

 

10
^8

0
5.0102
1.0103
1.5103
2.0103

5.0103
1.0104
1.5104
2.0104

3.0104
4.0104
5.0104
6.0104

Ecoli Staph

R
e
la

ti
v
e
 l
u

m
in

e
s
c
e
n

c
e
 u

n
it

s



89 

 

2.5 DISCUSSION 

In this chapter, a workflow was generated for the 'design, build and test' of synthetic 

proteins. Various computational tools were used to ensure proper functioning of the 

subparts. Such an approach validates the structure before wet lab synthesis and testing. 

Such a computationally informed design strategy would empower wet lab biologist with 

prediction capabilities. In my cases during the process, modeling helped to realise pitfalls 

in the design. One such example was shown in Figure 2.7, where the secretion tag was 

hidden inside. Similar non-functional designs were also spotted with the Flag tag. Both 

the secretion tag and the Flag tag are located at the extremes of the polypeptide chain. It 

is crucial for the tags to remain exposed for their full functionality. Without protein 

modeling, such failed experiments end up in the wet lab validation and cause time and 

capital wastes.  

In this work, over 200 different test variants were designed and modelled. Over 

50 test variants were subjected complete computational analysis. This process is 

analogous to high throughput screening that is observed in wet lab drug design. However, 

the in silico screening only takes a fraction of the time to test the constructs in the wet lab. 

This work heavily relied on computational tools. However, it must be noted that the 

accuracy of each computational tool is subjective to each protein. Predictions of synthetic 

proteins that resemble close similarity to naturally existing proteins have higher 

confidence levels and accuracy. Community-wide, worldwide studies such as CASP 

(Critical Assessment of protein Structure Prediction), CAPRI (Critical Assessment of 

PRediction of Interactions) and CAFA (Critical Assessment of Functional Annotation), 

organise regular blinded challenges to compare the performance of various computational 

tools for proteins [45-47]. With artificial intelligence, neural networks, deep learning and 

increased computational power, the road ahead is promising. The strategy presented here 

will grow in accuracy as the individual tools get updated.  

The aim of this chapter was to develop a targeted report protein specific for S. 

aureus. ClfA was chosen as a test model for the in silico aided synthetic protein design 

strategy. Abundance of literature on the structure of ClfA, ready availability of the amino 

acid sequences of ClfA and its targeting monoclonal antibody tefibazumab (also known 

as mAb 12-9 and Aurexis) encouraged the pursuit in this direction. Although, mAb 12-9 



90 

 

recognizes ClfA on S. aureus cells with a high affinity the antibody has failed in the 

clinical trials (no significant advantage over a placebo was observed in relapse of 

bacteremia) [48]. S. aureus employs various virulence and immune evasion factors to 

survive in the host. This could be one of the prime reasons for the failure of the antibodies 

targeting a surface antigen like ClfA. Thus, targeting multiple virulence factors could be 

a strategy to explore [49]. 

In vitro testing was carried out to validate secretion and functioning (binding and 

luminescence) of the synthetic proteins. Throughout the work, luminescence was used to 

inform the protein production, binding and selectivity. The S1 test construct clearly stood 

as the best performer amongst all other test construct variants. With the encouraging 

results observed in the dose response assays, S1 was identified as a candidate worthy of 

examining in a future in vivo setting. Although Gluc is a widely used as an imaging 

module in preclinical research, the issues with signal intensities and tissue absorption still 

remain. Hence the Gluc was replaced with Nanoluc, to increase the signal intensity. The 

Nanoluc system has been shown in previous literature, to have a significantly higher 

brightness and prolonged half-life, when compared to Gluc[50]. In silico modelling and 

computational validation was repeated on NS1 construct, prior to synthesis. In this study, 

the luminescence signal from NS1 was observed to be lower than its Gluc counterpart. 

Identifying the reason for this behaviour was beyond the scope of this project. However, 

as previously studied in literature, the luminescence emitted from Nanoluc lasted 

significantly longer than luminescence from Gluc. This might be a key feature that would 

score Nanoluc as a better alternative to Gluc in in vivo applications.  

The in vitro studies in this work, provided a preliminary understanding of the basic 

functioning of the protein and validated the in silico design strategy. The luminescence 

and binding assays validated the functioning of each subpart on the test construct and its 

functioning as intended. With the aim of validating protein sizes, integrity and 

concentration, Western blots using anti-Flag antibodies were performed, but to no avail, 

despite multiple attempts (data not shown). Similar anti-Flag Western blots were readily 

achieved in Chapter 5 work. The failure to detect these synthetic proteins by Western blot 

could be due to some reasons unique to these synthetic proteins.  Further wet-lab assays 
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such as FACS using anti-Flag fluorescent antibody would also be beneficial to reconfirm 

the binding of the synthetic protein to ClfA. 

In silico myriad problem Table 3 shows a summary of numerical evaluation 

performed using various computational tools. Each individual tool informs the quality of 

a design parameter. For example, the RC plot provides an RC score, modeling provides 

the C score etc. These design parameters relate to the functioning of each individual 

subpart. While screening for the best performer, a holistic overall performance should be 

considered rather than functioning of individual subparts. In mathematics, this is a 

common problem observed in cases such as buying a house or buying a car. A decision 

must be taken on the holistic level rather than a subpart level. There is no tool available 

to predict the overall performance of test construct. Such a tool would be pivotal in in 

silico -aided screening (see Chapter 3). 
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2.6 CONCLUSION 

Over 50 different multi-part test constructs targeted to S. aureus surface antigen ClfA 

were modelled and validated using various computational tools to inform and guide 

downstream wet-lab experiments. Following in silico design and analyses, 10 test 

constructs against ClfA were produced in CHO cells and tested for specific target binding 

in vitro. This study demonstrated the proof-of-concept of the design-model-build-test 

strategy of targeted synthetic proteins, using S. aureus surface antigen ClfA as a model 

target. Finally, a target-specific synthetic protein platform for bacterial imaging has been 

validated. The results from this chapter encouraged to pursue the in silico-aided design in 

further chapters. 
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F2F Bridge: A synthetic protein holistic performance prediction 

strategy  
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3.1 ABSTRACT 

Background  Protein engineering and synthetic biology stand to benefit immensely from 

recent advances in in silico tools for structural and functional analyses of proteins. In the 

context of designing novel proteins, current in silico tools inform the user on individual 

parameters of a query protein, with output scores/metrics unique to each parameter. In 

reality, proteins feature multiple ‘parts’/functions, and modification of a protein aimed at 

altering a given part, typically has collateral impact on other protein parts. A system for 

prediction of the combined effect of design parameters on the overall performance of the 

final protein does not exist. 

Aims  Function2Form Bridge (F2F-Bridge) aims to address this gap by 

combining the scores of different design parameters pertaining to the protein being 

analysed into a single easily interpreted output describing overall performance. The 

strategy comprises 1. A mathematical strategy combining data from a myriad of in silico 

tools into an OP-score (a singular score informing on a user-defined overall performance); 

2. The F2F-Plot, a graphical means of informing the wet-lab biologist holistically on 

designed construct suitability in the context of multiple parameters, highlighting scope for 

improvement.  

Methods & Results F2F predictive output was compared with wet-lab data from a 

range of synthetic proteins designed, built and tested for this study. Statistical/machine 

learning approaches for predicting overall performance, for use alongside the F2F plot, 

were also examined. Comparisons between wet-lab performance and F2F predictions 

demonstrated close and reliable correlations. 

Conclusion  This user-friendly strategy represents a pivotal enabler in increasing 

accessibility of synthetic protein building and de novo protein design.  
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3.2 INTRODUCTION 

3.2.1 The world of in silico aided protein design 

Proteins are multi-functional biomolecules that perform, mediate and regulate various 

fundamental functions of life. Over the last 50 years our understanding of proteins and 

our ability to engineer them has improved exponentially. While proteins find their 

applications in various fields, biochemical and medical applications have taken the 

driving seat commercially. Since 1982, when insulin, the first recombinant protein was 

produced the biotechnological way, the market value for protein-based therapeutics has 

seen a significant increase, with the market value of bioengineered protein drugs is 

expected to reach $336.9 billion by 2025 [1]. Nature has sampled only a small fraction of 

the theoretical combinations of amino acids that are accessible to proteins [2] due to the 

constraints put in place by evolution. Synthetic protein design represents a vast sea of 

possible space available to be explored. While multiple industries have the potential to 

exploit non-natural proteins as components of their products or processes, this potential 

cannot be fully realised without reliable control over protein design. 

 Understanding the interplay between structure and function of proteins is 

pivotal in protein design. Techniques such as NMR spectroscopy and X-Ray 

Crystallography have revealed the structures of over 100,000 proteins and have aided the 

establishment of protein databases [3], which in turn have facilitated in silico protein 

structure and function prediction based on the amino acid sequence. The need for a faster 

and affordable way to predict the putative structure of a protein paved the way for 

computational protein modelling [4]. In silico-aided protein design uses computational 

strategy for designing and building proteins that perform a specific function(s), in a user 

defined setting. Computational methods for structure modelling, docking and function 

prediction provided in silico alternatives for screening protein sequences, creating 

variants of a specific design [5] and building new de novo structures [6] . As a 

consequence of increasing computational power, the power of in silico protein structure 

and function prediction, and analysis tools is expanding rapidly.  
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3.2.2 The overall performance problem:  

Multiple related parameters and the myriad of in silico tools  

Computational tools are now available to predict protein structure, active sites, chemical 

properties and interactions with other proteins [7-11]. In some cases, these tools could 

also be used to redesign existing proteins [12] or even design entirely new proteins, in the 

rapidly evolving field of de novo design [13-16]. Unfortunately, a side effect of these 

rapid advances is that, it is becoming difficult to bridge the gap between these advances 

in computational technology and their originally intended wet-lab applications by 

biologists. ‘Outsourcing’ the required in silico activity by end users (wetlab biologists) 

entirely to ‘dry-lab’ specialists dramatically reduces the potential of in silico modelling, 

‘User empowerment’ is key to translating this potential. 

Designing a protein involves defining an overall function (Box 1) and associating 

it with a 3D structure which is coded into an amino acid sequence [17]. In most cases, the 

overall function of a protein is a combination of several individual sub-functions. To 

achieve the overall function, fusing different sub-function parts (Box1) has been the most 

popular strategy to date. In recent years, de novo protein design has been used to obtain 

amino acid sequences which fold into a required 3D structure for a defined function. In 

both of these cases, several test sequences are generated to validate their performance 

against the defined overall function. In silico protein design aims to find a ‘best-fit’ test 

sequence for a defined overall function (Figure 3.1). 
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The overall performance of a test sequence is a collective functioning of all the individual 

sub-function parts in concordance. In most cases, the quality of the functioning of the 

individual sub-function parts is interdependent. Wet-lab validation of each test sequence 

is time consuming, labour intensive and expensive. Moreover, improving a given 

sequence by modifying individual subfunction part sequences without a holistic analysis 

on the overall performance represents an ad hoc approach prone to low success rates.  

 

Box 1: Definitions and commonly used terms 

  

Overall performance: The degree to which the designed protein would perform the 

defined Overall Function 

  

Sub-function part: A part of a protein that is responsible for a particular sub-function. A 

Sub-function part may represent a sequence for a specific known protein or a part of a 

protein which has a defined distinct function. 

  

Design Parameters: Parameters such as hydrophobicity, solubility, structure, active site 

exposure etc., influence the overall performance of a protein. While these parameters are 

tools for studying the nature of existing proteins, the same parameters, in protein design, 

can be used as controllers to dictate the overall performance of a protein. Such parameters 

that dictate the overall performance of a designed protein are grouped under an umbrella 

term called ‘design parameters’. 

  

The overall performance prediction problem: The complex relationship between the 

interconnected design parameters and the overall performance. 
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Figure 3.1. The in silico aided protein design process and the overall performance 

problem. Multiple test sequences are generated for a user-defined overall function (The 

overall function is the collective functioning of all the sub-function parts). Sub-function parts 

and the test sequence build dictate the 3D structure. Test sequences are subjected to in silico 

modelling and multiple analyses. F2F bridge provides an objective, single metric and a 

calculated output to aid the selection of an optimal candidate.  

  



105 

 

Computational tools are now available to predict protein structure, active sites, chemical 

properties and interactions with other proteins. These tools score and inform the quality 

of the individual design parameter using their respective conventional metrics. While 

these metrics define the quality of the individual parameter in the design, the combined 

effect of the design parameters (Box 1) on the overall performance is a question yet to be 

answered. This has been referred as the ‘overall performance problem’ (Box 1). The 

overall performance problem is a huge challenge in biology wet-lab experimentation but 

not completely new in a mathematical perspective.  

Recent advances in machine learning and data analyses have solved similar 

situations. For example, ‘selecting a suitable house in a new city’ or ‘selecting an 

electronic device that fits my purposes’ and ‘selecting a car appropriate to my needs and 

budget’. All these situations are mathematically similar to an extent. The parameters affect 

the overall performance and the best fit is chosen based on scoring and ranking the 

potential fits, based on the user’s needs. Although the overall performance problem has 

been addressed in other contexts, in the scientific field of protein design, formulating a 

mathematical model poses a greater challenge. This is due to (i) the lack of a reporting 

system for negative results, (ii) time constraints in biological experimentation and (iii) the 

lack of standardization of measurement units in many areas of biological research. 

3.2.3 Machine learning methods for proteins 

Our understanding of protein function and the structure-function relationship has been 

enriched by computational algorithms and in silico tools. Machine learning algorithms 

and strategies have been used for over a decade now to solve sequence-structure-function 

relationships of proteins [18]. Latest advancements in machine learning approaches and 

current strategies used to predict the function(s) of a protein are reviewed by Bernardes et 

al [19].  

In the lights of de novo protein design it is now possible to design proteins with 

user defined functions and shapes. In such cases, while predicting the overall function of 

a protein is useful, the extent to which these designed proteins perform their function is a 

crucial element. Design improvements could be made and measuring the overall 

performance of proteins provides a rationale for screening for the ideal candidate. 
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3.2.4 A novel mathematical strategy using machine learning approaches. 

In this work, F2F-Bridge is introduced as a novel mathematical strategy aimed at 

predicting the overall performance of a synthetic protein. Several test sequences were 

designed for a defined overall function. The individual scores for all the different design 

parameters pertaining to each test sequence are condensed into a graphical output. The 

result is a visual and numerical evaluation of the test sequence. The graphical output (F2F-

Plot) and the numerical evaluation (OP-score) together form a novel mathematical 

strategy (F2F-bridge) that scores, ranks and predicts the overall performance of the given 

set of test sequences. This method combines user input with in silico data, to give insights 

into the predicted overall performance of a test sequence. With the view to eventually 

developing a robust tool for protein performance prediction, the relationship between in 

silico and laboratory data for test proteins was also examined using two different strategies 

for feature selection and predictive model building. LASSO and regression-based 

decision trees implemented with the RandomForest algorithm. 
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3.3 MATERIALS AND METHODS 

3.3.1 In silico design of test sequences: 

The test synthetic proteins examined were the ClfA- (Chapter 2) and MUC1- (Chapter 4) 

targeted Gluc synthetic proteins. Each construct was designed to have a luminescent 

domain, a binding domain, a solubility tag and a secretion signal. All parts are linked in 

all possible permutations using different rigid and flexible linker sequences [20] (see 

schematic in Chapter 2 Figure 2.6). Variable heavy and light chain AA sequences from 

different antibodies were used as the binding domains, from an antibody targeting either 

cell surface associated epithelial mucin 1 (MUC1; mammalian antigen) and Clumping 

factor A (ClfA) of Staphylococcus aureus (bacterial antigen). Test sequences were 

designed to bind to their respective target and present luminescence as a readout (bound 

protein luminescence). 
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3.3.2 Data Generation: 

The different in silico features analysed in relation to the overall performance of the test 

protein, and how they are generated is outlined in Table 3.1. 3D structure prediction, size, 

instability index and size were obtained by providing the amino acid sequence of the 

protein as an input to the server. Docking, model quality, active site solvent accessibility, 

surface hydrophobicity, potential active sites required a .PDB file as an input. In almost 

all cases (unless specified) the .PDB file is generated by I-Tasser. 

 

Design 

Parameter 

Metric and 

Scale range 

Metric 

description 

Effect on overall 

performance 

Generated: 

3D structure C-score 2 : -5 Confidence in 

the model and 

folds predicted 

Higher confidence 

reflects more reliable 

model 

I-Tasser[7] 

Docking ΔG kcal/mol Gibbs free 

energy released 

by reaction 

Protein-protein 

interactions at the 

active site predicted 

Autodock 

Vina*[21] 

Quality of model RC – score  Proportion of 

amino acids in 

different 

regions based 

on steric 

hindrance 

High agreement with 

stereochemistry and 

free energy reflects 

stability of structure 

Saves 

server[22] 

Active site 

solvent 

accessibility 

0-9 A measure of 

the exposure of 

A residue or 

group of 

residues 

Depending upon the 

function, the active 

site could be exposed 

to the solvent or 

‘hidden’ inside the 

core 

R 

(Using I-

TASSER 

output)[23] 
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Surface 

Hydrophobicity 

-4.5 to +4.5 Each amino 

acid has a 

hydrophobicity 

score between -

4.5 and +4.5 as 

per Kyte 

Doolittle scale. 

Ensuring ideal surface 

hydrophobicity aids 

solubility 

R 

(Using I-

TASSER 

output) 

Size kDa Total weight of 

the protein 

Size forms an 

important factor if the 

protein is required to 

cross/penetrate 

membranes and 

biological barriers 

ProtParam 

Hosted by 

Expasy[24] 

Isoelectric point pH 0 to 14 Point at which 

molecule 

carries no net 

charge 

The integrity of the 

structure of the 

protein in a setting is 

influenced by the 

isoelectric point 

ProtParam 

Hosted by 

Expasy[24] 

Potential active 

sites 

0 to n Number of 

potential active 

sites 

Predicting the 

potential active sites 

on the designed 

protein informs on 

potential off-target 

effects 

Coach 

Server 

Instability index 0 to 100 Half life of 

protein in vitro 

Gives an indication of 

the viability of the 

protein 

ProtParam 

Hosted by 

Expasy[24] 

Table 3.1: Common in silico tools, and the purpose they serve 
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3.3.3 Wet-lab validation 

Two biological facets were used to assess the effectiveness of the functional prediction 

strategies – i) binding; ii) secretion. 

Sub-function parts on the test sequences include: (i) Active site: Heavy and light chains 

of anti-MUC1 antibody (C595) and anti-ClfA antibody were fused with EAAAK (rigid) 

and GGGGS (flexible) linkers to obtain Monospecific bivalent diabodies and Monovalent 

ScFVs (monobodies), (ii) Secretion signal: Gaussia luciferase’s native secretion signal, 

(iii) Solubility enhancer: SUMO tag, (iv) Reporter: Truncated version of GLuc was 

used as a luminescence reporter. (v) Detection tag: Flag peptide was used as a detection 

tag for downstream assays. See Fig 4. 

