
MU PSYC: ALGORITHMIC MUSIC COMPOSITION WITH A MUSIC-PSYCHOLOGY
ENRICHED GENETIC ALGORITHM

by

Brae Stoltz

B.Sc. (Honours) in Computer Science, University of Northern British Columbia, 2017

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
IN

COMPUTER SCIENCE

UNIVERSITY OF NORTHERN BRITISH COLUMBIA

February 2020

© Brae Stoltz, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by British Columbia's network of post-secondary digital repositories

https://core.ac.uk/display/323513098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE OF CONTENTS

Table of Contents 2

List of Tables 4

List of Figures 5

Abstract 6

1 Introduction 7
1.1 History . 7

1.1.1 Early Days (1757-1990) . 7
1.1.2 Contemporary (2000 onward) . 9

1.2 Directions . 9

2 Music-Psychology 11
2.1 Musical Theory and Understanding . 11
2.2 Literature . 13

2.2.1 Expectancy Theory . 13
2.2.2 Auditory Scene Analysis . 14
2.2.3 Voice-leading . 14
2.2.4 Musical Universals . 17
2.2.5 Supporting Musicological Conjectures . 18

3 Music Composition with Genetic Algorithms 20
3.1 Background . 20
3.2 Genetic Algorithms For Music Composition . 21

3.2.1 Representation of Compositions . 21
3.2.2 Fitness Functions . 22

3.2.2.1 Human-assisted Fitness Functions 22
3.2.2.2 Autonomous Fitness Functions . 23
3.2.2.3 Fitness-less Genetic Algorithms . 24

3.2.3 Genetic Operators . 24
3.2.3.1 Selection . 25
3.2.3.2 Mutation . 26
3.2.3.3 Crossover . 27

3.2.4 Evaluation . 27

2

4 A Psychology Enriched Genetic Algorithm for Music Composition 28
4.1 Motivations . 29
4.2 Musical Rules . 29
4.3 Genetic Algorithm . 31

4.3.1 Genome Representation . 31
4.3.2 Population Initialization . 33
4.3.3 Genetic Operators . 34

4.3.3.1 Selection . 34
4.3.3.2 Crossover . 35
4.3.3.3 Mutation . 35

4.3.4 Fitness Function . 37
4.3.5 Algorithm . 38
4.3.6 Implementation . 38

4.3.6.1 Parallelism . 38
4.3.6.2 Parameters . 40

5 Experimental Study 42
5.1 Performance Study . 42
5.2 Online Survey . 44

5.2.1 Results . 44
5.2.2 Analysis . 47

6 Implications of Automated Music Composition 49
6.1 Disruption of the Job Market . 49
6.2 Disruption of the Legal System . 50
6.3 End-Goal . 51

7 Conclusions and Future Prospects 52
7.1 Approach . 52
7.2 Findings . 53
7.3 Additions . 53
7.4 Future Directions . 54

Bibliography 57

3

LIST OF TABLES

4.1 Duration Values . 33
4.2 Pitch class IDs . 33

5.1 Overall Survey Responses. 47
5.2 Survey Responses to the Five Comparisons (Q2-Q6). 47

4

LIST OF FIGURES

5.1 Graph containing average execution time per generation for each of the GA com-
ponents with the single threaded and parallel versions of the algorithm. 43

5.2 Compositions in Q3 of Survey 2. 46
5.3 Compositions in Q3 of Survey 2. 46

5

Abstract

Recent advancement of artificial intelligence (AI) techniques have impacted the field of algorith-

mic music composition, and that has been evidenced by live concert performances wherein the

audience reportedly often could not tell whether music was composed by machine or by human.

Among the various AI techniques, genetic algorithms dominate the field due to their suitability

for both creativity and optimization.

Many attempts have been made to incorporate rules from traditional music theory to de-

sign and automate genetic algorithms. Another popular approach is to incorporate statistical or

mathematical measures of fitness. However, these rules and measures are rarely tested for their

validity.

This thesis is aimed at addressing the above limitation and hence paving the way to ad-

vance the field towards composing human-quality music. The basic idea is to look beyond this

constrained set of traditional music rules and statistical/mathematical methods towards a more

concrete foundation. We look to a field at the intersection of musicology and psychology, re-

ferred to as music-psychology.

To demonstrate our proposed approach, we implemented a genetic algorithm exclusively

using rules found in music-psychology. An online survey was conducted testing the quality of

our algorithm’s output compositions. Moreover, algorithm performance was analyzed by ex-

perimental study. The initial results are encouraging and warrant further research. The societal

implications of our work and other research in the field are also discussed.

6

Chapter 1

Introduction

Algorithmic Composition (AC) is a field focused on composing music using algorithms. This

is a multidisciplinary effort with contributions from musicians, composers, computer scientists,

mathematicians, and psychologists. The field has a rich history, dating back to at least 1757. A

brief history is presented here to set the context for the work presented in this thesis.

1.1 History

The field of AC can be traced back to at least the 18th century, where games were devised to

create music by an algorithmic process. Currently, state-of-the-art Artificial Intelligence (AI)

algorithms are dominating the field, leading to more autonomous composition systems.

1.1.1 Early Days (1757-1990)

While virtually all contemporary research in this field is aided by a computer, history has shown

that a computer is not a requisite to the definition of AC [20]. The act of composition by algo-

rithm has been around for hundreds of years, with the earliest known example widely taken

to be Kirnbergers’s Der allezeit fertige menuetten-und polonoisenkomponist1 in 1757 [54], a “musical

dice game” wherein the player rolls a set of dice repeatedly in order to randomly select pre-

existing bars of music. At this time musical games were popular, with many others releasing
1Mozart’s musical dice game is often taken to be the first, however Kirnberger’s was published nearly 40 years

prior. This confusion is understandable given that Kirnberger was Mozart’s publisher.

7

their own form of the musical dice game (see Hedges’ work for a detailed account [39]), includ-

ing Mozart in 1793 [3, 39]. In 1856, The Quadrille Melodist offered pianists a set of cards that

supposedly allowed them to generate 428 million different quadrilles2 [5, 26, 75]. The Quasi-

algorithmic technique of breaking music into repeatable sections and using number ratios mea-

sured in the world or the Fibonacci sequence in determining the number of repeats dates back

to the 13th and 14th century [26].

As the computer emerged, more sophisticated algorithms were explored; one of the earliest

computers built, the Illinois Automatic Computer (ILLIAC), was used by Hiller and Isaacson in

1957 to generate music using mathematical techniques, compiling a set of generated musics into

the ILLIAC Suite [44]. Before the suite was completed, Hiller conducted many experiments, one

being a collaboration with many others, named Push Button Bertha, which aired on the television

show Adventure Tomorrow [3].

In the period between 1955 and 1965 there were at least 20 independent projects in AC [2, 3].

These include Hiller and Baker’s MUsic SImulator-Interpreter for COMpositional Procedures

(MUSICOMP) [4, 41, 42], König’s Project 1 [56] (and later Project 2 in 1970 [55]) and Xenakis’

Stochastic Music Program (SMP) [90]. The next notable composition system was David Cope’s

Experiments in Musical Intelligence (EMI), first started in 19813, which evolved into a book in

1996 [17, 18].

The motivation behind Cope’s EMI was later admitted to be “selfish” [19], as it was intended

to overcome a writer’s block. Similar to Cope, composer John Adams created his own software

program to use as a tool for composing music, although he “certainly does not let the computer

make decisions for [him]”4. For a comprehensive listing of AC systems between 1961 and 2007,

see Ariza’s algorithmic.net at http://algorithmic.net/ [2].

2A quadrille is a type of dance popular in late 18th- and 19th-century Europe.
3This date is lifted from David Cope’s web page on EMI: http://artsites.ucsc.edu/faculty/cope/

experiments.htm.
4This quote is from an interview conducted by Robert Davidson, accessible courtesy of the Wayback Machine

[84]: https://web.archive.org/web/20070205051022/http://www.topologymusic.com/articles/adams.htm.

8

http://algorithmic.net/
http://artsites.ucsc.edu/faculty/cope/experiments.htm
http://artsites.ucsc.edu/faculty/cope/experiments.htm
https://web.archive.org/web/20070205051022/http://www.topologymusic.com/articles/adams.htm

1.1.2 Contemporary (2000 onward)

As processing speed increased, the door opened for more computationally complex algorithms

to be used, particularly AI algorithms such as Deep Neural Networks (DNNs) and Evolution-

ary Algorithms (EAs). Considering the increasing complexity of implementing such algorithms,

most of the research in the field is being done by computer scientists. This comes in stark con-

trast to the early days of AC where several of the high profile individuals involved, particularly

König, Xenakis, and Cope, were composers rather than scientists. A modern example of these

composers however is Arne Eigenfeldt who created and iterated on his music generation soft-

ware, the Kinetic Engine (KE), for many years [28–31].

The involvement of composers in the process of creating AC systems has been called for

[15, 81], however it is exceedingly rare. An excellent example of contemporary AC research

collaboration is the work of Chun-yien Chang and Ying-ping Chen, a composer and computer

scientist respectively, whom created a generative composition system [15]. Their research also

includes a performance of an output composition by a world-renowned cellist.

Machine Learning (ML) has been massively successful in many areas and also in AC. There is

no shortage of music generation systems that utilize ML [7, 14, 47, 50, 51, 59, 66, 67, 71, 76, 89, 93].

In particular, there has been a plethora of experiments and research done by Google, such as AI-

Duet, a system that attempts to perform a duet as the user plays the piano in real-time [66]. Also

popular is Google’s Bach Harmonizer Doodle5, which attempts to harmonize6 a user-inputted

melody line in the style of Bach.

1.2 Directions

Our research uses a Genetic Algorithm (GA) to compose music. GAs, which constitute a sub-

field of AI, are explored within the context of AC in chapter 3. The design of our GA is similar

to many of those in the field, however the domain knowledge present in the system is unique.

5https://www.google.com/doodles/celebrating-johann-sebastian-bach
6What is meant by harmonize is that other parts are generated that are played concurrently with the original

input melody.

9

Insights from various research in the field of music-psychology were adapted into rules which

were placed throughout the components of our GA. A presentation of the various related re-

search in music-psychology is given in chapter 2, while our music generation system, MU PSYC,

is in chapter 4. The implications of this thesis and other related work in this field are laid out in

chapter 6. Conclusions and future directions are described in chapter 7.

10

Chapter 2

Music-Psychology

A relatively recent branch of psychology and musicology, referred to as music-psychology, aims

to investigate music scientifically. Strides have been made in determining musical universals,

providing scientific explanations to current musical theory, and discovering new rules or frame-

works have been made. This chapter explores various empirical research in this field.

2.1 Musical Theory and Understanding

“Music Theory” is a ubiquitous term often used in passing and rarely defined. One of the most

trusted sources on music [88], The Oxford Companion To Music [32], does define the term, although

in three separate ways:

1. “The first is what is otherwise called “rudiments”, currently taught as the elements of

notation, of key signatures, of time signatures, of rhythmic notation, and so on . . . ”,

2. “The second is the study of writings about music from ancient times onward . . . ”,

3. “The third is an area of current musicological study that seeks to define processes and gen-

eral principles in music—a sphere of research that can be distinguished from analysis in

that it takes as its starting-point not the individual work or performance but the funda-

mental materials from which it is built.”

11

For the purposes of our research, we focus on its meaning in the context of composition, which

corresponds to this third definition.

