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Abstract

The data market has been growing at an exceptional pace. Consequently, more sophis-
ticated strategies to conduct economic forecasts have been introduced with machine
learning techniques. Does machine learning pose a threat to conventional econometric
methods in terms of forecasting? Moreover, does machine learning present great op-
portunities to cross-fertilize the field of econometric forecasting? In this report, we de-
velop a pedagogical framework that identifies complementarity and bridges between
the two strands of literature. Existing econometric methods and machine learning
techniques for economic forecasting are reviewed and compared. The advantages and
disadvantages of these two classes of methods are discussed. A class of hybrid methods
that combine conventional econometrics and machine learning are introduced. New
directions for integrating the above two are suggested. The out-of-sample performance
of alternatives is compared when they are employed to forecast the Chicago Board Op-
tions Exchange Volatility Index and the harmonized index of consumer prices for the
euro area. In the first exercise, econometric methods seem to work better, whereas
machine learning methods generally dominate in the second empirical application.
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1 Introduction

Big data, cloud computing, mobile technologies and social media, are among the most

important changes in the modern era. The high-dimensional nature and the automated

feature of machine learning methods make it feasible to deal with big data. Moreover,

machine learning methods emphasize stable out-of-sample performance because of their

ability in the regularization of model selection and the mitigation of model overfitting.

Not surprisingly, sophisticated strategies have been introduced to conduct economic fore-

casts using machine learning techniques. Machine learning is different from traditional

econometric prediction techniques which are known to be powerful to explain the finan-

cial market and macroeconomic phenomena. Consequently, the following questions nat-

urally arise. Does machine learning pose a threat to conventional econometric methods

to forecast economic activities? Or does machine learning present great opportunities to

cross-fertilize the field of econometrics?

This report answers these important questions by reviewing and comparing two strands

of literature: forecasting methods via econometric models and forecasting methods via

machine learning techniques. We have three goals in this report. First, when reviewing

the two classes of methods, special attention will be paid to identifying the strength and

weakness of alternative methods. We argue that the two classes of methods differ in their

purposes, focuses, and methodologies.

Moreover, we extend the literature on the economic forecast by introducing a class of

hybrid methods that combine econometrics and machine learning techniques. Some of

the hybrid methods include but are not restricted to the split-sample method, its model

averaging extensions, and the model averaging tree methods. Some new directions on

how to combining these two approaches are suggested.

Finally, we compare the performance of alternative methods using real data. In partic-

ular, we apply various methods to forecast the volatility index (VIX). In this case, we have

found evidence of superior forecasting performance of conventional econometric models.
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We also compare the out-of-sample performance of alternative methods when they are

used to forecast the harmonized index of consumer prices (HICP) for the euro area. In this

case, we have found evidence of superior forecasting performance of machine learning

methods.

It is important to point out that by no mean the review of econometric methods and

machine learning techniques is exhaustive. On the contrary, the choice of methods and

techniques is rather selective. Our selection reflects partly the experience we have with

the two strands of the literature, and also partly the popularity in their usage of economic

forecasts.

The report is organized as follows. Section 2 reviews conventional econometric meth-

ods, including methods based on reduced-form models, methods based on structural mod-

els, model averaging techniques. We also review methods for variable selection, lag length

selection, dimension reduction. Section 3 reviews machine learning techniques. Section

4 introduces some hybrid methods that combine conventional econometric methods and

machine learning techniques. Section 5 illustrates some of the methods reviewed in both

classes to forecast VIX and HICP. Section 7 concludes.

1.1 Notations and acronyms

In this paper, we adopt the following notations:
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y scalar
x vector (bold lower-case)
X matrix (bold upper-case)
X> transpose of matrix X
X−1 inverse of matrix X
yt variable y at time t
Lyt lag of yt, i.e., yt−1
R real line
R+ positive part of R

R− negative part of R

Rk Euclidean k space
Ω information set
E(y) expectation of y
Var(y) variance of y
Cov(x, y) covariance of x and y
Pr(·) probability of
→ limit
p→ convergence in probability
d→ convergence in distribution
≡ definitional equality
∼ distributed as

Note that all the vectors in this article are column vectors, unless otherwise indicated.

In the following list, we summarize all the acronyms along with the full terms they

represent in this paper.
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AIC Akaike information criterion
AICc finite-sample corrected Akaike information criterion
AR autoregression
ARCH autoregressive conditional heteroscedasticity
ARFIMA autoregressive fractionally integrated moving average
ARIMA autoregressive integrated moving average
ARMA autoregressive-moving average
BAG bootstrap aggregation
BEKK Baba, Engle, Kraft and Kroner
BIC Bayesian information criterion
BM Brownian motion
BMA Bayesian model averaging
CART classification and regression trees
CV cross validation
DCC dynamic conditional correlation
DIC deviance information criterion
DSGE dynamic stochastic general equilibrium
FAVAR factor-augmented vector autoregressive
fBM fractional Brownian motion
FEVD forecast error variance decomposition
FMA frequentist model averaging
fOU fractional Ornstein-Uhlenbeck process
GARCH generalized autoregressive conditional heteroscedasticity
HAR heterogeneous autoregressive
HQ Hannan-Quinn
IRF impulse response function
LASSO least absolute shrinkage selective operator
LOOCV leave-one-out cross validation
LSB least squares boosting
MA moving average
MAB model averaging bagging
MAFE mean absolute forecast error
MARF model averaging random forecast
MART model averaging tree
MARS multivariate adaptive regression splines
MBB moving block bootstrap
MGARCH multivariate GARCH
MSFE mean square forecast error
MSM markov switching model
MSV multivariate stochastic volatility
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NARX network with exogenous inputs
NN neural network
PCA principle component analysis
PCR principle component regression
PLS partial least squares
PLSR partial least squares regression
PMA predictive model average
QLIKE Gaussian quasi-likelihood
RT regression tree
RWMH random walk Metropolis-Hastings
SDR standard deviation reduction
SDFE standard deviation of forecast error
SETAR self-exciting threshold autoregressive
SPLT split sample
SPX Standard and Poor 500 index
SSM state space model
SSR sum of squared residuals
SVAR structural vector autoregressive
SV stochastic volatility
SVM support vector machine
SVR support vector regression
TAR threshold autoregressive
TVC time varying coefficient
VAR vector autoregressive
VIX volatility index
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1.2 A Non-technical summary

Conventional time series methods assume that there is a true data generation process

(DGP). According to the well-known Wold theorem, any stationary time series1 can be ex-

pressed as an infinite order moving average (MA) process, which is a linear combination of

white noises. Then, a natural thing to do is to use a finite order MA model to approximate

the infinite order MA model. Alternatively we can use a finite order autoregressive (AR)

model which can be expressed as an infinite order MA model but with some restrictions

on the coefficients. On the other hand, one can combine AR and MA models to make

the so-called Auto-regressive and Moving Average (ARMA) model. ARMA models can not

capture nonlinear dynamics or long-range dependence in data.

To cope with the feature of long-range dependence which has been widely observed

in economic and financial data, the autoregressive fractionally integrated moving average

(ARFIMA) model extends the ARMA model by allowing non-integer values of differencing.

As an alternative method to model the long-range dependence, Corsi (2009) proposed

the heterogeneous autoregressive (HAR) model which can well approximate long memory

and multi-scaling properties of data and easy to implement. Another alternative for cap-

turing long-range dependence is to use a continuous-time model based on the fractional

Brownian motion as shown in Wang et al. (2019).

Various models can capture nonlinear dynamics. The threshold autoregressive model

(TAR) is an extension of autoregressive model with a threshold variable qt that describes

the structure change of parameters in the AR model. It assumes that the behavior of the

time series changes once qt exceeds some threshold value. If qt is the lagged value of the se-

ries, it becomes the self-exciting TAR model (SETAR). Markov switching model (MSM) also

considers the structure change of parameters. Different from TAR, the switching mecha-

nism in MSM is controlled by a discrete unobserved state variable that follows a first-order

Markov chain. Unlike the TAR and MSM models, in which the parameters change over

1Here, the word “stationary” means that the first and second moments of the time series are not time-
varying.
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time discretely, the time-varying coefficient (TVC) model allows the coefficients to change

with time continuously. The TVC model can be specified in a state-space form and the

likelihood function can be obtained using the Kalman filter. The structure break model

specifies different patterns over different periods (not different states as in TAR, MSM and

TVC models) where a structure break corresponds to an unexpected change in the param-

eter value. Pesaran and Timmermann (2007), Hansen et al. (2012) and Pesaran et al.

(2013) discussed the forecasting performance of the structure break model.

If one is interested in forecasting volatility but only has access to prices/returns, GARCH-

type models or stochastic volatility (SV) models can be used. Proposed by Engle (1982),

the ARCH model assumes that the variance of the current error term is a function of

lagged squared errors. Essentially the ARCH model assumes the squared return follows an

AR model, whereas the GARCH model extends the ARCH model by assuming the squared

return follows an ARMA model. Unlike ARCH-type models, SV models specify volatility as

a separate random process, which provides certain advantages over the ARCH-type models

(Kim et al., 1998). In SV models, the variance is latent and the likelihood function does

not have a closed-form expression. Estimation of SV models is more difficult than that of

GARCH-type models.

In practice, the number of predictors can be close to or even greater than the sam-

ple size. Such a phenomenon is called the curse of dimensionality and can cause serious

problems to traditional estimation methods (for example, inconsistency). One solution

to reduce the dimensionality of predictors is to use the principal component regression

(PCR) or the partial least square regression (PLSR). PCR is a regression technique based

on principal component analysis (PCA). It is a statistical procedure that converts a large set

of possibly correlated variables into a small set of linearly uncorrelated variables (named

principal components) and finds the components which can explain the variation in pre-

dictors as much as possible. Partial least squares (PLS), on the other hand, incorporates

the information from the response variable to decompose the matrix of predictors.

The univariate models can be extended to a multivariate setting. A popular class of
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multivariate models for forecasting macroeconomic variables is reduced-form vector au-

toregression (VAR) models which can be regarded as the multivariate extension of AR

models. Instead of regressing one single dependent variable on its lags, we regress a vec-

tor of time series variables on lagged vectors of these variables in VAR. VAR models have

been proven to be particularly useful for describing the dynamic behavior of economic and

financial time series and for forecasting. However, for high dimensional data, the total

number of parameters in VAR can be very large and the VAR may not perform well out-of-

sample. To reduce the dimensionality and to extract the information from a large number

of time series, factor analysis has been widely used in practice. Factor models decompose

the behavior of a high dimensional vector of economic variables into a component driven

by few unobservable factors common to all the variables and variable specific idiosyncratic

components.

In the conventional VAR model, the error terms are assumed to be statistical innova-

tions. Therefore, it is impossible to identify the effect of fundamental economic shocks on

the economy, such as monetary shock, technology shock, etc. A structural vector autore-

gression (SVAR) model makes explicit identifying assumptions to isolate estimates of the

effects of fundamental shocks on the economy. Dynamic stochastic general equilibrium

(DSGE) models build on explicit micro-foundations by allowing agents to do optimization.

They have become very popular in macroeconomics over the last three decades. Bayesian

methods have been widely applied to estimate DSGE models.

Given that many alternative models can be used to generate forecasts, it is important to

know which model has the overall best performance. One of the most widely used model

selection methods is the Akaike information criterion (AIC) proposed by Akaike (1973).

AIC provides an asymptotically unbiased estimator of the Kullback-Leibler (K-L) diver-

gence between the true DGP and the predictive density of the candidate model. Mallow’s

Cp (Mallows, 1973) provides an asymptotically unbiased estimator of the mean squared

forecast error (MSFE) for a candidate model. BIC (Bayesian Information Criterion) by

Schwarz (1978) takes a similar form with AIC but has the heavier penalty term than AIC.
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An information criterion based on Bayesian estimators is the deviance information crite-

rion (DIC) proposed by Spiegelhalter et al. (2002) and justified by Li et al. (2019).

Another way to evaluate the performance of a model is via the cross-validation (CV)

method. A conventional validation approach is to split the data set into two parts. One

part is called the “training set”, which we use to estimate the model. The other part is the

“validation set”, which is used to evaluate the estimated model.

Model selection methods are designed to select the best model from the candidate set.

The selected model is then used to forecast future economic activities. However, it is

possible that the true DGP is not included in the candidate set. As a result, all candidate

models are misspecified. When this occurs, a popular method to do forecast is via the

model averaging technique, which averages the predictions from a collection of candidate

models. Bayesian model averaging (BMA) takes prediction as an average of the predictions

from different models weighted by the posterior model probabilities. Frequentist model

averaging (FMA) construct model weights using information criteria such as AIC, BIC, or

Mallows’ Cp.

The above-mentioned time series methods, including the model averaging techniques,

assume that there is one true DGP. When the DGP does not exist and when the available

data is of large dimensional, it has been found that some algorithmic methods such as

machine learning methods are useful. A small but growing set of studies have reported

usefulness of machine learning methods in forecast economic variables; see Biau and D’elia

(2010), Jung et al. (2019), and Chuku et al. (2019) in forecasting GDP growth rates,

Tiffin (2016) in nowcasting GDP growth rates, and Medeiros et al. (2019) in forecasting

inflation.

When a high dimensional problem is caused by a large set of input variables, as an

adaptive procedure for regression, the multivariate adaptive regression splines (MARS)

method excels. It is a non-parametric regression technique and can be seen as an extension

of linear models that automatically model nonlinearity and interactions between variables.

The model is a weighted sum of a constant, hinge function or product of hinge functions.
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The hinge function usually takes the form of max(0, h) or max(0, h− x) where x is some

predictor and h is the knot. MARS automatically selects variable x and values of x for

knots of the hinge functions.

The placement of knots, the number of knots, and the degree of the polynomial can

be seen as tuning parameters, which are subject to manipulation by a data analyst. The

tuning process can be very complicated since there are at least three of them that must be

tuned simultaneously. Moreover, there is little or no formal theory to justify the tuning. On

the other hand, a useful alternative is to alter the fitting process itself so that the tuning is

accomplished automatically, guided by clear statistical reasoning. One popular approach

is to combine a penalty with the loss function to be optimized.

Strategies that are designed to control the magnitude of the coefficients are called

shrinkage or regularization. Two popular methods have been offered for how to control

the complexity of the fitted values. One is ridge regression which constrains the sum of the

squared regression coefficients to be less than some constant. Ridge regression can create

a parsimonious model when the number of predictors exceeds the number of observations,

or when the predictors are highly correlated.

The other method is called the least absolute shrinkage selection operator (LASSO) by

Tibshirani (1996). LASSO constraints the sum of the absolute values of the regression

coefficients to be less than some constant instead. Unlike the ridge penalty, the LASSO

penalty leads to a nonlinear estimator, and a quadratic programming solution is needed.

The LASSO regression is capable of shrinking coefficients to 0. Therefore, it can be used

as a variable selection tool in practice. Zou and Hastie (2005) pointed out that the LASSO

solution paths are unstable when predictors are highly correlated. If variables are strongly

correlated, LASSO is indifferent among them. Zou and Hastie (2005) proposed elastic-net

as an improved version of the LASSO to overcome such limitation. Fan and Li (2001)

and Zou (2006) argued that LASSO may not satisfy the oracle property, referring to a

property that a method can asymptotically identify the right subset model with probability

converging to 1 and has optimal estimation rate. Zou (2006) proposed the adaptive LASSO
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which enjoys the oracle property.

Ridge and LASSO-type regressions are linear models which cannot deal with the non-

linearity such as interaction effects. Breiman et al. (1984) proposed the Classification and

Regression Trees (CART) method, in which classification mostly deals with the categori-

cal response of non-numeric symbols and texts and regression trees focus on quantitative

responses variables. Given the numerical nature of our data set, we only consider the sec-

ond part of CART, regression tree (RT). The trick in applying RT is to find the best split.

Consider a sample of {yt, xt}n
t=1. A simple regression will yield a sum of squared residuals,

SSR0. Suppose we split the original sample into two sub-samples such that n = n1 + n2

with one of the predictors at some cut point. The RT method finds the best split of a

sample (the best split variable and its cut point) to minimize the sum of squared residuals

(SSR) from the two sub-samples. That is, the SSR values computed from each sub-sample

should follow: SSR1 + SSR2 ≤ SSR0. We can continue splitting until we reach a pre-

determined boundary. If the data are stationary and ergodic, the RT method demonstrates

better forecasting accuracy. Intuitively, for cross-sectional data, the RT method performs

better because it removes heterogeneity problems by splitting the sample into clusters with

heterogeneous features; for time series data, a good split should coincide with jumps and

structure breaks.

Bagging trees combines the bootstrap aggregation (aka bagging) methods by Breiman

(1996) with RT ensembles. Bootstrap, which was introduced to statistics by Efron (1979),

is the practice of estimating properties of an estimator (such as its variance) by sampling

from an approximating distribution. By bootstrapping a bunch of sub-samples, fitting a

regression tree to each sub-sample, and then averaging the predictions across the boot-

strapped samples, we create more robust and accurate predictions than a single tree model.

Bagging trees typically suffer from a strong correlation among trees, which reduces

the overall performance of the model. It is because a well-performed predictor has a

high probability to be one of the most important predictors in many RTs which leads to

highly correlated trees. The random forest (RF) algorithm solves this problem by randomly
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choosing a subset of the predictors during the splitting process for each bootstrap sample.

In this way, some of those trees do not allow the same well-performed predictor to be used

in the tree, hence de-correlates the RTs.

The boosting tree method is also an ensemble learning method but is fundamentally

different from RF. Boosting works with the full training sample and all of the predictors.

Within each iteration, the poorly fitted observations are given more weight, which eventu-

ally forces the (poor) fitting functions to evolve in boosting. We usually denote the number

of iterations as the learning cycle of the boosting process. Moreover, the final output values

are a weighted average over a large set of earlier fitting results instead of a simple average

as in the RF method.

All decision tree algorithms discussed above base their forecasts on a set of piecewise

local constant model. In fact, algorithms have been developed to estimate regression

models in the leaf nodes to not just aid in prediction, but also simplify the tree model

structure. That is, it is suggested that the gains in prediction from using a piecewise

linear model could allow one to grow shorter trees that are more parsimonious. The M5’

algorithm (Quinlan, 1992 and Wang and Witten, 1997) builds subgroups using the same

algorithm as RT but a multiple regression models is estimated in the terminal node. The

model in each leaf only contains the independent variables encountered in split rules in

the leaf node’s sub-tree and are simplified to reduce a multiplicative factor to inflate the

estimated error.

In machine learning, support vector machines (SVM) are supervised learning models

with associated learning algorithms that analyze data used for classification and regression

analysis. The theory behind SVM is due to Vapnik (1996). The classic SVM was designed

for classification and a version of SVM for regression, later known as support vector regres-

sion (SVR), was proposed by Drucker et al. (1996). The goal of SVR is to find a function

that deviates from the response variable by value no greater than a predetermined ε for

each input observation and at the same time is as flat as possible.

Most conventional econometric methods assume the DGP exists. Typical DGPs are
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assumed to have analytical expressions that depend on a set of unknown parameters. A

“training” set is used to estimate these parameters. Such a setup allows econometricians

to do a few interesting things: (1) to develop the asymptotic theory of estimators and test

statistics; (2) to do counter-factual analysis and scenario analysis; (3) to obtain the impact

of structure shocks via impulse response and variance decomposition; (4) the estimated

DGP, with the unknown parameters being replaced with their estimates, is used to forecast

in the “testing” set. If the relationships among economic variables are too complicated

for an analytical function or become increasingly complicated as new data come in, then

the assumption of the existence of a DGP is unrealistic. In this case, machine learning

methods that only aim to predict variables may be useful. Therefore, machine learning

methods are expected to pose a challenge to conventional econometric methods when

prediction is the primary concern, and when the relationships among economic variables

are very complicated.

However, it is possible to combine the strengths of both methods for cross-fertilization.

Most machine learning techniques neglect parameter heterogeneity as they typically rely

on local constant models that assume homogeneity in outcomes within individual terminal

leaves. This limitation can impact their predictive ability. The presence of heterogeneity

can change how the data should be partitioned thereby influencing the forecasting results.

On the other hand, conventional econometric methods have provided many effective tech-

niques to deal with heterogeneity. This sets a motivation of the need of hybrid methods.

Hirano and Wright (2017) proposed a split-sample (SPLT) method to mitigate uncer-

tainty about the choice of predictors. They investigate the distributional properties of SPLT

in a local asymptotic framework. The core of SPLT is more in the econometric tradition,

which consists of splitting the training sample set into two parts, one for model selection

via AIC and the other for model estimation. Moreover, the authors show that adding a

bagging step to the plain SPLT substantially improves its prediction performance.

The bagging augmented SPLT method can be viewed as a hybrid of econometric and

machine learning methods. Liu and Xie (2018) further extended SPLT by replacing the
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AIC model selection method by the prediction model average (PMA) method developed

by Xie (2015), while keeping the bagging procedure. Liu and Xie (2018) denoted this

hybrid method by SPLTPMA. In SPLTPMA, after an initial sample split, a prediction model

averaging technique is applied to the first subsample to obtain a weight structure over all

the candidate models, and then use the weights to calculate a weighted average model as

the prediction model, where each candidate model is estimated on the second subsample.

For the tree-based method, after partitioning the dataset into various subgroups, no

heterogeneity is assumed within subgroups, and a simple average is computed to represent

the feature in that subgroup. From the perspective of econometrics, however, this rules

out heterogeneity within recursively partitioned subgroups and may appear unsatisfying.

Lehrer and Xie (2018) suggested that for each tree leaf we can construct a sequence of

m = 1, . . . , M linear candidate models, in which regressors of each model m is a subset of

the regressors belonging to that tree leaf. The regressors Xm
i∈l for each candidate model

within each tree leaf is constructed such that the number of regressors km
l � nl for all

m. Using these candidate models, they perform model averaging estimation to obtain the

averaged coefficient and denote the new method as a model averaging tree (MART). Based

on MART, we can apply bagging trees and random forest, which lead to model averaging

bagging (MAB) and model averaging random forest (MARF).

The out-of-sample performance of alternative methods is compared when they are used

to forecast Chicago Board Options Exchange’s Volatility Index and the harmonized index of

consumer prices for the euro area. In the first example, the traditional econometric meth-

ods work better. In the second example, the machine learning methods, and especially, the

hybrid methods work better.
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2 Conventional Econometric Methods

In this section, we review some classic yet still popular econometric methods for the pur-

pose of forecasting. We consider univariate and multivariate models. In general, there are

two types of econometric methods that co-exist in the forecasting literature: reduced-form

models and structural models. The reduced form of a system of equations is the result

of solving the system for the endogenous variables.2 On the other hand, equations of a

structural-form model are estimated in their theoretically given form.

Within the class of univariate econometric models, we review linear (predictive) regres-

sion models, autoregressive (AR) models, autoregressive-moving average (ARMA) mod-

els, autoregressive fractional integral moving average (ARFIMA) models, heterogeneous

AR (HAR) models, fractional continuous-time models, threshold autoregressive models,

Markov switching models, local constant regression models, local polynomial regression

models, and models with structural breaks. If one is interested in forecasting volatility but

only has access to prices/returns, GARCH-type models or stochastic volatility (SV) models

can be used.

Most of the univariate models can be extended to a multivariate setup. For example, a

popular class of multivariate models for forecasting macroeconomic variables is reduced-

form VAR models which are the multivariate extension to AR models. Popular multivariate

models for variance and covariance of multiple assets include multivariate GARCH models

(MGARCH) and multivariate SV (MSV) models. A class of methods that are unique to the

multivariate setup are factor models and their variations, for example, factor-augmented

VAR (FAVAR) models.

For the structural approach, we review both structure VAR (SVAR) models and dynamic

stochastic general equilibrium (DSGE) models. These two important structural economet-

ric models have been extensively adopted by many central banks to analyze financial mar-

2In other words, the reduced-form of an econometric model is one that has been rearranged algebraically
so that each endogenous variable is on the left side of one equation and only predetermined variables are on
the right side.
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kets, explain macroeconomic phenomena, and to conduct economic forecasts. Structural

models are important to understand causal relationships among variables, to do simula-

tions, and to perform scenario analysis and counter-factual analysis.

SVAR usually contains a set of equations with each equation describing the type of

decision rules motivated by economic theories. One example is that consumers demand

a certain quantity of aggregate output based on the aggregate price level as well as how

liquid they are, with the latter being measured by real money holdings. Clearly, SVAR aims

to capture how endogenous variables are related to other endogenous variables and some

exogenous variables. While SVAR facilitates interpreting the data, it makes the estimation

more difficult due to the presence of endogeneity.

DSGE builds on explicit micro-foundations by allowing agents to do optimizations. Ear-

lier efforts made in the literature are the developments of estimation methodology so that

the estimation of variants of DSGE models can compete with more standard time series

models such as VAR models. More recent efforts have also been made to show the useful-

ness of these models for the purpose of forecasting economic variables.