 Presence or absence of certain sub-function parts or their design orientation 

has a significant effect on the overall performance of the protein and should be accounted 

carefully in the design phase. In this case, over 50 different amino acid sequences were 

designed against each target. Of these, 8 variants per target were synthesised for testing 

in the wetlab. These test sequences vary in (a) (+/-) solubility enhancer, (b) (+/-) and 

positioning of Active site and (c) the type/format of Active site. All these test sequences 

were tested for their overall performance. Wet lab data were used to validate and improve 

the results from the F2F-Bridge. An outline of the laboratory workflow can be seen in 

Figure 3.2, and a more detailed description on synthesis and build of test sequences can 

be found in the Supplementary materials.   

  

3.3.4 Data generation from wet lab experiments 

Binding assays: As outlined in Chapter 2 and Chapter 4. Briefly, 108 Staphylococcus 

aureus TCH959 (naturally bearing clfA) or 106 MCF7 cells (naturally bearing MUC1) 

were blocked with 5% BSA for 2 h followed by incubation with supernatant containing 

each test construct. Cells were washed 3 times and resuspended in PBS. Luminescence 

was measured using Promega GloMax® 96 luminometer. In this case, since bound 

luminescence is the overall function, the luminescence readings corresponding to each 

test sequence are recorded and used for validating and improving F2F Bridge. 
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Figure 3.2: Workflow of wet lab validation of the test sequences. Selected test variants 

were assembled into a plasmid. CHO cells were transfected with the plasmid containing 

the test variants. Cell supernatant containing the synthetic protein was collected and used 

in luminescence assays to confirm secretion and binding. 
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3.3.5 Function2Form Bridge: 

Function2Form algorithms were written in R programming language with the help of 

Tangney Lab bioinformatician Sidney Walker. Individual scores from all the respective 

in silico tools mentioned in Table 3.1, are tabulated and the resulting file is given as an 

input for F2F algorithm. The first row in the table consists of user required input values, 

which act as a benchmark to which the parameters of the test sequences in future would 

be compared. Some of these benchmark values such as C-score RC score etc are exactly 

the same as given by the tool developer Whereas, for parameters such as surface 

hydrophobicity, size or number of required active sites, the user can input values 

according to the design requirements. The F2F bridge in this study, uses the scores from 

7 different in silico parameters but the scope of the tool is not limited only to these. 

Number and the type of in silico parameters used differ based on the defined overall 

function.  

For a particular defined overall function, the choice of in silico parameters is based 

on prior knowledge and literature research manually. Such a manual selection counts all 

the parameters as equally contributing players. In reality however, the contribution or the 

effect of a parameter on the overall performance differs case by case. This is understood 

by considering house picking problem as an analogy. While choosing or buying a house, 

the locality, distance to work, cost, number of bedrooms etc are all influencing parameters. 

However, the importance of each parameter differs for every individual. Hence 

prioritising or weighing the importance of each parameter is necessary.  

In this work, machine learning methods such as random forest and lasso regression 

have been used for feature selection. These methods help weigh the in silico parameters 

by considering their importance towards the overall performance. Wet lab luminescence 

data was used to train the models. The result of the F2F bridge is a radar plot (F2F plot) 

and an overall performance score (OP score). The F2F plot is a graphical representation 

of the benchmark (user defined) values and the scores of the in silico parameters 

corresponding to the test sequences. The area between the two curves indicate the 

disagreement between the user requirements and the design. In an engineer’s eye, this is 

a region for improvement. The overall performance score (OP score) is a grand average 
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of the absolute distance between the user defined curve and test sequence curve generated 

by the F2F bridge. See Figure 3.3. 

        

3.3.6 Generating the OP score: 

(i)             The values are converted into a single scale 

 

𝒊 = (((𝑶 −  𝑶_𝒎𝒊𝒏))/((𝑶_𝒎𝒂𝒙 −  𝑶_𝒎𝒊𝒏))) ∗  (𝑵_(𝒎𝒂𝒙 ) −  𝑵_𝒎𝒊𝒏 ) + 𝑵_𝒎𝒊𝒏 

 

Where O is the old range and N is the new range, which in the case of the F2F function is 

always 0-100. 

 

(ii)           F2F function then iteratively scores each test sequence 

 

𝑂𝑃 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑥 =   (𝛴|𝑥𝑖 − 𝑦𝑖|)/𝑛 

 

Where x is the test sequence, y is the benchmark values, i refers to the ith observation 

within the data supplied to the F2F bridge, and n is the total number of observations i.  
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Figure 3.3: F2F plot is a graphical representation of the merits and pitfalls of the design. 

The overall performance score is the grand average between the red and blue curves 

shown in the plot. In a high throughput setting, this could be used to rank the test 

sequences according to their overall performance. 

 

  



115 

 

3.3.7 Statistical and machine learning methods: 

As discussed above, machine learning methods were used to design a system of weights 

for F2F bridge. The methods used and their working are detailed in Table 3.2. 

 

Statistical analysis: All statistical testing was performed in the base R environment 

v3.4.3 [25]. The LASSO regression feature selection method was implemented using the 

Glmnet library v2.0-16 [26], and the Random Forest regression tree analysis was 

performed using the RandomForest library v4.6-14 [27]. The radar plot within the F2F-

bridge function was implemented with the fmsb library, v0.6.3 [28]. Visualisation was 

carried out using the ggplot2 package,v3.1.1 [29]. 

  



116 

 

 

 

Method Working 

Lasso regression After regularization, the parameters with  

non-zero coefficients are selected to be 

part of the final model [30] 

Random forest A variable importance plot is generated 

using the in silico parameters as input, 

and wet-lab luminescence as an indicator 

of overall performance.[31] 

Table 3.2: Machine learning methods used for Function2Form bridge.  
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3.4 RESULTS: 

3.4.1 Predicting the ‘Overall Biological Performance’ - Unsupervised and 

unweighted F2F. 

F2F-plot was used to score 16 different test sequences. Figure 3.4 and 3.5 show the F2F-

plots and respective OP scores for the test sequences against ClfA and MUC1 

respectively. The OP score is inversely proportional to the rank of the test sequence. 

Lower OP score indicates better predicted overall performance and a high score indicates 

a poor performance. For example, in Figure 3.4, antiClfA Monobody 2 (pink shaded 

region) has the lowest OP score and hence predicted to be the best performer. In this case, 

although the instability index of the test sequence is in disagreement with the desired 

output, on a holistic level, antiClfA monobody 2 has the lowest disagreement and hence 

predicted to be the best performer. On the other hand, antiClfA diabody 2 was predicted 

to be the worst performer based on its high disagreement on instability index, docking 

affinity and solvent accessibility.   

 

(Note: at this level, the method is still blind folded). 

 

To assess the accuracy of F2F prediction the F2F-prediction of overall biological 

performance was compared with the laboratory luminescence data. See Table 3.3. 
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Figure 3.4: F2F-bridge output for antiClfA test sequences 
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Figure 3.5: F2F-bridge output for antiMUC1 test sequences 
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Table 3.3: F2F plot vs Wet lab. Test sequences in both the tables were ranked by their 

F2F score, and coloured from green (best performing protein), through yellow to red 

(worst performing protein) for both luminescence and F2F score. (Lowest number = best 

OP score). 
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The results from Table 3.3 indicate a general guide on how F2F bridge predicts the 

performance and could be used to rank the test sequences based on their performance. 

However, there was no statistically significant correlation observed between the two 

panels because of the limited size of the database. Similar analysis was repeated with 

‘luminescence’ as overall performance. There was no significant relationship was 

observed.  

 

3.4.2 Applying machine learning methods to F2F bridge 

2.4.2.1 Improving F2F bridge with supervised and weighted machine learning. 

As discussed above the blind method accounts every in silico parameter as an equal 

contributor to the overall performance. In common terms, weighing the influence/effect 

of each parameter on the overall performance is crucial for an accurate prediction. 

Machine learning methods, Lasso regression and random forest regression tree analysis 

were deployed to address this problem with the blind method. ‘Selection of variables’ and 

‘regularisation’ were introduced to distinguish ‘big players’ or ‘major contributors’ from 

the panel of in silico parameters.  

Two wet lab outcomes are used as defined overall functions. All the analyses were 

carried on both ‘bound luminescence’ and ‘secreted luminescence’ readouts of the 

designed test sequences.  

 

3.4.2.2 Regression analysis, selection of variables and regularisation 

Applying machine learning methods for biological data is not entirely new and is a rapidly 

growing field. In the last 10 years, machine learning algorithms have been extensively 

used for protein structure and function prediction. Introduction of artificial intelligence 

based strategies have strengthened the field. Recently Google’s AI firm ‘DeepMind’ 

introduced an algorithm called ‘AlphaFold’ and this has shown a significant improvement 

in structure prediction accuracy and gained wide attention. Although the recent advances 

show promising prospects, in most cases, however, the underlying mechanisms of 

function prediction and the relationships between the structure, function and the in silico 
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parameters of a protein, are not fully understood. Lack of large biological data to aid the 

machine learning and the huge number of variables in biological experimentation are a 

few bottle necks. 

To improve the prediction accuracy of F2F bridge, distinguishing the ‘big players’ and 

accounting for the contribution of each parameter towards the overall performance is 

crucial. In mathematical terms (machine learning terminology) this is called feature 

selection. Linear regression models and decision tree based models are two widely used 

methods of analyses for feature selection. 

In this work, lasso regression (linear regression) and Random forest (decision tree) based 

methods were used for feature selection and to explore the possibility of providing weights 

to the in silico parameters based on their contribution towards the overall performance. 

 

Note: Regression analysis considers all the in silico parameters as independent variables. 

Which is not the ideal.  

 

3.4.3 LASSO (Least absolute shrinkage and selection operator) regression 

Lasso reduces the less important feature’s coefficient to ‘0’ and thereby, eliminating some 

features entirely. This will pick the most important features and hence is called feature 

selection. This is a very commonly used method in cases where there are high number of 

features. Figure 3.6 shows the LASSO regression analysis of bound luminescence for the 

designed test sequences. The features/parameters that deemed to have the maximum effect 

on each overall function is shown below. For the test sequences against MUC1, the 

parameters such as Docking Affinity, Iso-electric point, Hydrophobicity and Solvent 

accessibility deemed to have the maximum influence on the overall performance. In the 

case of test sequences against ClfA, Hydrophobicity and Instability have shown the 

maximum influence. However, no linear relationship was detected when the predicted 

parameters were input into a linear model. 
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Figure 3.6: Output from LASSO regression analysis for bound luminescence. Each line 

in the graph corresponds to an in silico parameter used in the F2F-Bridge. (A) shows 

results for antiMUC1, and (B) shows results for antiClfA. This shows that Lasso 

regression analysis was capable of identifying relationships between the in silico 

parameters, and wet lab obtained luminescence.  
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Test sequences P-Value Adjusted R Squared 

antiClfA 0.507 -0.06 

antiMUC1 0.867 -0.6 

Table 3.4: Results of multiple regression analysis of features selected by Lasso 

regression analysis against experimentally determined luminescence. 
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The lasso regression has successfully (i) detected the potential relationships between the 

wetlab output (bound protein luminescence) and the predictive features (in silico 

parameters) and (ii) the major contributors, i.e. ‘big players’ have been identified. 

However, no predictive model could be constructed. This could be due to (a) the small 

size of this dataset and (b) too many variables present from a wet lab perspective. 

Variables in wet-lab experimentation are one of the major bottlenecks for the application 

of machine learning techniques. With automation technology providing aid and reducing 

human intervention this could be brought down.  

 

3.4.4 Secreted luminescence as overall performance. 

In the above scenario, ‘bound protein luminescence’ has been used as a test variable. The 

two groups of proteins (anti-MUC1 and anti-ClfA), in this case, were considered 

separately due to their binding towards different targets. However, ‘luminescence’ only 

from the secreted proteins could also be used as a test variable. In this case, the two groups 

(antiClfA and antiMUC1) could be combined into one single dataset and can be directly 

compared. This doubled the sample size. This has given the freedom to use one set of 

proteins (anti-ClfA) as a training set and the trained model was used to predict the 

performance of the other set (anti-MUC1).  

 In Figure 3.7, Lasso regression function was used to investigate the 

relationship between the in silico parameters and the wetlab output (luminescence due to 

secretion of anti-ClfA test sequences). The ‘big-players’ (in silico parameters which play 

a major role in dictating the performance) for luminescence due to secretion were 

identified by Lasso regression. A linear model was then generated, using the ‘big players’ 

identified by Lasso, to examine the degree to which they explained the test variable 

(luminescence due to secretion).  The linear model generated this way explained 84.6% 

of the variability in the test variable (luminescence due to secretion), with a p-value of 

0.004. This gave us the confidence to explore the utility of a lasso dictated linear model 

as a potential overall performance predictive tool. The experimentally determined 

performance (luminescence levels) were correlated with the Lasso model predicted 

performance.The results of correlation and the correlation coefficients of the individual 
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test sequences against their luminescence are plotted in Figure 3.7 and in Table 3.5.  Both 

anti-ClfA and anti-MUC1 sets showed significant correlations, with Rho values 0.93 and 

0.71 respectively. 

 

Note: ‘Big players’ i.e. in silico parameters that have major contribution towards the 

overall performance, are subjective to the user defined overall function. The ‘big players’ 

identified for luminescence due to secretion may not be the same for other overall 

functions. 
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Figure 3.7: (A) Results from lasso feature selection (antiClfA test sequences). In this 

instance, Isoelectric and Instability index appear as big players and are predicted to have 

the most effect on the test variable. Multiple linear regression was used to test the 

relationship between the experimental luminescence (wetlab) and features selected by 

Lasso regression. The model was found to be significant and explained 84.61% of the 

variability in the test variable and has a p-value of 0.004. (B) Correlation plot of 

experimental values of test variable vs Lasso directed linear model predicted values of 

test variable. AntiClfA test sequences (in blue) are used as the training set and AntiMUC1 

test sequences (in red) are used as the test set.  
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   All Anti MUC1 Anti ClfA 

Rho 0.846 0.71 0.93 

P value 0.0009 0.04 0.0006 

Table 3.5: Rho (correlation coefficient) and P values of the Lasso directed linear model.  

The values are based on the plot between the predicted test luminescence vs experimental 

luminescence.  
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3.4.5 Random Forest regression tree analysis as an alternative performance 

prediction method. 

To increase the versatility of F2F Bridge, random forest regression tree analysis has been 

used for a non-linear model. Similar methodology to Lasso regression was implemented 

within random forest. Anti-ClfA test sequences were used as the training set and the anti-

MUC1 test sequences were used as the test set. The results from the random forest 

regression model are shown in Figure 3.8. The model was successfully able to explain 41 

% of the variability in the test variable (luminescence from secretion). Table 3.6 shows 

the correlation values between the random forest algorithm predicted luminescence and 

experimental luminescence. Significant correlation was observed between the test 

variable (secreted luminescence) predicted by the random forest and the experimentally 

determined values. When the same was repeated using the bound luminescence as test 

variable, no significant results were observed. With bigger datasets for training, this 

accuracy can only increase. Table 3.7 shows a summary of all the analyses and their 

respective outcomes.  
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Figure 3.8: Random Forest regression tree analysis summary.  (i) Mean node purity for 

each predictive feature. Smaller values indicate the high importance of the feature to the 

model. (ii) The trained model explained 41% of the variability in experimentally 

determined test variable (secreted luminescence). The model predicted luminescence 

values were correlated with experimentally determined luminescence values. The model 

has an overall correlation coefficient of 0.87 and an associated p-value of 1e-05.  
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   antiClfA antiMuc1 Total 

P value 0.002 0.05 1e-5 

Rho 0.92 0.71 0.87 

Table 3.6: Correlation results from Random forest predicted regression model. 
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In silico Test 

Performed 

Biological 

Performance Tested 

Test 

Sequence 
Result 

“Blind” F2F Bridge Binding and 

Luminescence 

antiClfA and 

antiMUC1 

The F2F plot was able to 

provide a guide for the 

expected performance of the 

test sequence when the test 

sequences were ranked by 

OP score and by wet lab 

output, and the 

accompanying plot was able 

to inform on how to improve 

the test sequence. No 

statistically significant 

relationship between OP 

score and wet lab output 

could be found. 
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LASSO feature 

selection and linear 

model building 

Binding antiClfA and 

antiMUC1 

LASSO regression analysis 

was able to detect discrete 

patterns in the data, showing 

Hydrophobicity and 

Isoelectric point both to have 

a positive relationship with 

bound luminescence in 

antiClfA. In the case of 

antiMUC1 Docking Affinity 

and Solvent accessibility 

were shown to have a 

positive effect, Isoelectric 

point and Hydrophobicity a 

negative one. 

Using LASSO 

regression analysis 

dictated linear model 

as a predictive tool 

Binding antiClfA and 

antiMUC1 

The models predicted in the 

above analysis were unable 

to exaplain any of the 

variability in the bound 

luminescence of antiMUC1 

or ClfA test sequences. 
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LASSO feature 

selection and linear 

model building 

Luminescence antiClfA LASSO regression analysis 

was able to detect discrete 

patterns in the data, a linear 

regression with solvent 

accessibility and instability 

was able to explain 86.4% of 

the variability in 

luminescence in the antiClfA 

samples. 

Using LASSO 

regression analysis 

dictated linear model 

as a predictive tool 

Luminescence antiClfA and 

antiMUC1 

The model created in the 

above test was used to predict 

luminescence values for both 

antiClfA and antiMUC1. In 

both cases these predictions 

showed strong positive 

correlations with the 

experimental luminescence 

values which were 

statistically significant. 

Random Forest 

regression tree model 

building 

Luminescence antiClfA A regression tree 

implemented with 

randomForest was able to 

explain ~41% of the 

variability in the 

luminescence of antiClfA test 

sequences. 
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Using Random 

Forest regression tree 

as a predictive tool 

Luminescence antiClfA and 

antiMUC1 

The model created in the 

above test was used to predict 

luminescence values for 

antiClfA and antiMUC1 test 

sequences. In both cases, 

these predictions showed 

strong positive correlations 

with the experimental 

luminescence values that 

were statistically significant. 

Table 3.7: Summary of all analyses performed in the F2F study 
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3.5 DISCUSSION 

In this study, a novel strategy has been developed to help visualize and score the overall 

performance of a test sequence (protein). Using machine learning and statistical analyses 

a mathematical model has been tested with significant prediction accuracy. The resultant, 

F2F bridge, is a combination of (i) a graphical overview predicting and displaying the 

strengths and weakness of a test sequence and (ii) an OP score that predicts and ranks the 

performances of different test sequences. Unlike the current in silico tools that inform the 

quality of only a single individual design parameter, F2F bridge provides a holistic view 

on a given test sequence. This top down approach of F2F bridge holds a key for informed 

protein design. F2F bridge could be deployed for both low throughput design and also for 

high throughput screening. In a low throughput setting, the F2F plot would play a pivotal 

role in highlighting the ‘pitfalls and merits’ of the design corresponding to a test sequence. 

The design could then be improved and F2F plot could be regenerated until satisfactory 

design is obtained. In a high throughput scenario, multiple designs of test sequences for 

an overall functions are scored and ranked by F2F bridge.  
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Scale of use Outcome 

High Throughput A database of test sequences or extant 

proteins of known sequence can be 

queried with the F2F-bridge scoring 

each test sequence and identifying 

those most suitable. 

Low Throughput On a protein by protein basis the F2F-

bridge provides a graphical overview 

of the relationship between the 

features of the test sequence and the 

optimal values specified by the user, 

informing the user on how to improve 

the test sequence. 