The goal of music theory is then to identify patterns of music and provide us with basic

rules of composition. However, composers often violate these rules to much praise, such as the

popularity of John Cage’s “4’33” where the performer is instructed to not play their instrument

for the entire piece. Movements such as Schoenburg’s school of atonal music also broke many of

the established rules of harmony. Within AC, the famed Xenakis explained that a teacher, Arthur

Honegger, scolded his music for using parallel 5ths and octaves, which he ignored [91]. Entire

genres of music seem to consistently violate them as well, such as the pervasiveness of power

chords1 in Rock music which again goes against parallel fifth and octave rules in music theory.

In an early survey of AC, Papadopoulos and Wiggins state that “what is missing [from the

field of AC] is a thorough-going account of musical cognition from the early stages of perception

to the complex stage of creation, and composition” [73]. Such sentiments are rare in this field

as most work does not investigate the validity of their music theoretic [22, 24, 60, 74, 83] or

mathematical/statistical methods [33, 63, 68] rules.

Of course, science aims to move towards more concrete understanding in general, with the

term folk-psychology often used to describe older, unscientific ways of understanding. Folk-

psychology, also known as common-sense psychology, is defined by “Goldman as the naive

understanding of mental state concepts” [37], and is often referred to as a ‘primitive’ under-

standing. A relatively recent branch of psychology, referred to as music-psychology, aims to

further musical understanding by moving beyond its current folk-psychological distinction.

In his book, Sweet Anticipation, music-psychologist David Huron explains that “. . . it is in-

evitable that we must move beyond folk-psychology to psychology proper” [49]. More re-

cently, Martin Rohrmeier echos Huron, again urging musical understanding away from folk-

psychology and towards psychology, neuro-cognition, mathematics, and computation [77]. The

folk-psychology Huron, Rohrmeier, and others are referring to is the current understanding of

music, namely music theory.

1Power chords are triads with the 3rd taken out, often accompanied with an octave.

12

2.2 Literature

There have been various studies relating to and explaining various phenomena present in the

human auditory system and contextualizing in relation to music. Moreover, conjectures from

musicological study have been the subject of empirical study. In this section we present various

research in relation to expectancy theory (section 2.2.1), Auditory Scene Analysis (section 2.2.2),

voice-leading (section 2.2.3), musical universals (section 2.2.4), and empirical study pertaining

to musicological conjectures (section 2.2.5).

2.2.1 Expectancy Theory

A number of music-psychologists have been involved in developing a theory that describes mu-

sic as a way of taking advantage of “evolutionarily ancient physiological and cognitive mech-

anisms for detecting and responding to unexpected events” [10]. Music thus repeatedly meets

or violates a listener’s expectations in ways that brings pleasure. Leonard B. Meyer was prob-

ably the first to introduce expectation as a central element in the understanding and emotional

response to music [69]. Daniel Levitin and David Huron further contributed to this theory with

their respective books titled This is Your Brain of Music [58] and Sweet Anticipation [49]. In Sweet

Anticipation, David Huron proposed one of the most concrete theories of expectancy and music,

the Imagination-Tension-Prediction-Reaction-Appraisal (ITPRA) theory.

Huron’s work lays out four different types of expectation corresponding to different types

of auditory memory: Veridical, Schematic, Dynamic, and Conscious [49]. Derived from episodic

memory, Veridical expectation pertains to the knowledge of how a piece progresses in time. Be-

ing exposed to different musical styles forms ones Schematic expectations, which are related to

semantic memory. Dynamic expectations are those of short-term memory, containing informa-

tion about a piece in real-time. Finally, conscious expectations are those relating to a listener’s

conscious thoughts about how a piece of music will sound.

Egermann et al. provide evidence for this theory by way of studying listener’s emotions in a

live concert setting [27]. In the same year, Rohrmeier attempted to bridge theories of expectancy

13

with musical theory, providing many concrete examples [77]. Despite its popularity, expectancy

theory is meant to explain only a fraction of emotional responses to music [27, 53].

2.2.2 Auditory Scene Analysis

Another evolved aspect of the auditory system is Auditory Scene Analysis (ASA), which is the

ability to locate and identify sources of sound. In exploring the origins of music, Trainor finds

that musical pitch and time developed according to auditory principles evolved for ASA [85].

ASA is subject to empirical study by Bonin et al., whom experiment with pitch, timbre and

spatial ways to change the uncertainty in the number, identity or location of sounding objects

[10]. They found that auditory cues that promote a single interpretation of a melody made

unpleasant melodies more pleasant. The inverse was also found to be true; conflicting auditory

cues made a pleasant melody sound less pleasant.

2.2.3 Voice-leading

In 2001, David Huron derived the rules of voice-leading from well known auditory principles

established with cross-cultural samples [48]. Expectancy theory and ASA were leveraged to

provide empirical evidence for these principles. Huron categorizes these principles as either

core—principles that apply to all music—or auxiliary (genre specific), then derives rules using

them. The goal of these rules is to optimize voice-leading, otherwise referred to as auditory

streaming in psychology.

Notably, Huron’s derivation found not only existing voice-leading rules but also those which

do not appear in music theory teachings [48]. Below is a list of rules Huron derives that are

familiar in that they exist in music theoretic teachings [48].

1. Registral Compass Rule; Voice-leading is best practiced in the region between F2 and G5, roughly

centered near D4.

2. Chord Spacing Rule; In general, chordal tones should be spaced with wider intervals between the

lower voices.

14

3. Avoid Unisons Rule; Avoid shared pitches between voices.

4. Common Tone Rule; Pitch-classes common to successive sonorities are best retained as a single

pitch that remains in the same voice.

5. Conjunct Movement Rule; If a voice cannot retain the same pitch, it should preferably move by

step.

6. Nearest Chordal Tone Rule; Parts should connect to the nearest chordal tone in the next sonority.

7. Part-Crossing Rule; Avoid the crossing of parts with respect to pitch.

8. Pitch Overlapping Rule; Avoid “overlapped” parts in which a pitch in an ostensibly lower voice

is higher than the subsequent pitch in an ostensibly higher voice.

9. Parallel Unisons, Octaves, and Fifths Rule; Avoid parallel unisons, octaves, or fifths.

10. Exposed Intervals Rule; When approaching unisons, octaves, or fifths, by similar motion, at least

one of the voices should move by step.

These range from simply avoiding unisons to more complex rules such as the exposed intervals

rule in Palestrina-style counterpoint. Below is a list of unfamiliar rules that Huron derives [48].

1. Toneness Rule; Voice-leading should employ tones that evoke strong, unique pitch sensations. This

is best achieved using harmonic complex tones.

2. Sustained Tones Rule; In general, effective voice-leading is best assured by employing sustained

tones in close succession, with few silent gaps or interruptions.

3. Tessitura-Sensitive Spacing Rule; It is more important to have large intervals separating the

lower voices in the case of sonorities that are lower in overall pitch.

4. Avoid Octaves Rule; Avoid the interval of an octave between two concurrent voices.

5. Avoid Perfect Fifths Rule; Avoid the interval of a perfect fifth between two concurrent voices.

6. Avoid Tonal Fusion Rule; Avoid unisons more than octaves, and octaves more than perfect fifths,

and perfect fifths more than other intervals.

15

7. Leap-Lengthening Rule; Where wide leaps are unavoidable, use long durations for either one or

both of the tones forming the leap.

8. Semblant Motion Rule; Avoid similar or parallel pitch motion between concurrent voices.

9. Parallel Motion Rule; Avoid parallel motion more than similar motion.

10. Oblique Approach to Fused Intervals Rule; When approaching unisons, octaves, or fifths, it is

best to retain the same pitch in one of the voices (i.e., approach by oblique motion).

11. Avoid Disjunct Approach to Fused Intervals Rule; If it is not possible to approach unisons,

octaves and fifths by retaining the same pitch (oblique motion), step motion should be used.

12. Avoid Semblant Approach Between Fused Intervals Rule; Avoid similar pitch motion in which

the voices employ unisons, octaves, or perfect fifths. (For example, when both parts ascend beginning

an octave apart, and end a fifth apart.)

The auxiliary principles Huron [48] describes are listed below.

1. Onset Synchrony – sounds that are coordinated in time are likely to fuse into a single

sound.

2. Limited Density – humans can only keep track of a few number of distinct auditory streams.

3. Timbral Differentiation – sounds with similar timbres are more likely to be perceived as a

single sound source.

4. Source Location – differentiation of sound sources is more difficult when sounds occur

close to one another.

Closely related to onset synchrony is offset synchrony, where streams are fused even further

when their cessation is coordinated [11, 25]. Duane offers an empirical study of onset synchrony,

pitch co-modulation, and spectral overlap in 18th and 19th century string quartets [25]. Pitch

co-modulation is similar to Huron’s parallel motion rule [48], where sounds are tonally fused

when moving in parallel. Spectral overlap also relates to a rule from Huron, the avoid tonal

fusion rule, where sounds are tonally fused when separated by a perfect interval.

16

2.2.4 Musical Universals

The study of music universals2 uncovers features of music that exist across many cultures. There

have been many universals introduced both in psychology and music theory, which are summa-

rized well by Brown and Jordania, whom compiled a list of over 60 [12]. However, only until

recently has the field received empirical study through Savage et al.’s statistical analysis of 304

music recordings spanning nine geographic regions [78]. Their work found only 21 of the pro-

posed 32 universals to be statistically significant, which we list here:

1. 2- or 3- beat subdivisions

2. Non-equidistant scales

3. Less than seven scale degrees

4. Chest voice

5. Discrete pitches

6. Motivic patterns

7. Descending/arched contours

8. Word use

9. Small intervals

10. Isochronous beat

11. 2-beat subdivisions

12. Short phrases

13. Instrument use

14. Male performers

2Music universals may be a misleading term; they are, in essence, generalizations [78].

17

15. Metrical hierarchy

16. Group performance

17. Voice use

18. Few durational values

19. Sex segregation

20. Phrase repetition

21. Percussion use

An interesting finding in Savage et al.’s research was the preponderance of descending/arched

contours in the world’s musics [78]. Other work on this specific universal has shown it to also

exist in bird song [82][79], with Tierney et al. providing biological explanations for it and for the

ubiquity of small intervals [82]. Only a handful of these empirically established music universals

relate to composition, at least given the limited representations of music in AC.

2.2.5 Supporting Musicological Conjectures

Broze and Huron test the musicological conjecture that music which is higher in pitch is played

faster [13]. Both compositional and performance practice were found to fit this trend. Interest-

ingly, performers playing speeds were highly correlated with their tessitura3. Ornamentation

was also found to occur most often in the uppermost voice. Another study relating to the per-

ception of higher pitches is done by Trainor et al., whom explain the established high voice

superiority effect in polyphonic music [86]. This is the human tendency to focus on the voice

with the highest pitch in music.

Ammirante and Russo explore a phenomenon where skips4 are frequently small, which they

call the low-skip bias [1]. They find evidence that (i) skips occur more frequently in instrumental

music rather than vocal, (ii) fewer skips are preferred over higher skips, and (iii) the more vocal

3Tessitura refers to a specific range of pitches.
4A skip, also known as a leap, is a large jump in pitch from one note to another.

18

music that a composer is involved in correlates with less skips. From this they conclude that

composers often construct instrumental melodies with a vocal template.