Besides the above models, we also review some useful techniques that are closely re-

lated to the application of these models. For many time series models, the choice of lag

length and covariates can be critically important for forecasting. Hence, procedures for se-

lecting lag length and covariates are explained in details. These procedures include various

information criteria and cross-validation techniques. In the era of big data, dimensional-

ity reduced techniques become increasingly important in practice. We cover the principal

component regression and partial least squares regression.

An interesting idea of carrying out economic forecasts is to acknowledge that no model

is correctly specified but several models are useful. In this case, one often finds that com-

bining alternative econometric models (model averaging) yields better economic forecast-

ing. Important decisions in model combination include best subset selection and choice of

weights. We introduce frequentist model average methods and Bayesian model average

methods.
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When the forecasting performance is evaluated by the mean square forecast error

(MSFE), the best forecast, which minimizes the MSFE, is known to be the conditional

expectation; see for example, Diebold (2006). However, when other criteria are used, the

best forecast may not be the conditional expectation. Throughout the report, we denote

Ωt−1 as an information set containing data up to period t − 1. If we do not talk about

how to estimate model parameters from data, we simply assume model parameters are

known.3 If we talk about how to estimate model parameters, we then assume the true

parameters are replaced with their estimators during the forecasting exercises.

2.1 Univariate econometric models

2.1.1 Predictive regression models

Predictive regression models specifies that the variable that one hopes to predict (say yt)

depends linearly on some lagged independent variables (say xt which is k× 1 dimensional)

and on an error term. The simplest predictive regression model takes the form of

yt = β0 + β>1 xt−1 + εt, (1)

where β0 is the intercept, β1 a k× 1 vector of slope coefficients, and εt ∼ iid(0, σ2).

The one-step-ahead forecast of yT is given by

E[yT+1|ΩT] = β0 + β>1 xT. (2)

If a multi-step-ahead forecast of yT is needed, one needs to know the future value of xt

or to have a separate time series model for xt so that one can forecast future value of xt.

Some well-known time series models are reviewed below.
3When we do not talk about parameter estimation for a model, it means that this model can be estimated

by a standard method.
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2.1.2 Autoregressive models

The AR model specifies that the output variable depends linearly on its own lagged values

and an error term. The AR model is the building block for many other time series models.

The AR(p) model is defined as

yt = β0 + β1yt−1 + · · ·+ βpyt−p + εt, (3)

where β0 is the intercept, β1, . . . , βp are the slope coefficients, and εt ∼ iid(0, σ2). The

one-step-ahead forecast of yT is given by

E[yT+1|ΩT] = β0 + β1yT + · · ·+ βpyT−p+1. (4)

The h-step-ahead forecast of yT can be similarly obtained.

The autoregressive model can also be extended to include exogenous variables. For

example,

yt = β0 + β1yt−1 + · · ·+ βpyt−p + γxt−1 + εt. (5)

This model includes an extra input variable xt−1 compared with Model (3). The one-step-

ahead forecast of yT is given by

E[yT+1|ΩT] = β0 + β1yT + · · ·+ βpyT−p+1 + γxT. (6)

2.1.3 Moving average and ARMA models

The MA model is another common approach to modeling univariate time series. An MA(q)

model with a constant term can be written as

yt = µ + εt + α1εt−1 + · · ·+ αqεt−q, (7)
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where α1, . . . , αq are the MA coefficients. The MA process is closely related to the AR

process. In fact, any stationary AR(p) process can be represented as an MA(∞) process.

This close relationship between AR and MA processes goes both ways. If the MA(q) is

invertible, there exists a stationary AR(∞) process to represent MA(q).

When q = 1, the model is MA(1) and the one-step-ahead forecast of yT is

E[yT+1|ΩT] = µ + α1E(εT|y1, · · · , yT),

where E(εT|y1, · · · , yT) can be derived from {y1, . . . , yT} if an assumption about ε0 is

imposed. For example, we can assume ε0 ≈ E(ε0) = 0. Then by backward substitutions

E(εT|y1, · · · , yT) = yT − µ− α1E(εT−1|y1, · · · , yT),

E(εT−1|y1, · · · , yT) = yT−1 − µ− α1E(εT−2|y1, · · · , yT),
...

E(ε1|y1, · · · , yT) = y1 − µ− α1ε0 = y1 − µ.

When no assumption about ε0 is imposed, the forecast can be obtained by the Kalman filter

which will be reviewed in Section 2.1.9.

In practice, however, when we model the evolution of a time series using AR or MA, we

may end up with overly complicated models, as p or q can be quite large. It is therefore

desirable to employ a parsimonious model that has both AR and MA components. We can

write an ARMA(p, q) model as:

yt = γ + β1yt−1 + · · ·+ βpyt−p + εt + α1εt−1 + · · ·+ αqεt−q, (8)

which simply merges (3) and (7). If the AR part is stationary or the MA part is invertible,

the ARMA(p, q) process can be always be represented as either an MA(∞) process or an

AR(∞) process.
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2.1.4 ARFIMA models

Over the past few decades, the phenomenon of long-range dependence has been widely

observed in data from economics and finance. A partial list of references include Granger

and Joyeux (1980), Lo (1991), Ding et al. (1993), Baillie et al. (1996), Andersen et al.

(2003) in the domain of discrete-time, and Comte and Renault (1996), Comte and Renault

(1998), Äıt-Sahalia and Mancini (2008), Wang et al. (2019) in the domain of continuous

time.

In discrete-time, autoregressive fractionally integrated moving average models (ARFIMA)

extend ARMA models by allowing a non-integer value of differencing. Let L be the lag op-

erator. For −0.5 < d < 0.5, (1− L)d is defined as

(1− L)d =
∞

∑
j=0

Γ(j− d)
Γ(−d)Γ(j + 1)

Lj,

with Γ (·) being the gamma function. The ARFIMA(p, d, q) model can be rewritten as

(
1−

p

∑
i=1

βiLi

)
(1− L)dyt = γ +

(
1 +

q

∑
i=1

αiLi

)
εt. (9)

One can forecast with an ARFIMA model. For example, to forecast with ARFIMA(1, d, 0),

one may use the forecasting formula

E[yT+1|ΩT] = −
∞

∑
j=1

πjyT−j+1 where πj =
(j− d− 2)!

(j− 1)!(−d− 1)!

{
1− β1 −

(1 + d)
j

}
. (10)

2.1.5 HAR models

Following Fernandes et al. (2014), a popular way to model the long-range dependence is

the heterogeneous autoregressive (HAR) model by Corsi (2009). The HAR model gains

great popularity not only because it well approximates long-range dependence and multi-

scaling properties of data, but it is also very easy to implement. The standard HAR model
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in Corsi (2009) postulates that yt+1 can be modeled by

yt+1 = β0 + βdȳ(1)t + βwȳ(5)t + βmȳ(22)
t + εt+1, (11)

where ȳ(l)t = l−1 ∑l
s=1 yt−s is the averages of the previous l periods of y from period t,

εt ∼ iid(0, σ2). A typical choice in the literature for the lag index vector l is [1, 5, 22], to

mirror the daily, weekly, and monthly components in financial markets.

The HAR model can be easily estimated and also allows for a more persistence. For

example, l can be [1, 5, 10, 22, 66] to include the quarterly component. We can also consider

incorporating exogenous regressors zt = [z1t, . . . , zKt]
> into Model (11), which leads to the

so-called HARX model,

yt+1 = β0 + βdȳ(1)t + βwȳ(5)t + βmȳ(22)
t + β>z zt + εt+1, (12)

where βz represents the effect of zt. Note that zt is one period before the dependent

variable yt+1.

2.1.6 Fractional continuous-time models

In the literature of theoretical asset pricing, some financial variables (such as interest rates

and logarithmic volatility) are assumed to follow a continuous-time model specified as

dyt = µ(κ − yt)dt + σdWt, (13)

where µ(κ − yt) is a drift term and Wt is a one-dimensional Brownian motion. Comte

and Renault (1998) proposed to model log-volatility using a fractional Brownian motion

(fBM) to replace Wt in Model (13), ensuring long memory by choosing the Hurst parameter

H > 1/2. The fBM (BH
t )t∈R with the Hurst parameter H ∈ (0, 1) is a zero-mean Gaussian
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process with covariance functions as

Cov
(

BH
t , BH

s

)
=

1
2

(
|t|2H + |s|2H − |t− s|2H

)
, ∀t, s ∈ R. (14)

When H = 1/2, BH
t becomes a standard Brownian motion Wt. When Wt in Model (13) is

replaced with BH
t , we call it the fractional Ornstein-Uhlenbeck (fOU) process.

Gatheral et al. (2018) and Wang et al. (2019) demonstrated that log-volatility of eq-

uities and exchange rates behaves essentially as an fOU process where H between 0.1

and 0.2. Gatheral et al. (2018) proposed the rough fractional stochastic volatility (RFSV)

model in contrast to the model by Comte and Renault (1998). When κ is close to zero, the

h-step-ahead forecasting formula with the fOU process is given by

E [yT+h|ΩT] =
cos(Hπ)

π
hH+1/2

∫ T

−∞

ys

(T − s + h)(T − s)H+1/2 ds. (15)

When a truncated discrete record is available for yt at t = 1, . . . , T, the forecasting

formula becomes

E [yT+h|ΩT] =
cos (Hπ)

π
hH+1/2

∑T
s=1

ys
(T−s+1+h)(T−s+1)H+1/2

∑T
s=1(T − s + 1 + h)−1(T − s + 1)−H+1/2

. (16)

Note that the weights are normalized to sum to one.

The RFSV model is remarkably consistent with some financial time series data and

delivers promising forecasting performance. It is highly parsimonious and even more so

if we fix H at 0.14 as Gatheral et al. (2018) recommended. Wang et al. (2019) proposes

an estimation method for H which is easy to implement. The asymptotic theory is also

developed for this estimator. When fitting Model (13) to logarithmic realized volatility of

equities and exchange rates, Wang et al. (2019) finds the evidence that the estimated H is

around 0.15 and H is statistically significantly less than 1/2.
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2.1.7 Threshold autoregressive models

All the econometric models discussed so far specify linear dynamic relationships. When

the relationship is not linear, a nonlinear model is needed. We now review a few popular

nonlinear time series models.

The threshold autoregressive model (TAR) is a widely used nonlinear time series model.

TAR is usually considered as an extension of the piecewise linear regression model with

structure changes occurring in the threshold space (Tong and Lim, 1980). Let us start

with a simple two-regime TAR model. Following Tsay and Chen (2018), a two-regime TAR

model of order k with the threshold variable qt takes the form of

yt =

 φ0 + ∑k1
i=1 φiyt−i + σ1εt, if qt−d ≤ r

θ0 + ∑k2
i=1 θiyt−i + σ2εt, if qt−d > r

, (17)

where k1 and k2 are the AR orders, εt ∼ iidN(0, 1), r is the threshold value, d > 0 is the

time lag. If we set qt−d = yt−d, Model (17) becomes the self-exciting TAR model (SETAR).

The TAR model in (17) can be rewritten in a more compact fashion:

yt = φ0 +
k1

∑
i=1

φiyt−i + I (qt−d > r)

(
β0 +

k2

∑
i=1

βiyt−i

)
+ et, (18)

where et = (σ1 + σ2I (qt−d > r)) εt and the coefficient βi = θi − φi captures the structure

change of the parameters.

Predicting with the TAR model can be obtained via simulations. Define

et = yt − φ0 −
k

∑
i=1

φiyt−i − β0c(b)t −
k

∑
i=1

βiy
(b)
t−i.

Algorithm 1 contains details of how to obtain prediction with TAR.
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Algorithm 1 h-step-ahead forecast of TAR

1. For m = 1, 2, . . . , M :

(a) Generate random samples (e(m)
T+1, e(m)

T+2, . . . , e(m)
T+h) from (e1, e2, . . . , eT);

(b) Get (ŷ(m)
T+1,T, ŷ(m)

T+2,T, . . . , ŷ(m)
T+h,T) recursively from the TAR model in (18).

2. Then we get the h-step-ahead forecast as

ŷT+h,T =
1
M

M

∑
m=1

ŷ(m)
T+h,T.

2.1.8 Markov switching models

The Markov switching model (MSM) also describes the structure change of parameters.

Following Ghysels and Marcellino (2018), we use a simple example to illustrate the differ-

ence between TAR and MSM. Let

yt = (φ01 + φ11yt−1) St + (φ02 + φ12yt−1) (1− St) + εt, (19)

where εt ∼ iidN
(
0, σ2) and St ∈ {0, 1} is the state variable. In Model (19), the values of

parameter change with the state variable. If St is determined by observed variables and

threshold values, it is equivalent to a TAR model. If St is unobserved and follows a Markov

chain, Model (19) becomes a MSM. A two-state autoregressive MSM is

yt =

 φ0,0 + ∑k
j=1 φj,0yt−j + σ0εt if St = 0

φ0,1 + ∑k
j=1 φj,1yt−j + σ1εt if St = 1

, (20)
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where εt ∼ iidN (0, 1). The state transition of the model is governed by the transition

probabilities

Pr (St = 1|St−1 = 0) = η0, Pr (St = 0|St−1 = 1) = η1,

Pr (St = 0|St−1 = 0) = 1− η0, Pr (St = 0|St−1 = 1) = 1− η1,
(21)

where 0 < ηj < 1. We can define the transition probability matrix as

P =

 1− η0 η0

η1 1− η1

 . (22)

With MSM, we can make inference about the state variable with the filtering probabil-

ity of St, Pr
(
St = i|yt, θ

)
, at time t, where θ = (φ, σ2

0 , σ2
1 , η0, η1)

> with φ =
{

φi,j
}

and

yt = (y1, y2, . . . , yt)>. Following Tsay and Chen (2018), the one-step-ahead prediction

probability is computed with the filtering probability as

Pr
(

St = i|yt−1, θ
)
= ∑

j=0,1
Pr
(

St = i|St−1 = j, yt−1, θ
)

Pr
(

St−1 = j|yt−1, θ
)

= ∑
j=0,1

Pr (St = i|St−1 = j) Pr
(

St−1 = j|yt−1, θ
)

,
(23)

for j = 0, 1. The filtering probability can be recursively estimated by the one-step-ahead

prediction probability

Pr
(
St = j|yt, θ

)
=

Pr
(
yt|St = j, yt−1, θ

)
Pr
(
St = j|yt−1, θ

)
Pr (yt|yt−1, θ)

. (24)

Similar to TAR, predicting with MSM can be obtained via simulations. Algorithm 2 contains

details of how to obtain prediction with MSM.
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Algorithm 2 h-step-ahead forecast of MSM

1. For m = 1, 2, . . . , M :

(a) Generate random samples (ε̂(m)
T+1, ε̂

(m)
T+2, . . . , ε̂

(m)
T+h) from the distribution of εt;

(b) Draw the state S(m)
T = v(m) using the filtered state probability

Pr
(

S(m)
T = j|yT, θ

)
;

(c) For i = 1, . . . , h :

i. Conditioned on S(m)
T+i−1, draw the state S(m)

T+i using the transition probability
matrix P;

ii. Compute ŷ(m)
T+i,T with S(m)

T+i.

2. Then we get the h-step-ahead forecast as

ŷT+h,T =
1
M

M

∑
m=1

ŷ(m)
T+h,T.

2.1.9 Time-varying coefficient model

The coefficients in the time-varying coefficient (TVC) model change with time. In practice,

the TVC model is usually specified in the state-space. A classic example of TVC model is

the unobserved component model as in Harvey (1990). Let

yt = µt + ξt,

µt = µt−1 + ηt,
(25)

where yt is the GDP (Gross Domestic Product), µt is the trend component of GDP, ξt follows

the random walk process, and the error term ηt is uncorrelated with ξt. In Model (25),

yt is observed but µt is not. We usually denote µt as the state variable. Model (25) is

a state-space model (SSM). The first equation of (25) is called the space equation while

the second equation the state equation. The Kalman filter (Kalman, 1960) provides a

means to forecast both the observed and state variables. It can also be used to calculate
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the observed-data likelihood function, which can then be used to obtain the maximum

likelihood estimator of parameters.

Consider the following general linear Gaussian SSM

yt = A>xt + H>ξt + wt, (26)

ξt = Fξt−1 + vt, (27) wt

vt

 ∼ iidN

0,

 R 0

0 Q

 , (28)

where yt, xt are observables with xt being the exogenous variables, ξt is the unobserved

state variable, and A, H, F are matrices of parameters.

In fact, many models can be presented as a SSM model. For example, for the AR(p)

model

yt − µ = φ1(yt−1 − µ) + · · ·+ φp(yt−p − µ) + εt,

if we define

ξt =


yt − µ

...

yt−p+1 − µ

 , F =


φ1 · · · φp−1 φp

1 · · · 0 0
...

...
...

...

0 · · · 1 0

 , vt =


εt

0
...

0

 , Q =


σ2 0 · · · 0

0 0 · · · 0
...

... · · · ...

0 1 · · · 0

 ,

then xt = 1, A> = µ, H> = [ 1 0 · · · 0 ], wt = 0, R = 0 in the corresponding SSM

representation. Taking the following MA(1) model for another example,

yt = µ + εt + θεt−1,

if we define ξt =

 εt

εt−1

, F =

 0 0

1 0

, vt =

 εt

0

, Q =

 σ2 0

0 0

, then xt = 1,

A> = µ, H> = [ 1 θ ], wt = 0, R = 0 in the corresponding SSM representation.

27



In general, the likelihood function for SSM can be written as

p(y1, ..., yT|x1, ..., xT) = p(y1|x1)
T

∏
t=2

p(yt|xt, Ωt−1).

We define

ξ̂t|s = E(ξt|Ωs), (29)

Σt|s = E

[(
ξt − ξt|s

) (
ξt − ξt|s

)> ∣∣∣Ωs

]
. (30)

Clearly, ξ̂t+1|t is the predictor of ξt+1. ξ̂t|t is called the filter of ξt while ξ̂t|T is called the

smoother of ξt. Denote yt|t−1 := yt|xt, Ωt−1 and ŷt|t−1 := E(yt|xt, Ωt−1). The Kalman

filter is illustrated in Algorithm 3. Note that the observed-data likelihood at period t may

be obtained from Step 2. If the observed-data likelihood is maximized over the parameter

space, one obtains the maximum likelihood estimator.

2.1.10 Local constant regression models

So far, we have assumed that yt is a parametric function of lagged values of yt, such as

(yt−1, yt−2, . . . , yt−k),

yt = f (yt−1, yt−2, . . . , yt−k) + εt. (31)

with initial values y0. It is straightforward to show that

E[yt|yt−1, yt−2, . . . , yt−k] = f (yt−1, yt−2, . . . , yt−k).

Denote X t−1 = (yt−1, yt−2, . . . , yt−k)
> and the initial vector Xk−1 = (yk−1, yk−2, . . . , y0)

>.

We can rewrite (31) as

yt = f (X t−1) + εt. (32)

In this section, we introduce several nonparametric methods to estimate f (·) where the

functional form of f is determined by data. Our discussion mainly follows Härdle et al.
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Algorithm 3 Kalman filter

1. Set ξ1|0 to be distributed as the unconditional distribution so that ξ̂1|0 = E(ξ1), and
Σ1|0 = E[(ξ1 −E(ξ1))(ξ1 −E(ξ1))

>].

2. Then y1|x1 = A>x1 + H>ξ1|0 + w1 so that

ŷ1|0 = E(y1|x1) = A>X1 + H>ξ̂1|0,

E[(y1 − ŷ1|0)
2] = H>Σ1|0H + R.

3. Let

ξ̂1|1 = E(ξ1|y1, x1)

= E(ξ1|x1) + E[(ξ1 − ξ̂1|0)(y1 − ŷ1|0)]

×{E[(y1 − ŷ1|0)
2]}−1 × (y1 − ŷ1|0)

= ξ1|x1 + Σ1|0H(H>Σ1|0H + R)−1(y1 − A>x1 − H>ξ̂1|0).

The associated Σ1|1 = Σ1|0 − Σ1|0H(H>Σ1|0H + R)−1H>Σ1|0.

4. Then ξ̂2|1 = E(ξ2|y1, x1) = FE(ξ1|y1, X1) = F ξ̂1|1. The associated Σ2|1 = FΣ1|1F> +
Q.

5. Repeat Steps 2-4 by rolling the sample forward.

6. To get the smoother, calculate

ξ̂t|T = ξ̂t|t + Jt(ξt+1 − ξ̂t+1|t),

Σt|T = Σt|t + Jt(Σt+1|T − Σt+1|t)J>t ,

where Jt = Σt|tF
>Σ−1

t+1|t.

7. To obtain out-of-sample forecasts, calculate

ξ̂T+h|T = Fhξ̂T|T,

ŷT+h|T = A>xT+h + H>Fhξ̂T|T.

29



(1997) and Tsay and Chen (2018).

Let x = (x1, x2, . . . , xk) be a k-dimensional realization of X t−1. Note that the conditional

mean of yt, i.e. E (yt|X t−1 = x) = f (x) is the quantity of interest before a prediction is

made. The sample can be rewritten as ((yk, Xk−1), (yk+1, Xk), . . . , (yT, XT−1)). Denote

the neighborhood of x as Ni(x) = {t|‖X t−1 − x‖ < hi, t = k, . . . , T}, where hi is a given

positive real number and ‖ · ‖ stands for the Euclidean norm. The term Ni(x) consists of

the time index of past k-dimensional vectors X t−1 that are in the hi-neighborhood of x.

Suppose f is continuous. A simple estimator of f̂ is the sample mean of yt’s in Ni(x)

such that

f̂ (x) =
1

#Ni(x) ∑
t∈Ni(x)

yt, (33)

where #Ni(x) denotes the number of the k-dimensional vectors in Ni(x). Equation (33)

represents a kernel estimation of f (·) with a uniform kernel. The uniform kernel takes the

form

K0(u) =
1
2

I(|u| ≤ 1). (34)

The Gaussian kernel is another popular choice:

Kφ(u) =
1√
2π

exp
(
−u2

2

)
. (35)

There are other kernel functions that have been shown to be versatile in practice. To

estimate f , Robinson (1983), Auestad and Tjøstheim (1990), Härdle and Vieu (1992)

proposed a Nadaraya-Watson estimator

f̂ (x) =
∑T

t=k+1 ∏k
i=1 K [(xi − yt−i) /hi] yt

∑T
t=k+1 ∏k

i=1 K [(xi − yt−i) /hi]
, (36)

where K(·) is a chosen kernel and hi is the bandwidth for the ith lagged variable.

In Equation (33), f̂ (x) is obtained by taking an average of specific yt observations in

the neighborhood of x, henceforth the name, local constant regression. One alternative is
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to use polynomial regression on the observations in the same neighborhood, which gives

rise to the so-called local polynomial regression. For the sake of notational simplicity, we

assume x is one dimensional.

The concept of local polynomial regression is to perform the Taylor expansion of f (z)

at x such that

f (z) ≈
m

∑
j=0

f (j)(x)
j!

(z− x)j :=
m

∑
j=0

β j(z− x)j, (37)

where f (j) denotes the jth derivative of f . Here β j is estimated by minimizing the objective

function of a locally weighted polynomial regression using all the points in the neighbor-

hood of x:

L(β) = ∑
t∈Nx

[
yt −

m

∑
j=0

β j (xt−1 − x)j

]2

K
(

xt−1 − x
h

)
, (38)

where Nx denotes the neighborhood of x with bandwidth h and β = (β1, β2, . . . , βm)>.

Note that if m = 0, Model (37) is simply a local constant regression. If m = 1, Model (38)

can be rewritten as

L(β) = ∑
t∈Nx

[yt − β0 − β1 (xt−1 − x)]2 K
(

xt−1 − x
h

)
, (39)

which is a weighted least squares estimator of β0 and β1 in the neighborhood of x. The

estimator β̂0 and β̂1 Model (39) is called the local linear regression.

Under the assumption that the underlying f (x) is continuously differentiable, the local

polynomial estimator is superior to the kernel estimator with smaller bias, faster conver-

gence rate, and smaller mini-max risk (Tsay and Chen, 2018). It also performs better on

the boundary of the observed data. Unfortunately, both the kernel estimator and the local

polynomial estimator subject to the curse-dimensionality problem when k takes a moderate

or large values, making them difficult to implement in a data-rich environment.
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2.1.11 Models with a structure break

Assume the DGP for (yt, X>t ) for t = 1, 2, . . . , T is

yt = β>1 X t + εt, t ≤ Tb,

yt = β>2 X t + εt, t > Tb,
(40)

where yt is a one dimensional response variable, X t is a k × 1 independent variable, β1

and β2 are both k× 1 parameter vectors, εt is the error term with εt ∼ iid(0, σ2), and Tb

is the break date. For convenience, we define τ = Tb/T as the break date fraction. The

pre-break sample consists of the data in periods t = 1, 2, . . . , Tb, while the remaining data

define the post-break sample.

