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Abstract 25 

Inoculation practice with plant growth-promoting bacteria (PGPB) has been proposed as a good 26 

biotechnological tool to enhance plant performance and alleviate heavy metal/metalloid stress. Soybean 27 

is often cultivated in soil with high arsenic (As) content or irrigated with As-contaminated groundwater, 28 

which causes deleterious effects on its growth and yield, even when it was inoculated with rhizobium. 29 

Thus, the effect of double inoculation with known PGPB strains, Bradyrhizobium japonicum E109 and 30 

Azospirillum brasilense Az39 was evaluated in plants grown in pots under controlled conditions and 31 

treated with As. First, the viability of these co-cultivated bacteria was assayed using a flow cytometry 32 

analysis using SYTO9 and propidium iodide (PI) dyes. This was performed in vitro to evaluate the 33 

bacterial population dynamic under 25 µM AsV and AsIII treatment. A synergistic effect was observed 34 

when bacteria were co-cultured, since mortality diminished, compared to each growing alone. Indole 35 

acetic acid (IAA) produced by A. brasilense Az39 would be one of the main components involved in B. 36 

japonicum E109 mortality reduction, mainly under AsIII treatment. Regarding in vivo assays, under As 37 

stress, plant growth improvement, nodule number and N content increase were observed in double 38 

inoculated plants. Furthermore, double inoculation strategy reduced As translocation to aerial parts thus 39 

improving As phytostabilization potential of soybean plants. These results suggest that double 40 

inoculation with B. japonicum E109 and A. brasilense Az39 could be a safe and advantageous practice 41 

to improve growth and yield of soybean exposed to As, accompanied by an important metalloid 42 

phytostabilization.  43 

 44 

Keywords: ARSENIC, PGPB, INOCULATION, PHYTOSTABILIZATION, GLYCINE MAX 45 

  46 
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1. Introduction 47 

Arsenic (As) is a highly toxic metalloid present in the environment, being arsenate (AsV) and 48 

arsenite (AsIII) the predominant inorganic species in soil and water (Farooq et al., 2016). In plants, As 49 

interferes with critical metabolic processes such as photosynthesis and can induce water stress by 50 

reducing transpiration rate, stomatal conductance, and leaf relative water content along with reduction 51 

of xylem vessel size. In addition, this metalloid induces oxidative stress, cellular membrane damage and 52 

electrolyte leakage (Stoeva et al., 2004; Gusmán et al., 2013a,b). As consequence, a severe plant growth 53 

and reproductive capacity inhibition is often seen (Garg and Singla, 2011; Finnegan and Chen, 2012; 54 

Reichman, 2014; Armendariz et al., 2016; Bustingorri and Lavado, 2014).  55 

The use of plants for contaminant removal is named phytoremediation and based on the type of 56 

biological mechanism adopted this phytotechnology is classified as phytoextraction, phytostabilization, 57 

phytotransformation, phytovolatilization, rhizofiltration or phytostimulation (Abhilash et al., 2009). 58 

Generally, plants use a variety of processes that collectively contribute to the overall effectiveness of 59 

remediation (Kumar Yavad et col., 2018). For heavy metals, several reviews have been published in the 60 

last years, mainly considering phytoextraction, phytostabilization, phytoevaporation and 61 

phytotransformation (Gomes et al., 2017; Mahar et al., 2016; Sarwar et al., 2017). Initially, these 62 

phytotechnologies focused on heavy metals/metalloids phytoextraction, while phytostabilization 63 

received less attention. Recently, phytostabilization has been revalued as a metal immobilization 64 

strategy for polluted soils (Sarwar et al., 2017). Even more, high metal/metalloid retention ability in 65 

roots takes relevance for edible plants and those which have fruits or grains for food, since the risk of 66 

contaminant introduction into the food chain is minimized (Robinson et al., 2009, Sarwar et al., 2017). 67 

The use of plant growth promoting bacteria (PGPB) can improve growth of plants exposed to 68 

metal/metalloids and even promote phytostabilization through their ability to decrease metal 69 

bioavailability. This strategy is named as assisted phytoremediation. Although many PGPB have been 70 

isolated and used for metal phytoremediation improvement (Nie et al., 2002; Ullah et al., 2015; Ma et 71 
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al., 2016; Titah et al., 2013; Ojuederie and Babalola, 2017; Sarwar et al., 2017), few studies have 72 

evaluated PGPB potential for As phytostabilization.  73 

Soybean (Glycine max L.) is a legume with worldwide economic importance because of its high 74 

protein content in grains and other valuable food sub-products. For optimum yields, this crop is 75 

inoculated with symbiotic rhizobia, mainly Bradyrhizobium japonicum strains. Soybean-rhizobia 76 

symbiosis is an important ecological and agronomical association, since plants receive enough Nitrogen 77 

(N) supply through biological N-fixation, hence, the use of N fertilizers can be reduced (Sytnikov 2013). 78 

The association between soybean roots and B. japonicum bacteria results in the formation of specific 79 

organs, called nodules, where N-fixation takes place. The main products of N-fixation on soybean 80 

nodules, such as ureides (allantoin and allantoic acid), are exported to the rest of the plant where they 81 

are incorporated into aminoacids and proteins. Thus, the number of effective nodules (regularly 82 

evaluated through its red-pink colour indicative of leghemoglobine presence) is key in those crops in 83 

which N content depends mainly on biological N-fixation (Wang and Martinez-Romero 2000; 84 

Masciarelli et al., 2014; Pommeresche and Hansen, 2017). 85 

Argentina presents a cultivated area of 20.3 million hectares of soybean, with a production of 58 86 

million tons (2016-2017) (Integrated Agricultural Information System Argentina, 2016). This crop is 87 

often cultivated in areas with high As concentration and/or irrigated with groundwater containing this 88 

metalloid because of crop expansion to arid and semiarid regions with low rainfall regime (Smedley and 89 

Kinniburgh, 2002; Bundschuh et al., 2010). This is of great concern because As toxicity may produce 90 

not only animal and human health problems but also negatively affect sustainable crop production. In 91 

