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Abstract

In an early article on near-unit root autoregression, Ahtola and Tiao (1984) studied the
behavior of the score function in a stationary first order autoregression driven by indepen-
dent Gaussian innovations as the autoregressive coefficient approached unity from below. The
present paper develops asymptotic theory for near-integrated random processes and associ-
ated regressions including the score function in more general settings where the errors are
tempered linear processes. Tempered processes are stationary time series that have a semi-
long memory property in the sense that the autocovariogram of the process resembles that of a
long memory model for moderate lags but eventually diminishes exponentially fast according
to the presence of a decay factor governed by a tempering parameter. When the tempering
parameter is sample size dependent, the resulting class of processes admits a wide range of
behavior that includes both long memory, semi-long memory, and short memory processes.
The paper develops asymptotic theory for such processes and associated regression statistics
thereby extending earlier findings that fall within certain subclasses of processes involving
near-integrated time series. The limit results relate to tempered fractional processes that in-
clude tempered fractional Brownian motion and tempered fractional diffusions of the second
kind. The theory is extended to provide the limiting distribution for autoregressions with
such tempered near-integrated time series, thereby enabling analysis of the limit properties of
statistics of particular interest in econometrics, such as unit root tests, under more general
conditions than existing theory. Some extensions of the theory to the multivariate case are
reported.

JEL Codes C22, C23
Keywords Asymptotics, Fractional integration, Integrated process, Near unit root, Tempered
process

∗The authors thank the co-editor and two referees for their very helpful comments on the original version and
revision of this paper. Phillips acknowledges research support from the Kelly Fund at the University of Auckland
and the NSF under Grant No. SES 18-50860. Wang acknowledges research support from Australian Research
Council.

1



1 Introduction

Consider a time series that is generated by the model

Y (t) = a Y (t− 1) +X(t), t = 1, 2, ..., N ; Y (0) = 0, (1.1)

where a is an unknown parameter and {X(j)}j∈Z is a stationary error process. The observable
time series Y (t) in (1.1) is called a near integrated process (or integrated process) when the
parameter a lies in an O(N−1) vicinity of unity (or a = 1). Such models with autoregressive
coefficients that are near unity or local to unity (LUR) have proved useful in applications in many
disciplines, especially economics where observed data in macroeconomics and finance frequently
show evidence of persistence or randomly wandering behavior. For more details, we refer to
several recent studies ([49],[47],[48]) and the reference therein, where models of this type are
used to analyze mildly integrated and mildly explosive processes, which have helped to capture
characteristics such as bubbles of various financial time series during the subprime crisis.

Early work that considered stationary forms of (1.1) when a approaches unity from below and
the X(j) are independent Gaussian innovations was done by Ahtola and Tiao [2]. The model
(1.1) forms the basis of many other extensions, including fixed, time varying, and a number of
variants of LUR specifications of autoregressive coefficient. One variant is the mildly integrated
class [44] where a lies in a wider O(k−1

N ) vicinity of unity with 1
kN

+ kN
N → 0. Another is the

functional LUR class ([10], [11]) where a is a time varying LUR function. A further extension
that is relevant to the present study is the generalized AR(1) process introduced by Peiris [32]
which adds an index parameter δ > 0 and is defined by

(1− αB)δXt = Zt, |α| < 1, (1.2)

where B is the lag operator and the {Zt} are independent innovations. Peiris and Thavaneswaran
[33] showed that the class given in (1.2) could be used to model many time series in practice,
especially in finance.

An extensive body of theory now exists concerning the asymptotic properties of data generated
by (1.1) and estimators, test statistics and confidence intervals for the autoregressive coefficient a.
Central to much of this theory is the limit behavior of the ordinary least squares (OLS) estimator

âN =

∑N
t=1 Y (t)Y (t− 1)∑N

t=1 Y
2(t− 1)

, (1.3)

which has been studied under many different assumptions on the structure of the error process
X(t) and the specific form taken by the autoregressive coefficient.