Following Hansen (2012), Model (40) can be rewritten in the following compact form

yt = β>1 X tI (t ≤ Tb) + β>2 X tI (t > Tb) + εt. (41)

Assume Tb is known and we want to test the null hypothesis that no structure break exists,

that is,

H0 : β1 = β2. (42)

Chow (1960) proposed a F test for H0. Note that if X t = yt−1 and there is no prior

information about the size of β1, Jiang et al. (2019) demonstrated that the OLS estimator

of β1 follows a different asymptotic distribution, which can be used in testing the timing

of the structure break.

2.1.11.1 Forecasting with breaks Following Hansen (2012), forecast based on struc-

ture break model should focus on the final break date since forecasting concentrates on

the behavior of data in the future not in the past. Hansen (2012) proposed a procedure for

forecasting after structure break. First, we test for the existence of breaks with Andrews’

sup-F test. If there exists breaks, we estimate the break dates first, then forecast with the
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data after the final break date.

On the other hand, Pesaran and Timmermann (2007) pointed out that forecast based

on the post-break period may not be optimal due to the well-known bias-variance trade-

off. That is, we may reduce the (forecast) variance by using some pre-break data in the

cost of potentially increasing bias. Provided the break is not too large, pre-break data can

be informative for forecasting outcomes even after the break.

Following Pesaran and Timmermann (2007), let m denote the starting point of the

sample of the most recent observations to be used in estimation for the purpose of fore-

casting yT+1 based on (41) and information ΩT. Denote Xm,T as the (T − m + 1) × p

matrix of observations on the regressors such that rank (Xm,T) = p, while Ym,T is the

(T −m + 1)× 1 vector of observations on the dependent variable. Defining the quadratic

form Qτ,Ti = X>τ,Ti
Xτ,Ti so that Qτ,Ti = 0 if τ > Ti, the OLS estimator of β based on the

sample from m to T(m < T − p + 1) is given by

β̂T(m) = Q−1
m,TX>m,TYm,T. (43)

Then, the one-step-ahead forecasting error is

eT+1(m) = yT+1 − ŷT+1 =
(

β2 − β̂T(m)
)>

XT + εT+1. (44)

From (44), the MSFE is E
[
e2

T+1(m)
]
.

Under some regularity conditions, Pesaran and Timmermann (2007) showed that the

optimal pre-break window that minimizes the MSFE gets longer if (i) the signal-to-noise

ratio ω/σ2 is smaller; (ii) the size of the break (β1 − β2)
2 is smaller; (iii) the post-break

sample size is smaller.

Instead of using the post-break window, Pesaran and Timmermann (2007) proposed

to use a cross-validation method for selecting the optimal window. Let the pseudo-out-of-
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sample MSFE be

MSFE(m|T, ω̃) = ω̃−1
T−1

∑
τ=T−ω̃

(
yτ+1 − X>τ β̂m:τ

)2
, (45)

where ω̃ is the number of the last observations held out for prediction and β̂m:τ is the OLS

estimate based on the observation window [m, τ]. Let T̂b be the estimate of break date and

ω be the minimum number of observations needed for estimation. The optimal window

size m∗ is defined as

m∗
(
T, T̂1, ω, ω̃

)
= arg min

m=1,...,min(T̂1+1,T−ω−ω̃)
MSFE(m|T, ω̃). (46)

The forecasts of yT+1 is then

ŷT+1
(
T, T̂1, m∗

)
= X>T β̂m∗ :T. (47)

Pesaran and Timmermann (2007) also proposed averaging forecasts across estimation

windows for yT+1 based on MSFE,

ŷT+1,W
(
T, T̂1, ω̃

)
=

∑T̂1+1
m=1

(
X>T β̂m:T

)
MSFE(m|T, ω̃)

∑T̂1+1
m=1 MSFE(m|T, ω̃)

. (48)

If the break date is unknown, it can be shown that

ŷT+1,W(T, ω, ω̃) =
∑T−ω−ω̃

m=1

(
X>T β̂m:T

)
MSFE(m|T, ω̃)

∑T−ω
m=1 MSFE(m|T, ω̃)

. (49)

Pesaran and Pick (2011) showed that the model averaging method improves forecasts

without relying on estimates of break dates and size.

Pesaran et al. (2013) proposed to forecast yT+1 based on weighted observations and

derived the weights that minimizes the MSFE of the resulting forecast. For model (41),

34



the estimator of slope parameter over the whole weighted sample is

β̂T(w) =

(
T

∑
t=1

wtxtX>t

)−1 T

∑
t=1

wtX tyt, (50)

where ∑T
t=1 wt = 1. Then, the one-step-ahead forecasting error is

eT+1(w) = yT+1 − ŷT+1 =
(

β2 − β̂T(w)
)>

XT + εT+1, (51)

where w = (w1, w2, . . . , wT) and the scaled MSFE can be defined as

MSFEs(w) = E
[
σ−2e2

T+1(w)|X t, t = 1, 2, . . . , T + 1
]

. (52)

The optimal weights can then be estimated by

w∗ = arg min
w

MSFEs(w) (53)

subject to ∑T
t=1 wt = 1. In general, (53) has to be solved numerically. Once we obtain w∗,

the forecast of yT+1 is simply

ŷT+1
(
T, T̂b, w∗

)
= X>T β̂(w∗). (54)

Pesaran et al. (2013) proved that the optimal averaged forecast can achieve smaller MSFE

than those by the post-break window method and the cross-validation method in Pesaran

and Timmermann (2007).

2.1.12 GARCH models

Perhaps the most famous model that describes volatility is the generalized autoregressive

conditional heteroskedasticity (GARCH) model of Bollerslev (1986). As the name indi-

cates, GARCH is the generalized version of the autoregressive conditional heteroskedastic-
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ity (ARCH) model. Proposed by Engle (1982), the ARCH model assumes the variance of

the current error term as a function of lagged squared errors. Essentially, the ARCH model

assumes the squared return follows an AR model, whereas the GARCH model extends the

ARCH model by assuming the squared return follows the ARMA model.

Let yt denote the return of an asset at time t (with the unconditional mean removed).

Then, an ARCH(q) process can be written as

yt = σtεt; σ2
t = α0 +

q

∑
i=1

αiy2
t−i,

where αi > 0 for all i, and εt ∼ iid(0, 1). The GARCH(p, q) process is

yt = σtεt; σ2
t = α0 +

q

∑
i=1

αiy2
t−i +

p

∑
i=1

β jσ
2
t−j,

where αi > 0, β j > 0 for all i, j. GARCH models are usually estimated by the maximum

likelihood method.

There are various extensions on GARCH. For example, the integrated GARCH imports

a unit root, hence requiring ∑
q
i=1 αi + ∑

p
i=1 β j = 1; the exponential GARCH by Nelson

(1991) focuses on ln σ2
t instead of σ2

t , hence imposing no sign restrictions for parameters;

GARCH-in-mean model adds the conditional variance or standard deviation into the mean

equation; and the Quadratic GARCH model by Sentana (1995) allows for asymmetric

effects of positive and negative shocks.

2.1.13 Stochastic volatility models

Unlike ARCH-type models, stochastic volatility (SV) models specify volatility as a sepa-

rate random process, which provides certain advantages over the ARCH-type models for

modeling the dynamics of asset returns (Kim et al., 1998). The basic SV model specifies

yt = σtεt; ln σ2
t = α + φ ln σ2

t−1 + σvvt, (55)
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ut and vt ∼ iidN(0, 1) and corr(ut, vt+1) = 0. The ARCH class of models assumes that the

variance is a simple function of lagged “news”. Alternatively, in the SV model it is assumed

that the log-variance is itself a stochastic process. The continuous time version of this type

of model has been widely used to price options, for example, Hull and White (1987) and

Heston (1993).

In the SV model, the variance is latent and the likelihood function does not have a

closed-form expression. Consequently, the maximum likelihood estimation of the SV model

is more difficult than that of the ARCH-type models. However, with the development of

effective estimation methods in recent years, the difficulties in estimating SV models has

disappeared; see the survey by Shephard (2005).

The basic SV model may be approximated by a SSM for which the Kalman filter tech-

nique can be applied. This estimation method, originally suggested by Harvey et al.

(1994), is termed the quasi-maximum likelihood method. The SSM that is used to ap-

proximate the SV model has the expression:

ln y2
t = −1.27 + ln σ2

t + et, et ∼ iidN(0, π2/2),

ln σ2
t = α + φ ln σ2

t−1 + σvvt, vt ∼ iidN(0, 1).

Clearly one can obtain forecast of ln(σ2
t ) as shown in Yu (2002).

Many statistically more efficient estimation methods and more complicated SV specifi-

cations have been proposed in the literature. Examples include Jacquier et al. (1994), Kim

et al. (1998), Yu (2005), Jacquier et al. (2004), Yu (2012). For a review of SV models, see

Shephard (2005).

One estimation method, which also provides forecast of σ2
t as a by-product, is based

on Bayesian Markov chain Monte Carlo (MCMC). Various MCMC algorithms have been

proposed to sample from the posterior distributions of the parameters in the context of the

basic SV model. An early example is the single-move Metropolis-Hastings (MH) algorithm

developed by Jacquier et al. (1994). To achieve better simulation efficiency, Kim et al.
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(1998) developed multi-move MCMC algorithms.

As σ2
t is latent, to facilitate the Bayesian computing, one may enlarge the parameter

space by including (σ2
1 , . . . , σ2

T+1) as additional parameters. This technique, due to Tanner

and Wang (1987), is known as data augmentation. A fully Bayesian model consists of

the joint prior distribution of (α, φ, σv), and (σ2
1 , . . . , σ2

T+1), and the joint distribution of

the observables, (y1, . . . , yT). Bayesian inference is based on the posterior distribution of

the unobservables given (y1, . . . , yT). Let p denote the probability density function. By

successive conditioning, the joint prior density is

p(α, φ, σv, σ2
1 , . . . , σ2

T+1) = p(α, φ, σv)p(σ2
1 |φ, σv)

T

∏
t=1

p(σ2
t+1|σ2

t , α, φ, σv). (56)

The likelihood, p(y1, . . . , yT|α, φ, σv, σ2
1 , . . . , σ2

T+1) is given by

p(y1, . . . , yT|α, φ, σv, σ2
1 , . . . , σ2

T+1) =
T

∏
t=1

p(yt|σ2
t , α, φ, σv), (57)

If the prior distributions are independent, then, by Bayes’ theorem, the joint posterior dis-

tribution of the unobservables given the data is proportional to the prior times likelihood,

that is,

p(α, φ, σv, σ2
1 , . . . , σ2

T+1|y1, . . . , yT) ∝ p(α)p(φ)p(σv)p(σ2
1 |φ, σv)

∏T
t=1{p(σ2

t+1|σ2
t , α, φ, σv)p(yt|σ2

t , α, φ, σv)}.

MCMC algorithms are designed to draw correlated samples, or more precisely stationary

and ergodic Markov chains, from the posterior distributions. Once the chains have con-

verged and the number of draws is large enough, a nonparametric approach may be used

to approximate any posterior distribution arbitrarily well. In particular, one can obtain the

posterior mean, posterior variance, and credible interval.

As a by-product to the Bayesian analysis, one also obtains MCMC samples for the latent

variables. Since the posterior distribution p(σ2
T+1|y1, . . . , yT) can be approximated arbi-
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trarily well by MCMC samples, its expectation forms the best one-step-ahead forecast of σ2
t

in terms of MSFE as far as forecasting is concerned. If a k-step-ahead forecast is needed,

one can treat σ2
T+k as an additional parameter in data augmentation and obtain the poste-

rior distribution p(σ2
T+k|y1, . . . , yT). Then the expectation of this conditional distribution

forms the best k-step-ahead forecast of σ2
t

2.2 Multivariate econometric models

The univariate models can be extended to a multivariate setup in straightforwardly. For

example, a popular class of multivariate models for forecasting macroeconomic variables

is reduced-form VAR models which are the multivariate extension to AR models. A popular

multivariate model for forecasting variance and covariance of multiple assets is multivari-

ate GARCH models (MGARCH). A class of methods which are unique to the multivariate

setup are factor models and factor-augmented VAR (FAVAR) models. Importantly, most

structural models do not have univariate counterparts as equations specified in these mod-

els typically correspond to economic theory or economic restrictions.

2.2.1 Vector autoregressive models

A vector autoregressive model (VAR) of order p, usually denoted as VAR(p), for a m-

dimensional vector of variables yt = (y1t, y2t, . . . , ymt)> can be written as

yt = µ + Φ1yt−1 + . . . + Φpyt−p + εt, (58)

where Φi is a m× m matrix for i = 1, . . . , p, µ is a m-dimensional intercept, εt ∼ (0, Σ).

While it is typically assumed that εt is uncorrelated over t but Σ is not diagonal in gen-

eral. Therefore, the elements in εt are contemporaneously correlated. The number of

parameters in Model (58) is m + mp2 + m(m+1)
2 which quickly increases as m increases.
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Note that Model (58) can be written in a compact form as

yt = Bxt + εt, (59)

where

B =
(
µ, Φ1, . . . , Φp

)
, xt =

(
1, y>t−1, . . . , y>t−p

)>
. (60)

VAR in the form of (59) can be treated as a system of mth equations with the ith equation

being

yt,i = Bi·xt + εt,i, (61)

for i = 1, 2, . . . , m, where Bi· is the ith row of B.

Forecasting with VAR is similar to AR case and the h-step-ahead forecast is

ŷT+h,T = Φ1ŷT+h−1,T + Φ2ŷT+h−2,T + ΦpŷT+h−p,T, (62)

where ŷT+h−j,T is the (h− j)-step-ahead forecast and ŷT+h−j,T = yT+h−j for j > h.

An important concept in VAR is the Granger causality. In Model (58), y2t Granger

causes y1t if y2,t helps predict y1,t at some stage in the future. Consider a three-dimensional

VAR model, 
y1,t

y2,t

y3,t

 =


µ1

µ2

µ3

+


Φ1

11 Φ1
12 Φ1

13

Φ1
21 Φ1

22 Φ1
23

Φ1
31 Φ1

32 Φ1
33




y1,t−1

y2,t−1

y3,t−1

+


ε1,t

ε2,t

ε3,t

 , (63)

y2,t does not Granger-cause y1,t if Φ1
12 = 0 which means that y2,t does not depend on the

lag of y1,t. Note that Granger causality only means that y2,t can be used to improve the

forecast of y1,t if Φ1
12 6= 0. It does not mean the real causal relationship between y1,t and

y2,t.
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2.2.2 Factor models

For many countries, there exists a rich array of macroeconomic time series and financial

time series (i.e. a large m in Model (58)). If m is very large, and even when p is moderately

small, the total number of parameters in Model (58) can be oversized.4 Typically a model

with too many parameters does not perform well out-of-sample.

To reduce the dimensionality and to extract the information from the large number of

time series, factor analysis has been widely used in the empirical macroeconomic litera-

ture and in the empirical finance literature. For example, by extending the static factor

models previously developed for cross-sectional data, Geweke (1977) proposed the dy-

namic factor model for time series data. Many empirical studies, such as Sargent and Sims

(1977), Giannone et al. (2004), have reported evidence that a large fraction of variance

of many macroeconomic series can be explained by a small number of dynamic factors.

Stock and Watson (2002) showed that dynamic factors extracted from a large number of

predictors lead to improvement in predicting macroeconomic variables. Not surprisingly,

high dimensional dynamic factor models have become a popular tool for macroeconomists

and policymakers in a data-rich environment. An excellent review on the dynamic factor

models is given by Stock and Watson (2011).

The dynamic factor model is given by

yt = FtL> + εt, (64)

Ft = Ft−1Φ> + ηt,

where yt is a 1×m vector of time series variables, Ft a 1× K vector of unobserved latent

factors which contains the information extracted from all m time series, L an m× K factor

loading matrix, Φ the K×K autoregressive parameter matrix of unobserved latent factors.

Typically K is much smaller than m. For example, m can be as large as a few hundreds

while K is usually a single-digit number. It is assumed that εt ∼ N (0, Σ) and ηt ∼ N (0, Q).

4For example, if m=100 and p is 4, the number of parameters contained in Model (58) is 40100.
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For the purpose of identification, Σ is assume to be diagonal and εt and ηt are assumed to

be independent with each other. Following Bernanke et al. (2005), we set the first K × K

block in the loading matrix L to be the identity matrix.

Clearly Model (64) is a SSM for which the Kalman filter is applicable to obtain forecasts

of yt. While the Kalman filter may be used to obtain the maximum likelihood estimates of

the model, if m is large, even when p is small, the parameter space is of a high dimension,

making maximum likelihood estimation not operational. To avoid this numerical issue,

one can use a Bayesian method to sample from the posterior distribution; see for example,

Aguilar and West (2000), Bai and Wang (2015).

2.2.3 Factor-augmented vector autoregressive models

Following Bernanke et al. (2005), let yt be a N × 1 stationary time series with a large N,

X t a M vector of observable variables which drive the dynamics of the economy (such as

the federal funds rate). Suppose the information included in yt can be summarized by a

K× 1 unobservable variables Ft where N � K.

Following Bernanke et al. (2005), yt is driven both by Ft and X t as

yt = ΛFFt + ΛXX t + εt, (65)

where ΛF is an N×K matrix of factor loadings, ΛX is a N×M matrix. The joint dynamics

of (Ft, X t) are given by  Ft

X t

 = Φ(L)

 Ft−1

X t−1

+ ηt (66)

where Φ(L) is a conformable lag polynomial of finite order d and ηt ∼ N (0, Q). Equation

(66) is referred to as the factor-augmented VAR (FAVAR) model (Bernanke et al., 2005).

2.2.3.1 Estimation of FAVAR Although Equation (66) is a VAR of (Ft, Y t), it can not

be estimated directly since Ft is unobservable. Bernanke et al. (2005) proposed a two-

42



step method which estimates Ft from Equation (65) in the first step, and then estimate

Equation (66) using the results from the first step.

In the first step, following Bernanke et al. (2005), the principal components analysis

(PCA) is used to extract the first K components denoted by Ĉt (Ft, X t). It is invalid to

directly estimate VAR with Ĉt (Ft, X t) and X t since Ĉt (Ft, X t) involves X t. To remove

the dependence of Ĉt (Ft, X t) on X t, Bernanke et al. (2005) divided yt into two groups,

“slow-moving” variables and “fast-moving” variables. Slowing-moving variables, such as

wages, are assumed not to respond contemporaneously to unexpected change in policy

instrument, while fast-moving variables, such as asset prices, are assumed respond con-

temporaneously to unexpected change in policy instrument.

Since slow-moving variables are uncorrelated with X t, the principal components from

them, F̂s
t , are also uncorrelated with X t. Then by estimating the following regression

Ĉt (Ft, X t) = βs F̂s
t + βXX t + vt, (67)

the dependence of Ĉt (Ft, X t) on X t can be removed, leading to

F̂t = Ĉt (Ft, X t)− β̂XX t. (68)

In the second step, we use X t and F̂t to estimate (66).

From (66), suppose that we have a FAVAR(d) Ft

X t

 = Φ1

 Ft−1

X t−1

+ Φ2

 Ft−2

X t−2

+ · · ·+ Φd

 Ft−d

X t−d

+ ηt. (69)

Then the forecast of (FT+h, XT+h) can be obtained as in (62) since it is a VAR model. The

forecast of (FT+h, XT+h) can be then used to forecast yT+h based on Equation (65).

43



2.2.4 Multivariate GARCH models

Let yt denote a vector of N log-returns yt = (y1t, y2t, · · · , yNt)
>. The key variable that mul-

tivariate GARCH (MGARCH) tries to model is the conditional covariance matrix, Et−1(yty
>
t ) :=

Ht. It is a N×N dimensional symmetric and positive definite matrix. There are three gen-

eral approaches in modeling Ht. The first one is to extend the univariate GARCH frame-

work to a multivariate version in which both variances and covariances are allowed to

be time-varying. The second one is to model the dynamics of the conditional correlation

coefficients. The third one is to use dimension reduction techniques such as factor models.

Here we only review two MGARCH models, one from each of the first two approaches.

The literature is well reviewed in Bauwens et al. (2006).

Following Engle and Kroner (1995), the BEKK specification5 for a MGARCH(1,1) model

has the form

Ht = CC> + A yt−1y>t−1 A> + B Ht−1B>, (70)

where C is a (N × N) lower triangular matrix of unknown parameters, and A and B are

(N × N) matrices each containing N2 unknown parameters associated with the lagged

disturbances and the lagged conditional covariance matrix, respectively.

A drawback of the BEKK model is that it has to so many parameters when N is even

moderately large. For example, when N = 3 there are 24 parameters. When N = 5 there

are 65 parameters. That explains why the BEKK model has not found many applications in

practice.

The dynamic conditional correlation (DCC) model of Engle (2002) deals with the cor-

relation coefficients directly and is specified as

Ht = St Rt St, (71)
5The BEKK stands for Baba, Engle, Kraft and Kroner. An early version of the paper was written by Baba,

Engle, Kraft, and Kroner, which led to the acronym BEKK and was used in Engle and Kroner (1995) for the
new parameterization presented.
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where

St =


√

h11t 0
. . .

0
√

hNNt

 , (72)

and Rt is the conditional correlation matrix. DCC assumes

hiit = αi0 + αi1y2
i t−1 + βi1hii t−1, i = 1, 2, · · ·N, (73)

Rt = diag(Qt)
−1/2 Qt diag(Qt)

−1/2, (74)

where Qt is a pseudo correlation matrix which evolves as

Qt = (1− α− β)Q + αzt−1z>t−1 + βQt−1. (75)

Forecast in Ht can be carried out in the same way as in univariate GARCH models.

2.2.5 Multivariate stochastic volatility models

While MGARCH models assume Ht as a function of past returns, in multivariate stochastic

volatility (MSV) models, Ht depends on a separate error term. One of the simplest MSV

model was proposed in Harvey et al. (1994) as

yt = H1/2
t εt,

Ht = diag{exp (h1t/2) , . . . , exp (hNt/2)} := diag{exp (ht/2)},

ht+1 = µ + φ � ht + vt+1, εt

vt+1

 ∼ N

 0

0

 ,

 Pε 0

0 Σv

 ,

where ht = (h1t, . . . , hNt)
>, µ and φ are N× 1 parameter vectors, the operator “�” denotes

the Hadamard (or element-by-element) product, Pε :=
(
ρij
)

is the correlation matrix, and
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Σv is a symmetric positive definite matrix. Clearly, ρii = 1 for all i.

Many other MSV models have been proposed in recent years. Various specifications in

the context of 2 dimensional case can be found in Yu and Meyer (2006), some of which

have straightforward high-dimensional extensions. A review of the literature on estimating

MSV models can be found in Asai et al. (2006). To forecast future values of ht, if a Bayesian

MCMC method is used, one can use the data augmentation technique by treating the future

values of ht as the parameters, as explained in the section where the univariate SV models

were discussed.

2.2.6 Structure vector autoregressive models

Suppose we have a three dimensional VAR(1) model, for real GDP growth (∆yt), inflation

(πt) and the interest rate (rt), as
∆yt

πt

rt

 =


Φ1

11 Φ1
12 Φ1

13

Φ1
21 Φ1

22 Φ1
23

Φ1
31 Φ1

32 Φ1
33




∆yt−1

πt−1

rt−1

+


ε1,t

ε2,t

ε3,t

 . (76)

The VAR as in Equation (76) is denoted as the reduced-form VAR. With Model (76), we can

describe the dynamic properties of the three variables from the lagged coefficients (Φ1
ii),

explore the interaction between any two variables from the cross-variable coefficients (Φ1
ij,

i 6= j) and forecast the future values of the variables.

In practice, however, it is also important to understand the effect of a shock over time

on the different variables and the contribution of a shock to the behaviour of the different

variables. We refer to the first as Impulse Response Function (IRF) analysis and the second

as Forecast Error Variance Decomposition (FEVD). In IRF and FEVD, we try to analyze the

effect of structure shocks.

We can not interpret the reduced-form error term (i.e. εt := (ε1,t, ε2,t, ε3,t)
>) as struc-

ture shocks, since it is impossible to isolate the effect of different shocks because they are
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correlated. In other words, the fact that the covariance matrix of εt is not diagonal makes

it difficult to interpret the impact of shocks.