19

Chapter 3

Music Composition with Genetic

Algorithms

Alongside Machine Learning (ML) algorithms, Genetic Algorithms (GAs) are very popular within

the field of Algorithmic Composition (AC). This chapter provides a background on what a GA is

and how it finds optimized solutions within massive search spaces in section 3.1. Its suitability

for music generation and various related literature is reviewed and discussed in section 3.2.

3.1 Background

Goldberg and Holland define GAs as “probabilistic search procedures designed to work on large

spaces involving states that can be represented by strings” [36]. The main components of a

GA are the genome representation which defines the search space, the fitness function which

provides a means to judge an individual’s quality, and the genetic operators. Selection, mutation,

and crossover are the standard operators, with mutation and crossover providing a means for

changing individuals and selection being the strategy of choosing which individuals survive to

the next generation.

Each generation is a successive application of the fitness function, selection, crossover, and

then mutation. The result from this repeated application is a constant, gradual increase in quality

of the population. Often the purpose of running a GA is to find a single optimal solution which

20

corresponds to the best individual in the final population. A basic GA is shown as algorithm 1

below.

Algorithm 1: Basic Genetic Algorithm
Output: Most Fit Individual Found
Populations: Pcur,Pnew;

initialize Pcur; //random population
for some number of generations do

calculate fitness for each individual in Pcur;
select and move most fit individuals from Pcur to Pnew;
randomly apply crossover to create children and add them to Pnew;
randomly copy and apply mutation to create new individuals and add them to Pnew;
Pcur = Pnew;

end
return Most fit individual in Pcur;

3.2 Genetic Algorithms For Music Composition

Given the generic nature of GAs, they can be applied to a multitude of problems. Horner was one

of the earliest researchers to hypothesize that GAs may lend themselves to generating music [46].

Early in the field, Hiller expressed that “computer-assisted composition is difficult to define,

difficult to limit, and difficult to systematize” [43], thus we will focus more on the presentation

of various research rather than a comprehensive taxonomy. This section is divided into the main

components of a GA, presenting the approaches of various researchers.

3.2.1 Representation of Compositions

Western staff notation is used to visualize music in nearly all AC systems. Even when generating

non-Western music, it is visualized with staff notation [94]. Outputs are auralized (aurally visu-

alized) most often with the Musical Instrument Digital Interface (MIDI), a standard for playing,

editing, and recording digital music. Because of the pervasiveness of staff notation and MIDI,

they inspire representations of music in AC systems. Particularly, many systems adopt a MIDI-

esque representation for its low spatial complexity; a note’s pitch, for example, is represented in

21

one byte rather than capturing pitch class, octave, or accidental as in staff notation.

Overly simplified representations of music in music generation systems is a widely accepted

problem in AC [22, 40, 62]. For instance, single-part melody generation is common not only in

the early works of Biles [7–9], but also in more recent research [21, 83]. Only a few attempts have

been made to encompass non-fundamental musical features such as dynamics, key modulation,

time modulation, accentuation, etc.

In GAs specifically, music is represented as an individual in the population. Most often,

entire compositions are coded as individuals and thus the output of the GA is simply the most

fit individual at the end of the run [7–9, 24, 60, 83, 94]. Other work, however, encodes individuals

as phrases which are combined to form a full composition [30]. In other words, the population,

or a proper subset of it, is combined to create the output composition.

3.2.2 Fitness Functions

At least within AC, fitness evaluation is widely considered the most difficult to design and the

most crucial component of a GA [9, 21, 62, 65, 70]. Two main types of fitness functions emerge

from the literature; (1) human-assisted; and (2) autonomous. Autonomous fitness functions are

further split into two types, mentioned by de Freitas and Guimarães [21]; (2i) those that measure

the individual’s similarity to a target music; and (2ii) those that measure how well the individual

follows compositional rules. Type (2i) fitness functions are typically hybrid systems in that the

GA is usually combined with a NN, Markov Chains, some other Machine Learning (ML) algo-

rithm, or statistical methods. However, ML algorithms are more often used by themselves in a

generative fashion.

3.2.2.1 Human-assisted Fitness Functions

Biles’ early work on his AC system, GenJam, used a human-based fitness function (type 1),

wherein musical excerpts where judged (assigned a fitness value) by the user [8]. This approach

is used in many Interactive Genetic Algorithms (IGAs), where the goal of the algorithm is to

interact with the user. However, work by Gong et al. proposes that human evaluation is not

22

needed in an IGA, and that it leads to the human fatigue bottleneck [38]. This bottleneck is also

found in the work of Biles [8], and Jordanous whom describes states that “any reliance on human

intervention introduces a fitness bottleneck” [52], and acknowledged by Matić [68] and Gong et

al. [38].

3.2.2.2 Autonomous Fitness Functions

The compositional rules used in type (2ii) fitness functions are most often taken from traditional

music theory practices [94], particularly Western polyphonic music [22, 24, 60], and even per-

sonal experience [62]. The rules of the fitness function proposed by Donnelly and Sheppard

closely resemble traditional music theory teachings, with an emphasis placed on counterpoint

for later work [24]. Liu et al.’s research is quite similar, although they impose weights on rules

[60]. More recent work by de Vega focuses on the problem of 4-part harmonization, a problem

often given to music theory students [22]. Although the rules are not explicitly stated in his

work, there are impressive results.

Matić’s work shows type (2i) fitness functions in perhaps the simplest form; he uses arith-

metic means and variances to determine the similarity to an input individual [68]. Similarly,

Fox and Crawford created a hybrid system, MAGE, which used Markov chains as their fitness

function [33]. Later, Ting et al. used Matić’s metrics [68] for their fitness function, however they

also included a rule-based evaluation akin to type (2ii) fitness functions [83]. Their work is then

both determining an individual’s similarity to input music (type 2i) and measuring how well it

conforms to music theoretic rules (type 2ii).

After Biles’ initial work on GenJam [8], he, along with Anderson and Loggi, experimented

with the possibility of using a Neural Network (NN) as a fitness function [7]. Their work pro-

duced a negative result, stating that “the clear and unsurprising conclusion from this study is

that humans listen to music in complex and subtle ways that are not captured well by simple sta-

tistical models.” [7]. A couple of years later Burton and Vladimirova published a similar system

with more positive result, however their system only generated rhythms [14].

Over 15 years later, more complicated and computationally complex statistical models, most

often different types of NNs, are able to be used. In Manaris et al.’s GA, they employ a proto-

23

typical Artificial Neural Network (ANN) for a fitness function [65]. Mitrano et al. proposed an

IGA based on Biles’ GenJam [8], but used a Recurrent Neural Network (RNN) to judge fitness

[70]. However, NNs are more commonly designed for music generation not fitness evaluation,

apparent by Mitrano et al.’s adaptation of a generative RNN from Google [70].

3.2.2.3 Fitness-less Genetic Algorithms

Later work on GenJam involved changing the system to be autonomous, which Biles achieved by

eliminating the need for a fitness function altogether [9]. He describes fitness itself as a bottle-

neck, as it is difficult to implement and is inherently subjective1. Eigenfeldt followed similarly,

by modifying his longstanding music generation system, Kinetic Engine (KE) [28–31], to elimi-

nate the fitness function [30]. To accomplish this, the mutation and crossover operators are more

intricately designed in order to avoid generating low quality individuals. A middle ground ex-

ists in the work of de Freitas and Guimarães, whom implement “guided” genetic operators to

avoid generating “absurd” solutions, making fitness-free evolution feasible, but also include a

minimal fitness function where individuals are only judged on their conformity to the C major

scale [21].

Biles’ [9] and de Freitas and Guimarães’ [21] work are both limited to generating single part

melodies, whereas Eigenfeldt’s system produced multi-part works, one of which was performed

in concert [30]. However, his system is closed source and designed to be extremely personal [30].

Despite the ability to avoid Biles’ described fitness bottleneck and the success of Eigenfeldt’s KE

[30], fitness-less GAs have not seen widespread adoption in AC.

3.2.3 Genetic Operators

We present various research on the three standard genetic operators: selection (section 4.3.3.1),

mutation (section 4.3.3.3), and crossover (section 4.3.3.2). Other genetic operators that have been

devised by AC researchers are grouped together with mutation, as often they are more complex

mutations (they create a new individual from another).

1Biles’ fitness bottleneck [9] is not to be confused with Jordanous’ [52]. The former states that fitness itself is the
bottleneck, while the latter alludes to the human fatigue bottleneck stated by Gong et al. [38].

24

3.2.3.1 Selection

The simplest form of selection is elitist selection, where the most fit individuals move on to the

next generation. Donnelly and Sheppard’s work uses this type of selection, where the top 10%

individuals continue onto the next generation unchanged [24]. Similarly, Matić removes the

lowest fit individuals in his work, however potential duplicates are removed beforehand [68].

[94][33]

These simplistic selection schemes result in premature convergence, essentially exploring only

a subset in the solution space. The algorithm then attempts to find the most fit individual within

this subset, when there is likely many other more fit solutions within the entire solution space.

To combat this, many other selection schemes have been proposed that increase genetic diversity

(increase the area explored), with the most popular being subject to comparison in Goldberg’s

early research [35]. These selection schemes are: (i) fitness-proportionate (roulette wheel), (ii)

rank, (iii) tournament, and (iv) Genitor.

Most research within the field of AC does not provide an explanation of their choice of a se-

lection scheme, most likely due to the fact that the fitness function is the main focus. Tournament

selection is often chosen here, perhaps due to its similarity in performance to the other selection

schemes and its better time complexity (O(n) where n is the number of selected individuals).

The development of new selection schemes has occurred in more recent research, such as the

blending of fitness-proportionate and rank selection [57], however these have not been used in

AC.

Most notable work in AC uses tournament selection, specifically binary tournament selec-

tion2 [60, 61, 63, 83]. Roulette wheel selection has seldom been used, featuring in the work of de

Vega [22] and Bernardes et al. [6]. Eigenfeldt is one of the only researchers to use rank selection,

presented in his fitness-less version of his Kinetic Engine [30]. However, most research tends to

not list their selection method [64, 65, 70, 80].
2Binary tournament selection is also known as 2-tournament selection, or tournament selection with a tourna-

ment size of 2.

25

3.2.3.2 Mutation

The purpose of mutation is to avoid stagnation, as “once combinations of variants in the current

population have been explored [(crossover)], no new variations are possible” [45]. Mutation is

often split into many sub-operators, each of which randomly alter different musical element(s)

[7–9, 22, 24, 33, 60, 68, 70, 94]. These include randomly altering pitches and changing durations

of notes primarily, but some research includes multi-note mutations inspired by century-old

compositional techniques such as inversions and retrogrades3 [21, 24, 33].

Once an individual is selected for mutation, each of the sub-mutations is assigned a prob-

ability of being selected which is arbitrary, experimentally set, or dynamic. Dynamic mutation

and crossover probabilities have been introduced early in the study of GAs [87], although AC re-

search tends to employ arbitrary or experimentally set probabilities. In their GA for music com-

position, Donnelly and Sheppard mutate the selection probabilities of mutation and crossover

themselves [24]. The best individuals will approximately have the best set of mutation and

crossover probabilities. An odd finding of their work was that the best individuals had used

crossover approximately 99% of the time. This indicates their mutations often did not result

in increases in fitness bigger than those offered by crossover. These findings may generalize to

other GA based approaches in AC, as their mutations are common within the field.