 

Table 3.8: High throughput and low throughput applications of F2F-bridge. Depending 

on the intended application, F2F-bridge can be used as a tool to screen a large set of test 

variants by empirical ranking or for improving and fine tuning the existing design by 

graphically visualising the merits and falls of the model.   
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In both cases, F2F bridge is positioned precisely to bridge the gap between the myriad of 

seemingly abstract in silico values and wet lab performance. The simple graphical output 

and single OP score are easy to interpret with minimal know-how on programming. When 

combined with wet-lab testing, the patterns existing in the in silico data have been 

successfully used to generate predictive models. 

3.5.1 Relevance to the laboratory scientist 

The ultimate aim of F2F bridge is to bridge the increasing gap between the wet lab 

biologists and the powerful in silico tools. While scoring and ranking the test sequences 

based on their predicted overall performance, F2F bridge, mimics wet-lab screening and 

takes only a fraction of time, cost and expertise required in laboratory screening. This 

could lead to significant operational savings.  

Uses of F2F bridge could be divided into (i) wet lab scientists to study and analyse 

the merits and pitfalls of a protein visually using the F2F plot (ii) computational biologists 

for informed protein design using automated the redesign and (iii) protein based 

industries for screening lead candidates. 

3.5.2 F2F Bridge 

The blind F2F model (without feature selection, unsupervised and unweighted) showed 

promising results and an early indication of predicting the performance of a test sequence. 

This ‘unweighted and unsupervised’ combination of in silico parameters deemed to have 

an effect on overall biological performance of the test sequences. Wet lab 

experimentations are labor and time intensive and it is not cost effective to synthesize and 

test multiple test sequences. Given the ease of implementation, information provided by 

F2F bridge prior to synthesis is extremely valuable. The OP-score and the accompanying 

F2F plot highlight the design aspects that diverge from the user requirements and provide 

caution before wet lab synthesis. The blind model of F2F could be considerably improved 

with a larger dataset. In the meantime, feature selection and model refinement using 

machine learning methods has been implemented.  

As discussed earlier the blind folded model does not account for big players. 

However, proteins are multifunctional molecules and for every user defined overall 
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function, a set of in silico parameters would have a bigger influence than others. Thus 

identifying such big players becomes crucial to improve the accuracy of prediction. The 

ultimate goal of deploying the machine learning methods was to search for underlying 

patterns that could help predict the overall performance of the test sequence. 

3.5.3 Lasso driven feature selection and linear models 

Initially, feature selection was done using Lasso regression to predict the luminescence 

due binding of the test sequence to its target. In the L1 norm vs coefficients plot, the point 

at which the predictive feature enters the model and the effect it has on the test variable is 

very important. Although, big players that affect the bound luminescence were 

successfully identified, it was impossible to incorporate them into a linear model with 

statistical significance. As discussed earlier, the small nature of the current database and 

too many variables in wet lab processes (such as protein expression, binding to target, 

luminescence etc) were the two main bottlenecks. For this reason and the chance to utilise 

the increase in sample size, luminescence data from secretion was analysed. In this case, 

both anti-ClfA and anti-MUC1 datasets could be pooled together. This approach proved 

to be more successful in terms of improving the prediction accuracy of F2F bridge.  

Lasso regression based feature selection was performed again on secreted 

luminescence as a test variable to explore for patterns between the in silico parameters 

and experimental secreted luminescence. As expected this was more effective than the 

bound luminescence as test variable. It has been also shown that the linear model can be 

predicted using this method and a strong correlation was observed between the predicted 

and experimental test variable values. Once the linear relationship model has been 

established for anti-ClfA, this was used to successfully predict the test variable (secreted 

luminescence values) of antiMUC1 test sequences. The predicted luminescence values 

correlated with experimental luminescence values with good correlation. The antiMUC1 

experimental luminescence data originated from a different experiment and they are also 

a different class of proteins when compared to anti-ClfA set. The fact that the lasso 

directed model displayed strong predictive power in-spite of all the differences between 

the two groups, is very encouraging. 
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3.5.4 Random forest regression tree directed model 

Random forest regression tree model was used on ‘luminescence due to secretion’ as a 

test variable. The model was successfully able to explain over 41 % of the variability in 

the experimental secreted luminescence in the anti-ClfA test sequences. The regression 

tree model predicted test variable values closely correlated with the wet lab experimental 

values of the test variable. As observed with Lasso regression model, it was highly 

encouraging that the random forest regression model trained on anti-ClfA test sequences 

was also able to predict the values of test variable for the anti-MUC1 test sequences with 

significant correlation with the experimental values of secreted luminescence. 

3.5.5 F2F bridge - Foundation for overall performance prediction and hurdles 

ahead 

Using machine learning approaches such as Lasso regression model and the Random 

Forest regression tree model, F2F showed promising prospects for predicting the overall 

performance of a test sequence. The workflow and implementation of the prediction 

model is straightforward computationally but not on the wet lab experimentation. 

Synthesis/expression, functional assays and quality assessments on proteins is time 

consuming and is capital intensive. This results in small size of dedicated datasets. Using 

datasets from multiple sources is also challenging due to the vast variability in wet lab 

experimentation. Although this seems as a big challenge, recent advancements in 

synthetic biology provides an inspiring platform for high throughput synthesis and testing 

of multiple proteins. The current version of F2F lays the foundation for protein 

performance prediction using in silico tools. In the future, with an expanded dataset, the 

current two models would be re-assessed to confirm the increase in significance in 

prediction.  

 The current model also relies on web servers and third party tools for 

assessing in silico parameters of a test sequence. This also means that the accuracy of the 

individual in silico parameter values depends on the corresponding tools developed by 

various sources. In a future version, the accuracy of every individual web server/tool 

would be taken into consideration to provide an overall confidence score on the predicted 

performance. This would prevent error-compounding. 
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3.5.6 Outlook and F2F Bridge V.2.0 

In the current version of F2F bridge, it has been shown that the patterns observed in the 

in silico parameters of proteins could be used to predict significantly accurate overall 

biological performance and this could play a pivotal role in design optimisation and high 

throughput screening. Larger datasets could immensely benefit F2F bridge to improve in 

accuracy. Therefore this raises the need for the establishment of a new community wide 

data reporting system for in silico and wet lab data for proteins. This provides larger 

training datasets and wide variety of overall biological functions. SourceTracker 

algorithm used in metagenomic studies which is used to track possible sources of 

contamination in HTS studies served as standing example and inspiration for the proposed 

community wide data reporting system. Also, the regulation proposed by journals to 

deposit structures in PDB prior/after publication provide confidence to the establishment 

of such a data reporting system. F2F V2.0 would also have a parallel server which would 

take amino acid sequence as an input and perform all the in silico parameter calculations 

in-house. All the individual errors and compound errors will be taken into consideration 

and users would be informed with a graphical score. New strategies with applied weights 

to in silico parameters, combinational approach (performing multiple machine learning 

analyses sequentially for refinement) and suggestion nudges to improve the OP score will 

be incorporated.  

With all the above features F2F bridge forms a novel tool for informed protein 

design and capitalises on end-user empowerment.  
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3.6 Conclusions 

The design model build test approach promoted by modern synthetic biology stands to 

benefit immensely from F2F bridge. This becomes an indispensable strategy for a 

biologist to triage the potential best performers and visualise the merits and falls of the 

protein. With little further adjustments in V.20 F2F bridge integrates in the DMBT cycle 

and adds the ‘learn’ step by empowering the end-user (wet lab biologist) with a holistic 

view on the overall performance of a protein. With a community-based data reporting 

system and larger datasets, F2F bridge could be tunes to Pareto optimality.  
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Chapter 4 

A novel in vivo imaging strategy using synthetic 

protein engineering 
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4.1 ABSTRACT 

Background Recent advancements in life sciences such as protein engineering place 

biomedical research in fast and fascinating transformation phase. Translating such novel 

scientific concepts into a clinical setting requires extensive prior laboratory testing. The 

lack of efficient methods to track the performance of the therapeutics/diagnostics in vivo 

is a significant barrier and causing hindering their clinical translation. Bioluminescence 

imaging  for is an attractive imaging modality for in vivo applications. Targeted synthetic 

proteins equipped with an optical reporter such as a luciferase could become a valuable 

tool for in vivo optical imaging.  

Aims The aim of this study was to develop a novel in vivo imaging strategy using 

in silico engineered targeted synthetic luciferase proteins. 

Methods  In this work, test constructs targeting tumour associated MUC1 were built 

and tested for their in vitro binding to MUC1 antigen-expressing cell lines. Based on the 

luminescence readouts, the best performer was identified. This, as well as the best 

performer targeting S. aureus ClfA (from Chapter 2), were tested for specific imaging of 

target cells in in vivo murine models. 

Results Over 100 different multi-part test constructs targeted to human MUC1 

were modelled and validated using various computational tools to inform and guide 

downstream wet-lab experiments, as per Chapter 2. Gaussia luciferase (Gluc) or nanoluc 

were used as a luminescence reporters. All test construct variants were subjected to 

computational screening of predicted functionality. The best predicted performers were 

appropriately modified to ensure required hydrophobicity, net surface charge, active site 

exposure and valid 3D structure. Wet-lab studies were conducted to validate MUC1 

protein production and functioning (luminescence and specific target binding) in vitro.  

 For both MUC1 and ClfA targeted proteins, in vivo luminescence imaging 

studies involving systemic intravenous (IV) administration of proteins, validated synthetic 

protein specific accumulation at target cell locations within mice as evidenced by 

localised luminescence. Dose response studies indicated that luminescence output was 

both target cell and administered protein quantity related. Upon validation that 

systemically-administered synthetic proteins functioned as in vivo imaging agents, it was 
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investigated if these proteins could be produced by the mouse in vivo to achieve the same 

effect. In vivo transfection of quadriceps with DNA constructs used for synthetic protein 

production was examined using electroporation and lipofection. However, this DNA 

strategy proved unsuccessful.  

Conclusion  This study serves as a proof-of-concept for using targeted reporter proteins 

for in vivo imaging.  
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4.2 INTRODUCTION 

Recent advances in life sciences such as gene-editing [1], protein engineering and the 

advent of de novo designed proteins [2], place biomedical research in a fast and 

fascinating transformation phase. Translating such novel scientific concepts into a clinical 

setting requires extensive prior laboratory testing. Traditional laboratory testing methods 

are time consuming, invasive and involve multiple samplings, and have high associated 

costs for instrumentation and analysis. The lack of efficient methods to track the 

performance of the therapeutics/diagnostics in vivo is a significant barrier and causing 

hindrance towards their clinical translation [3].  

Testing novel diagnostic and therapeutic strategies requires real-time in vivo 

targeting, tracking and monitoring of various biological events that result due to the 

intervention. Such real-time in vivo tracking is pivotal in understanding complex cellular 

and systemic functions inside a test subject’s body. Optical imaging (OI) represents a 

simple low-cost solution for real-time in vivo monitoring and has contributed significantly 

to biomedical research [4]. Considering the inexpensive nature of OI and its ability to be 

applied for high-throughput work, OI is an attractive ionising radiation independent 

imaging alternative [3]. 

 

4.2.1 Bioluminescence in vivo imaging 

BioLuminescence Imaging (BLI) is an attractive imaging modality for in vivo research 

applications [5, 6]. BLI has a standout advantage when it comes to signal-to-noise ratios. 

This is due to the negligible background noise when compared to the luminescence signal 

from the luciferase reaction [7]. Due to the excitation-independent mechanism of 

luciferases, BLI does not face risks such as photobleaching and phototoxicity which are a 

major concern in other optical imaging modalities [7]. These properties make BLI highly 

suitable for in vivo imaging. As discussed in Chapter 2, Gluc, Rluc and Fluc are the most 

widely used luciferases for BLI. Engineered versions of synthetic proteins with luciferase 

parts have been proven as an attractive imaging strategy [6, 8-12]. However, BLI has faces 

challenges such as limited depth light penetration due to tissue absorption and scattering. 
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BLI using synthetic protein also raises questions such as potential for immunogenicity, 

toxicity and clearance from the system, that act as hurdles to clinical development.  

4.2.2 Synthetic proteins for in vivo imaging 

The number of engineered proteins used in imaging and therapeutic applications has 

grown significantly in the last 10 years. Engineering synthetic proteins with multiple 

functions and their applications have been discussed in Chapter 2. In this chapter, I aimed 

to design synthetic proteins targeting cancer cells, and to assess their potential as in vivo 

imaging agents. MUC1 was chosen as a cancer cell target to test the strategy, along with 

the bacterial-targeted agent developed in Chapter 2. 

.  

4.2.3 Tumour associated MUC1 

MUCIN-1 (MUC1) is a transmembrane glycoprotein expressed in glandular and luminal 

epithelial cells of various tissues/organs. MUC1 is long string like structure (200-500 nm 

long) having a transmembrane and an extracellular domain [13] (Figure 4.1). Both 

domains are linked together by stable hydrogen bonds. In non-malignant cells, MUC1 

acts as a protective layer to underlying epithelia. Upregulation of MUC1 expression is 

associated with various epithelial cancers [14, 15]. This generated high interest to pursue 

MUC1 as an oncogenic molecule. MUC1 plays an important role in disease progression 

involving cancer cell proliferation, metastasis and angiogenesis. Tumour-associated 

MUC1 differs from MUC1 present on regular cells [15]. The extent of glycosylation is 

one of the major differences between MUC1 found on regular cells and cancer cells. 

MUC1 is a heavily glycosylated protein - however, many studies have shown that the 

MUC1 presented on cancer cells has significantly lower levels of glycosylation [14, 15]. 

From a therapeutic point-of-view, the loss of glycosylation exposes the protein backbone 

and provides scope for antibody binding. Many therapeutic strategies to target MUC1 take 

advantage of the exposed protein due to loss of glycosylation. Given the multifaceted 

nature in cancer, targeting MUC1 presents a promising strategy in cancer diagnosis and 

treatment.  
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Figure 4.1: Graphical representation of MUC1 structure and various important parts. 

The structure of MUC1 consists of a cytoplasmic tail and an extracellular domain. The 

two domains are linked together by strong hydrogen bonds. SEA (sea urchin sperm 

protein, enterokinase and agrin, a highly conserved 120 AA module) domain has a 

proteolytic cleavage site.  

 

  



154 

 

The present work seeks to extend the concept of design-model-build-test of synthetic 

proteins described in Chapter 2, to validate the in vivo functioning of the synthetic protein 

as an in vivo imaging agent using murine models. MUC1 was chosen as a test target due 

to its high surface expression. The in vivo imaging strategy was also validated using S1 

test constructs targeting ClfA. The workflow and proof-of-concept of using synthetic 

designer proteins as in vivo imaging agents is described in following sections. 
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4.3 MATERIALS AND METHODS 

4.3.1 Overview of in silico design of synthetic proteins 

Synthetic proteins targeting hMUC1 contained multiple subparts similar to the synthetic 

proteins shown in Chapter 2. Over 100 different variants were made and manually 

screened for potential best performers. Following the successful functioning of the 

synthetic proteins in Chapter 2, similar subparts and design principles were used for all 

the test constructs. In silico tools described in Chapter 2 were used to make several 

iterations of each test variant. All the designed structures were validated until desired 

structural conformations were achieved. VH and VL domains of anti MUC1 ScFv clone 

C595 were used as the binding domain to target MUC1. The amino acid sequence and the 

structure for MUC1 antigen was obtained from RCSB PDB. The process workflow and 

methods are explained in the sections below. 

4.3.2 Computational tools used for in silico -aided design and validation 

All the computational methods followed the same workflow and analyses as shown in 

Chapter 2 section 2.3.2. 

4.3.2.1 Protein structure modeling 

Protein modelling was performed primarily using the I-Tasser protein modelling suite 

[16]. The test constructs were also modelled using Rosetta modelling suite to increase the 

prediction reliability [17, 18].  

4.3.2.2 Superimposing predicted models 

The models predicted by I-Tasser and Rosetta were superimposed onto each other and 

RMSD was calculated using R-algorithms, developed in-house at the Tangney lab. 

4.3.2.3 3D visualisation 

UCSF Chimera was used for all protein visualisation throughout this work [19]. Chimera 

was also used to visualise protein-protein interactions after protein docking which was 

carried in the later stages of this workflow. 
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4.3.2.4 Protein-protein interactions 

Protein-protein interactions were studied using protein docking. AutoDock Vina was used 

for protein docking [20]. All the bound conformations were visualised in UCSF Chimera 

to screen for conformations that bind at the active sites (epitope-paratope interaction).  

4.3.2.5 Theoretical structure validation 

Ramachandran plots (RC plots) were used to validate the theoretical stability of the 

modeled structures. This information could be used to verify the structural stability of the 

model to exist in a natural environment. 

4.3.2.6 Total hydrophobicity vs Surface hydrophobicity 

Surface hydrophobicity was mathematically calculated by identifying the residues which 

have over 40 % exposure. The hydrophobicity is then calculated for these surface residues 

using in-house R algorithms. 

4.3.2.7 Structural remodelling and affinity improvements 

Improvements to the backbones, linkers and single residue replacements required 

structural remodelling. This was performed using Rosetta package. In cases where the 

modification is very small, the specific region is remodelled instead of modelling the 

whole structure. 

 

4.3.3 Wet-lab experimentation methods 

4.3.3.1 DNA design  

Following the in silico validation of all the test sequence. The finalised constructs were 

reverse translated into their corresponding DNA sequences using backtranseq feature on 

EBI website (https://www.ebi.ac.uk/Tools/st/emboss_backtranseq/). Codon optimisation 

was performed using condonopt tool on IDT website (https://eu.idtdna.com/codonopt). 

The final constructs were obtained from Twist Bioscience company. NEB and 

SnapGene’s Gibson assembly simulators were used to design the homologous arms to 

facilitate Gibson assembly. Primers were designed using the tools mentioned in Chapter 

2 section 2.3.3. All the primers were sourced from Integrated DNA Technologies. 

  

https://www.ebi.ac.uk/Tools/st/emboss_backtranseq/
https://eu.idtdna.com/codonopt
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Primer name Sequence 

FullSeqFWd AATTCAAAGGAGGTACCCACCA  

FullSeqREV AGGTAGATATCGCGGTACCCTTA 

MUC1Dia1aREV ACTGTTGACAATAATAGGTTGCAG 

MUC1Dia1bFWD  
AACCTATTATTGTCAACAGTGGAGT

TC 

MUC1Dia3aREV 
TCTGGAGATAAAGTGTATTTTTAGC

ATT 

MUC1Dia3bFWD 
AAATACACTTTATCTCCAGATGTCCT

C 

MUC1Dia4aREV  TCTCGATCCCTAGCGCAAT 

MUC14bFWD TATTGCGCTAGGGATCGAGA 

MUC1Dia5aREV  TGCCAGGACCCCAGTAATC 

MUC1Dia5bFWD TGATTACTGGGGTCCTGGCAC 

 

4.3.3.2 Plasmid scale-up 

OG176 plasmid (Oxford genetics) with Kanamycin resistance was chosen for producing 

the synthetic proteins. Plasmid scale-up was performed using the protocol described in 

Chapter 2 section 2.3.4. For plasmid extraction, overnight subcultures of the transformed 

bacteria are subjected through Monarch Plasmid miniprep kit (New England Biolabs) 

protocol.  