To implement the policy analysis, such as the IRF and FVED, we need orthogonal

shocks. In this section, we introduce the Structure VAR (SVAR) model as

Ayt = Byt−1 + ut, ut ∼ iid(0, I), (77)

where A is an invertible matrix, ut are serially uncorrelated and independent of each other

and can be interpreted as structure shocks since I is an identity matrix. Then the structure

form of Model (76) is
a11 a12 a13

a21 a22 a23

a31 a31 a33




∆yt

πt

rt

 =


b11 b12 b13

b21 b22 b23

b31 b32 b33




∆yt−1

πt−1

rt−1

+


u∆yt

uπt

urt

 , (78)

where u∆yt, uπt and urt can be interpreted as aggregate shock, cost-push shock and mone-

tary policy shock respectively. And Model (76) also can be expressed into
a11∆yt + a12πt + a13rt = b11∆yt−1 + b12πt−1 + b13rt−1 + u∆yt

a21∆yt + a22πt + a13rt = b21∆yt−1 + b22πt−1 + b23rt−1 + uπt

a31∆yt + a32πt + a33rt = b31∆yt−1 + b32πt−1 + b33rt−1 + urt

, (79)

which is a linear equation system.

SVAR usually contains a set of equations with each equation describing the type of

decision rules motivated by economic theory. One example is that consumers demanded

a certain quantity of aggregate output based on the aggregate price level as well as how

liquid they were, with the latter being measured by real money holdings. Clearly, SVAR

aims to capture how endogenous variables are related to other endogenous variables and

some exogenous variables. While SVAR facilitates interpreting data, it makes the estima-

tion more difficult due to the presence of endogeneity which means that SVAR can not be
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estimated by equation-by-equation OLS. For instance, in the equation for ∆yt, we have

∆yt =
1

a11

(
−a12πt − a13rt + b11∆yt−1 + b12πt−1 + b13rt−1 + u∆yt

)
, (80)

with the assumption that a11 6= 0, where cov(πt, u∆yt) 6= 0 because of the contemporane-

ous dependence of ∆yt on πt.

To solve this problem, we transform SVAR to a reduced-form VAR by pre-multiplying

Equation (77) by A−1

yt = Φ1yt−1 + εt, εt ∼WN(0, Σ), (81)

where Φ1 = A−1B, εt = A−1ut and Σ = A−1 (A−1)>. We can estimate Equation (81)

using equation by equation OLS to get Φ̂
1 and Σ̂ and then recover Â and B̂. Here the key

step is to recover the Â from Σ̂, that is,

Σ̂ = Â−1
(

Â−1
)>

. (82)

Note that Â−1 has m2 different elements since it’s not symmetric. However, both Â−1
(

Â−1
)>

and Σ̂ are symmetric so that we can only get m(m+1)
2 non-redundant equations from (82).

Here we have m(m+1)
2 equations for m2 unknown elements so there are more than one so-

lution to Equation (82). This means Â is not identifiable. There exists several approaches

to identify Â with the help of economic theory.

2.2.6.1 Short-run restrictions From Model (82), there are m(m+1)
2 equations for m2

unknown elements. We still need extra m(m−1)
2 constraints. The short-run restriction de-

pends on the Cholesky decomposition. The Cholesky decomposition of a positive definite

matrix is a decomposition of the form Σ = L>L, where L> is a unique lower triangular

matrix with real and positive diagonal entries. By setting the m(m−1)
2 upper triangular el-

ements of A to 0, we have L> = A−1. Then A−1 is a lower triangular matrix, so is A. Â

can be recovered from the Cholesky decomposition of Σ̂, that is, Σ̂ = L̂> L̂.
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With the short-run restrictions, Model (78) can be written as
a11 0 0

a21 a22 0

a31 a31 a33




∆yt

πt

rt

 =


b11 b12 b13

b21 b22 b23

b31 b32 b33




∆yt−1

πt−1

rt−1

+


u∆yt

uπt

urt

 . (83)

From Model (83), the economic meaning is that ∆yt is only contemporaneously affected by

u∆yt, not by uπt and urt. Similarly, πt is only contemporaneously affected by u∆yt and uπt,

not by urt, and rt is contemporaneously affected by u∆yt, uπt and urt. Note that different

ordering of the variables may led to different results,. In practice we can consider different

ordering to evaluate the sensitivity.

2.2.6.2 IRF An IRF describes the evolution of the variable of interest (for example,

the qth element of yt, yq,t, in (77)) along a specified time horizon after a structure shock

change sj,t which is due to the change of the jth element of ut in (77) in a given moment.

Here a structure shock change is defined as a vector with one element equal to 1 and all

the others equal to 0 such as sj,t = [0 0 · · · 1 · · · 0]> where only the jth element is 1.

The SVAR model (77) can be rewritten as

yt = Φyt−1 + A−1ut, ut ∼ (0, I), (84)

where Φ = A−1B under the condition that A is identifiable. By using the lag operator,

(84) can be written as yt = (I −ΦL)−1 A−1ut, which admits an MA(∞) representation

yt = A−1ut + ΦA−1ut−1 + Φ2A−1ut−2 + · · · . (85)

Then, holding other variables constant, the change of the qth element of y at period t + i,

yq,t+i, in response to a unit change to the jth structure shock uj,t at period t is

IRi,qj :=
∂yq,t+i

∂ut
sj,t = Ψi>

q· sj,t, (86)
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where Ψi = Φi A−1 and Ψi
q· denotes the qth row of Ψi for q, j = 1, 2, . . . , m and i = 0, 1, . . ..

Note that the (q, j)th element of matrix Φi is the impulse response of yq,t+i with respect to

the jth structure shock sj,t. Φi is a impulse response matrix at t + i.

The IRFs measure the response of current and future values of each of the variables

to a one-unit increase in the current value of one of the structural shocks, assuming that

this shock returns to zero in subsequent periods and that all other shocks are equal to zero

(Cesa-Bianchi et al., 2015).

2.2.6.3 FEVD FEVD is a way to measure how important each shock is in explaining the

forecast error variance of each variable. It is the fraction of the forecast error variance of

each variable due to each shock at different forecasting horizon. To illustrate the basic

idea of FEVD, consider a two dimensional SVAR model: y1,t

y2,t

 =

 Φ11 Φ12

Φ21 Φ22

 y1,t−1

y2,t−1

+

 A−1
11 A−1

12

A−1
21 A−1

22

 u1,t

u2,t

 . (87)

The one-step-ahead forecast of yT+1 based on
(
yT, yT−1, . . . , y1

)
, yT+1,T is

yT+1,T = ΦyT, (88)

and the forecast error variances of e1,T+1 and e2,T+1 are

Var (e1,T+1) =
(

A−1
11

)2
+
(

A−1
12

)2
, (89)

Var (e2,T+1) =
(

A−1
21

)2
+
(

A−1
22

)2
, (90)

since the covariance matrix of uT+1 is an identity matrix.

From (89) and (90), we can do forecast error variance decomposition. For instance,

the fraction of one-step-ahead forecast error variance of the first variable y1,T+1 explained
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by the first structural shock u1,T+1 and the second shock u1,T+1 are

FEVD1,1 =

(
A−1

11

)2

(
A−1

11

)2
+
(

A−1
12

)2 , FEVD1,2 =

(
A−1

12

)2

(
A−1

11

)2
+
(

A−1
12

)2 . (91)

2.2.6.4 Long-run restrictions As we have discussed in the previous sections, identifi-

cation of the shocks is needed to compute IRF and FEVD. The short-run restrictions impose

the constraints in a contemporaneous way, but economic theory tell us less about the short

term behavior than the long-term behavior. For instance, the positive aggregate demand

shocks can affect output in short-run, but have no effect in the long-run. The long-run

restrictions use the economic theory about the long-run economic behavior to identify the

structure shocks. The long-run restrictions were proposed by Blanchard and Quah (1989)

to identify supply and demand shocks.

Recall the SVAR model can be written as

yt = Φyt−1 + A−1ut, ut ∼ (0, I), (92)

where Φ = A−1B. Then the impulse response of a structure shock at time t can be

expressed as A−1. The effect is Φi A−1 after i periods. Then the long-run effect of the

structure shocks is defined as the sum of the impulse response at each period:

D =
(

I + Φ + Φ2 + · · ·
)

A−1 = (I −Φ)−1 A−1, (93)

where D denotes the long-run effect. Note that

DD> = (I −Φ)−1 A−1(A−1)
(
(I −Φ)−1

)>
= (I −Φ)−1

Σ
(
(I −Φ)−1

)>
. (94)

When an estimate of DD> is available, say D̂D>, we can use the Cholesky decomposition

to recover D̂ which means that we restrict the long-run effect D to be a lower triangular
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matrix. And then we can recover Â from (93), Â−1
=
(

I − Φ̂
)

D̂.

2.2.6.5 Sign restrictions Instead of imposing constraints on the coefficients directly,

the sign restrictions impose constraints to the IRF. Recall that the identification problem of

SVAR

Σ = A−1(A−1)>. (95)

Without constraints, the solution of (95) is not unique. If some A−1 satisfies (95), then any

other matrix takes the form A−1P> is also valid if P>P = I. The short-run and long-run

restrictions impose m(m−1)
2 constraints to obtain a unique solution of A.

The basic idea of sign restrictions is to find a set of A such that the IRF satisfies some

properties according to economic theory. For example, the monetary contractions should

raise the interest rate and lower prices, while a positive demand shock should raise the out-

put and prices (Uhlig (2005)). The algorithm from Danne (2015) illustrates the procedure

of the sign restrictions.

Algorithm 4 The Sign Restriction of SVAR

1. From reduced-form VAR, obtain the estimator Â and Σ̂.

2. For m = 1, 2, . . . , M:

(a) Draw a random orthonormal matrix P, compute Â−1
m = Â−1P>;

(b) Compute IRF(m) based on Â−1
m ;

i. If IRF(m) satisfies the sign restrictions, keep it;
ii. If IRF(m) doesn’t satisfy the sign restrictions, discard it.

3. For the remained N replications, report the median impulse response.
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2.2.7 Dynamic stochastic general equilibrium models

Dynamic stochastic general equilibrium (DSGE) models build on explicit micro-foundations

by allowing agents to do optimization. They have become very popular in macroeconomics

over the last 30 years. Earlier efforts made in the literature are the developments of esti-

mation methodology so that the estimation of variants of DSGE models can compete with

more standard time series models such as VAR.

Estimation and evaluation of the DSGE models require one to solve them and then to

construct a linear or nonlinear state-space approximation. Bayesian methods have been

widely applied to estimate the DSGE models. For a linear Gaussian approximation, the

Kalman filter can be used to compute the likelihood function; for example, Schorfheide

(2000), Lubik and Schorfheide (2006), An and Schorfheide (2007), among others. For a

non-linear non-Gaussian approximation, Fernández-Villaverde and Rubio-Ramı́rez (2005)

used the particle filter to calculate the likelihood. More recent efforts have also been made

to show the usefulness of these models for the purpose of forecasting economic variables.

See Herbst and Schorfheide (2015) for a comprehensive literature review.

2.2.7.1 A Small-Scale New Keynesian DSGE Model We begin with a small-scale new

Keynesian DSGE model from An and Schorfheide (2007) which consists of a final goods-

producing firm, a continuum of intermediate goods-producing firms, a representative house-

hold, a monetary authority and a fiscal authority.

The representative final goods-producing firm in a perfectly competitive market com-

bines a continuum of intermediate goods indexed by j ∈ [0, 1] using the technology

Yt =

(∫ 1

0
Yt (j)1−ν dj

) 1
1−ν

.

Here 1/ν > 1 represents the elasticity of demand for each intermediate good. The firm
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takes input prices Pt (j) and output prices Pt as given. Profit maximization is as follows:

max
Yt(j)

PtYt −
∫ 1

0
Yt (j) Pt (j) dj. (96)

Intermediate good j is produced by a monopolist with linear production technology

Yt (j) = AtNt (j) ,

where At is an exogenous productivity process that is common to all firms and Nt (j) is the

labor input of firm j. Labor is hired in a perfectly competitive market at the real wage Wt.

Firms face nominal rigidities in terms of quadratic price adjustment costs

ACt (j) =
φ

2

(
Pt (j)

Pt−1 (j)
− π

)2

Yt (j) ,

where φ governs the price stickiness in the economy and π is the steady-state inflation rate

associated with the final good. Firm j chooses its labor input Nt (j) and Pt (j) to maximize

the present value of future profits:

max
Pt(j)

Et

[
∞

∑
s=0

βsQt+s|t

(
Pt+s (j)

Pt+s
Yt+s (j)− Wt+s

Pt+s
Nt+s (j)− ACt+s (j)

)]
, (97)

where Qt+s|t is the time t value of a unit of the consumption good in period t + s to the

household, which is treated as exogenous by j

The representative household has positive utility from real money balances Mt/Pt and

consumption Ct relative to a habit stock which is given by the level of technology At. And it

has negative utility from hours worked Ht. Then the representative household maximizes

its utility as follows

Et

[
∞

∑
s=0

βs

(
(Ct+s/At+s)

1−τ − 1
1− τ

+ χM ln
(

Mt+s

Pt+s

)
− χH Ht+s

)]
, (98)
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with budget constraints

PtCt + Bt + Mt −Mt−1 + Tt = WtHt + Rt−1Bt−1 + PtDt + PtSCt,

where β is the discount factor, 1/τ is the intertemporal elasticity of substitution, and χM

and χH = 1 are scale factors that determine steady-state real money balances and hours

worked. Bt is the nominal government bonds which can be traded and pay the gross

interest rate Rt. The representative household receives the real profits Dt from the firms

and pays the government the lump-sum taxes Tt. SCt is the net cash inflow from trading a

full set of state-contingent securities.

Monetary policy is described by an interest rate feedback rule of the form

Rt = R∗1−ρR
t RρR

t−1eεR,t , (99)

where εR,t is a monetary policy shock and R∗t is the nominal target rate. The central bank

reacts to inflation and deviations of output from potential output

R∗t = rπ∗
( πt

π∗

)ψ1
(

Yt

Y∗t

)ψ2

, (100)

where r is the steady-state real interest rate, πt is the gross inflation rate defined as πt =

Pt/Pt−1, and π∗ is the target inflation rate, Y∗t is the potential output.

The government spending is a fraction ζt of aggregate output Yt, where ζt ∈ [0, 1]

follows an exogenous process. The government’s budget constraints is given by

PtGt + Rt−1Bt−1 = Tt + Bt + Mt −Mt−1, (101)

where Gt = ζtYt.
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The law of aggregate productivity At is

ln At = ln γ + ln At−1 + ln zt, (102)

where ln zt = ρz ln zt−1 + εz,t. Let gt = 1/ (1− ζt) denote the government spending which

follows

ln gt =
(
1− ρg

)
ln g + ρg ln gt−1 + εg,t. (103)

The monetary policy shock εR,t, the government spending shock εg,t, the technology shock

εz,t are assumed to be serially uncorrelated. The three shocks are independent of each

other at all leads and lags and are normally distributed with mean zero and standard

deviation σz, σg and σg, respectively.

The market-clearing conditions are given by

Yt = Ct + Gt + ACt, (104)

Ht = Nt. (105)

From the first order conditions of (96), (97), (98) and the market-clearing conditions

(104) and (105), the following relationships can be derived

1 = Et

[
e−τĉt+1+τĉt+R̂t−ẑt+1−π̂t+1

]
, (106)

1− ν

νφπ2

(
e

τĉt − 1
)

=
(

eπ̂t − 1
) [(

1− 1
2ν

)
eπ̂t +

1
2ν

]
, (107)

−βEt

[(
eπ̂t+1 − 1

)
e−τĉt+1+τĉt+ŷt+1−ŷt+π̂t+1

]
,

eĉt−ŷt = e−ĝt − φπ2g
2

(
eπ̂t − 1

)2
, (108)

where ct = Ct/At, yt = Yt/At are the detrended variables, ŷt, π̂t, ĉt are the percentage

deviations from the steady-state for the output, the inflation, the consumption.

From (99), (100), (102) and (103), the monetary policy rule and the shock process
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can be rewritten in deviation form as

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t + (1− ρR)ψ2 (ŷt − ĝt) + εR,t, (109)

ĝt = ρg ĝt−1 + εg,t, (110)

ẑt = ρzẑt−1 + εz,t, (111)

where R̂t, ĝt, ẑt are the percentage deviations from the steady-state for the interest rate,

the government expenditure, and the technology growth rate.

2.2.7.2 Casting DSGE model into a state-space form Equations (106) – (111) con-

stitute a DSGE model. There are two main concerns in the estimation process. First, the

system is nonlinear. Second, ŷt, π̂t, R̂t, ĉt, ĝt, ẑt are all unobservable.

By log-linearization, we approximate (106) to (108) as

ŷt = Et [ŷt+1] + ĝt − Et [ĝt+1]−
1
τ

(
R̂t − Et [π̂t+1]− Et [ẑt+1]

)
, (112)

π̂t = βEt [π̂t+1] + κ (ŷt − ĝt) , (113)

ŷt = ĉt + ĝt, (114)

where κ = τ 1−v
vπ2φ

. Then equations (112) – (114) and (109) – (111) now constitute a linear

rational expectation equation system (LRE).

The numerical solution of this LRE system takes the form

st = Φs (θ) st−1 + Φε (θ) εt, (115)

where st =
[
ŷt, ĉt, π̂t, R̂t, εR,t, ĝt, ẑt

]′
and θ is the parameters which will be defined later.

Equation (115) is a state equation for unobservable state variable vector st. We define
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a set of measurement equations to relate the state variables to a set of observed variables:

YGRt = γ(Q) + 100 (ŷt − ŷt−1 + ẑt) , (116)

INFLt = π(A) + 400π̂t, (117)

INTt = π(A) + r(A) + 4γ(Q) + 400R̂t, (118)

where YGRt is the quarter-to-quarter per capita GDP growth rates, INFLt and INTt are

the annualized quarter-to-quarter inflation rates and the annualized quarter-to-quarter

nominal interest rates, respectively. The parameters γ(Q), π(A) and r(A) are

γ = 1 +
γ(Q)

100
, β =

1
1 + r(A)/400

, π = 1 +
π(A)

400
,

where γ/β and π are the steady-states of R̂t and π̂t, respectively. Note that Equations

(116) – (118) can be reexpressed as

yt = Ψ0(θ) + Ψ1(θ)st, (119)

where yt = (YGRt, INFLt, INTt)
′ and θ =

[
τ, κ, ψ1, ψ2, ρR, ρg, ρz, r(A), π(A), γ(Q), σR, σg, σz

]′
.

Then equation (115) and (119) cast the DSGE model into a SSM.

2.2.7.3 Bayesian estimation of DSGE model The new Keynesian DSGE model can be

described as a SSM with six state equations in (115) and three measurement equations

in (119). While in principle the maximum likelihood method can be used to estimate

the DSGE model via the Kalman filter, Fernández-Villaverde (2010) pointed out that the

likelihood function of DSGE model is full of local maxima and minima and has a flat

surface. Hence, the results from the optimization of likelihood is not reliable. For these

reasons, Bayesian MCMC methods have become the standard approach to estimate DSGE

models nowadays.

The idea behind MCMC is to simulate a Markov chain whose equilibrium distribution
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is p (θ|y, M). In the Metropolis-Hastings Algorithm, the transition kernel q
(

θ(i)|θ(i−1)
)

is

used to generate a proposed new value, θcand for the chain. θcand is accepted as the new

state randomly with a particular probability.

The Random Walk Metropolis-Hastings (RWMH) algorithm for Bayesian DSGE esti-

mation is proposed by Schorfheide (2000). An and Schorfheide (2007) used transition

mixtures to deal with a multi-modal posterior distribution. Chib and Ramamurthy (2010)

proposed to use a Metropolis-within-Gibbs algorithm that cycles over multiple, randomly

selected blocks of parameters. Strid et al. (2010) proposed an adaptive hybrid Metropolis-

Hastings samplers and Herbst (2010) developed a Metropolis-within-Gibbs algorithm that

uses the information from the Hessian matrix to construct parameter blocks that maximize

within-block correlations at each iteration.

2.2.7.4 Forecasting To forecast, note that the predictive distribution is defined as

p
(

yT+1:T+H|y
T
)
=
∫

p
(

yT+1:T+H|θ, yT
)

p
(

θ|yT
)

dθ, (120)

where yT+1:T+H denotes
(
yT+1, yT+2, . . . , yT+H

)
. From (120), we can generate draws

from the predictive distribution as

p
(
yT+1:T+H|yT)
=
∫
(sT ,θ)

[∫
sT+1:T+H

p
(
yT+1:T+H|sT+1:T+H

)
p
(
sT+1:T+H|sT, θ, yT) dsT+1:T+H

]
×p
(
sT|θ, yT) p

(
θ|yT) d (sT, θ)

. (121)

2.3 Lag length and model specification techniques

Given that so many alternative models can be used to generate forecasts, it is important to

know which model should be used. In some cases, choice of model specification is amount

to choice of lag length. In this section we discuss some techniques to choose lag length

and model specification.
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Algorithm 5 Draw from the Predictive Distribution

1. For j = 1, 2, . . . , Nsim:

(a) Draw θj from p
(
θ|yT);

(b) Draw sj
T from p

(
sT|θj

)
which can be computed by Kalman filter;

(c) Draw ε
j
T+1:T+H from a multivariate normal distribution with mean 0 and a di-

agonal covariance matrix which has σ
j
R, σ

j
z and σ

j
g;

(d) Compute sj
T+1:T+H from state equation (27) with θj and sj

T;

(e) Compute yj
T+1:T+H from (26) with θj and sj

T+1:T+H;

2. For h = 1, 2, . . . , H, the h-step-ahead prediction of yT+h is

ŷT+h,T =
1
M

M

∑
j=1

yj
T+h.

2.3.1 Akaike information criterion

One of the most widely used model selection method is the Akaike information criterion

(AIC) proposed by Akaike (1973). This method generally involves calculating AIC for

all of the candidate models and ranking the criterion functions accordingly. One model is

selected at the end of this procedure, which generates the term “model selection”.

AIC is an asymptotically unbiased estimator of the Kullback-Leibler (K-L) distance be-

tween the true DGP and the predictive density of the candidate model. The AIC method

can be applied to select model only when the likelihood functions for all candidate models

are available. Given the linear model (1) with homoscedastic error term, the AIC typically

takes the following functional form:

AICm = −2ˆ̀T,m + 2dm, , (122)

where ˆ̀T,m is the maximized likelihood values of a candidate modelMm with dm predic-
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tors. The first term in Equation (122) is to measure the model fit and the second term is

the penalty for model complexity. The best model is selected by picking the one with the

lowest value of (122).

Hurich and Tsai (1989) proposed the exact estimator of the K-L distance between the

true DGP and the predictive density of the candidate model for the linear Gaussian regres-

sion models. The so-called finite-sample corrected AIC (AICc) is

AICc,m = AICm +
2(dm + 1)(dm + 2)

T − dm − 2
. (123)

In practice, the AICc method tends to have better finite-sample performance than the

conventional AIC method under the assumption that the true DGP is linear Gaussian and

the error term is iid.

A correctly specified model is a model that is the same as true DGP with some appropri-

ate parameter values. AIC type information criterion achieves asymptotic efficiency, in the

sense that their predictive performance are asymptotically equivalent to the best offered by

the candidate models, when the candidate model set contains no more than one correctly

specified model (Ding et al., 2019).

2.3.2 Mallow’s Cp

Mallow’s Cp (Mallows, 1973) provides an asymptotically unbiased estimator of the mean

squared forecast error (MSFE) for a candidate modelMm with dm predictors:

Cp,m =
1
T

(
SSRm + 2dmσ̂2

)
, (124)

where β̂ is the estimator of β and σ̂2 is a consistency estimator of the variance σ2. In

practice, σ̂2 is usually obtained by the largest model that includes all the potential predic-

tors. Similar to AIC, we choose the best model by picking the one with the lowest value
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of (124). Note that Mallow’s Cp is often used as a stopping rule for stepwise regression

which we will discuss later.

2.3.3 Bayesian information criterion

BIC by Schwarz (1978) takes the following form:

BICm = −2ˆ̀T,m + dm log T. (125)

Comparing to AIC, the penalty coefficient is replaced by the logarithm of the sample size

instead of 2.

A model selection procedure is consistent if the true DGP is selected with probability

approaching one as the sample size goes to infinity under the assumption that the true

DGP is in the candidate model set. Consistency is important if our aim is to identify the

true DGP. BIC is consistent. On the other hand, AIC chooses a larger model than true DGP

with a positive probability as the sample size goes to infinity.