Another approach to improving mutation is to control which individuals it is applied to, and

how many times it is applied within one generation. For example, Matić devised a mutation

operator that was applied more often to more fit individuals in later generations [68]. The result

was that later generations stagnate less.

The creation of a more informed mutation operator, one with better knowledge of where

in the individual to mutate, is mainly the goal of fitness-less GAs. However, de Vega wishes to

employ it in a more standard GA (one with a rule-based fitness function) [22]. As Biles describes,

this effectively decentralizes domain knowledge, distributing it elsewhere in the GA [9]. In the

case of fitness-less GAs, domain knowledge is also distributed in the crossover and population

initialization components of the algorithm.

3The technique of inversion is not to be confused with an inversion operator; research involving these techniques
[24, 33] often perform retrogradation in their inversion operator.

26

3.2.3.3 Crossover

In many musical GAs [7, 8, 21, 24, 33, 60, 63, 65, 83, 94], crossover is implemented by splicing

together different sections of music from two parents to form a child. These sections are often

random windows of notes (or time) in the music [7–9, 24, 65, 83], although more current work

often limits these sections to bars of music [21, 33, 60, 63, 94]. Eigenfeldt proposed single parent

crossover in his early versions of the Kinetic Engine (KE), using a first-order Markov chain to

generate the child [28, 31].

In a fitness-less version of Eigenfeldt’s KE, crossover was omitted as it “was felt to produce

unmusical results” [30]. Crossover is also omitted from Matić’s work using a standard fitness

function [68]. In Biles’ fitness-less version of GenJam, specific points of crossover are selected

over others such that the resulting child closely preserves horizontal intervals in the parent [9].

This essentially includes domain knowledge in the crossover operator.

3.2.4 Evaluation

Researchers often present their AC systems with little to no evaluation of its efficacy. Moreover,

no attempt has been made to empirically compare the efficacy of separate AC systems, as it is not

possible without surveying. With this, the field is little more than scattered attempts, however

some work has taken the initiative to effectively study their own systems via survey. The largest

being Scirea et al.’s work, where data collected from 298 participants was gathered and studied

[80]. A non-scientific approach is to expose the algorithm’s music in a concert setting, as done

with the ILLIAC Suite [44] and One, Previously by Eigenfeldt’s Kinetic Engine [30], or through a

popular platforms such as with Google’s many musical experiments [66, 71]. This simply allows

for a conversation to be started and subjective judgements to be made, which is more effective

than presenting notated snippets of generated music within a publication.

27

Chapter 4

A Psychology Enriched Genetic Algorithm

for Music Composition

Given the success of GAs in AC, the criticisms of algorithms using traditional music-theoretic

rules, and the many music-psychological rules which have gone unused in AC, a new GA is pro-

posed here. This GA directly utilizes insights gained from music-psychology by incorporating

found patterns or rules into the genome representation and the fitness function. Our proposed

GA can be executed in parallel to reduce run-time. An online survey is conducted to measure

the effectiveness of non-traditional rules.

The rest of the chapter is organized as follows. Motivations for our work are laid out in

section 4.1. In section 4.2 we list the various compositional rules which our algorithm aims to

satisfy. The details of genome representation are shown in section 4.3.1, followed by the popu-

lation initialization in section 4.3.2. Section 4.3.3 contains the selection, mutation, and crossover

operators – sections 4.3.3.1, 4.3.3.2, and 4.3.3.3 respectively. The fitness function is described in

section 4.3.4. Section 4.3.5 discusses the algorithm from a high level, followed by section 4.3.6

which describes the implementation of the GA.

28

4.1 Motivations

Despite Google’s massive infrastructure, ML methods still struggle to generate music well, as

does most of the field. Moreover, ML algorithms are a black box in that it is unknown what

exactly is happening inside them, making any insightful analysis difficult. Data sets are often

purely of classical music, usually composed hundreds of years ago since those containing newer

music are rare given that they are not often accompanied by notation that can be easily input.

Furthermore, work by Sturm et al. explores the idea that data sets which include copyright

protected work may cause a ML algorithm’s output to be in violation of copyright, although few

countries have created laws related to music generation systems [81]. These issues will likely

impede the application of ML algorithms to newer genres.

For many musicians and composers, the definitive understanding of music is taken to be

music theory. Similarly, AC research often looks towards music theoretic rules and guidelines

when crafting a generative system. However, a different field of study rooted in musicology and

psychology, referred to as music-psychology, aims to move beyond current music theoretical

understanding to provide scientific explanations of music. Papadopoulos and Wiggins were

among the first with the aim of using this field’s domain knowledge, stating in their 1999 survey

of AC that “what is missing [from this field] is a thorough-going account of musical cognition

from the early stages of perception to the complex stage of creation and composition” [73].

Despite this sensible direction, creating a system that incorporates music-psychological rules

is relatively unexplored territory. As knowledge would need to be directly built into the system,

a ML algorithm is not suitable. An EA, particularly a GA, is chosen for this work, given its

success in the field.

4.2 Musical Rules

We use select universals from Savage et al.’s work on musical universals [78] and formulate them

into rules. More rules are implemented based on Huron’s work in deriving voice-leading rules

[48], which are discussed in detail in chapter 2. These are split into three main types: Savage

29

et al.’s musical universals [78] (type R1), Huron’s traditional rules [48] (type R2), and Huron’s

non-traditional rules (type R3).

The following are rules of type R1, which are musical universals restated as rules.

1. Discrete Pitches Rule – Pitches should be organized discretely.

2. Beat Subdivisions Rule – Rhythmic beats should be able to be subdivided by 2.

3. Scale Length Rule – Scales should be less than or equal to 7 scale degrees.

4. Non-equidistant Scales Rule – The differences between adjacent scale degrees should vary (no

whole-tone nor chromatic scale).

5. Descending/Arched Contour Rule – Penalizes melodic contours that are not arched or purely

descending.

6. Few Durational Values Rule – Penalizes compositions that use a wide variety of duration values.

We arbitrarily place the limit as five, since the exact limit is not known.

Next are the traditional voice-leading rules (type R2).

7. Registral Compass Rule – Avoid notes that lay outside of the register bounds (F2 to G5).

8. Part Crossing Rule – Penalizes individuals if, at any given point, parts cross with respect to pitch.

9. Avoid Unisons Rule – Avoid unisons between the voices.

10. Exposed Intervals Rule – When approaching unisons, octaves, or fifths by similar motion, penal-

izes the situation where neither voice moves by step.

11. Chord Spacing Rule – Chordal tones should have more separation in the lower parts. Specifically,

the soprano and alto voices should be separated by no more than an octave as should be the alto and

tenor voices. The bass voice and tenor voice have no such restriction.

Lastly, rules of type R3 (the non-traditional voice-leading rules).

12. Leap Lengthening Rule – Leaps (movement by more than 7 semitones) should be accompanied by

longer durations, and stepwise motion with shorter durations. Penalizes outliers of this trend.

30

13. Semblant Motion Rule – Avoid similar and parallel motion between concurrent voices.

14. Parallel Motion Rule – Avoid parallel motion more than similar motion.

15. Avoid Semblant Approach To Fused Intervals Rule – Avoid similar and parallel motion when

moving to and from unisons, octaves, and fifths.

16. Parallel Fused Intervals Rule - Avoid parallel unisons, octaves, and fifths.

17. Avoid Tonal Fusion Rule – Avoid unisons more than octaves, octaves more than fifths, and fifths

more than other intervals.

18. Oblique Approach To Fused Intervals Rule – When approaching unisons, octaves, or fifths,

rewards oblique motion more than stepwise motion and penalizes other types of motion.

19. Toneness Rule – Use only harmonic complex tones.

20. Sustained Tones Rule – Minimize silent gaps or interruptions.

4.3 Genetic Algorithm

Our GA has four main components, namely genome representation, population initialization,

genetic operators, and fitness function. We describe them next before presenting our algorithm.

4.3.1 Genome Representation

Similar to the work of Zheng et al. [94], we represent genomes on the level of musical compo-

nents rather than a character or binary level encoding. Genomes are stored in a custom data

structure resembling Western Staff Notation and then converted to MIDI upon output. This

helps maintain the boundary between different musical elements. Furthermore, rules 1-4, 19,

and 20 in section 4.2 are followed in this representation.

The population PP is a list of n chromosomes:

PP = 〈C1,C2, . . . ,Ci, . . . ,Cn〉.

31

A chromosome or ‘composition’ is a list of p parts:

Ci = 〈Pi1,Pi2, . . . ,Pij , . . . ,Pip〉.

Pij represents the j-th part in the i-th composition.

Next are the parts, which are lists of measures each of size m:

Pij = 〈M
i,j
1 ,Mi,j

2 , . . . ,Mi,j
k , . . . ,Mi,j

m〉,

where Mi,j
k is the k-th measure of the j-th part in the i-th composition. Each measure consists of

a variable number of notes:

M
i,j
k = 〈Ni,j,k1 ,Ni,j,k2 , . . . ,Ni,j,kl 〉.

Notes consist of a pitch Pit, which refers to how high or low the note sounds1, and a Duration

Dur, meaning how long the note is played:

N
i,j,k
l = 〈Piti,j,kl ,Duri,j,kl 〉.

Rules 1 and 19 are satisfied by the use of discrete pitches, which symbolize harmonic complex

tones. Rules 2 and 20 are satisfied since duration values, listed in table 4.1, are subdivided by 2,

and there are silent gaps given that there are no rest notes.

Instead of representing a pitch as a single character as in most research, we define it as having

a pitch class PC and an octave O:

Pit
i,j,k
l = 〈PCi,j,kl ,Oi,j,kl 〉.

There are twelve pitch classes with the familiar letters A,B,C,D,E, F,G and their flats/sharps. A

mapping of numbers to pitch classes which we use in our system is shown in table 4.2. Octaves

correspond to specific pitch ranges which, when combined with a pitch class, specify a pitch.

The upper bound of the amount of notes allowed in a measure, l, is determined by the global

1This corresponds to the specific frequency of the fundamental tone.

32

Duration Value 1 2 4 8 16 32 64
Duration Whole Half Quarter Eighth Sixteenth 32nd 64th

Table 4.1: Duration Values

Pitch class ID 0 1 2 3 4 5 6 7 8 9 10 11
Pitch class C C]/D[D D]/E[E F F]/G[G G]/A[A A]/B[B

Table 4.2: Pitch class IDs

time signature T and the shortest allowed note duration. The time signature is defined as

T = 〈Tn, Td〉,

where Td is the delineation of the note, which refers to a note duration (4 for quarter note, 8 for

eighth note, etc.), and Tn is the number of those delineations allowed in a measure. The shortest

allowed note duration, U, provides a bound on how many notes can be in a measure:

1 6 l 6 Tn ×
U

Td
.

The scale or key K defines which notes are allowed to be played. Similar to the time signature,

the key cannot change over time as it is global for a specific population. A list of pitch classes is

used to define the key. The default key, C Major, is thus

K = {0, 2, 4, 5, 7, 9, 11}.

To satisfy rules 3 and 4, the members of K cannot be all equally spaced, and |K| 6 7.

4.3.2 Population Initialization

Each individual is initialized according to the parameters, listed in section 4.3.6.2. Measures are

populated with Tn notes of random pitch and durations all equal to Td. For instance, if the time

33

signature is T = 〈3, 4〉, then each measure will have 3 quarter notes. Parts have pitch bounds,

B = {{lb0,ub0}, {lb1,ub1}, . . . , {lbp,ubp}},

where p is the number of parts, lb is a lower bound, and ub is an upper bound. These bounds

prevent notes from occurring outside of an instrument’s range and massive part crossing.