4.3.3.3 Restriction digestion 

Refer Chapter 2 section 2.3.5 for detailed methods 

4.3.3.4 Gibson Assembly 

Refer Chapter 2 section 2.3.6 for detailed methods 

4.3.3.5 Validating cloning using colony PCR and Sanger sequencing 

Refer Chapter 2 section 2.3.7 for detailed methods 
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4.3.3.6 In vitro transfection 

Refer Chapter 2 section 2.3.8 for detailed methods 

4.3.3.7 Binding assays  

MCF7 (hMUC1-positive) and B16 (hMUC1-negative) cell lines were used to test the 

binding of synthetic proteins. Cells at different concentrations were blocked with 5 % 

BSA for 2 h followed by incubation with supernatant containing each test construct. Cells 

were washed 3 times and resuspended in PBS. 10 µl of each sample is taken in triplicates 

into a corning 96 well white plate. 50 µl of Coelenterazine substrate was added to each 

well and luminescence was measured using Promega GloMax® 96 luminometer. 

4.3.4 In vivo methods 

All animal procedures were performed in accordance with Health Products Regulatory 

Authority (HPRA) ethical guidelines. The project protocols were approved by animal 

ethics committee at University College Cork and the HPRA. All procedures were 

performed with care and effort to minimise pain and suffering.  

4.3.4.1 Animals used in the study 

6-8-week-old female BALB/c mice (weighing about 20 grams) were used for the studies. 

The animals were obtained from Envigo, UK. All the animals were monitored on a regular 

basis throughout the experimental period.  

4.3.4.2 Bacterial administration to mice 

Subcultures of the overnight bacterial strains were made 6 hours before the experiment. 

Bacteria were grown until an appropriate OD as per CFU requirements. The cells were 

harvested by centrifugation (3000 rpm for 20 min) and were washed 3 times with PBS. 

Mice were anaesthetised with Isoflurane throughout the procedure. Both the quadriceps 

of the mice were shaved to enable better access to the muscle. The 50 µl diluted cultures 

were administered intramuscularly using a 29G needle syringe.  

4.3.4.3 Systemic administration of synthetic proteins 

50-100µl of the synthetic protein supernatant were administered to the mice via IV 

through the lateral tail vein. All IV injections were performed 20-30 min before substrate 

administration or imaging.  
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4.3.4.4 Non-invasive in vivo imaging 

The IVIS Lumina II Imaging system (Perkin Elmer) was used for bioluminescence 

imaging. All mice were kept under isoflurane-induced anaesthesia all through the imaging 

period. IVIS living image software was used for image visualisation and analysis.  

4.3.4.5 In vivo transfection 

Lipofection In vivo turbofect (Invitrogen, Thermofisher) was used for transfecting mouse 

quadriceps using lipofection. Manufacturer’s protocol was followed to formulate the 

composition.  

Electroporation: Nepagene 21 electroporator was used for this electroporation. 

Electroporation was carried out on the mouse quadriceps using a plate based electrode 

setup. The mice were anaesthetised using Ketamine (75 mg/kg) and Medetomidine: 

(1mg/kg) (IP injection). DNA was injected prior to electroporation (needle size range 

26G-30G) at a depth of approximately 5 mm with 50 µl of DNA suspension in water. The 

injected site is then electroporated (8 pulses, 1000-1300 V/cm for 100 µs).  
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4.4 RESULTS 

4.4.1 In silico validation and screening 

Detailed workflow of all the in silico methods and strategies used here, are described in 

Chapter 2, (section 2.4).  

4.4.1.1 Tumor Associated MUC1 antigen 

Tumour associated human MUCIN 1 (MUC1) was chosen as a target to test the imaging 

strategy as a proof-of-concept. The amino acid sequence for MUC1 was obtained from 

PDB and the 3D structure was modelled using I-Tasser. Various structurally important 

domains were highlighted using UCSF Chimera. The antigenic sequence PDTRPAP and 

the potential binding site for antibodies is depicted in Figure 4.2.  
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Figure 4.2: 3D structure of MUC1. Potential binding site for various MUC1 targeting 

antibodies such as C595, is highlighted in the red box. The VNTR (Variable number 

tandem repeat) region is highlighted in blue and yellow. The VNTR region is a highly 

glycosylated and consists of 20 amino acid repeats. Yellow represents the hydrophilic 

region on MUC1. The structure has been modelled computationally using I-Tasser. 
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4.4.1.2 Design elements and design rationale 

In silico strategies, as shown in Chapter 2, were used to design synthetic proteins for 

targeting cancer cells. The amino acid sequence for the binding domain was retrieved 

from a ScFv clone previously shown to be capable of binding the MUC1 antigen on 

human breast carcinoma tissues [21]. An outline of different parts of the synthetic protein 

is shown in Figure 4.3. 

 

 

Figure 4.3: Different subparts of the test construct. Test variants differ in the presence 

or absence of each subpart and their arrangement. A monobody (ScFv) version and a 

diabody version were chosen as two variants of T-Domain.  

 

Over 100 different test variants were designed and screened for best performers. After 

multiple iterations of redesign and remodelling, 8 different test constructs were selected 

for wet-lab testing. The 3D structure and the construct schematics of the selected ScFv 

and Diabody test variants are shown in Figure 4.4.  
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Figure 4.4: 3D structure and the construct schematics of the selected ScFv and Diabody 

test variants. MD2 and MD6 lack the binding domain and were designed as internal 

negative control for binding. Constructs M1, M2, M3 and M4 represent the ScFv version 

and the constructs MD1, and MD3 represent the diabody format. 

Test variants targeting MUC1 

 

 

 

 

 

 

  

 

M1 
M2 

M4 M3 

MD3 MD1 

Non-binding control with ST Non-binding control without ST 
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4.4.1.3 Protein-Protein Docking 

Protein docking was performed on all the test constructs to test the in silico binding 

affinity. MUC1 structure modelled by I-Tasser was used as the receptor. MUC1 is a large 

protein and performing full length docking was computationally-intensive. The VNTR 

region where C595 binds was selected and the docking was performed in this restricted 

region. Upon docking, 8 different potential binding conformations for each test construct 

were visualised using UCSF Chimer and the best conformation for each test construct was 

selected based on free energy. Figure 4.5 shows the monobody M3 bound to MUC1. The 

docking results and all the in silico data corresponding to the finalised test constructs are 

shown in Table 4.1. 
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Figure 4.5: Test construct M3 (ScFv variant) bound to MUC1. The whole chain of 

MUC1 structure is shown on the left. The zoomed-in section shows the Hydrophilic 

PDTRPAP region (Epitope), where the synthetic protein bind. Both the structures shown 

here were computationally modelled using I-Tasser. 
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ID C 
Score 

TM 
score 

RC 
score 
(%) 

Hydrophobicity 
(%) 

Solvent 
accessibility 
of the active 
site (%) 

Docking 
affinity 
(ΔG) 

Size 

M1 0.04 20.45 84.3 44.787 59.888 -17.5 66 

M2 0.17 21.44 88.4 45.777 60 -18 53.3 

M3 0.08 18 83.5 44.888 58.888 -16.7 66.5 

M4 0.22 4 75.5 45.194 61.509 -13.4 83.46 

MD1 0.07 5.54 84.3 44.888 59.444 -17.4 66.5 

MD3 0.0014 19 87.3 45.274 64.960 -18.6 37.3 

MD2 0.16 19 89 45.333 65 -17.7 37.53 

MD6 0.077 21.29 86.9 47.777 65.555 -15.2 24.33 

Table 4.1: In silico data of selected test constructs, obtained from various computational 

tools. From left to right, C-score (confidence score) from I-Tasser, TM score (template 

modeling score) as agreement between Rosetta and I-Tasser models, RC score 

(Ramachandran plot score), solvent accessibility of the active site (paratope regions), 

Free energy change from docking, size and instability index were tabulated for all the test 

variants. 
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4.4.2 Wet-lab experimentation 

General assay methods are described in Chapter 2, section 2.4.5. All assays were 

performed in triplicate. 

4.4.2.1 Validating protein production 

Following thorough in silico validation the selected test constructs were tested in wet-lab 

studies for their functioning. Transfected cell supernatant, containing test proteins, was 

collected 48 h post transfection and a series of luminescence assays have been conducted 

to test the protein production. Figure 4.6 shows the luminescence from all the selected 

constructs. In this case, test construct M1 was the best produced. 
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Figure 4.6: Secretion of various test proteins. Relative luminescence units were 

correlated to concentration in mg/ml using a standard curve obtained from Gluc protein 

standards. MD2 and MD6 lack the T-domain and were used as internal controls. All 

assays were performed in biological triplicates.  
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4.4.2.2 In vitro binding to MUC1 

In vitro binding was confirmed by measuring and comparing luminescence signals after 

binding. MCF7 were chosen as the MUC1 positive cell line and B16 cell line was chosen 

as MUC1 negative cell line. The choice of cell lines was based on previous literature and 

data from human protein atlas and expression atlas [14, 22, 23]. Both the cells were treated 

with 10 µl of each test construct for 1 h, at room temperature. The cells were washed 3 

times using PBS and 10 µl of the sample is taken into a corning 96 well white plate. Bound 

luminescence from each test construct is plotted in Figure 4.7. No significant correlation 

was observed when ScFv variants and Diabody variants were placed into groups. It was 

deemed that the data set size was also too small for such comparisons.  
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Figure 4.7: Bound luminescence of test variants to MUC1. Luminescence after binding 

to MUC1 on MCF7 cells. 106 MCF7 cells were incubated with 10 µl of each test construct 

for 1 h. Test construct M1 emitted highest bound luminescence followed by M3. 

 

Figure 4.8 shows the bound luminescence per µg of synthetic protein. Luminescence 

emitted from each test construct (non-bound) was measured in parallel and bound 

luminescence normalised to ‘amount of synthetic protein added (in µg)’ was calculated 

mathematically. In this case, M3 and M4 outperformed all the other test constructs.  
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Figure 4.8: Bound luminescence normalised to protein quantity. Test constructs M3 and 

M4 outperformed M1, which was producing highest bound luminescence in the previous 

non-normalised analysis. 
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Selectivity of the synthetic proteins towards MUC1 positive cell lines was calculated by 

calculating ratio between bound luminescence (per amount of protein added) from MCF7 

cells and B16 cells. Figure 4.9 shows the selectivity of all the test constructs per 1µg of 

protein added. Test constructs M1 and M3 presented the highest selectivity for MUC1. 
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Figure 4.9: Selectivity of the synthetic proteins towards MUC1 positive cell lines. M1 

and M2 showed highest selectivity followed by M4. All the other test constructs have 

selectivity lesser than the non-binding controls MD2 and MD6.   
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4.4.2.3 Selecting the best suitable candidate 

The in vitro binding assays presented an interesting scenario while selecting for a best 

performing test construct. M1 showed the highest signal intensity, M3 showed the highest 

bound luminescence per amount of protein added, and M1 and M3 showed high 

selectivity. The test constructs are ranked in Table 4.2, based on each wet-lab binding 

analysis strategy.  
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Signal intensity 
Normalised 

performance 
Selectivity 

M1 M3 M3 

M3 M4 M1 

M4 M1 M4 

MD1 M2 M2 

M2 MD3 MD1 

MD3 MD1 MD3 

Table 4.2: Test proteins ranked based on their performance in different wet-lab binding 

analysis strategies. 
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Figure 4.10: Selecting the best suitable candidate. Signal intensity and selectivity were 

deemed to be the most important factors in further in vivo studies. 
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M1 presented the highest bound luminescence and high selectivity. For preliminary in 

vivo testing, high signal intensity and high selectivity stand as the most important factors 

(Figure 4.10). Based on this hypothesis, M1 was selected as the best suitable candidate 

for further studies and all the further emphasis was placed in M1. 

 

4.4.2.4 Dose response assays 

Dose response experiments were performed using two MCF7 and B16 cells. Three 

different concentrations (by volume) of the synthetic proteins and three cell 

concentrations were used. Cells were treated with each synthetic protein for 1 h, at room 

temperature. Cells were washed 3 times and resuspended in PBS. All the samples, in 

triplicate, were placed in a Corning 96-well white plate. Luminescence was measured 

after adding 50 µl of coelenterazine. Cell dose response and synthetic protein dose 

response using test construct M1 is shown in Figure 4.11. In both instances, the bound 

luminescence from MCF7 cells was higher than bound luminescence from B16 cells. 
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Figure 4.11: Cell and synthetic protein dose response of M1 (a) Cell dose response: 

0,104, 106 cells of both B16 and MCF7 cell lines were treated with 10 µl of M1. (b) 

Synthetic protein dose response: 0, 1 µl, 10 µl of M1 have been added to 106 cells of both 

the cell lines. As expected, the luminescence increased with the increase in number 

cells/synthetic protein concentration. 

  



179 

 

 

4.4.3 In vivo imaging 

Following successful in vitro validation, the synthetic proteins, targeting MUC1 and S. 

aureus ClfA, were tested in murine models. It should be noted that significant ‘trial and 

error’ optimisation was required to identify the appropriate time intervals for imaging, 

and multiple in vivo studies were performed in advance to optimise for the below shown 

studies (data not shown). 

 

4.4.3.1 In vivo synthetic protein dose response (M1) 

M1 in three different concentrations, was administered systemically by IV injection via 

lateral tail vein. In all cases, the synthetic proteins were diluted in PBS and reconstituted 

to a 100 µl volume. Subcutaneous injections of 107 MCF7 and B16 cells were given on 

each side of the mouse. 20 min after administering the cancer cells, 50 µl of coelenterazine 

was injected into the cell locations. Mice were anaesthetised with Isofluorane and were 

subjected to imaging. All experiments were performed in triplicate. 
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Figure 4.12: M1 dose response and target specificity in vivo: An increase in 

luminescence was observed with respect to the increase in synthetic protein 

concentration. Luminescence from left subcutaneous pocket, with MCF7 cells, produced 

a significantly (p 0.0087) higher signal than the right side, with B16 cells. 
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4.4.3.2 In vivo cell dose response (M1) 

100 µl of M1 was administered intravenously via lateral tail vain to all the mice. Mice 

were injected subcutaneously with different concentrations of cancer cells (0, 105 and 

107cells). 20 min after administering the cancer cells, 50 µl of coelenterazine was injected 

into the cell locations. Mice were anaesthetised and subjected to imaging. All the 

experiments were performed in triplicate. 

 

Figure 4.13: In vivo cell dose response. An increase in luminescence was observed in 

relation to the increase in number of cells. Luminescence from left subcutaneous pocket, 

with MCF7 cells, produced a higher signal than the right side, with B16 cells. 

  



182 

 

4.4.3.3 In vivo synthetic protein dose response (S1), S. aureus targeting synthetic 

protein 

S1 in three different concentrations, was administered systemically by IV injection via 

lateral tail vein. In all cases, the synthetic proteins were diluted in PBS and reconstituted 

to a 100 µl volume. Mice were anaesthetised and 107 S. aureus cells diluted in PBS (in 50 

µl) were administered intramuscularly on the left quadricep. 20 min after the IM injection, 

50 µl of coelenterazine was injected into both the quadriceps. Mice were anaesthetised 

with isoflurane and were subjected to imaging. All experiments were performed in 

triplicate. 
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Figure 4.14: S1 dose response in vivo 100 µl, 20 µl and 0 µl of S1 was administered 

systemically via tail vein. 107 S. aureus cells were injected (IM) on the left quadriceps of 

mice. An increase in luminescence was observed with the increase in concentration of S1. 
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4.4.3.4 In vivo bacterial cell dose response (S1) 

100 µl of S1 was administered intravenously via lateral tail vein to all mice. Mice were 

anaesthetised with isoflurane and different concentrations of S. aureus cells (0, 105 and 

107 cells) diluted in PBS (in 50 µl) were administered intramuscularly to the left 

quadriceps. 20 min after administering the bacterial cells, 50 µl of coelenterazine was 

injected into the cell locations. Mice were anaesthetised and subjected to imaging (Figure 

4.15). A dose response was not evident in this case. While both 105 and 107 bacteria groups 

displayed higher luminescence than no bacteria, the 107 group did not produce higher 

luminescence than the 105 group. Furthermore, some off-target luminescence was 

observed in the right quadriceps of mice injected with 105 cells, perhaps due to basal level 

of coelenterazine reacting with mouse blood. 

  



185 

 

 

Figure 4.15: In vivo bacterial cell dose response study. 100 µl of S1 was administered 

systemically via tail vein. 0, 105 and 107 S. aureus cells were injected (IM) on the left 

quadriceps of mice. In this case the luminescence from 105 cells was slightly higher than 

luminescence from 107 cells (n=2). Some off-target luminescence was observed in the 

right quadriceps of mice injected with 105 cells.  
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4.4.3.5 GlucS1 vs NanolucS1 

As discussed in Chapter 2, NanoLuc was deemed likely to have a significant advantage 

over Gluc for in vivo imaging. Previous literature shows that NanoLuc is brighter and has 

improved half-life over Gluc. To test this in vivo, 100 µl of GlucS1 and NanolucS1 were 

administered systemically to mice by IV injection via lateral tail vein. Mice were 

anaesthetised and 107 S. aureus cells diluted in PBS (in 50 µl) was administered 

intramuscularly to the right quadriceps. 20 min after IM injection, 50 µl of coelenterazine 

(GLuc) or furamazine (NanoLuc) was injected into both left and right quadriceps. Mice 

were anaesthetised and subjected to imaging. Mice were imaged for 2 h at various time 

points. Figure 4.16 shows the signal intensities of GlucS1 and NanoLuc S1 with respect 

to time. This study was performed in triplicate. NanoLucS1 was brighter than GlucS1 

throughout the experiment and produced a significantly higher signal even after 100 min 

(p <0.0001).  
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Figure 4.16: GlucS1 vs NanoLucS1. 107 S. aureus cells were injected into the right 

quadripceps of mice. 100µl of test protein was injected via tail vein. NanoLucS1 (shown 

in green) showed a significantly higher signal intensity throughout the time course (p 

<0.0001).  
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4.4.4 In vivo production of synthetic proteins 

Following validation that systemically administered proteins function as imaging agents 

in vivo, it was investigated if these proteins could be produced by the mouse in vivo to 

achieve the same effect. A schematic of this concept is shown in Figure 4.17. 
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Figure 4.17 Schematic of in vivo production of targeted synthetic proteins: The concept 

involves administration of plasmid DNA to mouse quadriceps to induce systemic 

production of the targeting luciferase. The systemically-circulating protein binds to the 

specified target, facilitating BLI of the target cells. 
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Quadriceps of mice were transfected using electroporation or lipofection with DNA 

encoding NanolucS1 or Fluc (as a control for transfection). After 72 h, 107 S. aureus cells 

were injected into the left quadriceps of mice. 100 µl of furamazine (NanoLuc) or luciferin 

(FLuc) was injected by IV via lateral tail vein. Mice were imaged after anaesthetising with 

isoflurane. For lipofection groups, no luminescence was observed in any mouse, including 

the FLuc transfection control group, indicating insufficient DNA transfection to produce 

luminescent protein (data not shown). This was repeated, producing the same result. 