2.3.4 Hannan-Quinn information criterion

Hannan and Quinn (1979) proposed the HQ information criterion to select the order of

autoregressive model:

HQm = −2ˆ̀T,m + dm log log T. (126)

If the true DGP is a fixed order autoregressive model, HQ is consistent. Note that the

penalty term is dm log log T which is usually a very small number in order to guarantee

consistency. However, when no fixed-dimension true model exists, neither BIC nor HQ is

efficient (Shao, 1997).
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2.3.5 Deviance information criterion

An information criterion based on a Bayesian estimator is the deviance information crite-

rion (DIC) proposed by Spiegelhalter et al. (2002) and justified by Li et al. (2019). Let y =

(y1, . . . , yT)
> be the data and θ be the model parameters. Denote D(θ) = −2 ln p(y|θ),

the DIC statistic of Spiegelhalter et al. (2002) is given by

DIC = D (θ̄) + 2PD, (127)

where θ̄ is the posterior mean of θ, and PD, known as “effective number of parameters”, is

given by:

PD = −2
∫
[ln p(y|θ)− ln p(y|θ̄)]p(θ|y)dθ. (128)

Spiegelhalter et al. (2002) interprets D (θ̄) as the Bayesian measure of model fit and PD

as the penalty term to measure model complexity.

Under some regularity conditions, Li et al. (2019) showed that D (θ̄) + 2ˆ̀T,m = op(1)

and PD − dm = op(1), where ˆ̀T,m and dm are defined in Equation (122). Hence, DIC can

be understood as a Bayesian version of AIC.

2.3.6 Cross-validation

2.3.6.1 Prediction errors Our discussion mainly follows Hastie et al. (2009). Before

we discuss cross-validation (CV) methods, we need to first introduce some concepts on

various types of prediction error. Given a training set Ω = {(x1, y1), (x2, y2), . . . (xT, yT)},

the extra-sample error of a predictive function f̂ is defined as

Errextra = EX0,Y0

[
L(Y0, f̂ (X0))|Ω

]
, (129)

where L is a loss function, for instance, the square loss function L(Y0, f̂ (X0)) = (Y0 −

f̂ (X0))2, and (X0, Y0) is a new point (or a vector) drawn from the same distribution as
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Ω. Notation “extra” means that input vector X0 does not need to coincide with x =

{x1, x2, . . . , xT}. If (X0, Y0) is a N-dimension vector, Equation (129) takes the form

Errextra =
1
N

N

∑
i=1

EX0,Y0

[
L(Y0

i , f̂ (X0
i ))|Ω

]
.

Note that Equation (129) is a conditional expectation depending on Ω. We can define the

expected extra-sample error as

Rextra = EΩEX0,Y0

[
L(Y0, f̂ (X0))|Ω

]
, (130)

where the above expectation is taken with respect to the distribution of Ω.

If the output of the new data, Y0, is generated following Y0
i = f (xi) + ε0

i with xi being

the input variable for function f (·) and ε0
i being the ith new error term, we can define the

in-sample error as

Errin =
1
N

N

∑
i=1

EY0

[
L(Y0

i , f̂ (xi))|Ω
]

. (131)

Then the expected in-sample error is simply

Rin = Ey(Errin) =
1
N

N

∑
i=1

EyEY0

[
L(Y0

i , f̂ (xi))|Ω
]

. (132)

The training error is usually defined as

err =
1
N

N

∑
i=1

L
(

yi, f̂ (xi)
)

. (133)

The difference between Errin and err is usually called the optimism (denoted as op):

op = Errin − err, (134)
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and the expectation of op is defined as

ω = Ey(op). (135)

Henceforth, from definitions (132), (134) and (135), the expected in-sample error can be

expressed as

Ey(Errin) = Ey(err) + ω. (136)

If we use Rin as a criterion for model selection purposes, an estimator of Rin takes the

form

R̂in = err + ω̂, (137)

where ω̂ is an estimator of ω defined in (135). Such general estimator can take various

forms and can adopt many popular model selection methods such as AIC, BIC, Mallows

Cp among others.

On the other hand, a typical CV method usesRextra as model selection measure. Similar

to the estimator of Rin, the estimator of Rextra also takes various forms and can adopt

nonparametric loss functions or machine learning techniques.

2.3.6.2 K-fold cross-validation A conventional validation approach is to split the data

set into two parts. One part is called the “training set”, which we use to estimate the model.

The other part is the “validation set”, of which the data is used to evaluate the estimated

model from the training set. But such approach has two main issues: first, different data

split leads to different result; second, only a subset of data is used to estimate the model,

which leads to substantial loss in information.

The K-fold CV, on the other hand, circumvents the issues caused by the conventional

validation approach. A typical K-fold CV randomly splits the data into K subsets of approx-

imately equal size. The kth part is treated as the validation set, and the other K − 1 parts

(together) are used as the training set to first estimate the model then evaluate the kth part.
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For example, we can use the estimated model by the training set to predict the validation

set and estimate the corresponding MSFE. We repeat the above process for k = 1, 2, . . . , K,

which results in the K-fold CV estimates of the expected extra-sample prediction error

CV( f̂ ) =
1
N

N

∑
i=1

L(yi, f̂−κ(xi)), (138)

where κ : {1, 2, . . . , N} → {1, . . . , K} is a index function indicates the number of folds each

observation belongs to and f̂−k(x) denote the fitted model with the k-th part of the data

removed. If K = T which means that each fold contains exactly one observation, this is

the leave-one-out cross validation (LOOCV).

A key point in CV is the choice of K. For example, LOOCV only removes one point

each time, it is an approximately unbiased estimator ofRextra. But the correlation between

the estimators from different folds is large because there are potentially many repeated

observations in the training sets of different folds. Another problem of LOOCV is the high

computation cost. Numbers like K = 5 and K = 10 are popular among practitioners.

2.4 Dimension reduction techniques

2.4.1 Principal component regression

The principal component regression (PCR) is a regression analysis technique that is based

on principal component analysis (PCA). PCA was first proposed in 1901 by Karl Pearson.

It is a statistical procedure that converts a set of possibly correlated variables into a set of

linearly uncorrelated variables (named principal components). In practice, PCA is often

implemented by the eigenvalue decomposition of the sample covariance matrix or the

sample correlation matrix of data or singular value decomposition of the data matrix.

Given the standardized data matrix X = [X1, X2, . . .] with dimension T × p (here we
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allow p� T). The PCA reconstructs X by

X = Zα>, (139)

where Z = [Z1, Z2, . . . , Zp] is the principal component matrix and α = [α1, α2, . . . , αp] is

the loading matrix. Equation (139) can be rewritten as

X =
p

∑
j=1

Z jα
>
j . (140)

It is straightforward to show that each principal component Z j = Xαj.

Suppose the sample covariance matrix up to sample size T is defined as Σ = X>X.

Then the sample variance of Z j is α>j Σαj. It can be shown that the jth loading vector

αj is the eigenvector corresponding to the jth large eigenvalue of Σ, λj. Then we have

α>j Σαj = λ2
j where λ1 > λ2 > . . . > λp. For better understanding, we describe PCA in

Algorithm 6. In each iteration k, PCA tries to find the kth loading vector αk which maximizes

the sample variance α>X>Xα with the constraints α>X>Xαi = 0 for i = 1, 2, . . . , k− 1.

Algorithm 6 Principal Component Analysis

1. For k = 1, the first principal component is computed as

α1 = arg max
α∈Rp

α>X>Xα

subject to α>α = 1.

2. For k = 2, 3, . . . , p, the k-th component is computed as

αk = arg max
α∈Rp

α>X>Xα

subject to α>α = 1 and α>X>Xαi = 0 for i = 1, 2, . . . , k− 1.

3. Select the first K components for dimension reduction.

The main idea of PCR is to replace the p columns in the data matrix X with their
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uncorrelated K principal components from PCA. That is, we regress y on the first K PC’s

ZK = [Z1, Z2, . . . , ZK] by OLS,

y = ZKβZK
+ ε. (141)

The PCR estimator is β̂
ZK

=
(
ZK>ZK)−1 ZK>y. Suppose the loading matrix for the first K

components is αK = [α1, α2, . . . , αK]. Then we have

ZK = XαK. (142)

From (142), we can rewrite (141) as

y = XαKβZK
+ ε = XβPCR + ε. (143)

Then we have β̂
PCR

= αK (ZK>ZK)−1 ZK>y. Equation (143) is more convenient to use for

prediction. Given a new set of observations xnew (p× 1), the prediction for ynew is simply

ŷnew = (xnew)> β̂
PCR

.

2.4.2 Partial least squares regression

The forecasting performance of PCR depends on two assumptions. First, a small number

of components from PCA explain most variation in X. Second, the first few components

are the most relevant to the response variable y. The objective of PCA is to find the

components which can explain the variation in X as much as possible. However, these

selected components may not be correlated with y. In fact, PCA is usually categorized as

an unsupervised learning method that does not consider the response variable y during its

execution.

Partial least squares (PLS), on the other hand, incorporates the information from y to

decompose the X matrix. The PLS method was originated in Wold’s nonlinear iterative
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partial least squares algorithm (Wold, 1966). To explain PLS, suppose we have

X = LKΓK> + E (144)

where LK = [L1, L2, . . . , LK] is a T × K latent (unobserved) component matrix, ΓK =

[Γ1, Γ2, . . . , ΓK] is the p× K loading matrix, E is the T × p error matrix and K < p is the

number of latent components we need.

Given Equation (144), the kth latent component Lk can be expressed as Lk = XΓk. Let

the sample covariance of Lk and the response variable y be α>k X>y, where αk is some co-

efficient vector we want to estimate. The basic idea of PLS is to estimate αk by maximizing

the square of the covariance α>k X>y in an iterative fashion. The associated estimation

algorithm is presented in Algorithm 7.

Algorithm 7 Partial Least Squares

1. For k = 1, the first principal component is computed as

α1 = arg max
α∈Rp

α>X>yy>Xα

subject to α>α = 1.

2. For k = 2, 3, . . . , p, the k-th component is computed as

αk = arg max
α∈Rp

α>X>yy>Xα

subject to α>α = 1 and α>X>Xαi = 0 for i = 1, 2, . . . , k− 1.

3. Select the first K latent components for dimension reduction.

Different from PCA, PLS maximizes the covariance between the latent components and

response variable y subject to constraints. This results in higher predictive power of the

latent components on y comparing to PCA. Similar to PCR, the partial least squares regres-
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sion (PLSR) simply regresses the response variable y on the K latent components LK

y = XΓKβLK
+ ε = XβPLSR + ε, (145)

where β̂
PLSR

= ΓKβLK
with βLK

=
(

LK>LK
)−1 (

LK)> y.

2.5 Model averaging

The model selection methods aim to select the best model from the candidate set and use

it to make inference or predict future values. An alternative to the strategy of selecting the

best available model is the model averaging, that is to average the estimators or predictions

from a collection of plausible models. We do so because we acknowledge that there is no

best model and all models are somewhat useful. In this section, we review Bayesian and

frequentist model averaging methods. Following Ding et al. (2019), useMm = {pθ : θm ∈

Θm} to denote a model, and {Mm}m∈M, is the candidate model set index by m ∈M, the

dimension ofMm is dm.

2.5.1 Bayesian model averaging (BMA)

Given a model m ∈ M, we can obtain the posterior density π (θm|y,Mm) using Bayes’s

theorem

π (θm|y,Mm) =
p (y|θm,Mm)π (θm|Mm)∫

p (y|θm,Mm)π (θm|Mm) dθm
, (146)

where π (θm|Mm) is the prior density of θm given Mm. The posterior model probability

given the observed data, π (Mm|y), is

π (Mm|y) =
π (Y |Mm)π (Mm)

∑M
m=1 π (y|Mm)π (Mm)

, (147)

where π (Mm) is the prior probability ofMm and π (y|Mm) =
∫

p (y|θm,Mm)π (θm|Mm) dθm

denotes the marginal likelihood of modelMm.
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π (Mm|y) can be used either for model selection directly or for the weight of model

averaging. Suppose the probability of future value ynew given observed data and model

Mm is

π (ynew|y,Mm) =
∫

p (ynew|θm,Mm)π (θm|y,Mm) dθm. (148)

Then the BMA prediction density of ynew is given by

π(ynew|y) =
M

∑
m=1

π (ynew|y,Mm)π (Mm|y) , (149)

which is an average of the predictions from different models weighted by the posterior

model probabilities. For more details, see Fragoso et al. (2018).

2.5.2 Frequentist model averaging (FMA)

Let f̂m denotes the prediction from the mth model, and wm to be the weight for model

Mm, where m = 1, 2, . . . , M . Then set w = (w1, w2, . . . , wM) to be the vector of weights

satisfies 0 ≤ wm ≤ 1 and ∑M
m=1 wm = 1. Hence we define the FMA estimator as

f̂ (w) =
M

∑
m=1

wm f̂m. (150)

In the frequentist framework, information criteria such as BIC and AIC can be used to

construct w. For BIC

wBIC
m =

exp
(
−1

2BICm

)
∑M

j=1 exp
(
−1

2BICj

) , (151)

and for AIC

wAIC
m =

exp
(
−1

2AICm

)
∑M

j=1 exp
(
−1

2AICj

) , (152)

where BICm and AICm denote the BIC and AIC values of the mth model.
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3 Machine Learning Methods

Unlike econometric methods, machine learning methods often do not rely on the assump-

tion of true DGP. Even under the true DGP, the relationship between the output and input

variables can be highly complicated, involving high levels of nonlinearity and interactive

terms, which cannot be described by an analytic function. Henceforth, the primary target

of most machine learning methods is not to find a DGP or anything related to the dis-

covery of the true DGP, such as properties of parameter estimation, statistical inference

of parameters and specification test of a candidate model. Most of them are algorithm-

based. Often the primary target of machine learning methods is the prediction. Clearly,

as far as the prediction is concerned, machine learning methods can pose a great deal of

challenges to conventional econometric methods, as shown in several recent studies; see

Biau and D’elia (2010), Jung et al. (2019), and Chuku et al. (2019) in forecasting GDP

growth rates, Tiffin (2016) in nowcasting GDP growth rates, and Medeiros et al. (2019) in

forecasting inflation.

In this section, we investigate the mechanism of some popular machine learning meth-

ods. We start with the multivariate adaptive regression splines. As the multivariate adap-

tive regression splines predetermines a number of choices such as choosing the number of

knots and variable selection, we explain how to use the penalized regression techniques

and variable selection techniques to make these choices. Most of these methods follow

the linear formulation. Therefore, they are closely related to conventional econometric

methods and have been studied extensively by econometricians. Forecasting based on

these methods are quite similar to forecasting using econometric methods. One needs to

estimate the coefficient (in vector form) first, then pre-multiply the input variables to the

estimated coefficient vector to obtain the forecasts.

Then, we introduce five tree-based algorithms, including the regression tree, bagging

tree, random forest, boosting tree, and the popular M5’ algorithm. We also cover the basic

concepts of neural networks and explain the working principles of support vector machine
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for regression. These methods do not impose linear restriction and rely on nonparametric

algorithms or kernel tricks to formulate the model. Some methods (bagging tree, random

forest, boosting, and M5’) generate forecasts by aggregating forecasts from a series of

learners and/or generated pseudo-data (via bootstrap), henceforth, are given the name

ensemble methods.

3.1 Multivariate adaptive regression splines

As an adaptive procedure for regression, the MARS method excels at solving high dimen-

sional problems caused by a large set of input variables. Following Friedman (1991), the

MARS method uses expansions in piecewise linear basis functions of the form (x − h)+6

and (h− x)+ such that

(x− h)+ =

 x− h if x > h

0 otherwise
and (h− x)+ =

 h− x if x < h

0 otherwise
,

where the two piecewise linear functions is a reflected pair with a knot at the value t. This

concept is illustrated in Figure 1(a), in which we forecast the CBOE Volatility Index (VIX)

with one-period lag of the logarithm of one-month crude oil futures contract (OIL) as the

sole predictor. We fit the actual data (dots) with four piecewise linear regressions (solid

lines), where the three knots are indicated by circle ◦ symbols. It is obvious that the MARS

regression fits the actual data better than a simple linear regression.

We form reflected pairs for each input X j with knots at each observed value xtj for

t = 1, . . . , n and j = 1, . . . , k. The collection of basis function is

F =
{
(X j − h)+, (h− X j)+

}
, (153)

where h ∈ {x1j, . . . , xnj} for j = 1, . . . , k. The full data is separated into S subsamples by

6The term A+ represents the positive part of A. It is also called a hinge function that can be expressed as
max(0, A).
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Figure 1: Using the MARS Method to Forecast VIX
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(b) Forecast VIX with Two Predictors

Note: Figure 1(a) depicts forecasting VIX with predictor OIL using the MARS method, where the actual data, piecewise

linear regressions, and knots are represented by dots, solid lines, and circles, respectively. Figure 1(b) plots the

estimated MARS regression splines for a large set of input variables in a 3D figure with OIL and SPX being the selected

predictor. Lines on the OIL-SPX plane are the estimated knots.

the knots and a model is fitted locally to each subsample. We use functions from the set F

and build a model of the form

yt = f (X t) + εt = β0 +
S

∑
s=1

βsFs(X t) + εt, (154)

where β0 is a constant, the coefficients βs are estimated by standard linear regression for

each subsample, and each function Fs(X t) is an element in the set F or a product of such

elements. The key of the MARS method lies in the construction of the functions Fs(X t).

The model-building procedure is carried out in two phases: the forward stage and the

backward stage. In the forward stage, we start with a model consisting of just the constant

term (the mean of yt). We then repeatedly adds basis function in pairs as show in (153)

to the model. We find the pair of basis functions that gives the maximum reduction in

SSR. To add a new basis function, the MARS method search over all combinations of the

following: (i) existing variables; (ii) all input variables; and (iii) all values of each input

variable. At the end of the forward stage, we have a large model of the form (154).
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Model (154) typically overfits the data, therefore, we apply a backward deletion stage

to mitigate the overspecification. We remove terms one by one, deleting the least effective

term whose removal causes the smallest increase in SSR at each step until we find the best

model of each size (number of variables) λ. In practice, we estimate the optimal value of λ

by minimizing the following generalized cross-validation criterion with constraint λ ∈ Z,

GCV(λ) =
∑n

t=1
(
yt − f̂λ(X t)

)2(
1− λ̃/n

)2 ,

where f̂λ(X t) is the prediction of estimated best model based on size λ and λ̃ is the effec-

tive number of parameters in the model.7

As a demonstration, we extend the VIX forecasting exercise in Figure 1(a) by adding

the logarithm of the S&P500 index (SPX) as a new predictor. We apply the MARS process

discussed above and plot the estimated MARS regression splines in a 3D figure with OIL

and SPX being the predictors in Figure 1(b). Note that, instead of being points in Figure

1(a), knots in a 3D figure are lines, as shown on the OIL-SPX plane.

3.2 Penalized regression

The placement of knots, the number of knots, and the degree of the polynomial can be

seen as tuning parameters, which are subject to manipulation by a data analyst. The

tuning process can be very complicated, since there are at least three of them that must be

tuned simultaneously. Moreover, there is little or no formal theory to justify the tuning.

On the other hand, a useful alternative is to alter the fitting process itself so that the

tuning is accomplished automatically, guided by clear statistical reasoning. One popular

7This number accounts for both the number of variables and the number of parameters used in selecting
the optimal knots. If there are K knots in the forward process, the formula for λ̃ is

λ̃ = λ + cK,

in which some simulation results suggest that one should set c = 3.
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approach is to combine a mathematical penalty8 with the loss function to be optimized.

This leads to a very popular approach called penalized regression which has led a wide

range applications in the machine learning literature.

Consider a conventional regression analysis with an indicator variable as the sole re-

gressor. As the regression coefficient increases in absolute value, the resulting step function

will have a step of increasing size. The difference between the conditional mean of yt when

the indicator is 0 compared to the conditional means of Y when the indicator is 1 is larger.

The larger the regression coefficient the rougher the fitted values.

Strategies that are designed to control the magnitude of the coefficients are called

shrinkage or regularization. Two popular proposals have been offered for how to control

the complexity of the fitted values:

1. constrain the sum of the absolute values of the regression coefficients to be less than

some constant C (sometimes called an L1-penalty); and

2. constrain the sum of the squared regression coefficients to be less than some constant

C (sometimes called an L2-penalty).

In this section, we introduce the following popular penalized regression methods: ridge

regression, least absolute shrinkage selective operator (LASSO), elastic net, and adaptive

LASSO.

3.2.1 Ridge regression

Suppose that for a conventional fixed X regression, one adopts the constraint that the sum

of the p squared regression coefficients is less than C. This constraint leads directly to

8The penalty imposes greater losses as a mean function becomes more complicated. For greater com-
plexity to be accepted, the fit must be improved by an amount that is larger than the penalty. The greater
complexity has to be worth it.
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ridge regression.9 The task is to obtain values for the regression coefficients so that

β̂ = min
β

[
n

∑
i=1

(yi − β0 −
p

∑
j=1

xijβ j)
2 + λ

p

∑
j=1

β2
j

]
, (155)

where β = [β1, ..., βp]> does not include β0. In Equation (155), the usual expression for

SSR has a new component - the sum of the squared regression coefficients multiplied by

a constant λ. This is a L2 penalty. Note that λ is a tuning parameter that determines how

much weight is given to the penalty.

It follows that the ridge regression estimator is

β̂ = (X>X + λI)−1X>y, (156)

where I is a p× p identity matrix. Note that the column of 1s for the intercept is dropped

from X and β0 is estimated separately.10 In Equation (156), the value of λ is added to

the main diagonal of the cross-product matrix X>X, which determines how much the

estimated regression coefficients are shrunk toward zero. With non-zero λ, the shrinkage

becomes a new source of bias. However, while biased, the reduced variance of ridge

estimates often result in a smaller mean square error when compared to least-squares

estimates.

Ridge regression reduces mean squared error by the trade off between the prediction

bias and variance. The common trend is the variance decreases and bias increases as λ

increase. This can be illustrated by a simulation similar to Hastie et al. (2009). Here the

data is simulated from a linear model with T = 50, p = 30, and the variance of the error

term σ2 = 1 with different coefficients 1) Case 1, 10 large coefficients (between 0.5 and

1), 20 small (between 0 and 0.3); 2) Case 2, 30 large coefficients (between 0.5 and 1); 3)

Case 3, 10 large coefficients (between 0.5 and 1), 20 exactly 0. In all three cases, 50 data is

9In machine learning literature, it is sometimes called weight decay.
10By default, β is computed after centering and scaling the predictors to have mean 0 and standard devi-

ation 1. The model does not include a constant term, and X should not contain a column of 1s.
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Table 1: Linear Regression and Ridge Regression

Linear Regression Ridge Regression
Case Bias2 Var MSE Bias2 Var MSE λ∗

1 0.006 0.627 0.633 0.073 0.410 0.483 0.402
2 0.006 0.628 0.634 0.051 0.499 0.550 0.251
3 0.006 0.627 0.633 0.076 0.411 0.487 0.372

generated as training set and another 50 is generated as the test data. We use training data

to estimate model then compare the forecasting performance of linear regression and ridge

regression. In all three cases, ridge regression achieves lower mean squared error by the

trade-off between increasing bias and reducing variance. Even in Case 2, ridge regression

still outperforms linear regression.

Note that in the third case we presented, the true DGP requires certain coefficients to be

exactly 0. However, different from the LASSO method that we are about to discuss, ridge

coefficients are almost never shrunk to exactly 0. This partially explains the high biases

induced by the ridge regression. On the other hand, the ridge method is not optimal in

selecting variables and should not be used as a model selection device in practice.

3.2.2 LASSO regression

Suppose that one proceeds as in ridge regression but now adopts the constraint that the

sum of the absolute values of the regression coefficients (L1-penalty) is less than some

constant. This leads to a regression procedure known as the LASSO (Tibshirani, 1996)

whose estimated regression coefficients are defined by

β̂ = min
β

[
n

∑
i=1

(yi − β0 −
p

∑
j=1

xijβ j)
2 + λ

p

∑
j=1

∣∣β j
∣∣] . (157)

Unlike the ridge penalty, the LASSO penalty leads to a nonlinear estimator, and a quadratic

programming solution is needed. As before, the value of λ is a tuning parameter, a λ of
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zero yields the usual least squares results, and as the value of λ increases, the regression

coefficients are shrunk toward zero.

Unlike the ridge regression, the LASSO regression is capable of shrinking coefficients

to exactly 0 without setting λ = ∞. Therefore, it can be used as a variable selection tool

in practice. This concept is illustrated geometrically as follows (James et al., 2013)

Figure 2: Visualization of the LASSO Regression and Ridge Regression

In Figure 2, the parameter β is two-dimensional and ellipses represent the contours

of the residual sum of squares. The term β̂ represents the OLS estimator which is the

unconstrained optimization solution. The solid blue areas are the constraint regions, |β1|+

|β2| ≤ s for LASSO and |β1|2 + |β2|2 ≤ s for ridge. Clearly, if s is sufficiently large, the

constraint regions will contain the OLS estimate. In this case, both the ridge regression

and the LASSO regression are the same as the OLS estimates. Equations (155) and (157)

indicate that the LASSO and ridge regression coefficients estimates are given by the first

point at which an ellipse contacts the constraint region. Since ridge regression has a

circular constraint with no sharp points, this intersection will not generally occur on an

axis, and so the ridge regression coefficient estimates will be exclusively non-zero. On the

other hand, as illustrate by the left subfigure of Figure 2, the ellipse will often intersect the

constraint region at an axis, since the LASSO constraint has corners at each of the axes.