4.3.3 Genetic Operators

Selection, crossover, and mutation operate on the composition space Φ:

• Mutation Π : Φ→ Φ.

• Crossover : Φ×Φ→ Φ.

• Selection Ω : Ψ→ Φ, where Ψ = P(Φ) − ∅, the set of all non-empty subsets.

4.3.3.1 Selection

The selection operator selects and removes a chromosome from the current generation and adds

it to a new population. Two different selection operators are implemented, tournament selec-

tion and roulette wheel selection, however deterministic tournament selection is used in our

experiments.

Tournament Selection

Tournament selection randomly chooses k individuals to be apart of a tournament τ and selects

a winner of the tournament by probabilistic selection. Selecting the tournament is implemented

in our algorithm by shuffling the population, choosing a random position h, and then taking the

consecutive elements starting from that position:

τ = 〈C1+h,C2+h, . . . ,C|τ|+h〉, where (1 6 h 6 n− |τ|).

The tournament is then sorted by fitness in a descending fashion.

34

The probability of an individual being selected in this tournament is determined by the equa-

tion

pi = ρ(1− ρ)
i, (0 6 ρ 6 1),

where i is the position of an individual in the sorted tournament, pi is the probability of selection

of that individual, and ρ is a constant. When ρ = 1, the best individual is always selected, which

is known as Deterministic Tournament Selection.

Roulette Wheel

Roulette wheel selection, also known as fitness proportionate selection, selects individuals based

on a probability that is based on their fitness compared to the rest of the population. The proba-

bility of a composition, Ci being selected is

pi =
F(Ci)∑|PP|
j=1 F(Cj)

.

4.3.3.2 Crossover

Crossover is implemented on the measure level by randomly selecting two chromosomes (Cu

and Cv) from the new population and creating a child C from them. The child is identical to one

of the parents, except for one measure which is swapped out for the other parent’s measure that

is in the same position:

Cc = ⊗(Cu,Cv) = 〈Pu1 ,Pu2 , . . . , 〈Mu,j
1 ,Mu,j

2 , . . . ,Mv,j
k , . . . ,Mu,j

m 〉, . . . ,PuP 〉, where

(1 6 j 6 p), and (1 6 k 6 m).

4.3.3.3 Mutation

When a chromosome is selected for mutation, one of four sub-operators are applied to create a

new, mutated chromosome. These are

1. Random transposition (Πrt),

35

2. Splitting (Πs),

3. Merging (Πm), and

4. Repetition (Πr).

A probabilistic selection chooses which sub-operator will be used, with probabilities prt, ps, pm,

and pr respectively.

Mutation is defined as

Π(Cu) = Cc,

where Cu is the original composition and Cc is the mutation of it. Initially, Cc = Cu except for

one mutation, performed by one of the sub-operators described below.

Random Transposition Operator

A note is randomly chosen by indexes i, j, and k, and then shifted by a random scale degree, δ:

N
c,j,k
l = 〈Pitu,j,k

l + δ,Duru,j,k
l 〉, (−6 6 δ 6 6).

This is the only mutation operator that changes the pitch of notes.

Splitting

A note is selected and split into two notes by halving their duration:

M
c,j
k = 〈Nu,j,k

1 ,Nu,j,k
2 , . . . , 〈Pitu,j,k

l ,
Dur

u,j,k
l

2
〉, 〈Pitu,j,k

l ,
Dur

u,j,k
l

2
〉, . . . 〉.

Splitting allows the number of notes to increase during generation.

Merge

The merge operator merges two adjacent notes of the same duration:

M
c,j
k = 〈Nu,j,k

1 ,Nu,j,k
2 , . . . ,Nu,j,k

l−1 , 〈
Pit

u,j,k
l + Pitu,j,k

l+1

2
,Duru,j,k

l × 2〉,Nu,j,k
l+2 , . . . 〉, such that

36

Dur
u,j,k
l = Duru,j,k

l+1 .

Merging counteracts splitting by allowing the number of notes in a composition to shrink.

Repetition

The chromosome is duplicated with no mutation applied (Cc = Cu).

4.3.4 Fitness Function

The fitness function and the rule satisfaction functions output a real number in the interval [0,1]:

F : Φ→ [0, 1], and R : Φ→ [0, 1].

Fitness is defined as the average of all the rules involved:

F(C) =
1

u

∑
Ri∈SR

Ri(C),

where Ri is the rule satisfaction function for rule i, SR is the set of rule functions used and u = |SR|.

Rule satisfaction functions take a chromosome as input and output how well it conforms to a

specific rule:

Ri(C) =
NIFi(C)

NIi(C)
,

where NIi(C) is the number of instances where the i-th rule can be followed, NIFi(C) is the

number of instances where the i-th rule is followed, and i corresponds to the rules listed in

section 4.2.

As genome representation satisfied rules 1-4, 19 and 20 in section 4.2, the fitness function

contains the rest. That is,

SR ⊆ {r5, r6, . . . , r18}.

37

4.3.5 Algorithm

Putting the above described components together we obtain the final algorithm, given in algo-

rithm 2. The first step of our algorithm is computing the fitness values for each individual. A

fitness threshold, FT , is set to stop the evolution once any individual reaches a certain fitness

value. In addition, a stagnate threshold is introduced to stop evolution when the top fitness

value has not been improved for some number of generations. This effectively terminates the

algorithm when it cannot escape a local minimum.

In the next step we introduce the concept of invitations, where the most fit individual(s) move

to the next generation untouched. Selection then selects individuals, adding them to the new

population. Finally, crossover and mutation are applied to ensure |PPnew| = |PPcur|.

4.3.6 Implementation

The GA is implemented in C++ for performance reasons. OpenMP is used to implement a par-

allel version of our algorithm. As for output at the end of a run, both CSV and MIDI files are

generated. The outputted CSV files contain the fitness of every individual, averages, and bests

for each generation. MIDI files of each individual in the final population are also output, with

the most fit individual found marked.

4.3.6.1 Parallelism

The fitness function and each of the genetic operators have parallel versions which utilize mul-

tiple CPU cores. The parallel version of the fitness function, mutation, and crossover operators

is done in a data-parallel fashion with simple parallel for loops: each CPU core is delegated a

similar or equal number of individuals to score, mutate, or crossover. These are implemented by

OpenMP’s parallel for loop.

Since an individual is removed from the selection pool each time the selection operator is

applied, it cannot employ the same data-parallel design as the other components. However,

both rank and tournament selection use sorts which can be parallelized. Tournament selection

38

Algorithm 2: GA for Music Composition
Input: PPini, NofG, NofS, NofC, NofM, NofP, FT , ST .
Output: Most Fit Composition Found
Data Structures: PPcur,PPnew; //sets of compositions

PPcur = PPini;
for NofG do

PPnew = ∅;
for all Cu ∈ PPcur do

Compute F(Cu);
if F(Cu) > FT then terminate by returning Cu;

end
for NofI do

Cu = most fit composition in PPcur;
PPcur

Cu===⇒ PPnew;
end
for NofS do

PPcur
Ω(PPcur)
======⇒ PPnew;

end
for NofC do

Choose Cu and Cv from PPnew;
Add ⊗(Cu,Cv) to PPnew;

end
for NofM do

Choose Cu from PPnew;
Add Π(Cu) to PPnew;

end
PPcur = PPnew;
if Number of generations where top fitness has not been improved > ST then break;

end
return Most fit composition in PPcur;

X
z

==⇒ Y - Move z from X to Y
PPini,PPcur,PPnew - initial, current, new population sets
FT - fitness threshold
ST - stagnation threshold
NofI - number of invitations
NofG - number of generations
NofS - number of selections
NofC - number of crossovers
NofM - number of mutations
Ω(x) - subset of x obtained by selection operation Ω

39

also has a shuffle function that is also able to be run in parallel. We use the parallel functions

available in C++’s standard library for shuffling and sorting.

4.3.6.2 Parameters

There are many parameters for our algorithm scattered across many of the different components.

The parameters must meet certain criteria before the algorithm is run with them. A list of every

parameter and criteria is consolidated here, separated by components of the GA.

General Parameters:

• |PP|; the population size.

• NofI; the number of invitations.

• NofG; the number of generations.

• NofS; the number of selections.

• NofM; the number of mutations.

• NofC; the number of crossovers.

• FT , where 0 6 FT 6 1; the fitness threshold.

• ST , where 1 6 ST 6 NofG; the stagnation threshold.

With the following restriction:

NofS+NofM+NofC = |PP|.

Representation Related Parameters:

• p; the number of parts.

• l; the number of measures.

• U; the shortest possible duration.

40

• K, ∀k ∈ K, 0 6 k 6 11; the allowed pitch classes (key/scale).

• T ; the time signature.

With the following restrictions:

Tn > 1, and ∀z ∈ Z>0,U = 2z, and Td = 2z.

Population Initialization Parameters:

• B = {{lb0,ub0}, {lb1,ub1}, . . . , {lbp,ubp}}; the lower and upper bounds for each part.

Selection Related Parameters:

• |τ|, where |τ| 6 |PP|; the tournament size (tournament selection only).

• ρ, where 0 6 ρ 6 1; the tournament constant (tournament selection only).

• SP; the selection pressure (rank selection only)

Mutation Related Parameters:

• prt; the probability of choosing the random transposition sub-operator. 0 6 prt 6 1.

• ps; the probability of choosing the split sub-operator. 0 6 ps 6 1.

• pm; the probability of choosing the merge sub-operator. 0 6 pm 6 1.

• pr; the probability of choosing the repeat sub-operator. 0 6 pr 6 1.

With the following restriction:

prt + ps + pm + pr = 1.

41

Chapter 5

Experimental Study

To illustrate the performance of our algorithm and quality of music it is capable of generating,

we conducted a performance study and an online survey, respectively. The performance study

is described in section 5.1, and the online survey is presented in section 5.2.

5.1 Performance Study

An experiment was run on a 6-core processor clocked at 4GHz with the following parameters:

• |PP| = 100,

• NofI = 2,

• NofG = 100,

• NofS = 25,

• NofM = 50,

• NofC = 25,

• FT = 1,

• ST = 100,

• p = 3,

42

• l = 4,

• U = 64,

• T = 〈4, 4〉,

• K = {0, 2, 4, 5, 7, 9, 11},

• B = {{C2,C4}, {C3,G4}, {C4,D5}},

• Deterministic tournament selection (ρ = 1) with |τ| = 10, and

• prt = 0.45,ps = 0.25,pm = 0.25,pr = 0.05.

Figure 5.1 shows this experiment’s run times for each component with both single threaded and

parallel versions. When ran in parallel, the fitness function, mutation, and crossover components

saw a 2.5x, 2.2x, and 2x reduction in run-time respectively. By far the largest bottleneck on

overall run time is the fitness function, since it exhaustively iterates through every composition.

Selection saw a negligible speedup, most likely due to its inability to run data-parallel.

Figure 5.1: Graph containing average execution time per generation for each of the GA compo-
nents with the single threaded and parallel versions of the algorithm.