Argentina, B. japonicum E109 is used for soybean inoculation since it is the commercially available 92 

strain (Cassán et al., 2009). In a previous work, we showed that under As exposure this bacterium was 93 

sensitive, mainly when exposed to AsIII since its growth was reduced a 50% for 10 µM and almost 94 

totally reduced for 25 µM AsIII, while for AsV from 25 µM only a minimal reduction in growth was 95 

seen (Armendariz et al., 2015). When soybean plants were treated with As, the plant growth was 96 

significantly reduced when exposed to 25 µM AsV and AsIII even when they were inoculated with B. 97 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

japonicum E109 since nodule number was reduced under these conditions (Talano et al., 2013). Other 98 

reports have also shown that soybean inoculated with other Bradyrhizobium strains was negatively 99 

affected by As exposure leading to significant ecological, economic and nutritional losses (Reichman, 100 

2014; Bustingorri and Lavado, 2014). Therefore, in As impacted environments the application of PGPB 101 

could not only improve As phytostabilization process, but also alleviate metal toxicity and stimulate 102 

plant growth. Hence, it could constitute an economic and effective approach for reducing metalloid 103 

impact (Ojuederie and Babalola, 2017). Considering that B. japonicum E109 is the commercially 104 

available strain and the only one adopted for soybean inoculation schemes in Argentina and taking into 105 

account the negative performance when inoculated in As-treated soybean plants, a strategy of 106 

combining this with other PGPB could be considered. In this sense, Azospirillum brasilense Az39 is a 107 

free-living bacterium that when inoculated alone or in combination with B. japonicum E109 has shown 108 

capacity to promote seed germination, nodule formation, and early development of soybean seedlings in 109 

As-free soils (Cassán et al., 2009). A. brasilense Az39 is able to produce indole acetic acid (IAA), 110 

gibberellins (GA3) and zeatin (Z), which produce morphological and physiological changes in maize 111 

and soybean young seed tissues (Cassán et al., 2009; García et al., 2017).  112 

Based on this background, the aims of this work were to evaluate the in vitro viability of two 113 

rhizospheric strains (B. japonicum E109 and A. brasilense Az39) under AsV and AsIII exposure in 114 

single and co-cultured suspensions and to test in vivo the effects of double inoculation (DI) on soybean 115 

plants exposed to As. The advantages of DI, in particular on soybean germination parameters, plant 116 

growth, nitrogen content, nodule number and As accumulation were evaluated, in order to assess the 117 

feasibility of DI strategy for an efficient symbiosis and growth improvement in soybean plants under As 118 

stress. 119 

 120 

  121 
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2. Materials and Methods 122 

2.1 Bacterial strain and growth conditions 123 

Two collection strains, B. japonicum E109 and A. brasilense Az39, were used in the present 124 

work. These bacteria belong to a strain collection from the Agriculture Collection Laboratory of the 125 

Instituto de Microbiología y Zoología Agrícola (IMYZA) and Instituto Nacional de Tecnología 126 

Agropecuaria (INTA), Castelar, Argentina. The complete genome sequence of B. japonicum E109 is 127 

available at NCBI GenBank under the following accession number CP010313 (Torres et al., 2015) 128 

while that of A. brasilense Az39 is registered as CP007793 for the chromosome and CP007794 to 129 

CP007798 for the other replicons (Rivera et al., 2014). Bacterial inocula were obtained by growing B. 130 

japonicum E109 for 96 h in liquid TY medium containing vancomycin (4 µg mL-1) and A. brasilense 131 

Az39 for 24 h in LB medium. Both cultures were incubated under agitation at 200 rpm and 28 °C. When 132 

necessary, the CFU mL-1 of bacterial suspension was calculated by drop count plate method 133 

(Somasegaran and Hoben, 1994). 134 

 135 

2.2. Bacterial in vitro studies  136 

2.2.1. Viability analysis of B. japonicum E109, A. brasilense Az39 and co-cultured strains 137 

under arsenic stress using flow cytometry analysis 138 

In order to evaluate rhizospheric strains viability under As stress, a flow cytometry analysis was 139 

performed in single or co-cultured bacterial suspensions. For that, bacterial cultures were centrifuged at 140 

10,000 rpm for 20 min at 15 °C, and the pellets were suspended in physiological saline solution (NaCl 141 

0.9%) to reach an OD620nm of 1. Finally, the bacterial suspensions were incubated separately or co-142 

cultured in absence or presence of 25 µM AsV or AsIII for 72 h. After that, bacterial suspensions were 143 

harvested by centrifugation and pellets were washed twice with saline phosphate buffer containing 1 144 

mM EDTA, pH 7.4 (Mandal et al., 2008). Viability evaluation was performed using the LIVE/DEAD 145 

BacLight Bacterial Viability Kit staining (Invitrogen, ThermoFisher Scientific, CA, USA), according to 146 

the manufacturer’s instructions. Bacterial viability was carried out by SYTO9 and propidium iodide (PI) 147 
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dyes which determine cell membrane integrity. SYTO9 dye can be incorporated to live and dead 148 

bacterial cells and can be useful to determine the total cells population, while PI dye is commonly used 149 

for identify dead cells which present disrupted membranes. Bacterial suspensions were acquired on an 150 

ACCURI C6 (BD Biosciences, San Diego, CA, USA) flow cytometer and the data were analyzed using 151 

FlowJo software (Tree Star, OR, USA). To evaluate mortality of the strains treated with As, bacteria 152 

were detected by forward scatter (FSC), side scatter (SSC), and fluorescence. 153 

 154 

2.2.2. IAA produced by A. brasilense Az39 under As stress and its effect on B. japonicum 155 

E109 survival  156 

A. brasilense Az39 cultures grown for 24 h in LB medium were harvested by centrifugation and 157 

the pellet was suspended in physiological saline solution and adjusted to an OD620nm of 0.5. Those 158 

bacterial suspensions were supplemented with stock sodium arsenate (AsHNa2O47H2O) (SIGMA) 159 