For electroporation groups, high-level, quadriceps-localised luminescence was evident in 

the group transfected with Fluc, indicating successful DNA transfection and localised 

intracellular luminescent protein production (FLuc is not secreted). However, no 

luminescence was detected in any mice transfected with Nanoluc S1, either at the 

quadriceps site of transfection, or distally at target cell sites, indicating insufficient 

transfection and/or protein production for detection (Figure 4.17). 
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Figure 4.17: Transfection of mice quadriceps for in vivo protein production. (a) Right 

quadricep was electroporated with plasmid encoding Fluc. (b) Right quadricep was 

electroporated with plasmid encoding NanolucS1. No luminescence was observed in the 

Nanoluc mice group. 
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While the in vivo production strategy proved unsuccessful in this study, it is possible that 

further optimisation of various parameters might bring this concept to reality. 
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4.5 DISCUSSION 

 

This work presents use of synthetic targeted proteins as an in vivo imaging strategy. Two 

different targets, MUC1 and ClfA, were chosen for the study. However, the in silico 

strategies described could be adopted for various other targets. Synthetic proteins were 

built to bind to hMUC1, using the in silico aided-design strategy described in Chapter 2. 

Design rationale and choice of subparts were adopted from Chapter 2, to have high 

resemblance. Over 100 different test variants were designed and modelled with the aim 

of obtaining the optimal structural conformations. The binding domain was built by 

incorporating minimal regions of C595 ScFv. Immense care was taken to ensure 

maximum exposure of the active sites. Over 10 different linker type and size combinations 

were sampled. Designing a diabody format required additional care while choosing 

linkers due to its bigger size. Gluc was chosen as the imaging part due to its small size 

and, due to its ATP-independence, ability to function outside the cellular environment 

where ATP is scarce.  

In vitro testing was carried out to validate secretion and functioning (binding and 

luminescence) of the synthetic proteins. Throughout the work, luminescence was used to 

inform the protein production, binding and selectivity. The goal of the in vitro assays was 

to find a best suitable candidate for use in in vivo imaging. The bound-luminescence data 

presented a challenging and interesting case while selecting for the best candidate. M1 

showed the highest luminescence per volume, M3 showed highest luminescence per 

protein weight and M1 and M3 showed similar selectivity for the target. Solving this issue 

required the application of ‘optimal performer’ logic that was described in Chapter 2. 

Detecting bound-luminescence in vivo requires high selectivity for the targeted cells. M1 

and M3 both showed appreciable selectivity. Luminescence per volume of M3 was 

noticeably lower than M1. The low signal intensity of M3 would play a detrimental role 

for the overall goal (balance between high signal and high target binding). This solidified 

the argument of selecting of M1 over M3. The optimal performer logic helped to guide 

the screening process based on the user-defined overall function. In future, adding 
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arbitrary values to the coefficients of S, N and I, would provide an empirical basis while 

screening for the best performer.  

The in vitro studies provided a preliminary understanding of the basic functioning 

of the protein. However, questions regarding the structural integrity and stability would 

have been answered through more wet-lab validation. In this context, Western blots were 

performed using anti-Flag antibodies, as per Chapter 5. However, after multiple attempts 

with both ClfA and MUC1 proteins, this was unsuccessful (data not shown). These data 

would have been beneficial to confirm the size, integrity and concentration of the 

synthetic proteins. Similar anti-Flag Western blots were readily performed in Chapter 5 

to show the size and validate protein production. The failure to detect synthetic proteins 

on Western blots could be due to some features unique to these synthetic proteins.   

The ability of the synthetic protein to circulate systemically throughout the body 

and localise to a specific target to produce an imageable luminescence signal acts as a 

proof-of-concept for in silico aided synthetic protein design of targeted proteins for in 

vivo use (therapeutic, imaging etc). In vivo studies using systemically-administered M1-

Gluc indicated localisation of this protein to target cells. In this study, +/- MUC1 cell lines 

(MCF7 and B16) instead of solid tumor models due to quick turnover time of experiments. 

However, significant ‘trial and error’ optimisation was required to identify the appropriate 

time intervals for imaging. Although the synthetic proteins displayed strong localisation, 

in the case of S1, use of off-target cells would have further validated the target-specific 

binding. Further assays such as FACS would also reconfirm the binding. In both the in 

vivo studies using M1 and S1, administering the mice with a non-targeting binding 

antibody would have been beneficial to rule out the chances of accidental accumulation. 

Further, using solid tumor models and a complete dose response experiments showing the 

signal saturation would solidify the confirmation of binding. As the study proceeded, it 

was determined that the short in vivo half-life of the Gluc-colanterizine system may 

represent a limiting factor in performing these studies. Literature on Nanoluc guided 

towards testing of Nanoluc and its substrate as the imaging subpart in one of the test 

constructs. In Chapter 2, a variant of S1 with Nanoluc was designed and tested in vitro. 

These assays didn’t show any noticeable in vitro advantage when Gluc was replaced with 

Nanoluc. However, in vivo, the NanolucS1 construct showed a significant improvement 



195 

 

in signal intensity (Figure 4.16). It is to be noted that both Coelenterazine and Furamazine 

have been tested as a substrate against NanolucS1 and in this study Coelenterazine was 

shown to be brighter when compared to Furamazine. 

Following the findings that systemic administration of Nanoluc S1 validated the 

functioning of the synthetic proteins as in vivo imaging agents, studies were conducted to 

investigate if these proteins could be produced by the mouse in vivo to achieve the same 

effect. Transfecting quadriceps muscle was hypothesised to serve as a continuous protein 

producing reservoir [24] (Figure 4.17). This in vivo production strategy proved 

unsuccessful in this study. This could be due to a number of reasons such as (i) low protein 

production, (ii) poor secretion, (iii) immune response to sustained protein production etc. 

With further studies on the in vivo properties of the synthetic proteins and optimising 

design parameters, it might be possible to bring this concept to reality. In this study, 

plasmid with a moderate strength constitutive promoter has been used. Moderate strength 

plasmid was chosen to avoid the chance of toxicity of the produced protein. Considering 

the failure to obtain a signal from the transfected quadricep as well, further experiments 

using plasmids with stronger promoters could be explored. 

Systemic administration of the various synthetic proteins showed no toxic or any 

adverse reaction during this study. Ethical constraints at the time of experiments directed 

towards the use of BalbC instead of nude mice. Although the successful in vivo targeting 

and imaging validated the original intended function, further experiments are required to 

test the pharmacokinetics, pharmacodynamics and long-term toxicity of the synthetic 

proteins. For instance, in silico tools could be used to identify and eliminate commonly 

found immunogenic motifs from the designed construct. In vitro synthesis in vivo testing 

of multiple test variants would be useful to find the least immunogenic candidate.  

Throughout the study, mathematical and computational approaches were used at 

various stages of design, model, build and test. Including the concept of Function2Form 

bridge, detailed in Chapter 3, the data from the wet-lab studies could be used to train the 

machine learning models of F2F bridge. This adds the learn step to the ‘design-model-

build-test’ approach of modern synthetic biology. However, predicting in vivo 

performance requires additional data from murine models such as their pharmacokinetics, 
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pharmacodynamics, immunogenicity and various assays facilitating the translation of the 

in vivo work to clinical stage.  

In future, F2F bridge would be an integral component in in silico aided design and 

screening of synthetic proteins.  
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4.6 CONCLUSION 

In this study, multiple variants of synthetic proteins targeted to human MUC1 were 

modelled and validated using various computational tools to inform and guide 

downstream wet-lab experiments, as per Chapter 2. Wet-lab studies were conducted to 

validate MUC1 protein production and functioning (luminescence and specific target 

binding) in vitro. For both MUC1 and ClfA targeted proteins, in vivo luminescence 

imaging studies involving systemic intravenous (IV) administration of proteins, validated 

synthetic protein specific accumulation at target cell locations within mice as evidenced 

by localised luminescence. This study serves as a proof-of-concept for using targeted 

reporter proteins for in vivo imaging.  
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5.1 ABSTRACT 

Background Self-assembling protein cages are abundant in nature. Viruses, bacterial 

microcompartments, ferritins and heat shock proteins are some examples of these highly 

organised protein structures. The spontaneous assembling and disassembling of such 

proteins presents promising applications in targeted release and encapsulation of drugs. 

Assembly mechanics of these self-assembling proteins rely on the composition of their 

interactive protein interfaces. Engineering protein interfaces helps to understand protein 

interactions and aid real-time monitoring of spontaneous self-assembly to visualise the 

encapsulation and release mechanics.  

Aims The aim of this work was to (i) use in silico methods to engineer self-assembling 

monomers and (ii) to develop a wet lab method to validate the self-assembly using 

fluorescence. 

Methods For in silico-aided protein design, computational tools such as I-TASSER and 

Rosetta were used for 3D structure modeling and UCSF Chimera for protein visualisation 

and identifying appropriate cysteine insertion locations to enable employment of a 

FLAsH-EDT2 fluorescence assay to report peptide interaction. DNA constructs were 

generated for protein production in E. coli. Protein production was confirmed by Western 

blot. Self-assembly was examined using a whole-cell fluorescence assay.  

Results All proteins were successfully produced and confirmed by Western Blot. Whole-

cell fluorescence assays provided the evidence that supports the interaction between 

FlAsH-EDT2 and the engineered bi-partite cysteine residues, indicating oligomerisation 

of monomer proteins. 

Conclusion In this work, proof-of-concept of a novel method to visualise self-assembly 

is introduced, by computationally inserting bi-partite cysteine residues at the protein 

interactive interfaces.  
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5.2 INTRODUCTION 

5.2.1 Interface design and potential applications of self-assembly 

Proteins are multifunctional building blocks of life, that play various fundamental 

functions in all living organisms. Naturally existing proteins are involved in various 

biological functions such as regulatory and sensory functions, immune responses, 

mobility and structural stability [1, 2]. The ability of these biomolecules to assemble into 

multiple conformational variants and possess interactive interfaces, provides for their 

multifunctional nature [3]. In some higher order interactions, protein monomers self-

assemble into large oligomeric complexes, giving rise to unique structural cage-like 

complexes. Comprehending the complexity of biological design and redesigning it into 

reliable, predictable and useful system is an underlying aim of modern-day synthetic 

biology. Naturally occurring proteins represent only a tiny fraction of the mathematically 

possible protein canvas and natural proteins are poorly spread in the total sequence space.  

The introduction of de novo principles to protein design provides the opportunity to 

explore countless novel structures outside the realms of natural evolutionary constraints 

[4]. Unlike protein structure prediction, where computational methods predict the possible 

3D structures corresponding to a sequence of amino acids, de novo protein design predicts 

a sequence that folds into a user defined 3D structure. With the rise in de novo designed 

proteins, self-assembly is gaining new interests and forms a powerful blueprint for 

bottom-up design of various synthetic proteins for a wide range of applications such as 

bio-therapeutics, protein-based diagnostics, biosensing and biomaterials [4, 5].  

Intermolecular forces such as hydrophobic interactions, hydrogen bonding and ion pairing 

etc, are the key players for protein self-assembly. These forces when combined with 

structural complementarity at the interface of an interacting protein generate molecular 

complexes [6]. Most biological systems rely on these protein-protein interactions in order 

to carry out various cellular functions. Thus, understanding the fundamentals of protein-

protein interactions (PPIs) is the first step for creating artificial protein complexes [7]. In 

recent years, significant scientific interest in protein engineering has been focusing on 

targeted therapeutics, symmetry guided PPIs and constructing multimeric assemblies for 

encapsulations [8]. 
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5.2.2 Computational protein-protein interaction design 

Achieving desired affinity at a precise location and specificity is still under research and 

no single method to date can design an interacting interface with total accuracy. 

Knowledge-based methods and protein docking assembly are two mainly used principles 

in designing protein-protein interactions. In most cases, a combination of both sequence 

design and protein docking algorithms are used to identify structures and sequences that 

promote binding with further optimisation [7]. 

5.2.2.1 Knowledge based methods vs protein docking/assembly 

Knowledge-based methods rely on existing experimental data and statistical modes to 

extract and interpret the patterns in the given protein structures. These homology based, 

data driven methods map the interfacial residues and commonly found structures onto the 

structure and composition of the query protein to predict binding [9]. Hot spot centric 

design is the most commonly used approach for designing new interfaces from the 

homology driven statistical models. In this approach, the hot-spot residues occurring on 

the naturally existing protein complexes are grafted on the target interface. This is 

followed by computational optimisation to optimise for steric hindrance and side chain 

optimisation [7]. 

Docking based approaches use 3D models to search for conformations with high surface 

complementarity and low free energy [9]. This method is also referred to as “dock and 

optimisation” [10]. The predicted interface with lowest energy is first established by 

computationally comparing the free energy changes at all possible conformations. In most 

cases the structures and the interface composition are refined to achieve ideal binding 

efficiencies[7]. 

Although both these methods differ in their core principles and approaches, they can be 

used sequentially or in parallel to validate the predicted interface model and to refine the 

existing models. 
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5.2.3 Understanding protein cages  

Protein cages can be defined as hollow, three-dimensional oligomeric protein structures 

built from self-assembly of constituent monomers. This hollow cage like structure gives 

them the potential to encapsulate and control the release of a molecule of interest by 

genetic or chemical conjugation [11]. Protein cages are highly organised structures and 

are abundantly found in nature. Viral capsids, bacterial microcompartments, HSPs and 

ferritins are a few examples. Ion storage, catalysis and packing nucleic acids are some 

common roles of protein cages [12]. Naturally existing protein cages acts as a structural 

and functional guide for the development of synthetic protein cages. Their ability to 

spontaneously self-assemble has driven the ideas tailoring novel synthetic cages, with 

novel functional architectures, for biosensing and targeted therapeutic release. 
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Table 5.1: Engineered Protein Cages with biomedical applications 

 

 

 

Table 5.1: Engineered Protein Cages for Biomedical Applications 

 

 

Classification of protein 

cage type 

 

 

Applications 

 

Engineered protein 

interface/surface 

 

 

Effects 

 

 

Modifications 

 

Protein cage 

structure 

 

 

References 

 

Non-viral cages 

 

 

Aquifex aelicus lumazine 

synthase bacterial 

microcompartments 

(AaLS) 

 

Diagnostic imaging and drug delivery 

system  

 

Protein interior surface  

 

Encapsulation of 

molecular cargo by charge 

complementarity  

 

Chemical and 

genetic 

modification  

  

 

(Seebeck et al., 

2006)[13] 

 

 

Thermotoga maritima 

derived bacterial 

nanoparticle.  

Delivery of drugs, anti-tumour therapy 

and imagining agents  

 

Protein interior and 

exterior surface  

 

Encapsulation of active 

molecular cargo by 

chemical conjugation and 

cell specific targeting 

 

Genetic and 

chemical 

modification  

  

 

(Moon et al., 

2014)[14] 
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Table 5.1 (contd): Engineered Protein Cages for Biomedical Applications 
 

 

 

Classification of protein cage type 

 

 

Applications 

 

Engineered protein 

interface/surface 

 

 

Effects 

 

 

Modifications 

 

Protein cage structure 

 

 

References 

 

Viral cages 

 

 

Cowpea Chlorotic Mottle Virus 

(CCMV) 

 

 

Diagnostic imaging 

and vaccine 

development  

 

 

 

Protein cage exterior 

and interior surface  

 

MRI contrast agent , 

target ligand binding 

and inorganic 

nanoparticle synthesis 

 

Genetic and chemical 

modification  

 

 

 

 

 

(Flenniken et al., 

2009)[16] 

 

Cowpea Mosaic Virus (CPMV) 

Vaccine development, 

anti-tumour therapy, 

and imaging 

applications 

 

Exterior surface of the 

protein cage 

 

Site specific  ligand 

interaction, selective 

cell-targeting and bio-

imaging through 

conjugation with 

fluorescent probes  

 

Chemical and genetic 

modification  

 

 

 

 

(Lee and Wang, 

2006)[17] 

 

Bacteriophage MS2 

 

Viral based delivery 

vector for specific cell 

targeting, imaging 

applications and 

microRNA delivery 

 

Interior and exterior 

surface 

 

Degradable interior 

linkage for therapeutic 

cargo and specific cell 

uptake. 

 

Bioconjugation, 

chemical and genetic 

modification 

 

 

 

(Fu and Li, 2016)[18] 

 

(Bhaskar and Lim, 

2017)[19] 
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Table 5.1 (contd): Engineered Protein Cages for Biomedical Applications 
 

 

 

Classification of protein cage 

type 

 

 

Applications 

 

Engineered protein 

interface/surface 

 

 

Effects 

 

 

Modifications 

 

Protein cage structure 

 

 

References 

 

Tobacco Mosaic Virus (TMV) 

 

Vaccine development 

and injectable biologics 

 

Exterior surface of 

protein cage 

 

 

Induce activation of 

immune cells and 

biological ligand 

display 

 

Chemical modification 

  

(Smith et al., 2006)[20] 

 

 

Synthetic proteins 

 

 

Symmetrical nanohedral protein 

cage   

 

Proof of concept. 

Possible applications in 

cell targeting and 

imaging 

 

 

 

 

Designed cage protein 

based on dimeric and 

trimeric protein 

conjugation with 

helical linker 

 

 

Directed protein self -

assembly 

 

 

Recombinant 

conjugation  

 

 

 

 

 

(Padilla, Colovos and 

Yeates, 2001)[21] 

 

(Sciore et al., 

2016)[22] 

 

Porous cube protein  

 

Proof of concept. 

Possible application in 

cargo encapsulation 

and drug delivery 

 

 

 

 

Computationally 

designed cubic protein 

based on cage between 

natural dimeric and 

trimeric protein 

interfaces, conjugated 

to a helical linker 

 

 

 

Directed protein self-

assembly 

 

 

 

 

Recombinant 

conjugation 

 

 

 

 

 

 

 

 

(Lai et al., 2014)[23] 
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Table 5.1 (contd): Engineered Protein Cages for Biomedical Applications 
 

 

 

Classification of protein cage 

type 

 

 

Applications 

 

Engineered protein 

interface/surface 

 

 

Effects 

 

 

Modifications 

 

Protein cage structure 

 

 

References 

 

De novo Protein Cages 

      

 

Digoxigenin binding protein 

(DIG 10.3) 

 

 

Drug overdose 

therapeutic 

 

Computationally 

designed protein 

exterior and interior 

surface 

 

Site-specific ligand 

binding and ligand 

encapsulation. 

 

 

De novo designed  

 

 

 

 

 

(Tinberg et al., 

2013)[15] 
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5.2.3.1 Assembly mechanics and encapsulation kinetics 

In nature, assembly mechanisms can be broadly divided into two main types based on 

whether or not they need cargo intervention for self-assembly [24]. In those cases 

which assemble without any cargo, the self-assembly relies on subunit-subunit 

interactions. This type of assembly construction initiates with nucleation and growth 

[25]. Cargo independent assemblies could be found in cowpea chlorotic mottle virus 

(CCMV). While, the cages that need cargo for self-assembly rely on scaffolding 

proteins and packing machinery. In such cases, the assembly is achieved by 

electrostatic interactions between the monomers proteins and negatively charged 

DNA/RNA [25]. Post assembly encapsulation is commonly achieved either by post 

cage by loading the cargo through environmental changes (such as pH or temperature) 

or by electrostatic interactions. Cargo can also be encapsulated during the cage 

assembly by molecular recognition in which the cargo is attached to the proteins by 

structural/electrostatic linking.  