When this occurs, one of the coefficients will zero.
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Table 2: Linear Regression and LASSO Regression

Linear Regression LASSO Regression
Case Bias2 Var MSE Bias2 Var MSE λ∗

1 0.006 0.627 0.633 0.061 0.420 0.481 0.063
2 0.006 0.628 0.634 0.008 0.621 0.629 0.008
3 0.006 0.627 0.633 0.073 0.315 0.388 0.086

We replicate the simulation design in Section 3.2.2. We compare the LASSO regression

with linear regression and present the results is in Table 2. LASSO achieves lower mean

squared error in all three cases comparing to the linear regression. Combining the results

in Tables 1 and 2, we note that in Case 3, LASSO outperforms both the linear and the

ridge regression when there are many coefficients that are set to zero by DGP. In Case 2,

however, since all the coefficients are nonzero and relatively large, the decrease in variance

is lower than in other two cases. The performance of LASSO is similar to linear regression

but worse than the ridge regression.

Results in Tables 1 and 2 show that ridge and LASSO achieve lower MSE than linear

regression by the bias-variance trade-off but neither can universally dominate the other.

The performance of different regularization methods depend on the structure of the data

in practice.

3.2.3 Elastic net

Zou and Hastie (2005) pointed out that the LASSO solution paths are unstable when

predictors are highly correlated. If there is a group of variables with strong correlations,

the LASSO is indifferent among the predictor set. Zou and Hastie (2005) proposed the

Elastic-Net as an improved version of the LASSO to overcome such limitation.

Following Zou and Hastie (2005), the Elastic Net is a regularization and variable selec-

tion procedure that makes use of the penalty which is a mixture of ridge and the LASSO
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penalties

λ

[
1
2
(1− α)

p

∑
j=1

β2
j + α

p

∑
j=1

∣∣∣βj

∣∣∣] , (158)

where α ∈ [0, 1] is called the mixing parameter and λ has the usual interpretation as in

ridge and LASSO regression. The `1 part of the penalty in (158) implements variable

selection and the `2 brings the grouping effect and stabilizes the `1 solution path. The

Elastic Net includes ridge and the LASSO as its special case when α = 1 and α = 0

respectively.

Following Hastie et al. (2015), we introduce the following simulation study to illus-

trate the grouping effect in the Elastic Net and the LASSO. With sample size n = 100,

independently generate two independent “hidden“ (unobserved) factors Z1 and Z2 from

standardized normal distribution and construct the response vector y as

y = 3Z1 − 1.5Z2 + 2ε, with ε ∼ N(0, 1).

where Z1 is a more important predictor since it is more relevant to y than Z2. Suppose we

can only observe predictors X = [X1, X2, . . . , X6] which are the approximates of Z1 and

Z2:

Xj = Z1 + ξ j/5, with ξ j ∼ N(0, 1) for j = 1, 2, 3,

Xj = Z2 + ξ j/5, with ξ j ∼ N(0, 1) for j = 4, 5, 6.

If X1, X2, . . . , X6 are used to predict y, fit the model on (X, y) with the LASSO and the

Elastic Net respectively. We expect the better method is able to pick up X1, X2 and X3 as a

group (the Z1 group).

Figure 3 shows the results of the variable selection by the LASSO and the Elastic Net

(α = 0.5) as the norm of the coefficients increase (λ decreases). The left panel shows the

results of the LASSO and right panel is for the Elastic Net. We can see that the Elastic

Net is capable identify the Z1 group as the most important variables when the norm of the

coefficients is relatively small.
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Figure 3: LASSO vs. Elastic Net

0 1 2 3 4 5 6 7

−
2

−
1

0
1

L1 Norm

C
oe

ffi
ci

en
ts

0 3 4 6

Degrees of Freedom

Lasso

x_5

x_1
x_2
x_4
x_6
x_3

0 1 2 3 4 5 6 7

−
2

−
1

0
1

L1 Norm

C
oe

ffi
ci

en
ts

0 6 6 6

Degrees of Freedom

Elastic Net

x_5

x_1
x_2
x_4
x_6
x_3

3.2.4 Adaptive LASSO

Fan and Li (2001) and Zou (2006) argued that the LASSO may not satisfy the oracle

property which means to asymptotically identify the right subset model with probability

converging to 1 and has the optimal estimation rate. Zou (2006) proposed the adaptive

LASSO as a weighted version of the LASSO which satisfies the oracle property.

Following Zou (2006), the adaptive LASSO can be defined as follows

β̂
ada

= argmin
β∈Rp

1
2T
‖y− Xβ‖2

2 + λn

p

∑
j=1

wj
∣∣β j
∣∣ , (159)

where w = (w1, w2, . . . , wp)> is a known vector of weights. In practice, wj = 1/
∣∣∣β̂ini

j

∣∣∣γ,

where β̂ini
j is a root-n estimator of β j (this condition can be weakened) and γ > 0. Zou

(2006) proved that the adaptive LASSO will satisfy the oracle property with some appro-

priate choice of λn.

The adaptive LASSO can be treated as a two-step method. The first step to fit the data

with LASSO and get the parameter estimate β̂
LASSO

where the optimal tuning parameter

value λLASSO is obtained by cross-validation. The second step is to plug β̂
LASSO

into (159)

to get the adaptive LASSO estimator β̂
ada

. By allowing a relatively higher penalty for zero

coefficients and lower penalty for nonzero coefficients, the adaptive LASSO is designed to

reduce the estimation bias and improve variable selection accuracy relative to the standard
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LASSO approach.

The weighted `1 penalty and the Elastic Net penalty improve the LASSO in two different

directions. The adaptive LASSO achieves the oracle property and the Elastic net handles

the collinearity. The adaptive Elastic-Net proposed by Zou and Zhang (2009) is to combine

the ideas of the weighted `1 penalty and the Elastic-net regularization to improve the

LASSO in both directions

β̂
AdaEnet

= arg min
β

1
2T
‖y− Xβ‖2

2 + λ

[
1
2
(1− α)

p

∑
j=1

β2
j + α

p

∑
j=1

wj
∣∣β j
∣∣] ,

where wj =
(
|β̂ enet

j |
)−γ

, j = 1, 2, . . . , p and β̂ enet
j is the Elastic Net estimator.

3.3 Variable selection techniques

When a large set of input variables are available, we need to use a subset of best vari-

ables. The best subset is to compare all possible candidate models by using cross-validated

prediction error, Mallows’ Cp, AIC, BIC, or adjusted R2. In practice, the candidate model

set is first divided into p + 1 sub-groups by the number of predictors contained in each

candidate model. Then the best model in k-th sub-group is selected asMk and we choose

the single best model from M0, . . . ,Mp. Following James et al. (2013), the best subset

method can be described as follows

83



Algorithm 8 Best Subset Selection

1. Let M0 denote the null model, which contains no predictors. This model simply
predicts the sample mean for each observation.

2. For k = 1, 2, . . . p :

(a) Fit all
(

p
k

)
models that contain exactly k predictors;

(b) Pick the best among these
(

p
k

)
models, and call itMk . Here best is defined

as having R2.

3. Select a single best model from amongM0, . . . ,Mp using cross-validated prediction
error, Mallows’ Cp, AIC, BIC, or adjusted R2.

Since in each sub-group, all the models contain the same number of predictors, we only

need to compare the model fit. That’s why R2 is used within each sub-group but adjusted

R2 is used cross different subgroups.

Zou (2006) pointed out that best subset selection has two limitations. First, the com-

putation cost is very high when p is very large, for example, if p = 20, we need to compare

ten million models. Second, subset selection is extremely variable because of its inherent

discreteness (Fan and Li, 2001).

3.3.1 Forward step selection

Following James et al. (2013), forward stepwise selection starts with an empty model that

contains no predictors, then adds predictors to the model in an iterative fashion until all

of the predictors are included in the model. The whole process can be described in the

following algorithm.
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Algorithm 9 Forward Step Selection

1. LetM0 denote the null model, which contains no predictors.

2. For k = 0, . . . , p− 1 :

(a) Consider all p − k models that augment the predictors in Mk with one addi-
tional predictor;

(b) Choose the best among these p − k models, and call it Mk+1. Here best is
defined as having highest R2.

3. Select a single best model from amongM0, . . . ,Mp using cross-validated prediction
error, Cp(AIC), BIC, or adjusted R2.

Comparing with the best subset selection method, in each sub-group we only need to

compare p− k models not 2k. This substantially reduces the computational cost. On the

other hand, due to its limited candidate model set, the forward step selection may not pick

the best possible model out of all the 2p candidate models.

3.3.2 Backward stepwise selection

Like the forward stepwise selection, the backward stepwise selection provides an efficient

alternative to the best subset selection. It starts with the full model incorporating all

predictors, and then iteratively removes the least useful predictor one-at-a-time. Similar

to the forward stepwise selection, there are also p− k models in each sub-group for the

backward stepwise selection. Following James et al. (2013), the method can be described

as the following:
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Algorithm 10 Backward Stepwise Selection

1. LetMp denote the full model, which contains all p predictors.

2. For k = p, p− 1, . . . , 1 :

(a) Consider all k models that contain all but one of the predictors inMk, for a total
of k− 1 predictors;

(b) Choose the best among these k models, and call itMk−1. Here best is defined
as having highest R2.

3. Select a single best model from amongM0, . . . ,Mp using cross-validated prediction
error, Cp(AIC), BIC, or adjusted R2.

The backward selection approach searches through 1 + p(p + 1)/2 models, which is

much smaller than 2k even for large p. However, similar to the forward stepwise selection,

the backward stepwise selection is also not guaranteed to yield the best possible model.

For instance, suppose that with p = 3, the best two-variable model incorporates X2 and

X3, but the overall best possible model contains only X1. Then, the backward stepwise

selection fails to select the best possible model since X1 is dropped in the first step.

3.4 Regression tree

Breiman et al. (1984) proposed the Classification and Regression Trees (CART) method, in

which Classification mostly deals with the categorical response of nonnumerical symbols

and texts and Regression Trees concentrate purely on quantitative responses variables.

Given the numerical nature of our data set, we only consider the second part of CART.

The trick in applying RT is to find the best split. Consider a sample of {yt, xt}n
t=1. A

simple regression will yield a sum of squared residuals, SSR0. Suppose we can split the

original sample into two sub-samples such that n = n1 + n2. The RT method finds the

best split of a sample to minimize the sum of squared residuals (SSR) from the two sub-
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samples.11 That is, the SSR values computed from each sub-sample should follow: SSR1

+ SSR2 ≤ SSR0. We can continue splitting until we reach a pre-determined boundary.

A representation of applying RT on VIX forecasting is depicted in Figure 4. We use one-

period lag of the variables from Table 3. Each triangle4 symbol stands for a splitting node

with splitting conditions displayed around the node. The terminal node is represented

by a dot • symbol with terminal value. In a forecasting practice, specific values of the

predictor will fall into specific terminal nodes following the tree structure from top to

bottom. The specific terminal values are the forecasting results associated to specific values

of the predictor.

Figure 4: Forecasting VIX Using RT
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Note: Figure 4 represents the tree structure of using RT to forecast VIX with a list of input variables described in

Table 3. Each triangle 4 symbol stands for a splitting node with splitting conditions displayed around the node. The

terminal node is represented by a dot • symbol with terminal value.

In fact, the RT and MARS methods have strong similarities. The MARS forward stage is

the same as the RT tree-growing process, if we replace the piecewise linear basis functions

11By no means, the SSR is the only criterion can be used to split the sample. In Section 3.9, we introduce
the popular M5 and M5’ methods which rely on the reduction of standard deviation to locate the best split.
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in MARS by step functions12 and replace a model term in MARS by the interaction if the

term is involved in a multiplication.

In general, an RT outperforms conventional regressions as it yields smaller SSR values.

If the data are stationary and ergodic, the RT method demonstrates better forecasting

accuracy. Intuitively, for cross-sectional data, the RT method performs better because it

removes heterogeneity problems by splitting the sample into clusters with heterogeneous

features; for time series data, a good split should coincide with jumps and structure breaks,

and therefore, it fits the data to the model better.

We have thus far focused on statistical procedures that produce a single set of results:

regression coefficients, measures of fit, residuals, classifications, and others. There is but

one regression equation, one set of smoothed values, or one classification tree. Obviously,

one won’t learn much through just one set of results. In the following sections, we shift

to statistical learning that builds on many sets of outputs aggregated to produce results.

Such algorithms make a number of passes over the data. On each pass, inputs are linked

to outputs just as before. But the ultimate results of interest are the collection of all the

results from all passes over the data. These methods crucially depend on a technique called

the “bootstrap”, which we discuss in length in the next section.

3.4.1 Regression Tree and Local constant model

Following Athey and Imbens (2019), we can interpret the regression tree as a local con-

stant model. Let x = (x1, x2, . . . , xk) be a k-dimensional realization of X t on which the

conditional mean of yt, i.e. E (yt|X t = x) = f (x) is of interest. Then the data sample

can be rewritten as {(y1, X1) , (y2, X2} , . . . , (yT, XT)) . Denote the neighborhood of x as

N(x) = {t| ‖X i − x‖ < h, t = 1, . . . , T} , where h is a given positive real number and ‖ · ‖

stands for the Euclidean norm. The term N(x) consists of the index of k-dimensional

vectors X t that are in the h-neighborhood of x.

12Here, we define the step functions as Ix−t>0 and Ix−t≤0, where I{·} equals to 1 if the subscript condition
is satisfied and equals to 0 otherwise. The term t is the knot defined in Section 3.1
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We let f be continuous. A simple estimator of f̂ is the sample mean of yt’s in N(x):

f̂ (x) =
1

#N(x) ∑
t∈N(x)

yt

where #N(x) denotes the number of the k-dimensional vectors in N(x). Note that the

above equation represents a kernel estimation of f (·) with a uniform kernel.

In a regression tree model, the leaf can be regarded as a set of nearest neighbors for

the given observation x. The estimator of a single regression tree is in fact a matching

estimator (with non-conventional algorithm) of selecting the nearest neighbor to x. A

typical local constant model creates a neighborhood around a target observation based

on the Euclidean distance to each point, while tree-based neighborhoods are rectangles.

Specially, the regression tree estimator derives a weighting function for a given test point

by counting the share of trees where a particular observation is in the same leaf as the

test point. The difference between typical kernel weighting functions and regression tree

based weighting functions is that the tree weights are adaptive. That is, if a covariate has

little effect, it will not be used in splitting leaves, and thus the weighting function will not

be very sensitive to distance along that covariate.13

3.5 Bootstrap

The term bootstrap, which was introduced to statistics by Efron (1979), is taken from the

phrase “to pull oneself up by ones own bootstraps”. It is the practice of estimating prop-

erties of an estimator (such as its variance) by measuring those properties when sampling

from an approximating distribution. Bootstrapping relies heavily on random sampling with

replacement.14 A bootstrap sample is always a subset of the original sample.

13Athey and Imbens (2019) argued that the regression tree is particularly effective in settings with a large
number of features that are not related to the outcome, that is, settings with sparsity since the splits will
generally ignore those covariates, and the performance will remain strong.

14The principle of simple random sampling is that every object has the same probability of being chosen. In
small populations and often in large ones, such sampling is typically done without replacement, i.e., one de-
liberately avoids choosing any member of the population more than once. Although simple random sampling
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3.5.1 Basic concept

A Russian matryoshka doll is a nest of wooden figures, usually with slightly different fea-

tures painted on each. Call the outer figure doll 0, the next figure doll 1, and so on. See

Figure 5. Suppose we are not allowed to observe doll 0 – it represents the population in

a sampling scheme. We wish to estimate the area n0 of red cheek15 on her face. Let ni

denote the red cheek area on the face of doll i. Since doll 1 is smaller than doll 0, n1 is

likely to be an underestimate of n0, but it seems reasonable to suppose that the ratio of n1

and n2 should be close to the ratio of n0 to n1. That is n1/n2 ≈ n0/n1, so that n̂0 = n2
1/n2

might be a reasonable estimate of n0.

Figure 5: A Russian Matryoshka Doll

The key feature of this argument is our hypothesis that the relationship between n2 and

n1 should closely resemble that between n1 and the unknown n0. Under the (fictitious)

assumption that the relationships are identical, we equated the two ratios and obtained

can be conducted with replacement instead, this is less common and would normally be described more fully
as simple random sampling with replacement, in which the random sampling exhibit independence. Note
that sampling done without replacement is no longer independent, but still satisfies exchangeability, hence
many results still hold.

15This is actually an art representation of freckles.
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our estimate n̂0. Of course, we could refine the argument by delving more deeply into

the nest of dolls, adding correction terms to n̂0 so as to take account of the relationship

between doll i and doll i + 1 for i ≥ 2.

The above intuition implies that a population from sample data (sample→ population)

can be modeled by resampling the sample data and performing inference about a sample

data from resampled data (resampled→ sample). As the population is unknown, the true

error in a sample statistic against its population value is unknown. In bootstrap samples,

the population is in fact the sample data, and this is known; hence the quality of inference

of the true sample from resampled data (resampled→ sample) is measurable.

In any sample data, a specific dependent observation yi is always tied to a vector of

the independent observations X i, as if they are a pair. Although we mainly focus on the

dependent variable y in the previous example, the index IN that describes bootstrap sample

should also be applied to the independent variable X. In this fashion, each bootstrap

sample consists of a pair {y(b), X(b)} for b = 1, . . . , B. The bootstrapping procedure we

described above is also called pairs bootstrap.

3.5.2 Bootstrap in time series

The pairs bootstrap is usually executed for the cross-sectional data. When the data is time

series having dependent observations, we need to replace step (i) with specific bootstrap

methods for time series based on different assumptions. A straightforward way is to boot-

strap the residuals instead of observations. For observations following a stationary Markov

chain with finite state-space, Kulperger and Prakasa Rao (1989) initiated the Markov boot-

strap method.

If we are not willing to assume a specific structural form for time series (e.g., stationary

and weakly dependent), we can use the moving block bootstrap (MBB) method formulated

by Künsch (1989). Instead of performing single-data resampling, Künsch (1989) advo-

cated the idea of resampling blocks of observations at a time. By retaining the neighboring
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observations together within each block, the dependence structure of the random variable

at short lag distances is preserved. The block length is predetermined and has impact on

the final output to certain degree. We can rely on cross validation methods to select the

optimal block length. See Kreiss and Lahiri (2012) for a detailed literature review.

3.6 Bagging tree

We also consider the bootstrap aggregation (BAG) technique developed in Breiman (1996).

Unlike the RT method, the BAG method involves a training process where the level of

training is predetermined. The BAG algorithm is summarized as below:

Algorithm 11 Bootstrap Aggregation

1. Take a random sample with replacement from the data.

2. Construct a regression tree.

3. Use the regression tree to make forecast, f̂ .

4. Repeat steps (i) to (iii), b = 1, . . . , B times and obtain f̂ b for each b.

5. Take a simple average of the B forecasts f̂BAG = 1
B ∑B

b=1 f̂ b and consider the averaged
value f̂BAG as the final forecast.

For most of the part, the more bootstrap samples in the training process, the better the

forecast accuracy. However, more bootstrap samples means longer computational time. A

balance needs to be found between accuracy and time costs and constraints.

As an illustration, we continue the VIX forecasting example and show 3 bagging tree

structures. Given the time series nature of the data, we use MBB with block size 150 to

resample the data. Results are presented in Figure 6(a) – 6(c) respectively. Each bagging

tree structure is different from the original regression tree depicted in Figure 4. Of course,

Figure 6 is merely a demonstration of different tree structures in a bagging process. In

a forecasting practice, we shall make forecasts using more bagging trees for the same

predictor value and take the simple average of the forecasts as the final output.

92



Figure 6: Bagging Trees on Forecasting VIX with Multiple Input Variables
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(a) b = 1
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(b) b = 2
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USDI < 4.53938   SPX < 7.20139   
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  CS >= 1.02

  USDI >= 4.53938   SPX >= 7.20139

  USDI >= 4.3306

  SPX >= 6.01761

  SPX >= 6.43845

(c) b = 3

Note: Figure 6(a) – 6(c) depict three typical bagging tree structures using MBB as the resampling technique. Each

triangle 4 symbol stands for a splitting node with splitting conditions displayed around the node. The terminal node

is represented by a dot • symbol with terminal value.
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3.7 Random forest

Random forest (RF) by Breiman (2001) is a modification of bagging that builds a large col-

lection of de-correlated trees, and then averages them. Similar to BAG, RF also constructs

B new trees with (conventional or MBB) bootstrap samples from the original data set. But

for RF, as each tree is constructed, we take a random sample (without replacement) of q

predictors out of the total K (q < K) predictors before each node is split. Such process is

repeated for each node. Note that if q = K, RF is equivalent to BAG. Eventually, we end

up with B trees like BAG and the final RF forecast is calculated as the simple average of

forecasts from each tree.

3.8 Boosting tree

The RT method can respond to highly local feature of the data, since it capitalizes on very

flexible fitting procedures. An alternative method to accommodate highly local features of

the data is to give the observations responsible for the local variation more weight in the

fitting process. If a fitting function fits those observations poorly, we reapply that function

with extra weight given to the observations poorly fitted. For a large number of trials,

we assign relatively more weights to the poorly fitted observations, hence, combine the

outputs of many weak fitting functions to produce a powerful committee, as described in

Hastie et al. (2009, Chapter 10).

The procedure we just described is called boosting. Although they assemble similarities,

the boosting method is fundamentally different from the RF method. Boosting works with

the full training sample and all of the predictors. Within each iteration, the poorly fitted

observations are given more relative weight, which eventually forces the (poor) fitting

functions to evolve in boosting. We usually denote the number of iterations as learning

cycle of the boosting process. Moreover, the final output values are a weighted average

over a large set of earlier fitting results instead of simple average as in the RF method.
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Many of the boosting methods are designed for classification issues, for example, the

most popular boosting algorithm AdaBoost.M1 by Freund and Schapire (1997). For nu-

merical analysis, we favor the simpler least squares boosting (LSB) that fits RT ensembles.

In line with Hastie et al. (2009, Chapter 8), at every step, the LSB method applies a new

learning tree to the difference between the observed response and the aggregated predic-

tion of all trees grown previously.

We revisit the VIX forecasting exercises, this time, using the LSB method with input

variables described in Table 3. We compute the cumulative MSE from a five-fold cross-

validation for different numbers of learning cycle (iteration). The following Figure 7 de-

scribes the relationship between CV MSE and learning cycle. As we can see, the CV MSE

shrinks as the learning cycle increases and eventually becomes steady once the learning

cycle exceeds 40.

Figure 7: Learning RT Boosting
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Note: We apply the LSB method to the VIX forecasting exercises and depict the relationship between 5-fold CV MSE

and learning cycle. The CV MSE shrinks becomes steady once the learning cycle exceeds 40.

3.9 M5’ algorithm

All decision tree algorithms discussed above base their forecasts on a set of piecewise lo-

cal constant model. In fact, numerous researchers in machine learning have developed
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algorithms16 that estimate regression models in the leaf nodes to not just aid in predic-

tion, but also simplify the tree model structure. That is, these researchers often suggest

that the gains in prediction from using a piecewise linear model could allow one to grow

shorter trees that are more parsimonious. Not surprisingly, ex ante from an econometrics

perspective the success of these linear tree algorithms clearly depend on both the source

and amount of heterogeneity in the underlying data.

Perhaps the best known of the linear regression tree algorithms is the M5 algorithm

of Quinlan (1992) that was further clarified in the M5’ algorithm of Wang and Witten

(1997). The M5’ algorithm builds subgroups using the same algorithm as RT but a multiple

regression models is estimated in the terminal node. The model in each leaf only contains

the independent variables encountered in split rules in the leaf node’s sub-tree and are

simplified to reduce a multiplicative factor to inflate estimated error.

Moreover, the M5’ model tree uses a different criteria to construct splits in the tree.

Splits are based on minimizing the intra-subset variation in the output values down each

branch. In each node, the standard deviation of the output values for the examples reach-

ing a node is taken as a measure of the error of this node and calculating the expected

reduction in error as a result of testing each attribute and all possible split values. The

attribute that maximizes the expected error reduction is chosen. The standard deviation

reduction (SDR) is calculated by

SDR = sd(T)−∑
i

sd(Ti)× |Ti|/|T|,

where T is the set of examples that reach the node and Tis are the sets that result from

splitting the node according to the chosen attribute (in case of multiple split). As usual,

the splitting process will terminate if the output values of all the instances that reach the

node vary only slightly or only a few instances remain.