Assuming a = aN := exp{c/N}, c ∈ R, in model (1.1), and {X(j)}j∈Z to be weakly dependent
errors that satisfy under certain moment and mixing conditions, Phillips [36, Theorem 1] showed
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that as N → ∞

N(âN − a)
d−→

[ ∫ 1

0
(Jc(s))

2 ds
]−1[ ∫ 1

0
JcdB + δ

]
(1.4)

=
[ ∫ 1

0
(Jc(s))

2 ds
]−1{Jc(1)2

2
− c

∫ 1

0
Jc(s)

2ds−
σ2X
2

}
, (1.5)

where σ2X = E(X(0))2, σ2 =
∑

t∈Z EX(0)X(t) is the long-run variance ofX(t), δ =
∑

t∈N+
EX(0)X(t) =

(σ2 − σ2X)/2 is a one-sided long run covariance of X(t), and Jc(r) is a linear diffusion (Ornstein-
Uhlenbeck) process with Wiener integral

Jc(r) =

∫ r

0
e(r−s)cB(ds), (1.6)

based on Brownian motion B(·) with variance σ2.
Buchmann and Chan [9] extended this result to the case where the {X(j)}j∈Z are strongly

dependent (long memory) errors. In fact, Theorem 2.1 of [9] implies that

N1∧(1+2d)(âN − a)
d−→ 1∫ 1

0 Jc,d(s)
2 ds


Jc,d(1)

2

2 − c
∫ 1
0 Jc,d(s)

2ds, 0 < d < 1
2 ,

Jc(1)2

2 − c
∫ 1
0 Jc(s)

2ds− σ2
X
2 , d = 0

− (Γ(d+1))2σ2
X

2 , −1
2 < d < 0,

(1.7)

where Jc,d(r) is a fractional diffusion process with representation

Jc,d(r) =

∫ r

0
e(r−s)cBd(ds). (1.8)

Here Bd(s) is a fractional Brownian motion (fBM) with moving average representation

Bd(s) =
1

Γ(d+ 1)

∫
R

[
(s− x)d+ − (−x)d+

]
B(dx).

Recently, Sabzikar and Surgailis [52] introduced a class of linear processes called tempered
linear processes with semi-long memory properties intermediate between those of long and short
memory. A tempered linear process has moving average form

Xd,λ(t) =

∞∑
k=0

e−λkbd(k)ζ(t− k), t ∈ Z (1.9)

driven by an i.i.d. innovation process {ζ(t)} with Eζ(0) = 0 and Eζ2(0) = 1, and with coefficients
bd(k) regularly varying at infinity as kd−1, viz.,

bd(k) ∼ cd
Γ(d)

kd−1, k → ∞, cd ̸= 0, d ̸= 0, (1.10)

where d ∈ R is a real number, d ̸= −1,−2, . . . , and λ > 0 is the tempering parameter. The
tempered process (1.9) is related to the GAR model (1.2) by taking the moving average repre-
sentation of the latter when the coefficient α = e−λ, and X0,λ(t) (i.e., λ = 0) is the well-known
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fractional process.
A special case of such tempered processes that has been studied in [31, 50, 52] is the two-

parameter class of tempered fractionally integrated processes depending only on the parameters
(d, λ), denoted by ARTFIMA(0, d, λ, 0). This class has no autoregressive or moving average
component and extends to the tempered process case the well-known class of fractionally inte-
grated autoregressive moving average processes, denoted ARFIMA(0, d, 0). Definitions and some
essential properties of ARTFIMA(p, d, λ, q) processes, various specializations, and multivariate
extensions are provided in the Online Supplement [51] to this paper. In what follows and given
the generality of (1.9), we will mainly focus on ARTFIMA(0, d, λ, 0) processes.