(AsV) and sodium arsenite (NaAsO2) (SIGMA) (AsIII) solutions to reach a final concentration of 25 160 

µM. For the control suspensions the same volume of As stocks was added as distilled water. These 161 

suspensions were incubated at 28° C and 180 rpm for 72 h. Then, IAA produced by A. brasilense Az39 162 

was tested as described by Glickman and Dessaux (1995) using the Salkowski reagent (H2SO4: 37.5 163 

mL; FeCl3 0.5M: 1.88 mL; H2O: 62.5 mL for 100 mL). For that, a calibration curve using commercial 164 

IAA solutions from 2 to 20 µg mL-1 was used and the OD (at 530 nm) values were registered. Finally, 165 

the IAA concentration produced by A. brasilense Az39 was expressed as µM considering its molecular 166 

weight  ( 175.18 g mol-1). As positive control of IAA production, Azospirillum sp. Cd strain was included 167 

(Kaushik et al., 2000), while non-inoculated physiological saline solution was used as negative control.  168 

For the evaluation of IAA effect on B. japonicum E109 viability flow cytometry analysis was 169 

performed. For that, B. japonicum E109 culture previously grown in TY medium was centrifuged and 170 

the pellet was suspended in physiological saline solution to reach an OD620nm of 1. Then, 5 mL-fractions 171 

of that suspension were diluted 1/2 to reach a final OD620nm of 0.5 with: a) physiological saline solution 172 

with the addition of commercial IAA (final concentration 4 µM), b) cell-free supernatant from A. 173 
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brasilense Az39 and c) A. brasilense Az39 viable cells previously suspended in physiological saline 174 

suspension with an OD620nm of 1. As control, B. japonicum E109 suspension in physiological saline 175 

solution was incubated under the same conditions. The final OD620nm of B. japonicum E109 suspensions 176 

at all the conditions reached a value of 0.5. All these treatments were exposed to AsV or AsIII (25 µM) 177 

adding the proper volume of concentrated stock solutions while those without As were used as control. 178 

After incubation for 72 h, bacteria were centrifuged and washed with phosphate saline buffer (PBS) 179 

with 1 mM EDTA. Then, cell mortality was evaluated by flow cytometry analysis as previously 180 

described in order to discuss the IAA effect on B. japonicum E109.  181 

 182 

2.3. Inoculation studies in As-treated plants 183 

2.3.1. Plant material, growth and treatment conditions 184 

Seeds of Glycine max cv. DM 4670 were used. They were sterilized using 70% (v/v) ethanol for 185 

1 min and then 30% (v/v) sodium hypochlorite for 10 min. They were washed thoroughly with sterile 186 

distilled water, submerged in distilled water and incubated at 28 ± 2 °C with agitation for 24 h. Then, 187 

they were used for in vitro studies (germination test) and in vivo inoculation assay in pots as detailed in 188 

2.3.2. and 2.3.3. sections, respectively.  189 

 190 

2.3.2. In vitro studies: Effect of inoculation on soybean germination under As stress 191 

To evaluate whether inoculation contributes at the initial development stage of soybean, 192 

germination index (GI), germination rate index (S), root length (cm) and relative radical elongation (E) 193 

were determined in seeds with single or double inoculation. For that, sterilized seeds (n=10) were placed 194 

on Petri dishes containing sterile filter paper. It was impregnated with 6 mL of: sterile water (control 195 

condition), B. japonicum E109 or A. brasilense Az39 suspension made with physiological saline 196 

solution (OD620nm 0.5) and equal amount of mixed bacterial suspension for DI condition. For As 197 

treatment, water or bacteria suspensions were supplemented with AsV or AsIII solutions to reach 25 µM 198 

final concentration. The experiment was repeated three times and each condition was analyzed by 199 
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duplicate in each independent experiment (n= 60). GI, S, root length and E were determined after 200 

incubating the plates for 7 d at 28 ± 2 ° C in darkness.  201 

E and GI were calculated according to Barrena et al. (2009): (E = [Xf/Xc] x 100) and (GI = 202 

[(Gf/Gc) x 100] x E/100), where: Xf= root length average of AsV or AsIII treated seeds, Xc= root 203 

length average of control seeds, Gf= germinated seeds in the presence of AsV or AsIII and Gc= seeds 204 

germinated under control conditions. S was calculated as described by Ahmed and Wardle (1994): (S= 205 

[N1/1 + N2/2 + N3/3 + ... + Nn/n] x 100), where: N1, N2, N3 ... Nn is the proportion of seeds germinating 206 

on days 1, 2, 3 ... n throughout the experiment. In this way, S varies from 100 (if all seeds germinate on 207 

the first day) to 0 (if the seeds did not germinate at the end of the experiment).  208 

 209 

2.3.3. In vivo inoculation assays and responses of soybean plants under As stress 210 

Previously disinfected seeds were placed in sterile flasks and soaked with a necessary volume 211 

(28 seeds/4.3 mL) either of physiological saline solution (non-inoculated), or bacterial suspensions 212 

obtained as previously described (section 2.2.1) from B. japonicum E109 and A. brasilense Az39 and 213 

both (inoculated and double inoculated (DI)). When soybean seeds were DI, the suspension was 214 

prepared from a mixture of both microorganisms in equal parts. Then, seeds were incubated in an orbital 215 

shaker (200 rpm) for 2 h at 28 °C to allow the impregnation with bacteria. After draining the seeds from 216 

the bacterial suspensions they were kept in a laminar flow hood by 2 h to allow them to dry. 217 

Subsequently, 10 seeds (non-inoculated (NI), inoculated with B. japonicum E109 or A. brasilense Az39 218 

and those DI) were placed in pots containing 50 g of sterile perlite humidified by capillarity with 125 219 

mL distilled water (control) or 25 µM AsV and AsIII solution. Plants were supplemented alternatively 220 

with water or free nitrogen ½ Hoagland solution as needed. At 14 and 21 days, plants were repeatedly 221 

treated with As, so the treatments were designated as T0, T14 and T21.  222 

The experiments were carried out in a growth chamber set with controlled temperature (28 ± 2 223 