43

5.2 Online Survey

Two surveys were conducted to test whether Savage et al.’s musical universals [78] and Huron’s

non-traditional rules [48] are more effective than just Huron’s traditional rules. Each partic-

ipant was asked a demographic question, Q0, and then given five comparisons between two

compositions, Q1,Q2, . . . ,Q5, where they decide on which they enjoyed more or choose a neu-

tral position. For each comparison, the two compositions had different types which were both

unknown to the participants and in random order. These composition types refer to how that

particular composition was generated.

The sole difference in generation was the fitness function, specifically the set of rules which

it used, SR. The first type was generated using a fitness function with only the traditional rules

from Huron’s work [48] (type R2), and the second with all of the rules listed in section 4.2 (all of

Huron’s rules [48] as well as Savage et al.’s musical universals [78]; types R1, R2, and R3).

S1R = {r7, r8, . . . , r11}, and S2R = {r5, r6, . . . , r18} respectively.

5.2.1 Results

The first survey had compositions generated with the following parameters:

• |PP| = 500,

• NofI = 5,

• NofG = 500,

• NofS = 75,

• NofM = 300,

• NofC = 125,

• FT = 1,

44

• ST = 500,

• p = 3,

• l = 8,

• U = 64,

• T = 〈4, 4〉,

• K = {0, 2, 4, 5, 7, 9, 11},

• B = {{C2,C4}, {C3,G4}, {C4,D5}},

• Deterministic tournament selection (ρ = 1) with |τ| = 10, and

• prt = 0.45,ps = 0.25,pm = 0.25,pr = 0.05.

As expected, there are big differences in fitness values for the two types of compositions; the first

had near perfect fitness values (all above 0.995) whereas the second had a median of only 0.932.

Overall, respondents preferred the composition generated using just the traditional rules.

Respondent fatigue was thought to confound the results and so a second survey was con-

ducted, with compositions generated using the same parameters but shorter in length (l = 4).

The first composition type again had near perfect fitness values, while the second had a median

of 0.935. For this survey, respondents preferred compositions generated using all of the rules.

The overall results for both surveys separated by the two most common regions are listed in

table 5.1. Results for each comparison of the two surveys is shown in table 5.2.

Comparison 3 (Q3) of survey 2 is the most drastic difference in terms of composition prefer-

ence, featuring a 63%/22.2% preference in favor of the type 2 composition. The compositions

involved in this comparison are shown in figure 5.2. The case where type 1 is preferred most of

the time is in comparison 2 of the same survey, where 55.6% of participants preferred the type 1

composition over type 2. These compositions are shown in figure 5.3.

45

(a) Type 1 composition with 1.0 fitness.

(b) Type 2 composition with 0.934 fitness.

Figure 5.2: Compositions in Q3 of Survey 2.

(a) Type 1 composition with 0.995 fitness.

(b) Type 2 composition with 0.932 fitness.

Figure 5.3: Compositions in Q3 of Survey 2.

46

Region Composition Preference Total Responses
Type C2 Type C3 Neutral

Survey 1
North Americans 40.6% 41.7% 17.7% 175

Europeans 40% 24% 36% 75
Overall 38.9% 37.1% 23.9% 280

Survey 2
North Americans 36% 52% 12% 100

Europeans 32% 24% 44% 25
Overall 35.6% 47.4% 17% 135

Table 5.1: Overall Survey Responses.

Survey 1 Survey 2
Question Composition Preference Composition Preference

Type C2 Type C3 Neutral Type C2 Type C3 Neutral
Q1 51.8% 32.1% 16.1% 51.9% 25.9% 22.2%
Q2 37.5% 37.5% 25% 55.6% 33.3% 11.1%
Q3 23.2% 50% 26.8% 22.2% 63% 14.8%
Q4 39.3% 30.4% 30.4% 22.2% 59.3% 18.5%
Q5 42.9% 35.7% 21.4% 25.9% 55.6% 18.5%

Table 5.2: Survey Responses to the Five Comparisons (Q2-Q6).

5.2.2 Analysis

Changes in responses between the two surveys suggest that: (i) the length of these composi-

tions effects respondent’s perception of them; (ii) the participants are less fatigued in the second

survey; (iii) the small differences in fitness values of the second type of composition (medians

of 0.932 in the first survey and 0.935 in the second) make a difference; and/or (iv) results are

confounded by uncontrolled aspects of music. As evolution is no different in the four and eight

measure case, (i) is unlikely. A fitness value difference of 0.003 in the type 2 compositions (iii) is

also unlikely to generate any measurable difference.

Fatigue (ii) is likely to happen in the first survey, as each composition is 32 seconds long,

totalling over 5 minutes of listening, compared to the second survey’s 16 second compositions.

Moreover, these compositions were played by computer, which lacks the compelling expressive-

ness of a human performer.

Examination of the individual comparisons provides an explanation related to beats; com-

47

positions that were heavily preferred, type 1 in Q2 of survey 2 (shown in figure 5.3) and type 2

in Q3 of survey 2 (shown in figure 5.2), have offbeat notes, while their counterparts do not. No

offbeat notes create an illusion of a chord sounding at every beat, having no melody stand above

it. This suggests there is a musical rule related to beats and the need for off-beat notes that is not

being accounted for.

48

Chapter 6

Implications of Automated Music

Composition

In science, innovation takes front stage. The questions asked rarely pertain to why we are in-

novating and how such innovation will effect the world. There are many issues and ethical

considerations with the continuation of this work and with automated composition as a whole.

These are consolidated into three topics all revolving around automation: disruption of the job

market, disruption of the legal system, and the goals of automated composition. Many of the

topics here may call into question the purpose of the work we have presented. Nevertheless,

discussion of them is very rare and they are extremely important.

6.1 Disruption of the Job Market

The ability to automate increasingly complex tasks with AI has cultivated a genuine fear for ones

job and therefore livelihood in many industries. The fear of automation in the music industry

is summarized well in a 1991 interview with world-renowned bassist Anthony Jackson [16].

Despite the primitive state of technology in music at that time, Anthony describes that it “effects

everybody” and that “everyone’s work has gone down.”

There have been significant advancements in AC since then and opposition from both musi-

cians and the public are still present [26]. In academia, concern has not been raised until recently.

49

For instance, Sturm et al. find that music AI not only negatively impacts job seekers, but also

is “likely to have adverse effects on innovation in the music-ecosystem” [81]. They urge those

involved in such research to “consider the longer term effects of their decisions.”

Sturm et al. also state that musicians and composers should be involved in the making of

music AI [81]. Researchers involved in AC often have the same view, opting to create systems

that aid composers and musicians rather than replacing them. These systems are usually highly

specialized, tailored for a specific individual, such as the work of Xenakis [92], Cope [17, 18], and

Eigenfeldt [28–31]. Moreover, researchers seldom collaborate with professional musicians and

composers. A step in the right direction is taken by Chen and Chang [15], which brings together

researcher, composer, and musician. Their generation system is developed with a professional

composer and the generated results are played by a professional musician.

6.2 Disruption of the Legal System

Who owns a machine-generated artwork and whether it is protected by law are still open ques-

tions, with only a few countries enacting protection for computer-generated works [81]. For

instance, the composition system AIVA1, dubbed as the first ‘electronic composer’ whom is rec-

ognized by a music society (the SACEM2), it is not clear whether those whom created AIVA are

entitled to the revenue made from its compositions or if they have copyright or neighbouring

rights. In the case of a user composing with a music generation system, such as Computoser3,

AuralFractals4, DeepBeat5, Amper Music6, The Uncanny MusicBox7, and many others, it is un-

clear whether the designer of these systems, the user, both, or neither have copyright or neigh-

bouring rights to the generated output.

For many scholars, autonomously generated music is not eligible for copyright protection

[81]. However, many generation systems have varying degrees of autonomy, and it is unclear

1https://aiva.ai/
2SACEM is a professional association that handles the royalties, promotion, and supporting of artists.
3http://computoser.com/
4https://www.auralfractals.net/
5http://deepbeat.org/
6https://www.ampermusic.com/
7http://uncannymusicbox.com/

50

http://computoser.com/
https://www.auralfractals.net/
http://deepbeat.org/
https://www.ampermusic.com/
http://uncannymusicbox.com/

what amount of human intervention is necessary for a work to be protected. Algorithms that

require data sets may also be found to breach copyright if the data set includes music not yet

in public domain. The European Union (EU) has allowed scientific research to fully use such

legally acquired data sets, with other uses prohibited only if rightholders have restricted use

[81]. The research of Sturm et al. [81] and Deltorn and Macrez [23] offer detailed analyses of the

legal implications on specific music generation systems.

6.3 End-Goal

The purpose of creating a music generation system is often said to be to aid composers, yet most

of the work with this objective is tailored specifically to a single composer. Moreover, the act

of creating a general music generation system to aid composers is extremely similar to creating

a fully autonomous one, with the only difference being the number of decisions made by the

computer and not by the composer. As the field improves, more and more decisions are able

to be made adequately by the computer and researchers have largely focused on creating more

autonomous systems.

Complete automation is another frequently re-occurring objective of AC, especially with re-

search done by large companies such as Google. The benefits for large companies are clear:

company sound logos [72], video game soundtracks [34], film soundtracks, and other associated

music can be generated instead of hiring musicians, composers, music producers, etc. Com-

panies offering enterprise-level music generation systems already exist: AIVA2, Amper Music7,

and others. Depending on how countries issue protection for computer-generated music, large-

scale investment into this technology will have an adverse effect on those involved in the music

industry.

2https://aiva.ai/
7https://www.ampermusic.com/

51

https://aiva.ai/
https://www.ampermusic.com/

Chapter 7

Conclusions and Future Prospects

7.1 Approach

In summary, our approach to the problem of generating music via algorithm was to use domain

knowledge rooted in music-psychology rather than traditional music theory alone. The novelty

of this approach comes from the fact that virtually all research in the field uses music theory

for their domain knowledge. This direction was taken to provide the algorithm with a stronger

foundation, as music-psychological findings are empirically studied whereas the majority in

music theory are not.

Music-psychological domain knowledge was converted into a set of rules, which were then

built into a GA. These rules were distributed throughout the algorithm; the genome representa-

tion was defined to satisfy some of the rules, with most being built into the fitness function. In

the later addition of chord progressions, domain knowledge was built in the population initial-

ization phase as well by ensuring the basic structure of chords before the running of the GA.

Genome representation was designed to closely resemble staff notation, offering a solid bor-

der between musical elements. Moreover, this representation avoids the over-simplification

problems of pitch-only and rhythm-only research through inclusion of the fundamental aspects

of music. More extraneous elements, such as dynamics, key-modulations, etc. are not present in

our system.

In addressing the fitness computation bottleneck, a parallel version of our algorithm was cre-

52

ated. Parallelization was done with a simple data-parallel model, allowing the workload to be

evenly distributed across each CPU core. All genetic operators as well as population initializa-

tion were implemented in parallel.

7.2 Findings

Two surveys were conducted to test the efficacy of adding non-traditional rules to the fitness

function. The first survey suggested that adding non-traditional rules did not increase the qual-

ity of generated output, while the second suggest that it did. With no differences between the

two surveys other than the length of the generated compositions, it is thought that user fatigue

could have effected the first survey’s results. Diving deeper, however, we found that preference

in compositions was heavily determined by the number of eighth notes; compositions with little

to no eighth notes were not preferred. These findings indicate that there are additional rule(s)

that need to be identified and incorporated into our system.