5.2.4 Visualising self-assembly 

While design and synthesis of self-assembling protein cages has been well 

documented, the visualisation of the cage architectures remains expensive. This often 

relies on physical methods such as Cryo-EM, NMR or X-ray crystallography. 

Although these methods help visualise the final 3D conformation of the assembly, the 

costs and efforts associated with them are high. In recent years, protein assemblies and 

protein interactions were monitored by labelling the proteins with appropriate optical 

tags. The optical readout (Fluorescence/luminescence/colorimetric readouts) from 

these proteins is analysed using an end-point assay. Such an end-point analysis assay 

would not effectively monitor the process of self-assembly and has too many 

experimental variables.  

FlAsH-EDT2 is an organoarsenic compound used in bioanalytical research as a 

fluorescence reporter for tagging various proteins in cells. The structure of FlAsH-

EDT2 contains 1,3,2-dithiarsolane substituents on a fluorescein core. FlAsH-EDT2 

becomes fluorescent upon binding to proximal tetra-cysteines. FlAsH on its own is 

non-fluorescent when bound to EDT2. When FlAsH-EDT2 binds to a tetra-cysteine 

https://en.wikipedia.org/w/index.php?title=1,3,2-dithiarsolane&action=edit&redlink=1
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motif, EDT2 is displaced and the compound becomes highly fluorescent. Due to its 

small size and membrane permeability, it has unique advantages over existing protein-

based fluorescent tags. 

In this work, bi-partite cysteine residues were computationally engineered into protein 

cage self-assembly interfaces and a FlaSH-EDT2 based fluorescence strategy was 

developed to visualise self-assembly and continuously monitor the protein-protein 

interactions. During self-assembly, the proximity of the bi-partite cysteines initiates 

the FlAsH-EDT2 labelling which produces a fluorescence readout. This fluorescence 

readout indirectly indicates the protein-protein interaction. This addition of the bi-

partite cysteine residues and FlaSH-EDT2 mediated fluorescence strategy provided 

the scope to continuously monitor the self-assembly.  

  



213 

 

5.3 MATERIALS AND METHODS 

5.3.1 In silico experimental methods 

5.3.1.1 Design overview 

Previous literature on self-assembling cages acted as a starting point for proof-of-

concept and to validate the FlAsH-EDT2 based visualisation strategy. An existing 

cage strategy from Padilla et al [21] was adopted for the symmetry driven self-

assembly (Figure 5.2). A dimeric subunit and a trimeric subunit were linked together 

with a rigid 9 amino acid helical linker to form a megamonomer. Oligomerisation is 

achieved when the dimeric subunit and the trimeric subunits find their identical copies 

to drive the cage self-assembly. 
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Figure 5.2: Cage self-assembly model. Illustration adapted from Padilla et al (2001) 

[21]. The dimeric and trimeric subunits were linked together with a helical linker. The 

resultant Mega Monomer (cage protein) spontaneously assembles into a cage like 

structure through symmetry aided interactions.  

  



215 

 

 

5.3.1.2 Construct design 

For testing the proposed bi-partite cysteine insertion, the first step was to find 

monomers capable of self-assembly. In this context, protein subunits PDB ID 1AA7 

(dimer subunit) and 1BRO (trimer subunit) were chosen based on previous literature 

on self-assembly and their stability. The 9 amino acid helical linker KALEAQKQK 

was chosen based on the literature [21]. 

5.3.1.3 In silico tools used for design, modeling and validation 

Table 5.2 lists the in silico tools used for designing assemblies with cysteine inserts. 

Tool Purpose 

Rosetta suite Redesign and modeling 

I-Tasser [26] Protein modeling 

R-package and in-house algorithms Evaluating conformational integrity and 

measuring agreement between models 

using RMSD scoring. 

COACH (web server) Active site prediction 

PROCHECK web server Generating Ramachandran plot 

Chimera [27] Protein 3D visualisation 

Table 5.2: In silico tools used for computationally inserting cysteine residues and 

validating protein models. 

 

5.3.1.4 DNA design and synthesis 

The final amino acid sequences, after a thorough in silico validation, were reverse 

translated into their corresponding DNA sequences. The DNA sequences were codon 

optimised for E. coli BL21 using the codon optimisation tool available on IDT website 

(https://eu.idtdna.com/codonopt). NEB and SnapGene’s Gibson assembly simulators 

were used to design the homologous arms to facilitate Gibson assembly. Amplification 

and sequencing primers were designed using Benchling’s primer design tool. The 

https://eu.idtdna.com/codonopt
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primers were cross verified using Primer3Plus. All construct DNA sequences and 

primers were sourced from Integrated DNA Technologies.  

Primer Name Sequence 

1AA7 FWD actttaataaggagatatacATGCAGAAATTATTGACAGAGGTTG 

1AA7 RVS tgctcagcggtggcagcagcTTATTTATCGTCATCATCTTTGTAATCT 

IBRO FWD actttaataaggagatatacATGCCTTTTATCACAGTTGGG 

IBRO RVS tgctcagcggtggcagcagcTTATTTATCGTCATCGTCTTTGTAATC 

Cage FWD actttaataaggagatatacATGCCTTTTATAACAGTCGGGC 

Cage RVS tgctcagcggtggcagcagcTTATTTATCGTCGTCGTCTTTGTA 

Gaussia FWD actttaataaggagatataccATGATGGAAGCCAAACCC 

Gaussia RVS tgctcagcggtggcagcagcgcagcATCCTGGACAACATTTGGC 

SEQ Nco1 

FWD 

GAAGAGGCATAAATTCCGTC 

SEQ AVR2 

RVS 

CGACCATCAAGCATTTTATC 

Table 5.3: Sequences of all amplification and sequencing primers used. 

 

5.3.2 Wet-lab methods  
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5.3.2.1 Plasmid amplification and extraction 

pRSFduet-1 (Novagen) dual expression vector with Kanamycin resistance was used 

for protein expression. E. coli BL21 was used for plasmid amplification. E. coli BL21 

cells were made competent using Cohen et al. 1972 protocol. 100 ng plasmid DNA 

was mixed with 30 µl competent cells and placed on ice for 20 min. The suspension 

was subjected to heat shock at 42 ◦C for 20 min. The cells were placed in ice for 2 min 

and 1 ml LB broth added. 100 µl transformed cells were plated on LB agar containing 

50 ug/ml Kanamycin. Colonies were then subcultured and stored in -80 ◦C for further 

use. For plasmid extraction, overnight subcultures of the transformed bacteria were 

subjected to the Monarch Plasmid miniprep kit (New England Biolabs) protocol. The 

extracted DNA was stored at -20 ◦C in situations where it wasn’t used immediately.  

5.3.2.2 Restriction digestion 

pRSFduet-1 was digested by restriction enzymes Nco1 and AvrII with CutSmart 

reaction buffer (NEB) at 37 ◦C for 1 h. The manufacturer’s protocol was followed to 

adjust the reaction volumes as per the need. Following the restriction digest, the DNA 

was purified using the PCR purification kit (Qiagen) protocol. In all cases, the 

restriction digest was verified by Agarose gel electrophoresis and the DNA 

concentration was determined using NanoDrop (Thermofisher). 

5.3.2.3 Gibson Assembly 

Gibson Assembly was carried out using the Gibson Assembly master mix described 

by DG Gibson et al (2009). The plasmid and DNA gene blocks were mixed in 1:3 

ratio in a Gibson Assembly master mix and incubated at 50 ◦C. E. coli BL21 cells were 

transformed with the assembled plasmids and plated on LB agar medium containing 

the appropriate antibiotic. Gibson Assembly was confirmed by colony PCR and sanger 

sequencing.  

5.3.2.4 Validating cloning using colony PCR and Sanger sequencing 

The selected colonies were added to NEB PCR master mix with 2.5 µl of 

corresponding primers. PCR was carried out as per NEB Q5 polymerase PCR 

protocol. Sanger sequencing (GATC light-run) was also performed by GATC 

(Eurofinsgenomics) on the selected colonies to validate assembly. 



218 

 

5.3.2.5 Inducing protein expression 

Transformed cells were suspended in 20 mL LB broth containing 30 mg/mL 

Kanamycin. 1:500 sub cultures were made from the overnight stock and grown to 0.6 

OD600. The subcultures were induced with 0.5 mM Isopropyl ß-D-thiogalactoside 

(IPTG) left overnight in a shaking incubator at 25 ˚C. Cells were harvested by 

centrifugation at 4000 rpm for 20 min and were subjected to lysis. BugBuster lysis 

buffer, supplemented with Lysonase reagent (Novagen) and a cocktail of protease 

inhibitors (cOmplete) was used for cell lysis. Lysis was carried out at room 

temperature for 20 min. The lysate was then clarified by centrifuging at 10,000 rpm 

for 20 min at 4 ˚C. 

 

5.3.2.6 Analysing protein expression 

Total protein concentration was determined by standard Bradford assay. Protein 

standards were prepared using 1 mg/ml Bovine Serum Albumin. 200 µl of Protein 

Assay Reagent (Bio-Rad) was used for the analysis. BSA standards were made from 

0-60 ug/ul. 1 µl test protein sample was mixed with 799 µl MilliQ water and 200 µl 

Protein Assay Reagent (Bio-Rad). Samples were loaded onto a 96 well plate and 

absorbance was measured using a FLUOstar OMEGA (BMG) plate reader.  

To validate protein expression, Coomassie blue staining was performed on all 

samples. 1 mg of lysate was diluted with LDS (NuPAGE, Invitrogen) to form a 1X 

solution. The lysate was boiled for 5 min at 95 ◦C. 10-15 µl of the sample is loaded 

into a 4-10 % Bis-Tris gel (1 mm, 15 well) along with precision plus protein ladder 

(Bio-Rad) and electrophoresis was carried out at 100 V for 90 min. After the run 

completion, the gel was washed and fixed in 50 % methanol + 10 % acetic acid 

solution for 15 min. After subsequent washing with water, Coomassie blue (Eazy 

Blue, Bio-Rad) was added to gel and stained for 1 h. The gel was washed 3 times with 

water and results analysed using ImageLab 5.2.1 (Bio-Rad). 

For Western blotting, the electrophoresis was carried out as above and the proteins 

were transferred onto a nitrocellulose membrane (Bio-rad Midi) using rapid transfer 

for 7 min. The nitrocellulose membrane was blocked with Blocking Buffer PBS 
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(Odyssey) for 1 h and incubated overnight at 4 ˚C with anti-FLAG antibody (Sigma, 

F1804). After washing the membrane 3 times with TBST, the membrane was 

incubated with anti-mouse green secondary antibody for 1 h in the dark at room 

temperature. The membrane was scanned using LICOR Odyssey infrared imaging 

system and the image analysis was performed using Odyssey imaging software (LI-

COR). FLAG-BAP protein was used for standards to normalise protein concentrations 

for downstream experiments. The integrated intensity of the Western blot bands were 

used for relative quantification on the Li-Cor Odyssey software. 

5.3.2.7 Fluorescence assays and validating FlAsH binding. 

 

Binding assays with cell lysates. 600 µl of 0.5 mg/ml of lysate was incubated with 

FlAsH-EDT2 (0.1 µg) in the dark (FlAsH is photosensitive). Lysates were washed 

with PBS and transferred in triplicates to a black 96 well plate (Titude Vision plate). 

Fluorescence was measured on an Infinite M200 Multimode plate reader (TECAN). 

Fluorescence was also measured using the IVIS Lumina II Imaging system (Perkin 

Elmer) with filters, Ex 485nm and Em 535nm. Living image (Perkin Elmer) software 

and Microsoft excel were used for analysing the data.  

Binding assays using whole cells. 

Subculture cells were washed and resuspended in PBS and normalised to OD 0.3. Post 

washing, cells were incubated in FlAsH Buffer (100 mM Tris HCl, 100 mM NaCl, 1 

mM EDTA, 1 mM βME, pH 7.8) for 1 h at room temperature. 0.5 µg FlAsH-EDT2 

was added and the samples were incubated in the dark for 2 h. The unbound FlAsH-

EDT2 was removed by washing with FlAsH buffer for 3 times. The samples were 

loaded in triplicated into a black plate (Titude Vision plate) and read in triplicates 

using an Infinite M200 Multimode Plate reader. Microsoft excel was used for 

analysing data.  
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5.4 RESULTS 

5.4.1 In silico design and modelling of self-assembling cage 

The amino acid sequences for the dimeric protein M1 matrix protein of influenza virus 

(PDB ID 1AA7) and the trimeric protein Bromoperoxidase (PDB ID code 1BRO) 

were fetched from PDB and a 9-residue helical linker was inserted to connect them 

together. The total protein was termed as MegaMonomer. The 3D structure was 

modelled using I-Tasser. This MegaMonomer would self-assemble into 12-mer, 550 

kDa protein cage. Insertion of sequences for cysteines was carried out using Rosetta 

design. The protein-protein interaction interface was identified for all necessary 

combinations using computational bio-assemblies.  
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Figure 5.3: Protein construct map for the 3 oligomerization subunits. (a) Dimeric 

subunit with engineered cysteine residues. (b) Trimeric subunit with cysteine 

insertions. (c) MegaMonomer, showing the dimeric and trimeric subunits linked via a 

9 amino acid helical linker.  
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5.4.1.1 In silico validation of engineered cysteines 

For cysteine insertions, on all three proteins (Dimer, Trimer and the MegaMonomer) 

amino acids at the interface which are most energetically favourable and minimal 

structural importance were identified to ensure structural integrity. The dimeric 

protein assembles in a head-tail fashion and thus required addition of 4 cysteines. 

Residues 372 (Gly 372) and 373 (Asn 373) were identified as the head side spots for 

cysteine insertion. Residues 418 (Tyr 418) and 419 (Asn 419) were identified as the 

optimal tail side spots. This insertion of 4 cysteine residues on head-tail configuration 

ensures 2 FlAsH interactions as shown in Figure 5.4. On the trimeric protein subunit, 

residues 156 (Asp 156) and 157 (Asp 157) as well as 179 (Ile 179) and 180 (Ser 180) 

were identified as optimal for cysteine insertion. This ensures 2 FlAsH binding sites 

on the dimer and 3 binding sites on the trimer and 30 binding sites on fully assembled 

cage. 
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Figure 5.4: Illustration showing head-tail assembly of the dimer and cysteine 

insertions (a) No fluorescence: The absence of bipartite cysteine pairs during head-

tail dimerization would have no FlAsH binding. (b) 4 cysteines were engineered on 

each subunit to ensure bipartite pairs when assembled in head-tail conformation. 
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The distance between the cysteine residues is crucial in terms of avoiding unintended 

binding false positives. FlAsH-EDT 2 recognizes proximally located bipartite cysteine 

pairs and emits a fluorescent signal. If the cysteines on one subunit were placed in 

close proximity, this would result in unintended flash binding (false positives). 

Initially, the two cysteine pairs on the dimer were separated by 10.6 Angstroms (Å). 

This was feared to result in a false validation. The distance between the two pairs was 

increased to 16 Å by inserting amino acids with minimal influence on the total 

structure (Figure 5.5). Similarly, it was ensured that the cysteine pairs on the trimeric 

protein were separated by 21 amino acid residues. 
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Figure 5.5: Illustration explaining the importance of distance between the bipartite 

cysteine pairs.  (a) FlAsH-EDT recognising cysteine residues on the same subunit due 

to close proximity. (b) FlAsH-EDT recognising the bipartite cysteine pairs on the 

interface, after increasing the distance between the cysteine residues on the same 

subunit. 
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5.4.1.2 In silico validation of cage bio-assembly and functioning of inserted 

cysteines 

However, after intensive assembly modelling, it was discovered that incorporated 

cysteines were not presented on the external surface and were folding into the concave 

curvature of the protein cage. This might hinder with FlAsH-EDT binding. See Figure 

5.6. 
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Figure 5.6: Protein cage assembly has been divided in half to show the internal (top 

view) and external (side view) angles. The inserted cysteines are depicted in red.  
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The cysteine residues were redesigned, and multiple 3D models were generated to 

ensure the improved cysteine placement on the external curvature. On the dimeric 

subunit, residues 358 (Leu) and 359 (Gln) as well as 364 (Arg) and 365 (Phe) were 

replaced with cysteines. On the trimeric subunit residues 158 (Tyr) and 159 (Ala) as 

well as 181 (Glu) and (Glu) were replaced with cysteines. Following cysteine 

insertion, all proteins were remodelled using both I-Tasser and Rosetta. The 3D 

structures were visualised using Chimera to ensure proper bio-assembly. RMSD 

scores were calculated to inform on deviations from the original unmodified protein 

structures (Figure 5.7). 
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Figure 5.7: 3D models of dimer, trimeric and MegaMonomer subunits.  (a) The 

dimer subunits in assembly, showing the inserted cysteines (in red) at their binding 

interface. (b) Showing cysteine insertion (red) on a single dimeric protein subunit. (c) 

Trimeric protein with cysteine insertions superimposed on the unmodified protein. (d) 

MegaMonomer with cysteine inserted dimeric (blue) and trimeric (orange) subunits 

connected with a rigid helical linker (red). (e) RMSD of atomic distances of the 

MegaMonomer with cysteine insertion superimposed on the MegaMonomer without 

cysteine insertions.  

 

5.4.1.3 In silico validation of integrity of the modelled protein structures 

Ramachandran plots were generated for all protein constructs to theoretically validate 

the folding integrity. It was observed that 90 % of all amino acid residues in all three 

proteins fall in the most energetically favourable region and a maximum of 0.5 % in 
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the disallowed region. Table 5.4 summarises the Ramachandran plot scores for all 

three protein constructs. 