When the value of the tempering parameter λ is small, an ARTFIMA(0, d, λ, 0) process has
an autocovariances resembling that of a long memory process out to a large number of lags but
eventually decaying exponentially fast. In [19] this behavior was termed semi-long memory. Such
processes have empirical relevance for modelling time series that are known to display various
degrees of long memory with autocovariances that decay slowly at first but ultimately decay
much faster, such as the magnitude or certain powers of financial returns (see, for example, [20]).
For an empirical example, we refer to [54], where the ARTFIMA(0, 0.3, 0.025, 0) is used to model
the log returns for AMZN stock price from 1/3/2000 to 12/19/2017. The advantage of using
ARTFIMA is the fact that we can capture aspects of the low frequency activity better than the
ARFIMA time series in part of the long-range dependence scenario. In the aforementioned AMZN
example, the periodogram follows a power law at moderate frequencies (ARFIMA(0, 0.3, 0)), but
then levels off at low frequencies and the ARTFIMA(0,0.3,0.025,0) model was found to be more
appropriate in capturing this behavior.

A specific focus of the present paper is the limit theory associated with the estimator âN in
the regression model (1.1) when the error process follows a tempered linear process given by (1.9)
and allowance is made for sample size dependence in the tempering parameter λ. This brings the
model into the realm of nearly integrated random processes with innovations that have potentially
long memory. Explicitly, we consider the scenario:

• The parameter λ = λN depends on N with λN = O(1) and limN→∞NλN = λ∗ ∈ [0,∞].

This framework of sample size dependent λN extends the usual local to unity autoregressive
asymptotic theory to accommodate a wide class of long memory, intermediate memory, and short
memory processes. The scenario still allows for λN = λ > 0 independent of N , but excludes the
situation that λN → ∞. In the latter case, the tempered linear process shrinks to a series of iid
random innovations and hence existing limit theory applies in that case.

The limit distribution of N(âN − a) is given in the general case in Theorem 3.3 and turns out
to depend on the value of λ∗. If λ∗ = 0, (1.7) continues to hold. If λ∗ = ∞, the limit distribution
is a functional of standard Brownian motion, but taking different forms in the cases d > 0, d = 0

and d < 0 with d ̸= N−; moreover, except for the case d = 0, this limit differs from that of
Phillips [36]. This fact might be particularly useful in empirical applications since, when λN → 0

and NλN → ∞, Xd,λN
(t) still displays the properties of long memory processes, but the limit

distribution is free of the unknown parameter d, enabling more convenient inference about the
unknown parameter a.

If λ∗ ∈ (0,∞), the limit distribution modifies (1.7) with the fBM process replaced by a Gaussian
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stochastic process called tempered fractional Brownian motion of the second kind (TFBM II). It
is well-known that the process fBM is related to the usual fractional calculus operator. In fact,
fractional noise may be interpreted as a fractional integral (derivative) of white noise when 0 <

d < 1
2 (respectively, −1

2 < d < 0) – see [34] for details. A new version of fractional calculus called
tempered fractional calculus has been proposed in [16, 50], which usefully relates to tempered
fBM. Indeed, working from the Weyl or Riemann-Liouville definition of a fractional operator, a
tempered fractional derivative (or integral) replaces the usual power law kernel by a power law
kernel scaled by an exponential tempering factor – see [16, 29, 50] for a detailed development. The
tempering factor produces a more tractable mathematical object. This tempering factor can be
made arbitrarily light and the resulting operator approximates the usual fractional derivative to
any desired degree of accuracy over a finite interval. The increment of TFBM II is called tempered
fractional Gaussian noise (TFGN II) and it can be shown that TFGN II is the tempered fractional
integral (derivative) of the white noise. The following section provides an overview of some key
properties of tempered fractional processes and readers are referred to [50, 53] for more details on
these processes and the connections to fractional operators.