°C) under photoperiod regime [16 h light (200 µmol m-2 s-1)/8 h dark] and relative humidity of 80%. 224 

After 30 d, harvested plants were divided in root, shoot and nodules. First, the nodule number was 225 
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counted. Dry weight of root and shoot (obtained after drying in an electric heating oven at 70 °C for 5 d) 226 

was registered. Root and shoot were frozen, homogenized with liquid N2 and kept at -80 °C until their 227 

use for analytical determinations. 228 

 229 

2.3.3.1 Total nitrogen content in soybean plants 230 

Total nitrogen content was determined in shoots by Kjeldahl Method (Reference Method) based 231 

on titration of protein and non-protein nitrogen through a digestion with concentrated sulfuric acid 232 

(AOAC, 1990).   233 

 234 

2.3.3.2 Total As accumulation analysis 235 

Root and shoot of inoculated and NI plants were used for As quantification. Dried tissues were 236 

acid digested and total As was determined by atomic fluorescence spectrometry (AFS). For digestion, 237 

0.3 g of sample were weighed and mixed with 10 mL of concentrated HNO3 (Ultrex® II Mallinckrodt 238 

Baker, Phillipsburg, NJ, USA) (30 min at 50ºC and 60 min under boiling). After cooling, 2 mL of H2O2 239 

30% (Merck, Darmstadt, Germany) were added and the digestion was continued at constant boiling 240 

during 60 min. Each digested sample was left to cool, and then it was filtered and transferred to a 50 mL 241 

flask. Subsequently, 5 mL of HCl 37% (v/v) (Merck) and 2 mL of IK 25% (w/v) (JT Baker, USA) were 242 

added to the flask. Finally, ultrapure water (18 MΩ cm) (Bedford, MA, USA) was added to reach a 243 

volume of 50 mL. Arsenic was detected using a Rayleigh AF-640A atomic fluorescence spectrometer 244 

(Beijing Rayleigh analytical Instrument Corp., Beijing, China). Instrumental and experimental 245 

conditions were: lamp and wavelength: As High intensity hollow cathode lamp, 197.3 nm; main current: 246 

40mA; auxiliary current: 0 mA; reductant: 0.7% (w/v) NaBH4 (Merck), carrier: 5% (v/v) HCl (Merck); 247 

reductant and carrier flow rates: 12 mL min−1, argon flow rate: 800 mL min−1 and atomizer temperature: 248 

300ºC. Calibration was performed against aqueous standards and blank solutions. For validation, a 249 

Perkin Elmer (Uberlingen, Germany) Model 5100ZL atomic absorption spectrometry equipped with a 250 
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transversely heated graphite atomizer, an As Electrodeless Discharge Lamp (EDL) and a Zeeman 251 

correction system, was used.  252 

 253 

2.4. Statistical analysis 254 

Results are the average of at least 3 independent replicates, performed by triplicate. Mean and 255 

standard errors of the evaluated parameters were calculated and plotted using the Microsoft Excel 2007 256 

program. To determine the statistical difference between at least one pair of means, analysis of variance 257 

test (ANOVA) was used. When the assumptions of homogeneity of variance (Levene test) and normality 258 

(Shapiro-Wilk test) were not checked, corresponding transformations were performed using the 259 

appropriate functions. To determine significant differences between treatments, Tukey test was applied, 260 

with a significance level of 0.05 (p <0.05). For some parameters nonparametric analysis was performed 261 

by Kruscal Wallis test (Software InfoStat versión 2015; from National University of Córdoba, 262 

Argentina). 263 

 264 

3. Results and Discussion 265 

3.1. Bacterial in vitro studies  266 

3.1.1. Viability analysis of B. japonicum E109, A. brasilense Az39 and co-cultured strains under 267 

AsV and AsIII treatment  268 

In order to understand how 25 µM AsV and AsIII affects B. japonicum E109 and A. brasilense 269 

Az39 viability, single or mixed cultures were stained with SYTO9 and PI dyes and analyzed by flow 270 

cytometry. As shown in Figure 1A (representative dot plots) and Figure 1B, the metalloid increased B. 271 

japonicum E109 and A. brasilense Az39 mortality in single and DI cultures. In this sense, mortality 272 

increase was statistically significant only for AsIII treatment and B. japonicum E109 was more affected 273 

than A. brasilense Az39, since mortality values were 45% and 38%, respectively (Fig 1B). These data 274 

are in agreement with previous results obtained using conventional methodology [growth curves 275 

(OD620nm) and plate count (log10 CFU mL-1)] (Armendariz et al., 2015). As it is shown, As is an 276 
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important stress factor especially for B. japonicum E109, severely affecting its viability. However, co-277 

culture of B. japonicum E109 and A. brasilense Az39 improved bacteria survival under As treatment 278 

compared with single cultures. Furthermore, this effect was more significant under AsIII treatment since 279 

co-cultured mortality decreased 21% for AsV and 13-27% AsIII treatment, compared with the mortality 280 

of single bacteria suspensions. Hence, flow cytometry was useful for identifying and quantifying viable 281 

and dead rhizobacteria in an easy, fast and efficient way as a complement to standard methods (Mandal 282 

et al., 2008; Tejerizo et al., 2015; Valdameri et al., 2015). Moreover, flow cytometry assay allowed us 283 

analyzing in an accurate and exact manner the behavior of this mixed bacterial population under As 284 

exposure. These results suggest that there may be a synergistic/cooperative effect between bacteria, 285 

which encourage us to evaluate their effectiveness under in vivo conditions for the improvement of 286 

soybean plants exposed to As.  287 

 288 

3.1.2 IAA produced by A. brasilense Az39 under As stress and its effect on B. japonicum 289 

E109 survival  290 

With the purpose of exploring whether IAA produced by A. brasilense Az39 is responsible of the 291 

increased viability of B. japonicum E109 in co-culture under As stress, it was incubated with 292 

commercial IAA, A. brasilense Az39 cell-free supernatant and A. brasilense Az39 bacterial suspension. 293 