Similar to M5 once the tree has been grown, M5’ estimates a multivariate linear model

16See Quinlan (1992), Chaudhuri et al. (1995), Kim and Loh (2003), Vens and Blockeel (2006), among
others
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in each tree leaf that only includes variables that were used in the subtree of this node.

Thus, the M5’ model tree is also analogous to using piecewise linear functions in each leaf.

We apply the M5’ algorithm to the VIX forecasting exercises and depict the model tree

in Figure 8. We use one-period lag of the variables from Table 3. Each dot • symbol stands

for a splitting node with splitting conditions going leftward displayed above the node.17

The terminal node is represented by “M#” with number of observations contained in the

leaf within parentheses. Unlike CART, we do not model the subsamples within a leaf by its

sample mean but use a linear regression model instead. The tree is pruned with restriction

such that the number of obs. within a leaf should be no less than 500. Inputs x2 to x8

correspond to the variables listed in Table 3, respectively.

Figure 8: M5’ Model Tree Plot
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Note: The tree is pruned with restriction such that the number of obs. within a leaf should be no less than 500. Inputs

x2 to x8 correspond to the variables listed in Table 3, respectively.

17We use the MATLAB package written by Gints Jekabsons (http://www.cs.rtu.lv/jekabsons/). The
general display of the plots is a bit different from MATLAB’s built-in figure.
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3.10 Neural network

The neural network (NN) become a hype word recently, even more so since the flourishing

of big data analytics. The NN model can be categorized as nonlinear statistical models.

The basic motivation of NN can date back to McCulloch and Pitts (1943). In this section,

we first describe the most widely used (vanilla) neural net18 discussed in Rumelhart et al.

(1986). Then, we move on to introduce a more complicated nonlinear autoregressive

network with exogenous inputs (NARX) that is commonly used in time-series modeling.

An (vanilla) NN is a two-stage regression or classification model. Given the nature

of our data set, we concentrate on applying the NN method to the former. Let yt and

X t (with constant term) be the output and input measurements respectively. We create

derived features Zmt from linear combinations of X t for m = 1, . . . , M, where the Zmt

terms are called hidden units19 and M is a predetermined number. The hidden units Zmt

is connected with inputs X t through a so-called activation function g(·) such that

Zmt = g(X tαm),

where αm = [αm1, . . . , αmK]
> is a vector of coefficients associated with X t for each hidden

unit. The activation function is usually chosen to be the sigmoid g(v) = 1/(1 + e−v). For

convenience, we let Zt ≡ [Z1t, . . . , ZMt] and the Zt group is usually referred as a hidden

layer. Note that there can be more than one hidden layer. Then, the output yt is modeled

as a function of linear combination of Zt such that

yt = f (X t) + εt = Ztβ + εt, (160)

where β = [β1, . . . , βM]> is the associated coefficient vector for Zt.

18The simple neural net is sometimes called the single hidden layer back-propagation network, or single
layer perception.

19In the NN literature, the Zmt terms are usually named as neurons, as each connection (synapse) between
Zmt can transmit a signal to another layer of Zmt like neurons. Typically, neurons are organized in layers.
Different layers may perform different kinds of transformations on their inputs.
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In the NN literature, coefficients β and αm are often called weights. To estimate the

weights, we use SSR as our measure of fit

SSR(α, β) =
n

∑
t=1

SSRt(α, β) =
n

∑
t=1

(
yt − f (X t)

)2,

where α = [α1, . . . , αM]. Unlike conventional regression estimation, we usually don’t want

the global minimizer of SSR(α, β) as the estimated weights in order to avoid overfitting.

Instead, we impose some regularization (early stopping rule or penalty for complexity)

and minimize SSR(α, β) by gradient descent, namely, the back-propagation algorithm.

Due to the compositional form of the model, the gradient can be easily derived using

the chain rule for differentiation through a forward and backward sweep over the network.

We define the following derivatives with respect to βm and αmk for m = 1, . . . , M and

k = 1, . . . , K
∂SSRt

∂βm
= −2

(
yt − f (X t)

)
Zt ≡ δtZt,

∂SSRt

∂αmk
= −2

(
yt − f (X t)

)
βmg′(X tαm)xtk ≡ smtxtk,

(161)

where δt and smt are the defined coefficients associated to Zt and xtk in (128). A gradient

descent update at the (r + 1)th iteration has the form:

β
(r+1)
m = β

(r)
m − γr

n

∑
t=1

∂SSRt

∂β
(r)
m

,

α
(r+1)
mk = α

(r)
mk − γr

n

∑
t=1

∂SSRt

∂α
(r)
mk

,
(162)

where γr is a pre-determined learning rate. From (128), we can derive

smi = βmg>(X tαm)δt, (163)

which is known as the back-propagation equations. Using the system of equations defined

in (163), updates in (162) can be implemented with the following two-pass algorithm:
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1. Forward pass: given current estimates of β̂ and α̂m for m = 1, . . . , M, we compute

the predicted value f̂ (X t).

2. Backward pass: use f̂ (X t) to compute δ̂t first, then obtain ŝmt by formula (163). Both

sets of coefficients are then used to compute the derivatives defined in (128), which

finally leads to the gradients for updates of next round α and β in (162).

Starting with some initial values, the above algorithm is carried out multiple times until

convergence or stop early to avoid overfitting.

The NARX network is good at time series prediction and can be considered as an exten-

sion of the simple NN framework we discussed above. In the NARX network, the output yt

is modeled by the following NARX function

yt = f (X t) + εt,

X t = [yt−1, . . . , yt−L, X∗t ],

where function f (·) is a unknown nonlinear function, L stands for the maximum number

of lags and X∗t contains all the exogenous variables at time t.

3.11 Support vector machine for regression

In machine learning, support vector machines (SVM) are supervised learning models with

associated learning algorithms that analyze data used for classification and regression

analysis. The theory behind SVM is due to Vapnik and is described in Vapnik (1996).

The classic SVM was designed for classification and a version of SVM for regression, later

known as support vector regression (SVR), was proposed in by Drucker et al. (1996). The

goal of SVR is to find a function f (X t) that deviates from yt by a value no greater than a

predetermined ε for each observations X t, and at the same time is as flat as possible.
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In this paper, we first consider the SVR for the linear regression model (SVRL). Follow-

ing Hastie et al. (2009, Chapter 12),

yt = f (X t) + εt = X tβ + εt = β0 + X̃ tβ1 + εt,

where X t = [1, X̃ t] and β = [β0, β>1 ]
>. We estimate β through the minimization of

H(β) =
n

∑
t=1

Vε

(
yt − f (X t)

)
+

λ

2
‖β1‖

2, (164)

where the loss function

Vε(r) =

 0 if |r| < ε

|r| − ε otherwise

is called an ε-insensitive error measure that ignores errors of size less than ε. As a part of

the loss function Vε, the parameter ε is usually predetermined. On the other hand, λ is a

more traditional regularization parameter, that can be estimated by cross-validation.

Let β̂ =
[
β̂0, β̂

>
1
]> be the minimizers of function (164). The solution functions follow

β̂1 =
n

∑
t=1

(α̂∗t − α̂t)X̃>t ,

f̂ (X) =
n

∑
t=1

(α̂∗t − α̂t)XX>t + β̂0ιn,

where ιn is an n × 1 vector of ones and the parameters α̂t and α̂∗t are the nonnegative

multiplier of the following Lagrangian equation

min
α̂t,α̂∗t

ε
n

∑
t=1

(α̂∗t + α̂t)−
n

∑
t=1

yi(α̂
∗
t − α̂t) +

1
2

n

∑
t=1

n

∑
t>=1

(α̂∗t − α̂t)(α̂
∗
t> − α̂t>)X tX>t>

subject to the constraints

0 ≤ α̂∗t , α̂t ≤ 1/λ,
n

∑
t=1

(α̂∗t − α̂t) = 0, α̂tα̂
∗
t = 0
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for all t = 1, . . . , n. We usually called the non-zero values of α̂∗t − α̂t for t = 1, . . . , n the

support vector.

We now extend the above SVR framework for linear regression to nonlinear regression

(SVRN). We approximate the nonlinear regression function f (X t) in terms of a set of basis

function {hm(X̃ t)} for m = 1, . . . , M:

yt = f (X t) + εt = β0 +
M

∑
m=1

βmhm(X̃ t) + εt,

and we estimate the coefficients β =
[
β0, β1, . . . , βM

]> through the minimization of

H(β) =
n

∑
t=1

Vε

(
yt − f (X t)

)
+

λ

2

M

∑
m=1

β2
m. (165)

The solution of (165) has the form

f̂ (X) =
n

∑
t=1

(α̂∗t − α̂t)K(X, X t) + β̂0ιn,

with α̂∗t and α̂t being the nonnegative multiplier of the following Lagrangian equation

min
α̂t,α̂∗t

ε
n

∑
t=1

(α̂∗t + α̂t)−
n

∑
t=1

yi(α̂
∗
t − α̂t) +

1
2

n

∑
t=1

n

∑
t>=1

(α̂∗t − α̂t)(α̂
∗
t> − α̂t>)K(X t, X t>),

which is similar to the SVRL case. In the SVRN case, a kernel function

K(X t, X t>) =
M

∑
m=1

hm(X t)hm(X t>),

is used to replace the inner product of the predictors X tX>t> as in the SVRL case. In our

paper, we consider the following kernel functions

K(X t, X t>) = exp
(
−‖X t − X>t>‖

2
)

, (166)

K(X t, X t>) =
(

1 + X tX>t>
)p

with p ∈ {2, 3, . . .}. (167)
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Note that if we set K(X t, X t>) = X tX>t> , the SVRN becomes identical to SVRL.

A representation of linear SVR model compared to nonlinear SVR models is depicted

in Figure 9. We consider a one-step-ahead VIX forecasting using SVR with various kernels.

To keep the figure uncluttered, we only show the results in recent periods from 2017-06-

20 to 2017-11-08. The solid line represents the actual exchange rate data. The dotted

line, dash-dotted line, and dashed line represent the forecasted results by SVRL, SVRN by

Gaussian kernel, and SVRN by polynomial kernel with p = 3, respectively.

Figure 9: Forecast VIX with the SVR Method
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Note: We consider a one-step-ahead forecasting of VIX using SVRL, SVRN by Gaussian kernel, and SVRN by polynomial

kernel, with results represented by dotted line, dash-dotted line, and dashed line, respectively. To keep the figure

uncluttered, we only show the results in recent periods from 2017-06-20 to 2017-11-08.

Both SVRL and SVRN by Gaussian kernel have similar performance. They are able

capture the direction change of the VIX but are less volatile than the actual data. The

SVRN by polynomial kernel outperforms the others in general. In fact, due to the high

order components in the kernel, SVRN by polynomial kernel is able to capture more volatile

movement in the data, for example, the two large spikes around 2017-08.
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4 Hybrid methods

However, it is possible to combine the strengths of both methods for cross-fertilization.

Most machine learning techniques neglect parameter heterogeneity as they typically rely

on local constant models that assume homogeneity in outcomes within individual termi-

nal leaves. This limitation can impact their predictive ability. Presence of heterogeneity

can change how the data should be partitioned thereby influencing the forecasting results.

On the other hand, conventional econometric methods have provided many effective tech-

niques to deal with heterogeneity. This sets a motivation of the need of hybrid methods.

In this section, we review new strategies for predictive analytics that are contrasted

with existing tools from both the econometrics and machine learning literature to first

give guidance on how to improve forecast accuracy in applications. These so-called hybrid

strategies first use recursive partitioning methods to develop subgroups and then under-

take model averaging within these terminal groups to generate forecasts. By allowing for

model uncertainty in the subgroups (split-sample, tree leaves, etc.), richer forms of het-

erogeneity in the relationships between independent variables and outcomes within each

subgroup is allowed. We also conduct a simple Monte Carlo simulation to illustrate the

benefits of using hybrid tree method.

4.1 Split-sample methods and SPLTPMA methods

Hirano and Wright (2017) proposed a split-sample (SPLT) method to mitigate uncertainty

about the choice of predictor variables. They investigate the distributional properties of

SPLT in a local asymptotic framework. The core of SPLT is more in the econometric tra-

dition, which consists of splitting the training sample set into two parts, one for model

selection via AIC and the other for model estimation. Moreover, the authors show that,

adding a bagging step to the plain SPLT substantially improves its prediction performance.

The bagging augmented SPLT method can be viewed as a hybrid of econometric and ma-

chine learning methods, and is implemented in our simulation exercise.
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Liu and Xie (2018) further extended SPLT by replacing the AIC model selection method

by the prediction model average (PMA) method developed by Xie (2015), while keeping

the bagging procedure. Liu and Xie (2018) denoted this hybrid method by SPLTPMA. In

SPLTPMA, after an initial sample split, PMA is applied to the first subsample to obtain

a weight structure over all candidate models, and then use the weights to calculate a

weighted average model as the prediction model, where each candidate model is estimated

on the second subsample. The SPLTPMA algorithm can be summarized as follows:

Algorithm 12 Split-sample Model Averaging Method

1. Draw a random sample with replacement from the original training set.

2. Split the sample into two parts by minimizing the total SSR.20

3. Apply the PMA method to the first subsample and obtain a weight structure on all
candidate model.

4. Estimate each candidate model on the second subsample, and make prediction on
the evaluation set.

5. Use the weights in (iii) to calculate the model average forecast using candidate fore-
casts in (iv).

6. Repeat steps (i) to (v) by B times.

7. The final forecast is the simple average of B model average forecasts in (v).

4.2 Model average tree

To construct forecasts with either (i) regression trees, (ii) bagging, or (iii) random forests,

one calculates the predicted value for each leaf l as the value ȳi∈l is actually the fitted

value of the following regression model

yi = a + ui, i ∈ l, (168)
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where ui is the error term and a stands for a constant term with least square estimate â =

ȳi∈l. In other words, after partitioning the dataset into various subgroups, no heterogeneity

is assumed within subgroups. From the perspective of the econometrician, this rules out

heterogeneity within recursively partitioned subgroups and may appear unsatisfying.

Lehrer and Xie (2018) suggested that for each tree leaf we can construct a sequence of

m = 1, . . . , M linear candidate models, in which regressors of each model m is a subset of

the regressors belonging to that tree leaf. The regressors Xm
i∈l for each candidate model

within each tree leaf is constructed such that the number of regressors km
l � nl for all

m. Using these candidate models, we perform model averaging estimation and obtain the

averaged coefficient

β̂l(w)
(K×1)

=
M

∑
m=1

wm β̃
m
l

(K×1)
, (169)

which is a weighted averaged of the “stretched” estimated coefficient β̃
m
l for each candidate

model m. Note that the K × 1 sparse coefficient β̃
m
l is constructed from the km

l × 1 OLS

coefficient β̂
m
l by filling the extra K− km

l elements with 0s.

Once the averaged coefficients β̂l(w) are constructed for each leaf in a regress tree, we

compute the forecasts for all predicting observations:

ŷt∈l = X p
t∈l β̂l(w). (170)

Note that although the predictors classified in each tree leaf share the common averaged

coefficients β̂l(w), they generate different forecasts ŷt∈l as the predictors X p
t∈l are also

included in the estimation process.

We denote the above method as model averaging regression tree (MART), in which

we replace the original leaves (averages of y) of a regression tree with model averaging

estimates without altering the original classification process. We apply the same process

to each of the B regression trees in bagging. We obtain forecasts from each tree and the

equal weight averages of these forecasts is the final bagging forecast value. We denote this
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method as model averaging bagging (MAB). Applying MART to random forest is essentially

the same as MAB with one difference. For random forest, the split of the node is done by

the classification of a random sample (without replacement) of k predictors out of the

total K predictors. Therefore, when calculating the averaged coefficients β̂l(w) for each

leaf l in a tree of the random forest, the candidate model set is not constructed from the

K regressors as in bagging, but from the k regressors used to split the node contains leaf l.

We denote this method as model averaging random forest (MARF).

In a forecast exercise, the predicting observations X p
t with t = 1, 2, . . . , T are dropped

down the regression tree. For each X p
t , after several steps of classification, we end up with

one particular tree leaf l. We denote the predicting observations that are classified in tree

leaf l as X p
t∈l. If the full sample contains n observations, the tree leaf l contains a subset

nl < n of the full sample of y, denoted as yi with i ∈ l. Also, the sum of all nl for each tree

leaf equals n. The mean of yi∈l is calculated, denoted as ȳi∈l. The value ȳi∈l is the forecast

estimate of X p
t∈l. It is quite possible that different predicting observations X p

t and X p
s with

t 6= s will end up with the same tree leaf, therefore, generates identical forecasts.

4.3 A simple illustration of the MART hybrid method

In this section, we replicate the simple illustration of the MART hybrid method in Lehrer

et al. (2018). To illustrate the benefits of allowing for heterogeneity due to model uncer-

tainty in each tree leaf in the forest via this two-step hybrid procedure, we simulate data

drawn from a non-linear process. Panels (a) and (b) of Figure 10 respectively present the

scatterplot and surface plot of training data generated by

Y = sin(X1) + cos(X2) + u,

where X1 ∈ [1, 10], X2 ∈ [1, 10], and u is a Gaussian noise with mean 0 and variance

0.01. Forecasts of Y calculated from RT and MART with the training data are presented

in Panels (c) and (d) of Figure 10. Since RT forecasts assume homogeneity within leaves,
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the surface plot in Panel (c) appears similar to a step-function. In contrast, by allowing for

heterogeneity in the forecasts within each leaf, the surface plot from MART in Panel (d)

more closely mimics the variation in the joint distribution in the underlying data.

To demonstrate the gains from using MART in place of RT when forecasting Y, we plot

the forecast errors from RT and MART against both X1 and X2 in panels (e) and (f) of

Figure 10. The visualizations in these panels clearly show that the absolute biases from

MART are less than half of the biases obtained from RT. These panels illustrate not only

the significant benefits from adopting the proposed hybrid approach, but clarify that the

gains are achieved by allowing for richer relationships in each tree leaf.

5 Empirical Illustration I: VIX Forecasting

5.1 Data description

In this study, we use the Chicago Board Options Exchange (CBOE) Volatility Index (VIX)

forecasting exercise as an example to demonstrate the pros and cons of each method we

introduce and investigate in this proposal. The CBOE VIX is colloquially referred to as the

“fear index” or the “fear gauge”. We choose to study the VIX not only on the widespread

consensus that the VIX is a barometer of the overall market sentiment as to what concerns

investors’ risk appetite, but also on the fact that there are many trading strategies that rely

on the VIX index for hedging and speculative purposes.

The VIX index is a weighted blend of prices for a range of options on the S&P 500

index.21 The formula that calculates the VIX index is

VIX = 100×

√√√√ 2
T ∑

i

∆Ki

K2
i

erTQ(Ki)−
1
T

(
F

K0
− 1
)2

, (171)

21The VIX is quoted in percentage points and represents the expected range of movement in the S&P 500
index over the next year, at a 68% confidence level (i.e. one standard deviation of the normal probability
curve).
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Figure 10: Simple Monte Carlo Simulation Results
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Figure 11: The Daily Log Index of VIX from January 2, 1990 to November 20, 2017
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Table 3: List of Input Variables for Forecasting VIX

Variable General Description
SPX∗ the logarithm of the S&P500 index
SPV the logarithm of the volume of the S&P500 index
OIL the logarithm of one-month crude oil futures contract

USD∗ the logarithm of the foreign exchange value of the U-S dollar index
CS∗ the credit spread, which is the excess yield of the Moody’s seasoned Baa

corporate bond over the Moody’s seasoned Aaa corporate bond
TS∗ the term spread, which is the difference between the 10-Year and 3-month

treasury constant maturity rates
FFD the difference between the effective and target Federal Funds rates

∗ These variables are not stationary and their first-order differences are used in the exercises.

where T is time to expiration, F is the forward index level derived from the index options

prices, Ki is the strike price of the ith out-of-the-money option, ∆Ki = (Ki+1− Ki−1)/2, K0

is the first strike below the forward index level, r is the risk-free interest rate to expiration,

and Q(K1) is the mid-quote for the option with strike of Ki.

We collect VIX from 1990-01-02 to 2017-11-20. Figure 11 illustrates the time evolution

of the log of VIX index in the full sample period. Following the literature, we also incor-

porate standard predictors for VIX forecasting, including SPX, SPV, OIL, USD, CS, TS, and

FFD. These predictors are listed and described in details in Table 3. Note that variables

with ∗ are nonstationary and their first-order differences are used in the exercises.
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Table 4: Summary of Statistics

Statistics VIX SPX∗ SPV OIL USD∗ CS∗ TS∗ FFD
Mean 2.9004 0.0003 20.9501 3.6396 0.0000 0.0000 0.0001 0.0109
Median 2.8651 0.0005 21.1178 3.5306 0.0000 0.0000 0.0000 0.0000
Maximum 4.3927 0.1096 23.1618 4.9821 0.0248 0.4100 0.7400 3.6400
Minimum 2.2127 -0.0947 17.8621 2.3721 -0.0411 -0.1500 -0.5600 -1.8100
Std. Dev. 0.3490 0.0111 1.1402 0.6471 0.0044 0.0201 0.0662 0.1784
Skewness 0.6461 -0.2559 -0.4232 0.1640 -0.2170 2.5690 0.3454 2.8856
Kurtosis 3.3367 11.9184 1.9070 1.6666 6.3283 52.5896 13.1333 57.2906

Jarque-Bera 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
ADF Test 0.0010 0.0010 0.0010 0.0158 0.0010 0.0010 0.0010 0.0010

Note that variables with ∗ are nonstationary and their first-order differences are used in the exercises.

We describe summary statistics of the (log) VIX and its predictors in Table 4. Variables

are listed in the first row of Table 4. We document the results of the sample mean, median,

minimum, maximum, standard deviation, skewness, and kurtosis for all the variables over

the full sample periods. Table 4 also reports the p-values22 of the Jarque-Bera test for

normality and those of the augmented Dickey-Fuller (ADF) test for unit root. The null hy-

potheses of a normal distribution and a unit root are strongly rejected in all cases, whereas

the other statistics disperse over a wide range.

5.2 Empirical results

In this section, we conduct an empirical exercise to extensively examine the out-of-sample

performance of the conventional econometric methods, machine learning methods, and

the hybrid methods. The selected methods are listed as follows:

1. ARX model: the simple autoregression model AR(22) with standard predictors pre-
sented in Table 3;

2. HARX model: the conventional HAR models with lag index (1, 5, 22) and standard
predictors presented in Table 3;

3. LASSO method: the LASSO-HAR method proposed in Audrino and Knaus (2016),
where we use the LASSO method to select variables from the HAR model that incor-
porates all possible lag indices (1, 2, ..., 22) and standard predictors;

22In our exercises, we set the lower bound of the p-values of the Jarque-Bera and the ADF tests at 0.001.
Values less than 0.001 are truncated at 0.001.
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4. RFSV: the rough stochastic volatility model proposed by Gatheral et al. (2018);

5. RT: the regression tree method, in which the input variables are the HAR model that
incorporates all possible lag indices (1, 2, ..., 22) and standard predictors;

6. RF: the random forest method, in which the input variables are the HAR model that
incorporates all possible lag indices (1, 2, ..., 22) and standard predictors;

7. SVR-L: the support vector regression method with linear kernel, in which the input
variables are the HAR model that incorporates all possible lag indices (1, 2, ..., 22) and
standard predictors;

8. MARF: the hybrid method that incorporates model averaging estimation at every leaf
of every tree from the standard random forest method described in (vi).

We consider both short-horizon and long-horizon forecasts with h = 1, 5, 10 and 22.

For assessing the out-of-sample performance, we calculate the following five statistics:

(i) the mean squared forecast error (MSFE); (ii) the Gaussian quasi-likelihood (QLIKE)

measure; (iii) the mean absolute forecast error (MAFE); (iv) the standard deviation of

forecast error (SDFE); and (iv) the Mincer-Zarnowitz pseudo-R2 for each candidate model

at each forecast horizon h.

Statistics (i) to (iv) are described as the following:

MAFE(h) =
1
V

V

∑
j=1
|eTj,h|, (172)

MSFE(h) =
1
V

V

∑
j=1

e2
Tj,h, (173)

SDFE(h) =

√√√√ 1
V − 1

(
eTj,h −

1
V

V

∑
j=1

eTj,h

)2

, (174)

QLIKE(h) = log ŷTj,h +
yTj,h

ŷTj,h
, (175)

where eTj,h = yTj,h − ŷTj,h is the forecast error, j = 1, 2, . . . , V, and ŷTj,h is the h-day ahead

forecast with information up to Tj, where Tj stands for the last observation in each of the

V rolling windows. Another widely-adopted method for evaluation is by means of the
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R2-criterion of the Mincer-Zarnowitz regression, given by

yTj,h = a + bŷTj,h + uTj , for j = 1, 2, . . . , V. (176)

For all of the exercises, we conduct a rolling window out-of-sample exercise. The win-

dow length is set at 3000, which is roughly half of the sample. Each of the above methods

is applied to the data set, and a series of h days ahead direct forecasts are obtained. Table 5

presents some descriptive results of the out-of-sample evaluation for forecasts 1, 5, 10 and

22 days ahead, presented in Panels A to D, respectively. We report the MSFE, SDFE, MAFE,

QLIKE and the pseudo R2 listed in the first column from the rolling-window exercises for

all methods presented in the first row of Table 5.