To test the efficacy of the parallelization, both sequential and CPU-parallel implementations

were tested. Echoing previous work, computing fitness was still found to be the bottleneck of

the system, however its run-time was significantly reduced by adopting a simple data-parallel

model. Mutation and crossover computations saw similar speedups, although their run-time

pales in comparison to that of the fitness function.

7.3 Additions

There have been a number additions to the algorithm since this survey was conducted. The al-

gorithm tended produce compositions with a high number of dissonant intervals, particularly

sharp dissonances, such as minor 2nds, major 7ths, and tritones, since there was no rules involv-

ing harmony besides avoiding tonally fused intervals. To remedy this, the ability for the user

to input a chord progression has been added, with there being one chord per measure. Chord

detection was done in the fitness function by checking whether the tones present are those in

the chord. In the case of seventh chords, fifths are not checked as it is often the tone left out of

53

more complex chords in Western harmony. Population initialization was also tweaked to ensure

chords were correct before being mutated.

Research involving GAs have called for a new type of mutation operator, one that is informed

about where to mutate a particular individual instead mutating purely at random [22]. Attempts

were made at implementing this type of mutation operator in naı̈ve way with little success. This

was implemented by keeping track of positions in the composition where rules were violated.

In this way, the fitness function was informing the mutation operator of the locations to mutate.

It is likely that mutations produce a ripple effect throughout the composition and therefore must

be more sophisticated to achieve positive results.

7.4 Future Directions

To further tackle the fitness computation bottleneck, GPU-based parallelization should be used.

However, due to the complexity of the representation and the fitness function, such paralleliza-

tion may be considerably difficult given the limitations of current GPU processing. Another

way to approach the problem is to use a more efficient genome representation. This, in turn,

may further complicate the fitness function and fog the boundary between musical elements.

In terms of domain knowledge, there is a plethora of usable music-psychology research avail-

able that can readily be implemented in our algorithm and other AC research. Chapter 2 reviews

a handful of many promising research in music-psychology. Rules involving harmony are par-

ticularly pertinent to our system as there are none besides the later addition of user-defined

chord progressions. However, implementing more rules into the fitness function will likely slow

evolution further, as evidenced by the fitness discrepancy in using only traditional rules versus

using all rules in our experiments (1 vs. 0.94 respectively). A more successful approach may be

to distribute rules throughout the GA more, such as in mutation, crossover, representation, or

population initialization, or to avoid a rule-based approach altogether.

Recent critiques of musical universals offer a view that there are no true universals in music.

In the context of AC, this implies that a truly objective composition system is not possible, at

least without considering the culture one grows up in. Considering this, we hope to explore

54

culture- or genre-specific additions to our system and avoid claims of objectivity.

The final and perhaps most important direction for our work is to seriously consider the

implications of AC research on society. AC is improving faster than ever, with musicians and

composers already losing work due to these systems. We must ensure that true autonomy is not

the goal of AC, instead focusing on aiding and collaborating with musicians and composers.

55

ACRONYMS

AC Algorithmic Composition. 7–9, 12, 18, 20–22, 24–29, 49–51, 54, 55

AI Artificial Intelligence. 7, 9, 49, 50

ANN Artificial Neural Network. 24

ASA Auditory Scene Analysis. 13, 14

DNNs Deep Neural Networks. 9

EA Evolutionary Algorithm. 29

EAs Evolutionary Algorithms. 9

GA Genetic Algorithm. 5, 9, 10, 20–23, 26, 28, 29, 31, 38, 40, 43, 52, 54

GAs Genetic Algorithms. 20, 22, 24, 27, 28, 54

IGA Interactive Genetic Algorithm. 23, 24

IGAs Interactive Genetic Algorithms. 22

ILLIAC Illinois Automatic Computer. 8, 27

ITPRA Imagination-Tension-Prediction-Reaction-Appraisal. 13

KE Kinetic Engine. 9, 24, 25, 27

MIDI Musical Instrument Digital Interface. 21

ML Machine Learning. 9, 20, 22, 29

NN Neural Network. 22, 23

NNs Neural Networks. 23, 24

RNN Recurrent Neural Network. 24

56

Bibliography

[1] Paolo Ammirante and Frank A Russo, Low-skip bias, Music Perception: An Interdisciplinary
Journal 32 (2015), no. 4, 355–363.

[2] Christopher Ariza, An open design for computer-aided algorithmic music composition, Universal-
Publishers, 2005.

[3] Christopher Ariza, Two pioneering projects from the early history of computer-aided algorithmic
composition, Computer Music Journal 35 (2011), no. 3, 40–56.

[4] Robert Baker, Musicomp: Music simulator-interpreter for compositional procedures for the ibm
7090, no. 9, Experimental Music Studio, 1963.

[5] Konstantinos Bakogiannis and George Cambourakis, Semiotics and memetics in algorithmic
music composition, Technoetic Arts 15 (2017), no. 2, 151–161.

[6] Gilberto Bernardes, Caros Guedes, and Bruce Pennycook, Style emulation of drum patterns
by means of evolutionary methods and statistical analysis, Proceedings of the Sound and Music
Conference, 2010, pp. 1–4.

[7] John Biles, Peter Anderson, and Laura Loggi, Neural network fitness functions for a musical
iga, (1996).

[8] John A Biles, Genjam: A genetic algorithm for generating jazz solos, ICMC, vol. 94, 1994,
pp. 131–137.

[9] John A Biles, Autonomous genjam: eliminating the fitness bottleneck by eliminating fitness, Pro-
ceedings of the 2001 Genetic and Evolutionary Computation Conference Workshop Pro-
gram, San Francisco, 2001.

[10] Tanor L Bonin, Laurel J Trainor, Michel Belyk, and Paul W Andrews, The source dilemma
hypothesis: Perceptual uncertainty contributes to musical emotion, Cognition 154 (2016), 174–
181.

[11] Albert S Bregman, Auditory scene analysis: The perceptual organization of sound, MIT press,
1994.

[12] Steven Brown and Joseph Jordania, Universals in the world’s musics, Psychology of Music 41
(2013), no. 2, 229–248.

[13] Yuri Broze and David Huron, Is higher music faster? pitch–speed relationships in western com-
positions, Music Perception: An Interdisciplinary Journal 31 (2013), no. 1, 19–31.

57

[14] Anthony R Burton and Tanya Vladimirova, Genetic algorithm utilising neural network fitness
evaluation for musical composition, Artificial Neural Nets and Genetic Algorithms, Springer,
1998, pp. 219–223.

[15] Chun-yien Chang and Ying-ping Chen, Fusing creative operations into evolutionary compu-
tation for composition: From a composer’s perspective, 2019 IEEE Congress on Evolutionary
Computation (CEC), IEEE, 2019, pp. 2113–2120.

[16] Jazz In Concert, Jazz in concert 1991 with tony lakatos, peter o´mara, david witham, anthony
jackson terri lyne carrington, 1991.

[17] David Cope, Experiments in musical intelligence, Proceedings of the International Computer
Music Conference. San Francisco, 1987.

[18] David Cope and Melanie J Mayer, Experiments in musical intelligence, vol. 12, AR editions
Madison, WI, 1996.

[19] David Cope, Experiments in musical intelligence (emi): Non-linear linguistic-based composition,
Journal of New Music Research 18 (1989), no. 1-2, 117–139.

[20] David Cope, Algorithmic composition [re] defined, Proceedings of the International Computer
Music Conference, 1993, pp. 23–25.

[21] Alan RR de Freitas and Frederico Gadelha Guimarães, Originality and diversity in the artificial
evolution of melodies, Proceedings of the 13th annual conference on Genetic and evolutionary
computation, ACM, 2011, pp. 419–426.

[22] Francisco Fernandez de Vega, Revisiting the 4-part harmonization problem with gas: A critical
review and proposals for improving, Evolutionary Computation (CEC), 2017 IEEE Congress
on, IEEE, 2017, pp. 1271–1278.

[23] Jean-Marc Deltorn and Franck Macrez, Authorship in the age of machine learning and artificial
intelligence, (2019).

[24] Patrick Donnelly and John Sheppard, Evolving four-part harmony using genetic algorithms,
European Conference on the Applications of Evolutionary Computation, Springer, 2011,
pp. 273–282.

[25] Ben Duane, Auditory streaming cues in eighteenth-and early nineteenth-century string quartets,
Music Perception: An Interdisciplinary Journal 31 (2013), no. 1, 46–58.

[26] Michael Edwards, Algorithmic composition: computational thinking in music, Communications
of the ACM 54 (2011), no. 7, 58–67.

[27] Hauke Egermann, Marcus T Pearce, Geraint A Wiggins, and Stephen McAdams, Probabilis-
tic models of expectation violation predict psychophysiological emotional responses to live concert
music, Cognitive, Affective, & Behavioral Neuroscience 13 (2013), no. 3, 533–553.

[28] Arne Eigenfeldt, Kinetic engine: toward an intelligent improvising instrument, Proceedings of
the Sound and Music Computing Conference, 2006, pp. 97–100.

[29] Arne Eigenfeldt, Drum circle: Intelligent agents in max/msp., ICMC, 2007.

58

[30] Arne Eigenfeldt, Corpus-based recombinant composition using a genetic algorithm, Soft Com-
puting 16 (2012), no. 12, 2049–2056.

[31] Arne Eigenfeldt, The evolution of evolutionary software: intelligent rhythm generation in kinetic
engine, Workshops on Applications of Evolutionary Computation, Springer, 2009, pp. 498–
507.

[32] David Fallows, The oxford companion to music, Oxford University Press, 2016.

[33] Richard Fox and Robert Crawford, A hybrid approach to automated music composition, Artificial
Intelligence Perspectives in Intelligent Systems, Springer, 2016, pp. 213–223.

[34] Mikael Fridenfalk, Algorithmic music composition for computer games based on l-system, Games
Entertainment Media Conference (GEM), 2015 IEEE, IEEE, 2015, pp. 1–6.

[35] David E Goldberg and Kalyanmoy Deb, A comparative analysis of selection schemes used in
genetic algorithms, Foundations of genetic algorithms, vol. 1, Elsevier, 1991, pp. 69–93.

[36] David E Goldberg and John H Holland, Genetic algorithms and machine learning, Machine
learning 3 (1988), no. 2, 95–99.

[37] Alvin I Goldman, The psychology of folk psychology, Behavioral and Brain sciences 16 (1993),
no. 1, 15–28.

[38] Dunwei Gong, Xin Yao, and Jie Yuan, Interactive genetic algorithms with individual fitness not
assigned by human., J. UCS 15 (2009), no. 13, 2446–2462.

[39] Stephen A Hedges, Dice music in the eighteenth century, Music & Letters 59 (1978), no. 2,
180–187.

[40] Dorien Herremans, Ching-Hua Chuan, and Elaine Chew, A functional taxonomy of music
generation systems, ACM Computing Surveys (CSUR) 50 (2017), no. 5, 69.

[41] Lejaren Hiller, Programming a computer for music composition, Computer Applications in Mu-
sic. Morgantown: West Virginia University Library (1967), 65–88.

[42] Lejaren Hiller, Some compositional techniques involving the use of computers, 1969, pp. 71–83.

[43] Lejaren Hiller, Composing with computers: A progress report, Computer Music Journal 5 (1981),
no. 4, 7–21.

[44] Lejaren A Hiller Jr and Leonard M Isaacson, Musical composition with a high speed digital
computer, Audio Engineering Society Convention 9, Audio Engineering Society, 1957.