B. japonicum E109 alone was also included as control and incubated under the same conditions. The 294 

cell-free supernatant was included to consider the presence of another potential soluble compound in the 295 

culture medium responsible of B. japonicum E109 survival.  296 

First, IAA produced by A. brasilense Az39 was determined under AsV and AsIII exposure. As 297 

shown in Table 1, A. brasilense Az39 produced around 4-5 µM of IAA, similar to A. brasilense Cd, 298 

used as a positive control, with no significant effect of 25 µM AsV or AsIII on IAA production. 299 

Considering this, 4 µM was chosen as the concentration of commercial IAA added to B. japonicum 300 

E109.  301 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

As it can be seen in Figure 2, when B. japonicum E109 was incubated with commercial IAA (4 302 

µM), A. brasilense Az39 cell-free supernatant and A. brasilense Az39 cells, its mortality percentage was 303 

reduced. Although IAA induced a mortality reduction effect in all conditions, the main effect was 304 

observed under AsIII treatment (Figure 2). These results indicate that IAA produced by A. brasilense 305 

Az39 would represent an important component associated to B. japonicum E109 viability under As 306 

stress. In fact, it has been reported that B. japonicum strains can use this compound as a carbon source 307 

(Egebo et al., 1991; Jensen et al., 1995). In addition, there is some evidence that IAA might be a signal 308 

able to coordinate bacterial behavior to enhance protection under adverse conditions (Spaepen et al., 309 

2007 and references there in). Using E. coli, Bianco et al. (2006a) and (2006b) showed that IAA induces 310 

the expression of genes related to survival under stress conditions and others involved in the central 311 

metabolic pathways such as the tricarboxylic acid cycle (TCA), glyoxylate shunt and amino acid 312 

biosynthesis (leucine, isoleucine, valine and proline). These findings showing IAA as a signaling 313 

molecule shed new light on the role of IAA in bacteria-plant interactions, but can also explain bacteria-314 

bacteria interactions in the rhizosphere. Accordingly, in the present work, this phytohormone can play a 315 

key role in the protection of the more As-sensitive bacterial partner in the B. japonicum E109 and A. 316 

brasilense Az39 interaction in an As-contaminated environment. In order to evaluate the advantages of 317 

double inoculating soybean plants using B. japonicum E109 and A. brasilense Az39 in an As-318 

contaminated soil, in vitro studies of germination parameters as well as in vivo studies with plants were 319 

performed.  320 

 321 

3.2. Inoculation studies in plants treated with As  322 

3.2.1. In vitro studies: Effect of inoculation on soybean germination under As stress  323 

Some parameters related to germination and young stages of soybean growth such as GI, S, root 324 

length and E were determined in NI and inoculated seedlings treated with As. 325 

In NI seeds, GI was significantly reduced (around 64%) under both As treatments compared to 326 

control (Table 2). Similar reduction in germination percentage was shown in our previous work by 327 
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concentrations from 25 µM AsV or AsIII (Talano et al., 2013). Considering that germination percentage 328 

is sometimes a relatively low-sensitive parameter to study the toxicity of a xenobiotic and not enough to 329 

predict subsequent effect on tested plant growth (Gong et al., 1999) here we present results from other 330 

related parameters such as S, root length and E. S was significantly reduced (23.8%) when seeds were 331 

treated with 25 µM AsIII, whereas root length and E were significantly affected by both As treatments, 332 

with a decrease of 50%. Similar results were found by Kaur et al. (2012) whom reported that As 333 

exposure (10 µM) caused a reduction of around 50% of radicle emergence and elongation in Phaseolus 334 

aureus. The negative effect of As on germination and early development of seedlings has been 335 

attributed to the marked decline in amylolitic enzyme activities in rice and wheat endosperms, which 336 

produce a delay in mobilization of starch (Jha and Dubey 2005; Liu et al., 2005). Also, As produced a 337 

reduction of N-assimilatory enzyme activities (nitrate reductase, nitrite reductase and glutamine 338 

synthetase) in germinating rice seeds and seedlings, with the consequent reduced vigor and impaired 339 

growth (Jha and Dubey, 2004a; Jha and Dubey, 2004b). Inhibition of proteases has been also reported in 340 

As-treated plants, thus it can explain the reduced germination of soybean since proteins are the main 341 

reserve material in the grains. Thus, the disturbance of As on sugars, N and protein metabolism of 342 

germinating seeds could explain the reduced GI, S, root length and E observed for As-treated soybean 343 

seeds.    344 

Regarding inoculation, in the present work, no improvement was observed in seeds inoculated 345 

with A. brasilense Az39, which was surprising since this strain presented high tolerance to the metalloid 346 

as it was previously demonstrated (Armendariz et al., 2015). Contrarily, when As-treated seeds were 347 

inoculated with B. japonicum E109, all the analyzed parameters significantly increased compared to NI 348 

seeds. Similarly, a positive effect has also been reported by Dary et al. (2010) since germination of 349 

Lupinus luteus seeds was improved when they were inoculated with Bradyrhizobium sp. 750 and 350 

exposed to contaminated soils with moderated heavy metal concentration (including around 65-70 mg 351 

Kg-1 of As).  352 

 353 
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3.2.2. In vivo inoculation assays and responses of soybean plants under As stress 354 

3.2.2.1. Effect on growth and nodulation 355 

Under control condition (without As), inoculation with B. japonicum E109, A. brasilense Az39 356 

or DI produced a significant increase in shoot and root biomass compared to NI plants (Fig. 3). Plants 357 

inoculated with B. japonicum E109 showed an increase in root and shoot biomass of 27% and 47%, 358 

respectively, while in plants inoculated with A. brasilense Az39 the increase was lower (22 and 17%, 359 

respectively). However, when soybean seeds were DI no significant differences in plant biomass were 360 

found compared to single inoculations. These results agree with pre-existing data, since numerous field 361 

studies and laboratory tests have shown that B. japonicum E109 significantly increases soybean 362 

production (Cassán et al., 2009; Benintende et al., 2010). However, it seems that the beneficial effects of 363 

each individual strain would not be additive when they were DI. This could be explained by alteration in 364 

microbial ecology of the rhizosphere, probably by natural competition. Some evidences indicate that the 365 

production of secondary metabolites and other physiological processes in bacteria depend on population 366 

density. Therefore, the benefits that microorganisms produce in plants could not be significant if they do 367 

not reach an appropriate number or density (Barnard et al., 2007).  368 

Under As stress, inoculation was an effective strategy to improve plant growth, although with 369 

less efficiency. Although there was a negative effect of As on soybean, reflected as biomass reduction, 370 

the damage was more severe in NI plants (Fig. 3). Inoculation with A. brasilense Az39 or B. japonicum 371 