The Ramachandran plot for the MegaMonomer is shown in Figure 5.8. The 

computational models and evaluation provided sufficient confidence in the final 

structures to proceed to the wetlab experimentation. 
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Modelled 

Protein 

Residues in 

favored 

regions 

Residues in 

allowed 

regions 

Residues in 

disallowed region 

Dimer (1AA7) 90.4 % 9.6 % 0.0 % 

Trimer 

(1BRO) 

89.6 % 9.6 % 0.0 % 

Protein cage 90.3 % 9.2 % 0.5 % 

Table 5.4: Summary of Ramachandran plots of all three proteins. 
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Figure 5.8: Ramachandran plot generated for MegaMonomer. The red, yellow and 

light yellow regions represent the favoured, allowed and disallowed regions 

respectively. Black dots represent the amino acid residues. The ψ (Psi) and φ (Phi) 

torsional angles are represented on the X and Y axis respectively. 
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5.4.1.4 F2F plots to visualise overall performance 

F2F plots, as discussed in Chapter 3, were generated to have a holistic look on the 

overall performance of each designed construct. Solvent accessibility of the active 

sites (cysteine residues), PI, Grand hydrophobicity average, Instability index and 

Ramachandran Score (RC score) were used as plot axes. OP score was calculated as 

shown in Chapter 3.  
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Figure 5.9: F2F plots for the dimer, trimer, and cage monomers. (a) F2F plot for 

trimer monomer, (b) F2F plot for dimer monomer (c) Plot for cage monomer 

(MegaMonomer). Lower OP score indicates high agreement between the designed 

construct parameters and desired in silico parameters. Trimer monomer showed the 

highest OP score and was predicted to perform the best. The dimer scored the highest 

and hence was predicted to have a relatively low overall performance. 
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5.4.2 Wet-lab experimentation 

5.4.2.1 Validating protein production 

 

Post-transformation, bacterial subcultures were induced for protein expression, using 

two different concentrations of IPTG (1 mM and 0.5 mM). Cells were harvested and 

the total protein concentration was determined using Bradford Assay. The 

concentrations of all protein samples were normalised to 5 μg/µl. A Western blot was 

carried out to validate and quantify the proteins of interest. FLAG-BAP was used as a 

positive control and as a standard to quantify the proteins of interest (Figure 5.10).  
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Figure 5.10: Western blot validating protein production. Lanes 1,3 and 5 contain the 

proteins induced with 1mM IPTG and lanes 2, 4 and 6 contain the proteins induced 

with 0.5 mM IPTG. The 4 lanes on the extreme right show FLAG-BAP standards in 

increasing concentrations.  
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5.4.2.2 Self-assembly verification strategy 

To validate the FlAsH-EDT2 binding mediated oligomerisation, a series of 

fluorescence assays were carried out in controlled in vitro conditions. In all the assays, 

a small stable protein (GLuc) with an engineered FlAsH-EDT2 binding tetra-cysteine 

motif (CC-PG-CC) was designed and used as a positive control for FlAsH-EDT2 

binding upon producing in E. coli in parallel with the test proteins. The rationale of 

the wetlab experimentation is illustrated in Figure 5.11.  
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Figure 5.11: Wet-lab strategy for confirming self-assembly. The positive control 

protein has a tetra-cysteine tag that binds to FlAsH-EDT and emits fluorescence 

independent of binding. The test proteins interface engineered bipartite cysteines and 

their fluorescence is self-assembly dependent. WT cells with no modification were 

used as negative control and there would be no fluorescence observed.  
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5.4.2.3 Whole-cell FlAsH-EDT2 based fluorescence assays confirming 

oligomerisation 

Whole-cell fluorescence assays were carried out to validate self-assembly. All the 

bacterial cultures were maintained at 0.3 OD before harvesting for the assays. Intense 

care was taken to remove unintended autofluorescence. Figure 5.12 shows the 

outcome of the fluorescence-based FlAsH-EDT2 binding assays. As expected, the 

control protein generated the maximum fluorescence and the negative control had a 

minimum fluorescent signal. When compared with negative control, a two-fold 

increase in fluorescence was observed in the dimeric protein assembly, and a four-fold 

increase was observed in the trimeric assembly and the cage assembly. This provided 

a clear indication of protein-protein interactions and the response of the FlAsH-EDT2 

towards proximally placed bi-partite cysteines. The graphs representing the data in 

both signal to noise ratios and as percentage increase in fluorescence are shown in 

Figure 5.12. 
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Figure 5.12: Confirmation of oligomerisation using FLaSH-EDT binding. Equal 

quantities of bacterial cells were harvested simultaneously and subjected to FLaSH-

EDT assay. (a) Fluorescence in signal to noise ratios. Cells without any modification 

were used as background noise. All samples were prepared in triplicate. All proteins 

with engineered bi-partite cysteines produced higher fluorescence than the negative 

control. (b) Percent fluorescence output was normalized to the positive control (GLuc 

with tetracysteine tag). The cage assembly produced a signal close to 48 % of the 

positive control, while the trimer and dimer assemblies produced 46 % and 21 % of 

the signal produced by the positive control respectively. 
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Initially, the cage assembly was expected to produce higher fluorescence than the 

dimer and trimer assemblies. However, observing the data in Figure 5.12, this was not 

the case. In order to account for fluorescence per molecule, the data from Figure 5.12 

was used to calculate the relative fluorescence units per FlAsH binding site on each 

protein (Figure 5.13). 

  



242 

 

 

  

Figure 5.13: Relative fluorescence units per FlAsH binding site. All engineered 

proteins were expected to mediate similar fluorescence per FlAsH binding site. 

However, this was not observed in experimental validation. The Trimer and the cage 

assemblies produced similar (p=0.02) magnitude of fluorescence signal, but the dimer 

assembly produced a significantly (p = 0.0008) lower signal. 
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5.5 DISCUSSION 

The current work utilised computational modelling and design approaches to engineer 

bipartite cysteines into the interface of the self-assembling proteins. Although the 

concept of using FlAsH-EDT to confirm protein-protein interaction or self-assembly 

has been done before, all such methods used bi-partite cysteines as a peptide tag at the 

N or C terminus of the protein. Although peptide tags are a validated as good reporters, 

complicated assemblies such as protein cages require proper exposure of the cysteines 

on the surface, at all stages of the self-assembly. The strategy used in this work, 

provides the design advantage of choosing the positioning of the cysteines. This is 

highly useful to eliminate false positive reporting due to proximally close non-

assembly conformations.     

Multiple iterations of In silico redesigning was performed using Rosetta to ensure 

structural stability and right conformational positioning of the cysteines. The data 

provided a clear indication that FlAsH-mediated fluorescence could be successfully 

deployed to monitor protein-protein interactions. As designed, the FlAsH biarsenical 

complex was able to validate the self-assembly in all three test proteins.  

Although the protein-protein interactions were confirmed, full validation of self-

assembly of complex structures poses further challenges. It was observed that the 

dimeric protein (M1 matrix protein of influenza virus) was produced in significantly 

lower quantities when compared with the other proteins in the wet-lab studies which 

also affected the cage MegaMonomers production. This could be due to M1 viral 

capsid protein resulting in protein aggregation as mentioned in previous studies [28]. 

The F2F plot for the dimeric protein also predicted a low performance. The ability of 

the cages to assemble into intermediate oligomers is one of such complications. It is 

also important to outline that the sample sources (cell lysates vs whole cells), cell 

concentrations (OD before harvesting) and buffer conditions would be expected to 

have significant influences on the study outcomes. The fluorescence assays were 

initially conducted on clarified cell lysates. However, this type of assay resulted in 

high background noise. Using whole-cells provided the scope to wash the unbound 

FlAsH-EDT by light centrifugation. FlAsH-EDT complex also has a tendency to 

recognise natural cysteine motifs presented on natural cellular proteins and resulting 

in non-specific binding. To avoid the non-specific FlAsH-EDT binding, the samples 
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were incubated with FlAsH buffer that contains 2ME and EDT which improved the 

selectivity of the FlAsH-EDT complex [29]. With stringent experimental conditions 

(such as with the addition of competing thiols) it was clearly shown that FlAsH 

binding could be improved with enhanced signal intensities. The mathematical 

approach to represent data in terms of fluorescence per FlAsH binding site did not 

reflect the expected results. The variations in the wet lab assays demand further 

experimental validation to confirm the oligomerisation states.  

However, further protein denaturing experiments are required to confirm the 

oligomerisation dependence of FlAsH-EDT2 based fluorescence. Techniques such as 

size exclusion chromatography (SEC) can be deployed to confirm the oligomerisation 

states. Additionally, a Cryo-EM image would solidify the evidence of cage assembly. 

Also, further experiments are needed to test the release kinetics of the cage. The results 

from this work are proof-of-concept to validate the functioning of the engineered bi-

partite cysteines and the imaging concept using FlAsH-EDT2. Without such further 

validation, the data on the current synthetic cage are insufficient for translation into a 

full application. 

With the increasing market for protein-based products, most academic and industrial 

settings would rely on monitoring proteins for their quality, interactions and stability. 

The concept of engineering bipartite cysteine residues, introduced in this work, is a 

proof-of-concept and building platform with an immense potential in biomedical 

technology. In the future, with the expanding interest in de novo protein design, this 

approach would benefit the visualisation of combinatorial assembly of various protein 

structures. This could be used to monitor various enzymatic and biochemical 

behaviours involving proteins.  
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Chapter 6  

Development and validation of a novel miniaturised optical imaging 

device 

 

A version of this chapter has been published as  

Venkata V. B. Yallapragada, Uday Gowda, David Wong, Liam O’Faolain, Mark 

Tangney, and Ganga C. R. Devarapu. ODX: A Fitness Tracker-Based Device for 

Continuous Bacterial Growth Monitoring. Analytical Chemistry 2019 91 (19), 12329-

12335. DOI: 10.1021/acs.analchem.9b02628 
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6.1 ABSTRACT 

Background  Current optical devices to monitor biological phenomena such as 

bacterial growth and biofluorescence are bulky, expensive and remain benchtop-

based. These factors can prevent real-time measurements in several cases, such as 

where biological processes are occurring in shaking incubators. Technologies such as 

miniaturised electronics, smartphone apps and 3D printing provide a rapid and low-

cost platform to design, build and test hardware and software for such biological 

processes.  

Aims  The aim of this work was to utilise enabling technology such as 3D 

printing, miniaturisation and smartphone-assisted electronics to provide a deployable 

solution towards continuous monitoring of bacterial growth.  

Methods  A handheld fitness tracker-based device (ODX) was developed for this 

purpose. Multiple protypes of designed hardware were used to optimise the form and 

functioning of the device. The final device was calibrated and tested using 3 different 

bacterial genera. The accuracy and reliability were compared with a benchtop 

spectrophotometer. A basic web-based app builder tool was used to build a smart-

phone app to record the data from the device.  

Results  The data from the growth curves validated the functioning of ODX. 

The accuracy tests carried out while calibrating the device proved ODX as accurate as 

a standard benchtop spectrophotometer. With smartphone-aided wireless data logging 

and other advantages such as portability and the ability to be taken into shaking 

incubators, ODX has various advantages over traditional instruments. 
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6.2 Introduction 

6.2.1 Designing and deployability in synthetic biology 

With the advent of synthetic biology and de novo design, protein-based systems stand 

to dominate the commercial landscape of life sciences. Proteins find their applications 

in food-based industries, materials technology, and medicine and healthcare. This 

versatility of protein-based applications promises an increasing potential for 

commercialisation. This potential for commercialisation is complemented by recent 

advances in synthetic biology. Cheap DNA synthesis and sequencing, recombinant 

technology, computational tools, miniaturised electronics, automation and robotics 

have driven synthetic biology into a golden era. Modern synthetic biology highlights 

the importance of multidisciplinary approaches in designing biological solutions and 

aims to accelerate the pace of biological research by integrating various scientific 

disciplines [1]. Commercial viability requires transforming a scientific outcome into 

a deployable product. For example, a protein based diagnostic tool would additionally 

require an appropriate hardware for testing and a software to analyse and report the 

results. Technologies such as miniaturised electronics, smartphone apps and 3D 

printing provide a platform bed to design and test multiple variations of the product 

until its final form. 

 

6.2.2 Fitness tracker-based handheld devices for bacterial growth monitoring. 

Bacteria are present a commercially viable, cheap and easily scalable platform for 

protein expression [2]. For centuries, food processing and fermentation industries have 

driven the commercial markets of bacterial based products. The advent of recombinant 

technology paved the way for various engineered enzymes and novel protein-based 

therapeutics [3-5]. In all those mentioned above, clinical, scientific, and commercial 

settings, monitoring of the population, and growth kinetics of bacteria plays a crucial 

role [6]. Each species and strain of bacterium has unique growth kinetics [7]. These 

growth kinetics depend on various parameters such as oxygen availability, 

temperature, medium in which the bacteria are grown, pH, culture vessel, the volume 

of the culture etc. Working with these microorganisms typically requires continuous 

monitoring of growth patterns. In many cases, microbiologists monitor the microbial 
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growth regularly to ensure that the population does not exceed pre-set thresholds or to 

maintain the population at a particular level.  

Traditionally, several methods such as plate counting [8], direct counting [9], 

biomass measurement [9, 10], and light scattering have been used to measure bacterial 

growth. At present, optical density measurement based on the scattering of light from 

individual bacterial cells remains the gold standard. While the last few years have seen 

tremendous evolution of spectrophotometers, most of these devices are costly, bulky 

and remain benchtop based and so cannot be taken inside the incubator for real-time 

monitoring of OD measurements [11]. Furthermore, the usage of these instruments 

requires significant user interaction with the analyte and lack both versatility and 

flexibility due to their large form factor. These spectrophotometers also come with 

penalty of high labour costs and introduce contamination risks. 

Recent advances in electronic miniaturization have paved the way for various 

types of wrist-worn low-cost fitness trackers [12]. These commercially available 

fitness trackers typically track, monitor and analyse various activities such as physical 

movement, sleep, and heartbeat rate, facilitated by various sensors such as an 

accelerometer, heart rate monitor, ECG, GPS etc. The output of these sensors is 

processed and stored by a small but powerful microprocessor. Fitness trackers transmit 

the result of the activities directly to the built-in OLED screen as well as to 

smartphones via Bluetooth. Despite having many sophisticated sensors, a powerful 

microprocessor, and highly miniaturized design, these fitness trackers are priced as 

low as $10 on the consumer market. Of all the sensors in fitness trackers, the optical 

heart rate sensor is particularly interesting [13]. The heart rate sensor consists of LEDs, 

one or more photodiodes, the essential components required of an 

OD/colorimetric/fluorescence monitor. Modifying these cheap fitness trackers using 

miniature electronics and 3D printing technology could provide handheld OD and 

fluorescence monitoring solutions with several advantages and added benefits over the 

existing benchtop devices. Monitoring bacterial growth and protein expression stand 

to benefit immensely from miniaturised handheld optical devices.  

Considering the broad need for continuous remote bacterial growth 

monitoring, a fitness tracker-based handheld device, ODX, was developed to monitor 
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continuous bacterial growth (Figure 6.1). Leveraging the capability of ODX, its 

potential to measure fluorescence is also described.  

 

 

Figure 6.1: A schematic comparing the traditional method to the ODX device-based 

method for continuous optical bacterial growth monitoring. (a) The tube containing 

appropriate culture medium inoculated with bacterial cells. Traditional (b) Bacterial 

cultures in a shaking incubator (c) Laminar airflow chamber (all the biological 

sampling is done inside a laminar airflow chamber to reduce the potential risk of 

contamination) (d) Culture sample collected in a cuvette and OD measured using a 

commercial benchtop spectrophotometer. ODX (e) The sample is inserted into the 

ODX device and placed in a shaking incubator. (f) Basic components of ODX. (g) 

Data collected via Bluetooth are processed on ODX smartphone app and readouts 

displayed. 
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6.3 MATERIALS AND METHODS 

Hardware modifications were assisted by colleagues; Dr. Ganga Chinna Rao 

Devarapu and Uday Gowda in the Cork Institute of Technology. 

 

6.3.1 Optical and mechanical design of ODX device and choice of materials 

The ODX hardware consists of the following parts: 1. A generic fitness tracker 2. The 

3D printed enclosure 3. An orange LED. 4. A voltage regulator and a current regulator. 

 

6.3.2 Fitness tracker 

An ID107HR branded (Shenzhen DO Intelligent Technology Ltd) fitness tracker was 

chosen for the work presented in this article as it is inexpensive ($10 to $25) and 

widely available through online retailers. More importantly, it contains an nRF51822 

microprocessor from Nordic Semiconductors Ltd (Figure 6.2a), which has well-

documented open-source firmware development tools for modifications. 
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Figure 6.2 The internal circuitry of the ID107HR fitness tracker. (a) Rear view of 

the circuit board showing SWD programming connections to upload the firmware into 

the fitness tracker (b) Front view of the circuit board showing nRF51822 

microcontroller and OLED display. (c) Heart rate sensor consisting of visible and IR 

photodiodes. (d) The spectral response of the visible (blue line) and IR (red line) 

photodiodes of the heart rate sensor (Si1143) [22] in the ID107HR fitness sensor. The 

emission spectrum of the LED is represented by the orange line. 
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The heart rate sensor (Si1143, Silicon Labs Ltd) in the ID107HR fitness tracker has 

two photodiodes (Figure 6.2c): one to cover the visible spectral range and the other to 

cover the infrared (IR) spectral range as indicated with blue and red lines respectively 

in Figure 6.2d. Raw readings from both PDs can be accessed using the modified 

firmware. These two PDs provide two complementary measurements for each optical 

density measurement of bacteria, thus resulting in more accurate OD values than OD 

meter designs that have only a single PD. 

 

6.3.3 LED 

The optical density of bacteria is usually measured at a wavelength of 600 nm as most 

bacteria and growth media in which bacteria are incubated known to have negligible 

absorption at that wavelength [14]. Therefore, an orange colored LED (C503B-AAN-

CY0B0251, CREE) with peak emission at a wavelength of 596 nm was chosen as the 

light source for the ODX device as it has low power consumption, small size, low 

weight, high robustness, and acceptable monochromaticity. 
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Figure 6.3 3D printed enclosure of ODX device (a) Front view showing the holding 

space for a culture tube (sample holder), (b) Rear view showing the groove for an 

orange LED. (c) Bottom view showing the space for LED controlling circuit. A one-

euro coin was placed for size comparison to ODX device. 
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6.3.4 3D printed enclosure 

The enclosure for the ODX device was designed with an open source parametric CAD 

software (OpenSCAD version 2015.03-2). The CAD design of ODX has provisions 

for holding the fitness tracker, a culture tube (Figure 6.3a), an orange LED (Figure 

6.3b) and the additional circuitry powering the LED (Figure 6.3c). The CAD design 

of the ODX enclosure was fabricated using a 3D printer (Ultimaker 3) with black 

coloured Polylactic Acid (PLA) material. 

 

6.3.5 Smartphone app development 

An Android app was specifically developed using an open source platform (App 

Inventor) to transfer the data from the ODX device to a smartphone via Bluetooth. The 

app then processes the data and displays the OD on the screen. Moreover, the app 

displays the growth of bacteria graphically in terms of OD and saves the data in a text 

file inside the smartphone's internal memory for further analysis. However, the 

primary role of the app was to let the users create alerts informing them when a 

bacterial culture reaches the required growth stage. The working mechanism of the 

firmware and the app are shown schematically in Figure 6.4a and Figure 6.4b, 

respectively, while Figure 6.4c shows the user interface of the ODX app. 
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Figure 6.4 Functional workflow of ODX device (a) Firmware (b) Smartphone app 

(c) ODX app user interface. 
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6.3.6 Bacterial culture 

E. coli Nissle was grown on Luria Broth agar plates and 25 ml inocula made in LB 

broth from single colonies, before shaking at 37 °C overnight. S. aureus (ATCC 

25923) was cultured on Trypsin soy broth (TSB) agar plates and 25 ml inocula made 

in TSB broth from single colonies, before shaking at 30 °C overnight. S. agalactiae 

was grown on Trypsin soy broth (TSB) agar plates and 25 ml inoculum made in TSB 

broth from single colonies. Bacteria were sub-cultured in 50 ml falcon tubes by adding 

100 µl overnight bacterial culture to 30 ml of fresh broth. For batch measurements, 

bacterial cultures were diluted, and OD readings given by ODX device were recorded. 