[45] Robert Hinterding, Harry Gielewski, and Thomas C Peachey, The nature of mutation in genetic
algorithms., ICGA, 1995, pp. 65–72.

[46] Andrew Horner and David Goldberg, Genetic algorithms and computer-assisted music com-
position, Proceedings of the Fourth International Conference on Genetic Algorithms, 1991,
pp. 479–482.

59

[47] Yu-Lun Hsu, Chi-Po Lin, Bo-Chen Lin, Hsu-Chan Kuo, Wen-Huang Cheng, and Min-Chun
Hu, Deepsheet: A sheet music generator based on deep learning, Multimedia & Expo Workshops
(ICMEW), 2017 IEEE International Conference on, IEEE, 2017, pp. 285–290.

[48] David Huron, Tone and voice: A derivation of the rules of voice-leading from perceptual principles,
Music Perception: An Interdisciplinary Journal 19 (2001), no. 1, 1–64.

[49] David Brian Huron, Sweet anticipation: Music and the psychology of expectation, MIT press,
2006.

[50] Natasha Jaques, Shixiang Gu, Richard E. Turner, and Douglas Eck, Generating music by fine-
tuning recurrent neural networks with reinforcement learning, Deep Reinforcement Learning
Workshop, NIPS, 2016.

[51] Daniel D Johnson, Generating polyphonic music using tied parallel networks, International Con-
ference on Evolutionary and Biologically Inspired Music and Art, Springer, 2017, pp. 128–
143.

[52] Anna Jordanous, A fitness function for creativity in jazz improvisation and beyond., ICCC, 2010,
pp. 223–227.

[53] Patrik N Juslin and Daniel Västfjäll, Emotional responses to music: The need to consider under-
lying mechanisms, Behavioral and brain sciences 31 (2008), no. 5, 559–575.

[54] Johann Philipp Kirnberger, Der allezeit fertige menuetten-und polonoisenkomponist, Berlin: Ger-
many Winter (1757).[doi¿ 10.1093/acprof: oso/9780195148367.001. 0001] (1757).

[55] GM Koenig, Project two, Electronic Music Reports 3 (1970).

[56] Gottfried M Koenig, Project one: A programme for musical composition, Electronic Music Re-
ports of the Institute of Sonology 2 (1969).

[57] Rakesh Kumar and Jyotishree, Blending roulette wheel selection rank selection in genetic algo-
rithms, International Journal of Machine Learning and Computing (2012), 365–370.

[58] Daniel J Levitin, This is your brain on music: The science of a human obsession, Penguin, 2006.

[59] Ryan Lichtenwalter, Katerina Lichtenwalter, and Nitesh V Chawla, Applying learning algo-
rithms to music generation., IICAI, 2009, pp. 483–502.

[60] Chien-Hung Liu and Chuan-Kang Ting, Polyphonic accompaniment using genetic algorithm
with music theory, Evolutionary Computation (CEC), 2012 IEEE Congress on, IEEE, 2012,
pp. 1271–1278.

[61] Chien-Hung Liu and Chuan-Kang Ting, Fusing flamenco and argentine tango by evolutionary
composition, 2017 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2017, pp. 2645–
2652.

[62] Chien-Hung Liu and Chuan-Kang Ting, Computational intelligence in music composition: A
survey, IEEE Transactions on Emerging Topics in Computational Intelligence 1 (2017), no. 1,
2–15.

60

[63] Henrique Barros Lopes, Flávio Vinı́cius Cruzeiro Martins, Rodrigo TN Cardoso, and
Vinı́cius Fernandes dos Santos, Combining rules and proportions: A multiobjective approach
to algorithmic composition, Evolutionary Computation (CEC), 2017 IEEE Congress on, IEEE,
2017, pp. 2282–2289.

[64] Róisı́n Loughran, James McDermott, and Michael O’Neill, Grammatical music composition
with dissimilarity driven hill climbing, International Conference on Evolutionary and Biologi-
cally Inspired Music and Art, Springer, 2016, pp. 110–125.

[65] Bill Manaris, Patrick Roos, Penousal Machado, Dwight Krehbiel, Luca Pellicoro, and Juan
Romero, A corpus-based hybrid approach to music analysis and composition, Proceedings of the
National Conference on Artificial Intelligence.

[66] Yotam Mann, Ai duet, Experiments with Google. See,
https://experiments.withgoogle.com/ai/ai-duet (2016).

[67] Rachel Manzelli, Vijay Thakkar, Ali Siahkamari, and Brian Kulis, An end to end model for au-
tomatic music generation: Combining deep raw and symbolic audio networks, Proceedings of the
Musical Metacreation Workshop at 9th International Conference on Computational Cre-
ativity, Salamanca, Spain, 2018.

[68] Dragan Matić, A genetic algorithm for composing music, Yugoslav Journal of Operations Re-
search 20 (2010), no. 1, 157–177.

[69] Leonard B Meyer, Emotion and meaning in music, Ph.D. thesis, University of Chicago, De-
partment of Music, 1954.

[70] Peter Mitrano, Arthur Lockman, James Honicker, and Scott Barton, Using recurrent neural
networks to judge fitness in musical genetic algorithms, Proceedings of the 5th International
Workshop on Musical Metacreation (MUME) at the 8th International Conference on Com-
putational Creativity (ICCC), 2017.

[71] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu, Wavenet: A generative
model for raw audio, arXiv preprint arXiv:1609.03499 (2016).

[72] Noriko Otani, Generation of a corporate sound logo based on symbiotic evolution, 2019 IEEE
Congress on Evolutionary Computation (CEC), IEEE, 2019, pp. 2106–2112.

[73] George Papadopoulos and Geraint Wiggins, Ai methods for algorithmic composition: A survey,
a critical view and future prospects, AISB Symposium on Musical Creativity, Edinburgh, UK,
1999, pp. 110–117.

[74] John Polito, Jason M Daida, and Tommaso F Bersano-Begey, Musica ex machina: Composing
16th-century counterpoint with genetic programming and symbiosis, International Conference
on Evolutionary Programming, Springer, 1997, pp. 113–123.

[75] Curtis Roads, John Strawn, et al., The computer music tutorial, MIT press, 1996.

[76] Adam Roberts, Jesse Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck, A hierarchical
latent vector model for learning long-term structure in music, arXiv Preprint (2018).

61

[77] Martin Rohrmeier, Musical expectancy: Bridging music theory, cognitive and computational ap-
proaches, Zeitschrift der Gesellschaft für Musiktheorie [Journal of the German-speaking So-
ciety of Music Theory] 10 (2013), no. 2.

[78] Patrick E Savage, Steven Brown, Emi Sakai, and Thomas E Currie, Statistical universals reveal
the structures and functions of human music, Proceedings of the National Academy of Sciences
112 (2015), no. 29, 8987–8992.

[79] Patrick E Savage, Adam T Tierney, and Aniruddh D Patel, Global music recordings support
the motor constraint hypothesis for human and avian song contour, Music Perception: An Inter-
disciplinary Journal 34 (2017), no. 3, 327–334.

[80] Marco Scirea, Julian Togelius, Peter Eklund, and Sebastian Risi, Metacompose: A composi-
tional evolutionary music composer, International Conference on Evolutionary and Biologi-
cally Inspired Music and Art, Springer, 2016, pp. 202–217.

[81] Bob LT Sturm, Maria Iglesias, Oded Ben-Tal, Marius Miron, and Emilia Gómez, Artificial
intelligence and music: Open questions of copyright law and engineering praxis, Arts, vol. 8, Mul-
tidisciplinary Digital Publishing Institute, 2019, p. 115.

[82] Adam T Tierney, Frank A Russo, and Aniruddh D Patel, The motor origins of human and avian
song structure, Proceedings of the National Academy of Sciences (2011), 201103882.

[83] Chuan-Kang Ting, Wu Chia-Lin, and Chien-Hung Liu, A novel automatic composition system
using evolutionary algorithm and phrase imitation, IEEE Systems Journal 11 (2017), no. 3, 1284–
1295.

[84] Brad Tofel, Wayback’for accessing web archives, Proceedings of the 7th International Web
Archiving Workshop, 2007, pp. 27–37.

[85] Laurel J Trainor, The origins of music in auditory scene analysis and the roles of evolution and cul-
ture in musical creation, Philosophical Transactions of the Royal Society B: Biological Sciences
370 (2015), no. 1664, 20140089.

[86] Laurel J Trainor, Céline Marie, Ian C Bruce, and Gavin M Bidelman, Explaining the high
voice superiority effect in polyphonic music: Evidence from cortical evoked potentials and peripheral
auditory models, Hearing Research 308 (2014), 60–70.

[87] JA Vasconcelos, Jaime Arturo Ramirez, RHC Takahashi, and RR Saldanha, Improvements in
genetic algorithms, IEEE Transactions on magnetics 37 (2001), no. 5, 3414–3417.

[88] S Wright, Oxford university press and music publishing: A 75th anniversary retrospective, BRIO-
INTERNATIONAL ASSOCIATION OF MUSIC LIBRARIES- 35 (1998), 90–100.

[89] Jian Wu, Changran Hu, Yulong Wang, Xiaolin Hu, and Jun Zhu, A hierarchical recurrent
neural network for symbolic melody generation, arXiv preprint arXiv:1712.05274 (2017).

[90] Iannis Xenakis, Free stochastic music from the computer. programme of stochastic music in fortran,
Gravesaner Blätter 26 (1965), 54–92.

[91] Iannis Xenakis, Roberta Brown, and John Rahn, Xenakis on xenakis, Perspectives of New
Music (1987), 16–63.

62

[92] Iannis Xenakis, Formalized music: thought and mathematics in composition, no. 6, Pendragon
Press, 1992.

[93] Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang, Midinet: A convolutional generative adversar-
ial network for symbolic-domain music generation, Proceedings of the 18th International Society
for Music Information Retrieval Conference (ISMIR’2017), Suzhou, China, 2017.

[94] Xiaomei Zheng, Dongyang Li, Lei Wang, Yuanyuan Zhu, Lin Shen, and Yanyuan Gao, Chi-
nese folk music composition based on genetic algorithm, Computational Intelligence & Commu-
nication Technology (CICT), 2017 3rd International Conference on, IEEE, 2017, pp. 1–6.

63

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	History
	Early Days (1757-1990)
	Contemporary (2000 onward)

	Directions

	Music-Psychology
	Musical Theory and Understanding
	Literature
	Expectancy Theory
	Auditory Scene Analysis
	Voice-leading
	Musical Universals
	Supporting Musicological Conjectures

	Music Composition with Genetic Algorithms
	Background
	Genetic Algorithms For Music Composition
	Representation of Compositions
	Fitness Functions
	Human-assisted Fitness Functions
	Autonomous Fitness Functions
	Fitness-less Genetic Algorithms

	Genetic Operators
	Selection
	Mutation
	Crossover

	Evaluation

	A Psychology Enriched Genetic Algorithm for Music Composition
	Motivations
	Musical Rules
	Genetic Algorithm
	Genome Representation
	Population Initialization
	Genetic Operators
	Selection
	Crossover
	Mutation

	Fitness Function
	Algorithm
	Implementation
	Parallelism
	Parameters

	Experimental Study
	Performance Study
	Online Survey
	Results
	Analysis

	Implications of Automated Music Composition
	Disruption of the Job Market
	Disruption of the Legal System
	End-Goal

	Conclusions and Future Prospects
	Approach
	Findings
	Additions
	Future Directions

	Bibliography