E109 separately produced an increase in root and shoot biomass in As-treated plants, but this effect was 372 

higher for those inoculated with B. japonicum E109. Considering DI, there was a significant growth 373 

improvement of As-treated plants, although it was statistically significant only for AsV treatment. 374 

Similarly, Reichman (2007; 2014) observed that inoculation with B. japonicum CB1809 promoted 375 

soybean, wheat and sunflower growth when exposed to AsV compared to those NI plants. In addition, 376 

other authors have reported better results in canola and rice growth when inoculated with 377 

Brevundimonas diminuta and Enterobacter cloacae CAL2, respectively, under As stress (Nie et al., 378 

2002; Singh et al., 2016). On the other hand, there are few reports on Azospirillum strains inoculated in 379 
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As-treated plants. This is not surprisingly because our previous results indicated that A. brasilense Az39 380 

did not promote germination parameters in the presence of As. Similarly, Lyubun et al. (2006) neither 381 

found significant differences in biomass of wheat plants inoculated with A. brasilense Sp245 growing in 382 

presence of As compared to NI ones.  383 

Regarding nodulation under control conditions, the number of effective nodules was not 384 

modified in DI plants compared to those inoculated with B. japonicum E109 (Fig. 4). Under As 385 

treatment, the nodule number was significantly reduced compared with control, mainly by 25 µM AsIII. 386 

However, in DI plants the nodule number significantly increased compared B. japonicum E109 387 

inoculated plants, under AsIII stress. Several authors have described that nodulation of legumes is 388 

generally reduced or inhibited in As-contaminated soils (Carrasco et al., 2005; Mench et al., 2006; 389 

Talano et al., 2013). For instance, Reichman (2007) reported that the nodule number in soybean plants 390 

inoculated with B. japonicum CB1809 was reduced by 90% in the presence of 5 µM AsV. In addition, 391 

in As-treated plants of Vigna mugno and Medicago sp. inoculated with highly As-resistant bacterial 392 

strains this parameter was also reduced (Pajuelo et al., 2008; Mandal et al., 2011). This decrease would 393 

be related to the toxic effect of As on roots, mainly with reduction or damage of radical hairs which 394 

would affect the sensitivity, or the low expression level of several nodulin genes, which have a 395 

fundamental role in the infection thread formation (Pajuelo et al., 2008; Lafuente et al., 2010). More 396 

recently, La Fuente et al., (2015) using the model legume Medicago truncatula and Ensifer (syn. 397 

Sinorhizobium) medicae MA11, a highly As-resistant bacterium, found a strong reduction of nodule 398 

number under AsIII treatment with a median inhibitory concentration (ID50) of 20 µM. The author 399 

emphasized that nodulation was the most sensitive process comparing the AsIII-ID50 for plant growth, 400 

seed germination, shoot and root length, nodulation and other physiological parameters.  401 

In the present work, the lower nodulation in As-treated plants inoculated with B. japonicum 402 

E109 would be a consequence of root biomass reduction and minor number of root hairs as available 403 

infection points. In addition, since B. japonicum E109 is highly sensitive to As, mainly AsIII 404 

(Armendariz et al., 2015), a smaller number of bacteria are alive for colonization and symbiosis is 405 
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reduced. Other explanation about As deleterious effect would be related with metalloid injuries on root 406 

structure. The toxicity of As would also be related with delicate regulatory events through gene 407 

modulation during rhizobia-legume interaction. Recently, La Fuente et al., (2015) studied the effect of 408 

As on M. truncatula-E. medicae MA11 symbiosis through transcriptomic meta-analysis. In this 409 

experimental model, the enhancement of chalcone synthase transcripts (involved in the first step of 410 

legume-rhizobia cross-talk) and the repression of 13 subsequent nodulation genes codifying for Nod 411 

factors (involved in perception, infection, thread initiation and progression, and nodule morphogenesis) 412 

suggests that plants are impaired to establish symbiotic interactions under AsIII stress. This focus 413 

involving transcriptomic analysis of As-treated plants inoculated with rhizobia would complement the 414 

advances made with ‘arsenomic’ approach which includes the study of non-legume plants or legume-415 

rhizobia interaction but without stress. Certainly, more studies in this line but under As exposure would 416 

allow elucidating the effect of the metalloid on symbiotic interactions from a global perspective. 417 

 418 

3.2.2.2 Total N content 419 

In control condition, the total N content in shoots (Fig. 5) was higher when soybean plants were 420 

inoculated with B. japonicum E109, and also when they were DI. Contrarily, plants inoculated with A. 421 

brasilense Az39 did not show considerable increase in N content compared to control NI plants. In the 422 

presence of As, N content of NI plants did not change while As-treated plants inoculated with A. 423 

brasilense Az39 showed higher N content although without significant difference. Contrarily, in plants 424 

inoculated with B. japonicum E109 As treatment produced reduction in N content (around 20-25%), 425 

which could be explained by the considerable reduction in nodule number, as it was previously shown 426 

(Fig 4), and the reduction of nitrogenase activity in nodules of As-treated plants (data not shown). In 427 

addition, soybean root nodules derived from plants treated with both AsV and AsIII showed a pale pink 428 

or whitish inner coloration as compared to the intense red color of control plant nodules. This result 429 

indicates a lower concentration of leghemoglobin thus, higher O2 concentration diffuses inside the 430 

nodule and nitrogenase activity decreases (Kundu et al., 2003). It is important to remark that, in DI 431 
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plants, the N content increased under As treatment. These results suggest that A. brasilense Az39, a 432 

highly As-tolerant strain, would be efficient in N-fixing under As stress, slightly improving N content in 433 