For continuous measurement, the falcon tube containing freshly inoculated broth was 

inserted into the ODX device. The measurements were logged into a text file, which 

was later used for optimizing the ODX app. In all the cases, OD was cross verified by 

a standard spectrophotometer (Eppendorf BioPhotometer) in biological and technical 

replicates. Continuous growth monitoring was performed by seeding the bacteria into 

Luria-Bertani broth (LB) and monitoring the growth pattern over 10 h. 
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6.4 RESULTS 

6.4.1 Deploying ODX hardware 

6.4.1.1 Calibration of ODX device  

To convert the ODX device output into optical density values, it was necessary to 

determine the empirical relationship between the ‘Visible and IR’ photodiode values 

of the heart rate sensor and the OD values given by a benchtop spectrophotometer. For 

this purpose, ODX was calibrated using three bacterial samples. Overnight cultures of 

E. coli Bl21, S. aureus and S. agalactiae were diluted to five different concentrations. 

Each sample was measured using the ODX as well as a traditional benchtop 

spectrophotometer and these results are plotted in Figure 6.5. A logarithmic function 

is fitted to these data sets following the Beer-Lambert law [15]. The quality of fit (R2) 

obtained for the visible and IR photodiodes were above 0.9 for all the three bacterial 

solutions, indicating the excellent quality of fit and showing the accuracy of above 

96% (assuming that the benchtop spectrometer has minimal error). For each of the 

bacterial solution, logarithmic functions of the photodiodes are shown in Table 6. 1. 
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Figure 6.5 Response of the IR photodiode (blue dots, top x-axis) and Visible 

photodiode (orange dots, bottom x-axis) for different optical density solutions (y-

axis). ODX was calibrated using three different bacterial strains (a) Escherichia coli 

Nissle, (b) Streptococcus agalactiae and (c) Staphylococcus aureus. The respective 

coloured lines represent the logarithmic trend lines. 
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Bacteria Polynomial regression function R2 

Escherichia coli ODIR = -0.47 ln[IR] + 4.6351 0.9923 

ODVIS = -0.625 ln[Vis]+4.9436 0.9944 

Streptococcus 

agalactae 

ODIR = -0.344 ln[IR] +3.3413 0.9903 

ODVIS = -0.396 ln[Vis] + 3.1196 0.9865 

Staphylococcus 

aureus 

ODIR = -0.563 ln[IR] +5.4173 0.9878 

ODVIS = -0.674 ln[Vis] +5.2519 0.9737 

Table 6. 1 Calibration of the ODX using bacterial samples. Best fit functions and 

corresponding R2 for the IR, and Visible photo diode values as a function of OD. 
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These logarithmic functions were used to obtain the optical density corresponding to 

each photodiode (ODIR and ODvis). The final optical density of a bacterial solution is 

obtained by calculating the weighted average of corresponding individual optical 

densities of IR and Vis photodiodes, i.e. OD = 0.5 (ODIR+ODvis). Accordingly, these 

logarithmic calibrating functions are programmed into the persistent memory of the 

fitness trackers microprocessor, so that raw readings of the photodiodes will directly 

output the OD values. 

 

6.4.2 Continuous bacterial growth monitoring 

The performance of the ODX device to continuously monitor bacterial growth was 

evaluated with three bacterial strains E. coli, S. aureus and S. agalactiae. Bacteria 

were inoculated in a 50ml tube containing growth media. The tube was inserted into 

the ODX device and placed in a shaking incubator. OD readings corresponding to the 

bacterial strains were collected wirelessly via Bluetooth-enabled smartphone and 

recorded using the ODX Android app. OD readings were measured every 8 sec and 

data extracted to plot the data representing the growth curves of the three bacterial 

strains. The measurement periods for these organisms were approximately 10h, 

allowing the collection of complete growth dynamics data. The results for batch-wise 

bacterial growth monitoring is shown in Figure 6.6. The three major growth phases of 

bacterial growth, the lag, log and stationary, were clearly evident in Figure 6.6. 
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Figure 6.6 Growth curves of (a) Escherichia coli, (b) Staphylococcus aureus and (c) 

Streptococcus agalactiae obtained with the ODX device. In all cases, ODX was 

placed in a shaking incubator and the OD measurements (once every 8 sec) were 

recorded on a Bluetooth enabled smartphone. The resultant data are plotted after 

averaging the values for every 400 sec to avoid the slight variations in the OD values 

resulting from the shaking of tubes inside the incubators. 
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In all experiments, data from ODX were transmitted continuously to the ODX app via 

Bluetooth and throughout the process, it could be accessed in real-time. This real-time 

access to bacterial growth phase and optical density would be a highly valuable asset 

for fine-tuning the process efficiency in biotechnology industries. 

 

 

6.4.3 Adapting ODX for fluorescence 

As shown in Figure 6.2d, the photodiodes on the fitness tracker present in ODX have 

the capability to capture a wide range of emission spectra in the visible and IR 

wavelength regions. This allowed the adaptation of ODX into a fluorescence 

monitoring device. A second LED, whose emission wavelength matches the excitation 

wavelength of FlAsH-EDT2 (see Chapter 5), was engineered in ODX at the side 

interface to provide access to side illumination. An emission filter was placed in front 

of the diode (Figure 6.7). The software of the device was re-programmed to 

alternatively switch between the OD LED and Fluorescence LED, with an interval of 

8 sec. This ensures the capturing of two different photodiode outputs in parallel. Such 

a dual LED system could perform both OD and fluorescence monitoring 

simultaneously. 
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Figure 6.7: Adapting ODX for fluorescence. (a) An additional groove for an emission 

filter was placed in front of the photodiodes. The LED for fluorescence excitation is 

placed on the side. (b) The build looks highly similar to ODX. An extra battery is 

added to ensure prolonged measurements even while continuously utilising both the 

LEDs. 
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The fluorescence capabilities were tested with Polystyrene Microspheres, 10 µm, 

yellow-green fluorescent (505/515) FluoSpheres™ (ThermoFisher Scientific 

F58836). Serial dilutions were made up to 10 different concentrations. All 

measurements were made in the dark. Although a noticeable photodiode response was 

lodged, the validation was unsuccessful as no linearity was observed in the data (data 

not shown). Further optimisation of excitation light intensities, integration times, and 

the positioning of the LEDs needs to be carried out to bring this device to a fully 

functional state. 
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6.5 DISCUSSION 

Monitoring of bacterial growth represents a staple process in every bacterial or 

biological engineering focused laboratory. Plotting the growth characteristics of 

various bacteria is important to harvest cells for protein production and to study the 

effects of various test substances on bacterial growth. The traditional method to 

measure OD and monitor bacterial growth is a time-consuming process, uses a huge 

amount of plastic consumables and adds risk of contamination. In this study, it has 

been shown that the ODX device has successfully overcome most of the problems and 

challenges posed by the traditional OD measuring methods. Bacteria are extensively 

used in research and industry. In most cases where bacteria are used as bio factories, 

the products (proteins, secondary metabolites etc.) are produced in the log phase of 

the bacterial growth. In such settings, the bacterial OD is maintained between 0.4 and 

0.8. For cloning DNA, bacterial OD of between 0.6 and 0.8 is preferred. ODX showed 

similar lower limit of detection to the benchtop spectrophotometer (as low as 0.01 OD, 

approx. 106 CFU). Thus, ODX maintains the same levels of quality standards as the 

benchtop spectrophotometers. 

By combining a generic fitness tracker and a smartphone-aided data reporting 

system, ODX forms a complete continuous bacterial monitoring system. In this study, 

ODX has been tested on three different bacterial strains and their growth was 

monitored continuously for over 10h. The resultant growth curves are shown in Figure 

6.6 resemble the typical bacterial growth curves [26]. ODX device presents several 

advantages over the existing commercial and DIY spectrophotometers. Since the ODX 

is ultra-portable, it could be used in various biological settings such as shaking 

incubators, anaerobic incubators or sterile laminar airflow chambers, thus eliminating 

the potential chances of contamination. ODX could also be used as a regular benchtop 

spectrophotometer as it can display the OD values on the OLED Screen without 

requiring a smartphone or a computer. ODX works with a range of standard sample 

containers. The current device was tested using a standard cuvette and a generic test-

tube (data not shown), thus eliminating the need for specific consumables.  

One of the key aspects of ODX is the availability of low-cost fitness trackers, 

that makes it affordable. Today, fitness trackers are available at a retail price of less 

than $10. These fitness trackers have all the electronic components required to make 
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OD meters. The same components, when bought individually, are the main 

contributors to the high costs of the currently proposed prototypes.  

Although the current work explores the potential of ODX primarily in an 

academic lab setting, the scope of ODX is not only limited to academic labs. Biotech 

industries such as the recombinant protein production industries, fermentation 

industries, dairy, and food-based industries, use turbidity and optical density 

monitoring for both batch and continuous quality monitoring. The portability and 

modularity to adopt in many settings expand the potential of ODX into any biotech 

industry setting. The ability to continuously log the data with unmanned supervision 

(via Bluetooth) reduces the risk of data fraud and data loss. This data log file could 

later be used for retrospective inspections [27]. Using wireless Bluetooth based 

systems avoids sophisticated wiring systems and decreases physical maintenance costs 

in the industry. OD methods are also widely used in clinical labs and hospitals for 

various blood, urine, and other body fluid analyses [28], [29]. The ODX could be 

deployed as an NPD (Near patient diagnostics) which reduces the burden on personnel 

on the health sector. The data logging system could form a very helpful feature for 

patients who require regular monitoring of body samples. This eliminates the manual 

errors in clinics where analyses are still done by physical examination by a staff 

member.  

In this work, the ability of ODX to continuously monitor the bacterial growth 

is shown, this is not possible with the current benchtop spectrophotometers. With all 

the features such as portability, versatility and the customisability ODX can be a 

valuable tool for monitoring bacteria in a wide range of academic and industrial 

settings. Continuous fluorescence monitoring capabilities were added to ODX with 

the aim of aiding confirmation of self-assembly of test constructs in Chapter 5. It was 

important to measure the bacterial growth continuously to validate the instrument as 

well as to provide a baseline for reference. This however, proved unsuccessful. In 

future, further hardware optimisation will be made to bring fluorescence features to 

ODX. This addition of fluorescence capability to such a handheld device would 

increase the value of the invention and benefit wet-lab experimentation.  
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6.6 CONCLUSION 

This study explores the scope of introducing miniaturised optical devices for 

biological experiments. Handheld devices such as ODX, bring deployability and 

reduce reliance on high-cost, bulky lab equipment. In this work, the end goal of 

continuous monitoring of bacterial growth was facilitated through various 

interdisciplinary resources. Enabling technology such as 3D printing and 

miniaturisation have provided the ease of design-model-build-test of multiple 

hardware and software prototypes. Modern day biomedical science demands novel 

concepts with deployable technology to assist their translation into user-based settings. 

The approach taken in this chapter uses principles of electronics, material design, wet-

lab assays and optics, working in tandem to deliver on the holistic goal.  

This approach stands as a unique example to demonstrate a strategy that would 

guide novel scientific concepts into deployable and commercially viable products. 
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DISCUSSION AND FUTURE PROSPECTS 

The work demonstrated in this thesis provides a proof-of-concept of in silico-aided 

design-model-build-test strategies for synthetic proteins. Various computational tools 

were used to ensure proper functioning of the subparts of all the synthetic proteins. 

Such a computationally informed design strategy would empower wet-lab biologist 

with prediction capabilities. 100s of different test variants of each synthetic protein 

were designed and modelled. Data from computational tools was used to screen for 

potential best performers. This process is analogous to high throughput screening that 

is observed in wet-lab drug design. However, the in silico screening only takes a 

fraction of the time to test the constructs in the wet-lab. The design and modelling 

process in this thesis heavily relied on computational tools. However, it must be noted 

that the accuracy of each computational tool is subjective to each protein. Predictions 

of synthetic proteins that resemble close similarity to naturally existing proteins have 

higher confidence levels and accuracy. Community-wide, worldwide studies such as 

CASP (Critical Assessment of protein Structure Prediction), CAPRI (Critical 

Assessment of PRediction of Interactions) and CAFA (Critical Assessment of 

Functional Annotation), organise regular blinded challenges to compare the 

performance of various computational tools for proteins [1-3]. With artificial 

intelligence, neural networks, deep learning and increased computational power, the 

road ahead is promising. The strategy presented here will grow in accuracy as the 

individual tools get updated.  

 

Development of targeted synthetic protein specific for S. aureus. Chapter 2 aimed to 

target ClfA of S. aureus. The basic functioning of the synthetic protein was validated 

using wet lab luminescence assays. Based on wet-lab data, the best performer was 

identified. The S1 test construct clearly stood as the best performer amongst all other 

test construct variants. With the encouraging results observed in the dose response 

assays, S1 was identified as a candidate worthy of examining in a future in vivo setting. 

Previous literature on the Nanoluc system indicated higher brightness and prolonged 

half-life, when compared to Gluc. Hence the Gluc was replaced with Nanoluc, to 

increase the signal intensity. This proved to be helpful later in Chapter 4. The 

technology developed would benefit from future, further validation work involving 
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FACS using anti-Flag fluorescent antibody and Western blottting to validate protein 

sizes, integrity and concentration.  

 

The in silico myriad problem and F2F bridge. As discussed in Chapter 2, the design 

parameter metrics define the quality of the individual parameter in the design and 

present an overwhelming amount and variety of data which are practically impossible 

to comprehend. Chapter 3 brings in mathematical concepts of machine learning to help 

predict the combined effect of the design parameters on the overall performance of a 

synthetic protein. F2F bridge is a novel way to visualize and score the overall 

performance of a test sequence. F2F bridge is a very useful tool for informed protein 

design, and may be deployed for low throughput design or high throughput screening. 

In a low throughput setting, the F2F plot would play a pivotal role in highlighting the 

‘pitfalls and merits’ of the design corresponding to a test sequence. The design could 

then be improved and F2F plot could be regenerated until satisfactory design is 

obtained. In a high throughput scenario, multiple designs of test sequences for an 

overall function are scored and ranked by F2F bridge.  

 Using machine learning approaches such as Lasso regression and the 

Random Forest regression tree models, F2F showed promising prospects for 

predicting the overall performance of a test sequence. The workflow and 

implementation of the prediction model is straightforward computationally compared 

with wet-lab experimentation. Synthesis/expression, functional assays and quality 

assessments of proteins is time consuming and is capital intensive. This results in a 

small size of dedicated datasets. Using datasets from multiple sources is also 

challenging due to the vast variability in wet-lab experimentation. Although this seems 

as a big challenge, recent advances in synthetic biology provide an inspiring platform 

for high throughput synthesis and testing of multiple proteins. Future work on F2F 

would involve training the mathematical model with larger datasets. Larger datasets 

would ensure increases in significance in prediction. The current model also relies on 

web servers and third party tools for assessing in silico parameters of a test sequence. 

This also means that the accuracy of the individual in silico parameter values depends 

on the corresponding tools developed by various sources. In a future version, the 

accuracy of every individual web server/tool would be taken into consideration to 

provide an overall confidence score on the predicted performance. This would prevent 

error-compounding. With little further adjustments in V.20, F2F bridge integrates in 
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the DMBT cycle and adds the ‘learn’ step by empowering the end-user (wet-lab 

biologist) with a holistic view on the overall performance of a protein. 

 

In vivo imaging using synthetic proteins. The technical know-how provided by F2F 

bridge and the results from Chapter 2, encouraged the building of synthetic protein for 

in vivo cell imaging. In silico design strategies from Chapter 2 were adapted to target 

MUC1. In vitro testing was carried out to validate secretion and functioning (binding 

and luminescence) of the all the synthetic proteins. Based on wet-lab validation and 

the ‘optimal performer’ logic, discussed in Chapter 4, M1 was chosen as the best 

candidate for in vivo imaging. The ability of the synthetic protein to circulate 

systemically throughout the body and localise to a specific target to produce an 

imageable luminescence signal acts as a proof-of-concept for in silico-aided synthetic 

protein design of targeted proteins for in vivo use (therapeutic, imaging etc). In vivo 

studies using systemically-administered M1-Gluc and S1-Gluc indicated localisation 

of this protein to target cells. In Chapter 2, a variant of S1 with Nanoluc was designed 

and tested in vitro. These assays didn’t show any noticeable in vitro advantage when 

Gluc was replaced with Nanoluc. However, in vivo, the NanolucS1 construct showed 

a significant improvement in signal intensity. In the future, similar to the synthetic 

proteins in Chapter 2, FACS using anti-Flag fluorescent antibody and Western blot 

could be performed to validate protein sizes, integrity and concentration. Furthermore, 

in vivo work would involve administering the mice with a non-targeting version of the 

proteins, which would have been beneficial to rule out the chances of accidental 

accumulation. Timepoint optimisation and pharmacokinetic studies of the protein 

would also benefit understanding the concepts such as bioavailability. 

 

In silico aided interface engineering of synthetic proteins. The capabilities of 

computational tools in protein design were exploited in both Chapter 2 and Chapter 4. 

In Chapter 5, in silico-aided protein engineering was used to engineer the protein 

interfaces to help visualise protein-protein interactions during self-assembly. A novel 

reporting strategy was introduced, by incorporating cysteine residues at the interaction 

interface of monomeric proteins of a self-assembling protein cage. The data from the 

wet-lab fluorescence assays provided a clear indication that FlAsH-mediated 

fluorescence could be successfully deployed to monitor protein-protein interactions. 

As designed, the FlAsH biarsenical complex was able to validate the self-assembly in 
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all three test proteins. However, further protein denaturing experiments are required 

to confirm the oligomerisation dependence of FlAsH-EDT2 based fluorescence. 

Techniques such as size exclusion chromatography (SEC) can be deployed to confirm 

the oligomerisation states. Also, further experiments are needed to test the release 

kinetics of the cage. The results from this work are proof-of-concept to validate the 

functioning of the engineered bi-partide cysteines and the reportitng concept using 

FlAsH-EDT2. Without such further validation, the data on the current synthetic cage 

are insufficient for translation into a full application. 

 

Handheld devices for biomedical applications In Chapter 6, the scope of introducing 

miniaturised optical devices for biological experiments was explored. A novel 

handheld device, ODX, for monitoring continuous bacterial growth, with prospects of 

measuring biofluorescence was developed. The device was tested using different 

bacteria and showed accuracy levels similar to a standard benchtop 

spectrophotometer. Handheld devices such as ODX, bring deployability and reduce 

reliance on high-cost, bulky lab equipment. In this work, the end goal of continuous 

monitoring of bacterial growth was facilitated through various interdisciplinary 

resources. Enabling technology such as 3D printing and miniaturisation have provided 

the ease of design-model-build-test of multiple hardware and software prototypes. 

Modern day biomedical science demands novel concepts with deployable technology 

to assist their translation into user-based settings. The approach taken in this chapter 

uses principles of electronics, material design, wet-lab assays and optics, working in 

tandem to deliver on the holistic goal. ODX stands as a unique example to demonstrate 

a strategy that would guide novel scientific concepts into deployable and 

commercially viable products. 

 

The goal of this thesis was to bridge interdisciplinary approaches in science to (i) aid 

laborious wet-lab experimentation and (ii) transform the novel biomedical concepts 

into deployable products. Chapters 2, 4 and 5 exploit the computational tools available 

today, to design and validate imaging strategies using synthetic proteins. Chapters 3 

and 6, on the other hand act as enabling technology that improves the ease and pace 

of the research. The marriage between these two goals has resulted in outcomes that 

have various future applications in biomedical science. 
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