The machine learning method RT performs the worst consistently in Panels A to D,

while the simple linear ARX model has good performance in many cases. In fact, when

h = 1, the large pseudo R2s by ARX and HARX imply that the conventional linear regres-

sion model is capable of explaining a large fraction of the total variation in the VIX data,

which leaves small room for other more complicated methods to improve upon. The HARX

method has the best performance among all when h = 1, which coincides with the findings

in Fernandes et al. (2014).

As h increases, we notice that the criteria MSFE, QLIKE, MAFE, and SDFE increase and

the pseudo R2 decreases, since the forecasting accuracy of all methods decreases as the

forecasting horizon increases. For h = 5, 10, and 22, the RFSV has the best performance by

yielding the smallest forecasting bias by all statistics we considered. This intriguing results

emphasize the importance of parsimonious in forecasting exercises.23 In all panels, The

hybrid method MARF is no worse than but also does not dominate the RF method, which

suggests that heterogeneity is not a serious concern in the VIX data.

To further examine whether the out-performance is statistically significant, we perform

23Note that RFSV has only 3 parameters in our exercises.
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Table 5: Out-of-sample forecast comparison of methods for VIX

Statistics ARX HARX LASSO RFSV RT RF SVR-L MARF
Panel A: h = 1
MSFE 0.0046 0.0046 0.0145 0.0060 0.0083 0.0052 0.0046 0.0051
QLIKE 0.0003 0.0003 0.0008 0.0003 0.0005 0.0003 0.0003 0.0003
MAFE 0.0488 0.0486 0.0971 0.0572 0.0671 0.0520 0.0483 0.0519
SDFE 0.0679 0.0676 0.1204 0.0776 0.0909 0.0718 0.0675 0.0716
Pseudo R2 0.9678 0.9681 0.8988 0.9579 0.9422 0.9639 0.9681 0.9641

Panel B: h = 5
MSFE 0.0242 0.0241 0.0329 0.0181 0.0432 0.0262 0.0239 0.0262
QLIKE 0.0014 0.0014 0.0019 0.0011 0.0024 0.0015 0.0014 0.0015
MAFE 0.1174 0.1170 0.1446 0.1015 0.1551 0.1224 0.1144 0.1226
SDFE 0.1555 0.1552 0.1813 0.1346 0.2079 0.1618 0.1546 0.1620
Pseudo R2 0.8314 0.8321 0.7708 0.8737 0.6986 0.8173 0.8334 0.8169

Panel C: h = 10
MSFE 0.0404 0.0404 0.0477 0.0275 0.0710 0.0447 0.0400 0.0445
QLIKE 0.0023 0.0023 0.0027 0.0016 0.0039 0.0026 0.0023 0.0025
MAFE 0.1522 0.1520 0.1721 0.1259 0.1956 0.1611 0.1465 0.1601
SDFE 0.2011 0.2010 0.2183 0.1657 0.2664 0.2114 0.2000 0.2110
Pseudo R2 0.7186 0.7187 0.6683 0.8088 0.5058 0.6888 0.7215 0.6900

Panel D: h = 22
MSFE 0.0688 0.0689 0.0724 0.0447 0.1125 0.0756 0.0669 0.0758
QLIKE 0.0038 0.0038 0.0041 0.0025 0.0059 0.0041 0.0037 0.0042
MAFE 0.2007 0.2010 0.2131 0.1605 0.2544 0.2141 0.1883 0.2147
SDFE 0.2624 0.2624 0.2691 0.2114 0.3354 0.2750 0.2586 0.2753
Pseudo R2 0.5230 0.5229 0.4983 0.6903 0.2209 0.4762 0.5366 0.4748

This table reports the out-of-sample results for predicting h-day future realized variation using
the different methods. The results are based on the VIX data spanning from 1990-01-02 to
2017-11-20. We use a rolling window of 3000 observations to estimate the models, and evalu-
ate the out-of-sample forecast performance at four horizons (h = 1, h = 5, h = 10 and h = 22).
Each panel corresponds to a specific forecast horizon, which ranges from 1 day to 22 days.

the modified Giacomini-White test (Giacomini and White, 2006)24 of the null hypothesis

that the column method performs equally well as the row method in terms of absolute

forecast errors. The corresponding p values are presented in Table 6 for h = 1, 5, 10, and

22 in Panels A to D, respectively. We see that the gains in forecast accuracy from the HARX

relative to other methods are statistically significant at 5% level when h = 1. For other

forecasting horizons, the RFSV method significantly outperforms all other methods even

at 0.1% level.

24Giacomini and White (2006) proposed a framework for out-of-sample predictive ability testing and fore-
cast selection designed for use in the realistic situation in which the forecasting model is possibly misspeci-
fied, due to unmodeled dynamics, unmodeled heterogeneity, incorrect functional form, or any combination
of these. The null hypothesis of the GW test is that the two models we want to compare are equally accurate
on average based on certain criterion.
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Table 6: The Giacomini-White test for the mean absolute forecast errors

Method ARX HARX LASSO RFSV RT RF SVR-L MARF
Panel A: h = 1
ARX - - - - - - - -
HARX 0.0271 - - - - - - -
LASSO 0.0000 0.0000 - - - - - -
RFSV 0.0000 0.0000 0.0000 - - - - -
RT 0.0000 0.0000 0.0000 0.0000 - - - -
RF 0.0000 0.0000 0.0000 0.0000 0.0000 - - -
SVR-L 0.0000 0.0089 0.0000 0.0000 0.0000 0.0000 - -
MARF 0.0000 0.0000 0.0000 0.0000 0.0000 0.7595 0.0000 -

Panel B: h = 5
ARX - - - - - - - -
HARX 0.1011 - - - - - - -
LASSO 0.0000 0.0000 - - - - - -
RFSV 0.0000 0.0000 0.0000 - - - - -
RT 0.0000 0.0000 0.0050 0.0000 - - - -
RF 0.0063 0.0034 0.0000 0.0000 0.0000 - - -
SVR-L 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - -
MARF 0.0047 0.0026 0.0000 0.0000 0.0000 0.7062 0.0000 -

Panel C: h = 10
ARX - - - - - - - -
HARX 0.5018 - - - - - - -
LASSO 0.0000 0.0000 - - - - - -
RFSV 0.0000 0.0000 0.0000 - - - - -
RT 0.0000 0.0000 0.0002 0.0000 - - - -
RF 0.0115 0.0093 0.0171 0.0000 0.0000 - - -
SVR-L 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 - -
MARF 0.0236 0.0193 0.0095 0.0000 0.0000 0.2010 0.0003 -

Panel D: h = 22
ARX - - - - - - - -
HARX 0.5743 - - - - - - -
LASSO 0.0614 0.0663 - - - - - -
RFSV 0.0000 0.0000 0.0000 - - - - -
RT 0.0000 0.0000 0.0001 0.0000 - - - -
RF 0.0500 0.0570 0.9048 0.0000 0.0000 - - -
SVR-L 0.0000 0.0000 0.0007 0.0000 0.0000 0.0004 - -
MARF 0.0406 0.0466 0.8486 0.0000 0.0000 0.4488 0.0002 -
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6 Empirical Illustration II: HICP Forecasting

Macroeconomic forecasting is an important but difficult task. Forecasting performance

by conventional econometric methods is usually not quite satisfactory partially due to the

restriction of the linear formulation. Recent literature begins to pay attention to more

flexible machine learning methods. Jung et al. (2019) forecasted real GDP growth rates

for seven countries using machine learning methods. By comparing the forecasting results

with benchmark forecasts, Jung et al. (2019) demonstrated the benefits of adopting ma-

chine learning methods. Medeiros et al. (2019) explored advances in machine learning

methods and the availability of new datasets to forecast U.S. inflation. They showed that

machine learning methods with a large number of covariates are systematically more ac-

curate than the benchmarks. In this exercise, we consider utilizing the forward-looking

information from a Survey of Professional Forecasters (SPF) to forecast the harmonized

index of consumer prices (HICP) for the euro area using both econometric and machine

learning techniques.

Coincident with the launch of the euro currency in January 1999, the European Central

Bank (ECB) started an SPF as part of its gathering of information and analysis of the euro

area macroeconomic outlook. Genre et al. (2013) showed that a simple equally weighted

pooling of forecasts performs quite well in practice relative to many other approaches that

rely on estimated combination weights. We obtain the data from the SPF official website.25

The raw data varies from 1999Q1 to 2018Q4 and totals 80 observations. We consider the

data on the one-year-ahead prediction of HICP from 119 different forecasters. However, a

specific forecaster may or may not submit a survey response throughout the whole period

consistently. Therefore, we narrow down to 30 qualified forecasters that submit surveys

consistently throughout the sample period.

Let yt be the target HICP at period t. Denote xit as the prediction by the ith forecaster

for period t, which is feasible one year ago. Method recommended by Genre et al. (2013)

25http://www.ecb.europa.eu/stats/prices/indic/forecast/html/index.en.html.
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can be expressed as

yt =
30

∑
i=1

βixit + ut,

where βi is fixed as 1/30. Therefore, the equally weighted pooling method can be regarded

as a restricted least squares estimation. An obvious alternative is the unrestricted OLS

estimation.

We then further relax the linearity restriction and assume the following model:

yt = f (xt) + ut,

where xt = [x1t, ..., x30t]
> and the function f (·) maps the collection of forecasters to HICP

in a possibly nonparametric manner.

We compare a list of machine learning specification for f (·). We present these specifi-

cation along with simple averaging and OLS in the following:

1. Simple equal weight (Simple);

2. OLS;

3. Boosting (BOOST);

4. Regression Tree (RT);

5. Bagging (BAG);

6. Random Forest (RF);

7. Support Vector Regression with Linear Kernel (SVR-L);

8. Model Averaging Random Forest (MARF).

We conduct a rolling window forecasting exercise with window length set at 40. We

evaluate the forecasting accuracy of the above methods by MSFE, QLIKE, SDFE, MAFE,

and Pseudo-R2. Comparison results are presented in Table 7.
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Table 7: Forecast Accuracy Comparison

Statistics Simple OLS BOOST RT BAG RF SVR-L MARF
MSFE 0.2603 0.4445 0.4787 0.3182 0.1752 0.1789 0.1834 0.1726
QLIKE 0.2056 0.6695 0.1860 0.3047 0.1349 0.1413 2.0788 0.1389
MAFE 0.4078 0.4693 0.4839 0.4128 0.3543 0.3444 0.3473 0.3341
SDFE 0.5102 0.6667 0.6919 0.5641 0.4185 0.4230 0.4283 0.4155

Pseudo R2 0.5371 0.2095 0.1487 0.4341 0.6885 0.6818 0.6738 0.6930

This table reports the out-of-sample results for predicting one-year-ahead HICP using the different methods.
The results are based on the HICP data varying from 1999Q1 to 2018Q4. We use a rolling window of 40
observations to estimate the forecasts.

Although OLS imposes no restrictions on the coefficients, we note that the forecasting

results by OLS are worse than simple averaging by all statistics. Which coincides with

the results in Genre et al. (2013). It is also not a surprise that BOOST has overall bad

performance due to its in-sample over-fitting. RT yields better results than OLS and BOOST

but still worse than simple averaging. On the other hand, BAG, RF, and MARF all yield

better forecasting results by all statistics. Moreover, SVR-L beats simple averaging in all

statistics except QLIKE. In all statistics, the MARF method yields the best performance.

To examine if the improvement in forecasting accuracy is significant, we perform the

Giacomini-White (GW) test of the null hypothesis that the column method performs equally

well as the row method in terms of MAFE. The corresponding p-values are presented in

Table 8. We pay our attention to the comparison between the benchmark simple averag-

ing method and the rest. We note that only the MARF method significantly beats simple

averaging at the 10% level.

Table 8: GW Test Results

Method Simple OLS BOOST RT BAG RF SVR-L MARF
Simple - - - - - - - -

OLS 0.5424 - - - - - - -
Boost 0.3915 0.8752 - - - - - -

RT 0.9490 0.5343 0.2022 - - - - -
BAG 0.2527 0.1714 0.0961 0.3929 - - - -
RF 0.1743 0.1325 0.0635 0.3224 0.5292 - - -

SVR-L 0.3571 0.0458 0.0744 0.3547 0.8723 0.9484 - -
MARF 0.0898 0.1194 0.0497 0.2573 0.2219 0.3347 0.7698 -
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7 Conclusions

This report reviews many techniques that can be used to forecast economic activities. In

particular, we focus on two classes of forecasting methods, methods based on econometric

models and methods based on machine learning techniques. Within the first class, both

univariate models and multivariate models have been reviewed. We explain how to use

these models to predict. With the class of multivariate models, both reduced-form models

and structural models are reviewed. When reviewing structural models, we pay special

attention to how economic theory can restrict relationships among variables. Within the

second class, we review several leading machine learning methods, including multivari-

ate adaptive regression splines, regression tree, bootstrap, bagging tree, random forecast,

boosting tree, M5’ algorithm, neural network, and support vector machine for regression.

We also review several variable selection techniques introduced in the machine learning

literature.

Deeply rooted in computer science, machine learning techniques aim to find how an

output variable is related to input variables intending to produce predictions. They focus

on identifying the “best” functional approximation, often in huge samples, for the purpose

of predictions. Usually machine learning techniques cannot identify the causality nor take

account of restrictions implied by economic theory. In addition, they do not normally care

about importance or insight. Moreover, machine learning techniques are not interested

in making statistical inference, such as testing a hypothesis that is implied by a certain

economic theory. They cannot be used to perform scenario analysis or counterfactual

analysis.26

Typically econometric methods deal with smaller samples and the focuses are on esti-

mation and statistical inference. Not surprisingly, distributional assumptions, alternative

estimation techniques, how to obtain sampling distributions, how to best approximate the

26That being said, special attention has been drawn towards identifying treatment effects using machine
learning techniques recently. Pioneer studies including Wager and Athey (2018), Chernozhukov et al.
(2018), among others are well-received in this burgeoning literature.
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sampling distribution are some of the central issues in econometrics. If one wishes to take

the economic theory seriously, then econometric models based on structural forms can be

used. The use of Ceteris Paribus clauses has a long history in econometrics, to isolate the

impact of one input variable on the output variable when there are other input variables.

Econometric methods are typically based on analytical functions, facilitating scenario anal-

ysis and counter-factual analysis.

To take advantage of the strengthens of these two classes of methods, we propose a

class of hybrid methods, including the split-sample method, its model averaging extension,

and the model averaging tree methods. We show that machine learning presents great

opportunities to cross-fertilize the field of the econometric forecast.

Finally, we compare the performance of the alternative methods in two applications

based on real data. In the first application, we use eight methods to forecast VIX, including

three econometric methods (namely ARX, HARX, RFSV), four machine learning methods

(namely LASSO, RT, RF and SVR), and one hybrid method (namely MARF). It is found

that when the forecasting horizon is short (one period), the best machine learning method

matches the best econometric method. However, as the forecasting horizon increases, the

best econometric method tends to outperform the best machine learning method. The

dominance of econometric methods over machine learning methods is likely caused by

a nearly linear relationship of the present volatility and the past volatilities and, in the

meantime, by the lack of a very large sample and rich data in this forecasting exercise such

that the advantage of machine learning techniques cannot be fully taken.

We also eight methods to forecast HICP, including two econometric methods (namely

Simple, OLS), five machine learning methods (namely BOOST, RT, BAG, RF, SVR-L), and

one hybrid method (namely MARF). It is found that the best machine learning method out-

performs the best econometric method. This suggests that the actual inflation is related to

the predictions of Professional Forecasters in a highly nonlinear way and can even involve

interactive effects. Interestingly, the hybrid method always outperforms the best machine

learning method.

120



References

AGUILAR, O. AND M. WEST (2000): “Bayesian dynamic factor models and portfolio allo-
cation,” Journal of Business & Economic Statistics, 18, 338–357.

A ÏT-SAHALIA, Y. AND L. MANCINI (2008): “Out of sample forecasts of quadratic variation,”
Journal of Econometrics, 147, 17 – 33.

AKAIKE, H. (1973): “Information Theory and an Extension of the Maximum Likelihood
Principle,” Second International Symposium on Information Theory, 267–281.

AMEMIYA, T. (1980): “Selection of Regressors,” International Economic Review, 21, 331–
354.

AN, S. AND F. SCHORFHEIDE (2007): “Bayesian analysis of DSGE models,” Econometric
reviews, 26, 113–172.

ANDERSEN, T., T. BOLLERSLEV, F. DIEBOLD, AND H. EBENS (2001a): “The distribution of
realized stock return volatility,” Journal of Financial Economics, 61, 43–76.

ANDERSEN, T. G. AND T. BOLLERSLEV (1998): “Answering the Skeptics: Yes, Standard
Volatility Models Do Provide Accurate Forecasts,” International Economic Review, 39,
885–905.

ANDERSEN, T. G., T. BOLLERSLEV, AND F. X. DIEBOLD (2007): “Roughing It Up: Including
Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility,”
The Review of Economics and Statistics, 89, 701–720.

ANDERSEN, T. G., T. BOLLERSLEV, F. X. DIEBOLD, AND P. LABYS (2001b): “The Distribution
of Realized Exchange Rate Volatility,” Journal of the American Statistical Association, 96,
42–55.

——— (2003): “Modeling and Forecasting Realized Volatility,” Econometrica, 71, 579–625.

ANDREWS, D. W. K. (2003): “Tests for Parameter Instability and Structural Change with
Unknown Change Point: A Corrigendum,” Econometrica, 71, 395–397.

ASAI, M., M. MCALEER, AND J. YU (2006): “Multivariate Stochastic Volatility: A Review,”
Econometric Reviews, 25, 145–175.

ATHEY, S. AND G. W. IMBENS (2019): “Machine Learning Methods Economists Should
Know About,” Working Paper.

AUDRINO, F. AND S. D. KNAUS (2016): “Lassoing the HAR Model: A Model Selection
Perspective on Realized Volatility Dynamics,” Econometric Reviews, 35, 1485–1521.

AUESTAD, B. AND D. TJØSTHEIM (1990): “Identification of nonlinear time series: First
order characterization and order determination,” Biometrika, 77, 669–687.

121



BAI, J. AND P. WANG (2015): “Identification and bayesian estimation of dynamic factor
models,” Journal of Business & Economic Statistics, 33, 221–240.

BAILLIE, R. T., T. BOLLERSLEV, AND H. O. MIKKELSEN (1996): “Fractionally integrated
generalized autoregressive conditional heteroskedasticity,” Journal of Econometrics, 74,
3 – 30.

BARNDORFF-NEILSEN, O. E., S. KINNEBROUK, AND N. SHEPHARD (2010): “Measuring
Downside Risk: Realised Semivariance,” in Volatility and Time Series Econometrics: Es-
says in Honor of Robert F. Engle, ed. by T. Bollerslev, J. Russell, and M. Watson, Oxford
University Press, 117–136.

BAUWENS, L., S. LAURENT, AND J. V. K. ROMBOUTS (2006): “Multivariate GARCH models:
a survey,” Journal of Applied Econometrics, 21, 79–109.

BELLONI, A. AND V. CHERNOZHUKOV (2012): “Supplement to ‘Least Squares After Model
Selection in High-dimensional Sparse Models’,” DOI:10.3150/11-BEJ410SUPP.

——— (2013): “Least Squares After Model Selection in High-dimensional Sparse Models,”
Bernoulli, 19, 521–547.

BERNANKE, B. S., J. BOIVIN, AND P. ELIASZ (2005): “Measuring the Effects of Monetary
Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach*,” The Quarterly
Journal of Economics, 120, 387–422.

BIAU, O. AND A. D’ELIA (2010): “Euro Area GDP Forecast Using Large Survey Dataset - A
Random Forest Approach,” EcoMod2010 259600029, EcoMod.

BICKEL, P. J., Y. RITOV, AND A. B. TSYBAKOV (2009): “Simultaneous Analysis of Lasso and
Dantzig Selector,” The Annals of Statistics, 37, 1705–1732.

BLANCHARD, O. J. AND D. QUAH (1989): “The dynamic effects of aggregate demand and
aggregate supply,” The American Economic Review, 79, 655–73.

BOLLERSLEV, T. (1986): “Generalized autoregressive conditional heteroskedasticity,” Jour-
nal of Econometrics, 31, 307 – 327.

BOLLERSLEV, T., J. LITVINOVA, AND G. TAUCHEN (2006): “Leverage and Volatility Feedback
Effects in High-Frequency Data,” Journal of Financial Econometrics, 4, 353–384.

BREIMAN, L. (1996): “Bagging Predictors,” Machine Learning, 26, 123–140.

——— (2001): “Random Forests,” Machine Learning, 45, 5–32.

BREIMAN, L., J. FRIEDMAN, AND C. J. STONE (1984): Classification and Regression Trees,
Chapman and Hall/CRC.

122



BRITTEN-JONES, M. AND A. NEUBERGER (2000): “Option Prices, Implied Price Processes,
and Stochastic Volatility,” The Journal of Finance, 55, 839–866.

CANDES, E. AND T. TAO (2007): “The Dantzig Selector: Statistical Estimation when p is
Much Larger than n,” The Annals of Statistics, 35, 2313–2351.

CESA-BIANCHI, A., L. CESPEDES, AND A. REBUCCI (2015): “Global Liquidity, House Prices,
and the Macroeconomy: Evidence from Advanced and Emerging Economies,” Journal of
Money, Credit and Banking, 47, 301–335.

CHAUDHURI, P., W.-D. LO, W.-Y. LOH, AND C.-C. YANG (1995): “Bagging Predictors,”
Generalized Regression Trees, 5, 641–666.
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DACOROGNA, M. M., U. A. MŰLLER, R. J. NAGLER, R. B. OLSEN, AND O. V. PICTET (1993):
“A geographical model for the daily and weekly seasonal volatility in the foreign ex-
change market,” Journal of International Money and Finance, 12, 413 – 438.

DANNE, C. (2015): “VARsignR: Estimating VARs using sign restrictions in R,” Working
Paper.

DEL NEGRO, M. AND F. SCHORFHEIDE (2013): “DSGE model-based forecasting,” in Hand-
book of economic forecasting, Elsevier, vol. 2, 57–140.

DIEBOLD, F. X. (2006): Elements of Forecasting, South-Western College Publishing.

DING, J., V. TAROKH, AND Y. YANG (2019): “Optimal variable selection in regression mod-
els,” Working Paper.

DING, Z., C. W. GRANGER, AND R. F. ENGLE (1993): “A long memory property of stock
market returns and a new model,” Journal of Empirical Finance, 1, 83 – 106.

DRUCKER, H., C. J. C. BURGES, L. KAUFMAN, A. J. SMOLA, AND V. VAPNIK (1996): “Sup-
port Vector Regression Machines,” in Advances in Neural Information Processing Systems
9, ed. by M. C. Mozer, M. I. Jordan, and T. Petsche, MIT Press, 155–161.

EFRON, B. (1979): “Bootstrap Methods: Another Look at the Jackknife,” The Annals of
Statistics, 7, 1–26.

ENGLE, R. (2002): “Dynamic Conditional Correlation: A Simple Class of Multivariate
Generalized Autoregressive Conditional Heteroskedasticity Models,” Journal of Business
& Economic Statistics, 20, 339–350.

ENGLE, R. F. (1982): “Autoregressive Conditional Heteroscedasticity with Estimates of the
Variance of United Kingdom Inflation,” Econometrica, 50, 987–1007.

ENGLE, R. F. AND G. M. GALLO (2006): “A Multiple Indicators Model for Volatility Using
Intra-daily Data,” Journal of Econometrics, 131, 3 – 27.

ENGLE, R. F. AND K. F. KRONER (1995): “Multivariate Simultaneous Generalized Arch,”
Econometric Theory, 11, 122–150.

FAN, J. AND R. LI (2001): “Variable selection via nonconcave penalized likelihood and its
oracle properties,” Journal of the American statistical Association, 96, 1348–1360.

FERNANDES, M., M. C. MEDEIROS, AND M. SCHARTH (2014): “Modeling and Predicting
the CBOE Market Volatility Index,” Journal of Banking & Finance, 40, 1–10.
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