As-treated plants when compared with those inoculated only with B. japonicum E109. It shows that 434 

addition of Azospirillum strain to inoculation programs would give better results in plant growth   435 

 436 

3.3.3 Effect of inoculation on As accumulation in soybean plants 437 

As shown in Fig 6, the pattern of As accumulation changed depending on the bacterium used. In 438 

general, inoculation produced a reduction in As concentration in roots independently of As chemical 439 

species, except for DI plants treated with AsIII. In this case, the root accumulated higher As content, 440 

constituting a good strategy for an efficient phytostabilization of As, even more when these plants had 441 

low As accumulation in shoots. In fact, inoculated plants mainly those with A. brasilense Az39 or DI 442 

showed reduced As concentration in aerial parts and consequently lower As translocation compared 443 

with NI plants.  444 

In a similar way, different plant species inoculated with plant growth promoting bacteria from 445 

Staphylococcus, Bacillus, Acinetobacter genera and others, have shown reduced As uptake and minor 446 

accumulation in aerial parts, grains and/or other edible parts of plants as a result of the bacterial 447 

inoculation (Srivastava et al., 2013; Das et al., 2016; Das and Sarkar, 2018). Therefore, those bacteria 448 

can be accounted for an efficient As phytostabilization. This finding emphasizes the important role of 449 

inoculation strategies to avoid high translocation and As accumulation in aerial parts of plants, mainly 450 

those which produce seeds/grains, fruits or are themselves vegetable foods for human and/or animal 451 

consumption. In this sense, inoculation could be helpful to avoid transference of As to food chain. 452 

However, it is important to consider that depending of bacterial strain and As chemical species, results 453 

can differ.  454 

The presence of microorganisms affects the bioavailability of As in soybean rhizosphere. In this 455 

sense, it is known that bacteria are able to promote the mobility of metals and metalloids either by 456 

acidification and changes in the redox state of the medium, production of chelating agents or 457 
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siderophores and accumulation and/or adsorption in the biomass or exopolysaccharides (EPS) (Zubair et 458 

al., 2016 and references cited therein). Therefore, the different results obtained in the present work can 459 

be related with bacteria abilities for As metabolism in the rhizosphere as well as with tolerance 460 

mechanisms such as EPS and biofilm production (Armendariz et al., 2015). Joshi and Juwarkar (2009) 461 

reported that the ability of Azotobacter spp. to chelate Cd and Cr in EPS explained the low adsorption of 462 

metals by Triticum aestivum. In the present work, the lower content of metalloid in roots of AsIII-463 

treated plants inoculated with individual strains (B. japonicum E109 or A. brasilense Az39) could be 464 

explained by their increased biofilm production under 25 µM AsIII treatment, as shown in Armendariz 465 

et al. (2015). Biofilm would retain As and/or adsorbed it on the polymeric matrix frequently formed by 466 

EPS, thus leaving lower As concentration available for root (Rajkumar et al., 2012). In addition, other 467 

explanation for the lower As concentrations in roots inoculated with single bacterium would be the high 468 

As content translocated to aerial parts, which would depend on the metabolism of AsIII in the 469 

rhizosphere, uptake transporters and movility in plant tissues.  470 

In the present work, it is important to remark that double inoculation of soybean plants, in 471 

particular under AsIII treatment, improved As-phytostabilization, hence reducing not only As lixiviation 472 

in soils but also As translocation to aerial parts and consequently, the potential risk of introducing this 473 

contaminant into the food chain. In addition, soybean plants treated with AsIII and DI showed a better 474 

growth and higher N content compared with NI plants. Also, it seems that the presence of both bacteria 475 

in soybean rhizosphere would contribute positively with nodule formation, probably as a result of the 476 

protective role of A. brasilense Az39 on B. japonicum E109 survival through IAA production.  477 

As shown for soybean, legumes often accumulate As (and metals) mainly in root (Pajuelo et al., 478 

2007, 2011; Reichman, 2007; El Aafi et al., 2012), and this fact is adequate for metal phytostabilization 479 

(Dary et al., 2010; El Aafi et al., 2012), as it reduces metal/loids mobilization in the plant rhizosphere 480 

with a scarce translocation to shoot (Mendez and Maier, 2008). In this sense, autochthonous legumes 481 

and resistant rhizobia are the most effective partnerships for many cases of metal-polluted soil 482 

restoration (Maynaud et al., 2013). However, when rhizobia are highly sensible to As, its combination 483 
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with resistant bacteria could be a synergistic way to improve plant and inoculation performance under 484 

stressful condition.  485 

 486 

4. Conclusion  487 

Combining complementary properties of strains used for inoculation such as N-fixing ability 488 

from a poorly As-tolerant symbiotic strain (B. japonicum E109) with a highly As-tolerant free-living 489 

bacterium (A. brasilense Az39) is a good strategy to attenuate the As deleterious effect on soybean 490 

plants. A synergistic effect when both bacteria were co-cultured was observed through flow cytometry 491 

assays under As exposure. Despite there could be many factors involved in that protection, IAA 492 

produced by A. brasilense Az39 could be one beneficial metabolic relation that would reduce B. 493 

japonicum E109 mortality, mainly under AsIII treatment. Independently of the inoculation scheme used, 494 

single or combined, it produced positive effects on growth of As-treated plants. It is important to remark 495 

that DI plants significantly promoted plant growth, total nodule number and N content under As 496 

treatment. Regarding As accumulation, DI inoculation caused a reduction in As content in shoot and 497 

root of plants treated with AsV, while those exposed to AsIII showed higher retention of As in roots 498 

with low translocation to aerial parts. This would constitute an improvement of plant phytostabilization 499 

potential when exposed to AsIII, helping with As immobilization and consequently reducing As entry 500 

into the food chain. These results would allow considering DI strategy using B. japonicum E109 and A. 501 

brasilense Az39 as a safe and advantageous practice for the improvement of growth, yield of soybean 502 

crops and safe grain consumption for foods.  503 

 504 
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6. Figures Legends 512 

Figure 1. Bacterial viability after incubation with or without 25 µM of AsV or AsIII in saline solution 513 

for 72 h at 28°C. A) Representative dot plots [SYTO9 green fluorescence intensity (FL1-A) vs. PI red 514 

fluorescence intensity (FL3-A)] of the bacterial suspensions analyzed by flow cytometry. B. japonicum 515 

E109, A. brasilense Az39 and co-incubated strains (E109+Az39) in saline solution for 72 h (control), 516 

positive death control (Heat-killed), 25 µM of AsV or AsIII. B) Bar graphs show the percentages of cell 517 

mortality obtained by flow cytometry and represent the mean ± SE (n = 6). Different letters indicates 518 

significant differences (Tukey's test, p < 0.05). 519 

Figure 2. Effect of IAA on B. japonicum E109. Percentages of cell mortality incubated alone (E109), 520 

with commercial IAA (E109+IAA), with supernatant produced by A. brasilense Az39 (E109+SNT) or 521 

co-incubated with A. brasilense Az39 (E109+Az39) analyzed by flow cytometry. All samples were 522 

incubated with or without 25 µM of AsV or AsIII in saline solution for 72 h at 28°C. Results represent 523 

the mean ± SE (n = 5). Different letters indicates significant differences (Tukey's test, p < 0.05). 524 

Figure 3. Effect of As on root and shoot fresh weight of soybean plants non-inoculated (NI), inoculated 525 

with B. japonicum E109, A. brasilense Az39 or double inoculated (DI). The results represent the mean ± 526 

SE (n = 40). Different letters indicates significant differences (Test de Kruscal Wallis, p ≤ 0,05). 527 

Figure 4. Effect of As on nodule number formed after inoculation with B. japonicum E109 or with B. 528 

japonicum E109 and A. brasilense Az39 (DI). The results represent the mean ± SE (n = 40). Different 529 

letters indicate significant differences (Test de Tukey, p ≤ 0,05). 530 

Figure 5. Nitrogen content in aerial parts of soybean plants non-inoculated (NI), inoculated with B. 531 

japonicum E109, A. brasilense Az39 or both strains (DI) treated with AsV and AsIII (25 µM). The 532 

results represent the mean ± SE (n = 2). Asterisks represent significant difference with the 533 

corresponding NI plants under AsV and AsIII treatment.  534 

Figure 6. Arsenic accumulation in roots or aerial parts of soybean plants non-inoculated (NI) or 535 

inoculated with B. japonicum E109, A. brasilense Az39 or with both strains (DI). The results represent 536 

the mean ± SE (n = 3).  537 

  538 
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Table 1. IAA production by A. brasilense Az39 incubated in saline solution for 72 h at 28°C under As 

treatment. Positive control: Azospirillum brasilense Cd. Results represent the mean ± SE (n = 8).  

 

IAA production (µM) 
 Az39 AzCd 

Control 3.9 ± 1.1 4.5 ± 0.3 
AsV 4.1 ± 0.5 4.5 ± 0.7 
AsIII  5.6 ± 1.1 5.7 ± 1.1 
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Table 2. Germination parameters of soybean seedlings treated with 25 µM AsV and AsIII. Effects of 
inoculation with B. japonicum E109, A. brasilense Az39 and double inoculation. 

 

Treatment 
 

Germination 
index (IG) 

Speed of 
germination 

index (S) 

Radical length 
(cm) 

Radical 
relative 

elongation 
(E) 

NI Control      100.0±0.0b 93.8±2.4a               8.3±0.4b 100.0 

E109 Control    110.9±1.9ab 94.0±1.7a          9.4±0.5ab 113.0 

Az39 Control    109.3±5.7ab 93.0±2.3a          9.5±0.4ab 115.0 

E109+Az39 Control  119.1±2.6a   91.0±3.3ab             10.2±0.5a 123.0 

NI         AsV            46.2±1.7de   89.7±4.8ab               4.1±0.2de   49.5 

E109 AsV     60.7±1.4c   89.6±3.3ab         5.9±0.3c   62.9 

Az39 AsV        53.3±5.9cde   90.6±5.1ab           5.1±0.3cde   53.9 

E109+Az39 AsV     55.2±2.7c   86.3±6.0ab       5.9±0.4c   58.0 

NI AsIII      45.8±1.0de    71.5±1.7bcd        3.9±0.2e   47.4 

E109 AsIII     60.9±1.7c    77.6±2.6abc         5.7±0.3cd   60.8 

Az39 AsIII     39.7±2.5e  55.7±3.2cd               3.7±0.3e   39.1 

E109+Az39 AsIII        50.6±1.4cde 64.0±3.1d               5.2±0.4c   50.5 

NI: non-inoculated seeds. 
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Fig 1 
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Fig 2  
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Fig 3  
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Fig 4 
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Fig 5 
 
 

 
 

0

0.5

1

1.5

2

2.5

3

3.5

4

NI E109 Az39 DI

To
ta

l  
N

  (
w

b 
%

)

Control

AsV

AsIII
* 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Fig 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

   Shoots Roots 

NI    E109   Az39   DI 
AsV 25 µM 

 NI    E109   Az39   DI 
AsIII 25 µM 

0

1

2

3

4

5

6

7

8

0

50

100

150

200

250

300

A
s 

co
nt

en
t 

 (
µ

g/
g 

D
W

 s
ho

o
ts

)

A
s 

co
nt

en
t 

 (
µ

g/
g 

D
W

 r
o

o
ts

)



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Highlights 

 

-Flow cytometry revealed synergysm between two rhizospheric bacteria when exposed to As. 

-Indole acetic acid produced by A. brasilense Az39 would protect B. japonicum E109 when exposed 
to As. 

-Plant growth improvement, increase of nodule number and N content was observed in double 
inoculated plants treated with As.  

-Double inoculation strategy promoted As phytostabilization potential of soybean plants.  
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