Phillips [38] extended the asymptotic results in [36] to the multivariate case by introducing
the concept of near-integrated vector processes. These time series have proved useful in studying
the power properties of tests for cointegrating rank ([24], [13], [14]) and the fragility of standard
methods of cointegrating space inference under local departures from unity ([38], [17]). Let Y(t)

be a multiple time series generated by the model

Y(t) = AY(t− 1) +X(t), (1.11)

with
A = exp{N−1C},

where {X(t)} is a weakly stationary sequence of random m-vectors that satisfies some mixing
conditions, and C is a fixed real m×m matrix. If ÂN is the least squares estimate of A in (1.11),
Theorem 4.1 in [38] shows that, as N → ∞,

N(ÂN −A)
d−→

{∫ 1

0
dBJ ′

C + Λ′
}[∫ 1

0
(JC(s))J

′
C(s) ds

]−1
, (1.12)

where JC(r) is a vector diffusion process with stochastic integral representation

JC(r) =

∫ r

0
e(r−s)CB(ds), (1.13)

B(s) is m-vector Brownian motion with covariance matrix Ω =
∑

t∈Z EX(0)X(t)′, the long-run
variance matrix of X(t), and Λ =

∑
t∈N+

EX(0)X(t)′ is the one-sided long run covariance matrix
of X(t).

Motivated by (1.12), a result that has proved useful in the study of nonstationary vector autore-
gressions and power functions for tests of cointegrating rank in econometrics, this paper considers
the regression model (1.11) in the more general setting where the error process follows a strongly
tempered linear process. We first establish multivariate invariance principles for the vector of par-
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tial sums of {Xd,λ(j)}, where d = (d1, . . . , dm) and λ = (λ1, . . . , λm) – see Theorem 4.1 below.
Then, using these results, we develop the limit theory for the sample moments of the tempered
near integrated time series (1.11) with additive vector process {Xd,λ(j)} – see Theorem 4.3. Fi-
nally, we derive the limit distribution of the ordinary least squares (OLS) regression estimates
of the vector time series (1.11) when the errors are strongly tempered – see Theorem 4.2. We
emphasize that the approach used to derive asymptotic results for N(ÂN −A) in the multivariate
case in Section 4 is not simply an extension of the univariate case – see Remark 4.5 below and
Phillips [40] for this distinction.

In the above and in what follows, we use the notation d−→ ,
d
= , and fdd−→ ,

fdd
= for weak

convergence and equality of distributions, and finite-dimensional weak convergence and equal-
ity, respectively. We also write ⇒ for weak convergence of random processes in the Skoro-
hod space equipped with J1-topology, see [6], and use the notation N± := {±1,±2, . . . },R+ :=

(0,∞), (x)± := max(±x, 0), x ∈ R, and
∫

:=
∫
R. Lp(R) (p ≥ 1) denotes the Banach space

of measurable functions f : R → R with finite norm ∥f∥p =
( ∫

|f(x)|pdx
)1/p. The matrix

diag(η1, . . . , ηm) is m ×m diagonal with entries η1, . . . , ηm. Throughout this paper, all asymp-
totic results apply as N → ∞.

The paper is organized as follows. Tempered fractional processes are introduced and some
of their key properties are described in Section 2. Section 3 studies near integrated processes
with tempered fractional innovations and develops limit theory for sample moments of such time
series and associated autoregressions involving the fitted coefficient (1.3). Extensions to multiple
time series of near integrated tempered processes are given in Section 4. Section 5 concludes and
discusses some potential opportunities of the present methodology to assist in inference without
estimation of memory parameters. Proofs of all the results in the paper and further background
material on tempered fractional processes are provided in the Online Supplement [51].

2 Tempered fractional processes

Let {B(t)}t∈R be a two-sided real-valued Brownian motion on the real line, a process with sta-
tionary independent increments such that B(t) has a Gaussian distribution with mean zero and
variance |t| for all t ∈ R. Define an independently scattered Gaussian random measure B(dx)

with control measure m(dx) = dx by setting B[a, b] = B(b) − B(a) for any real numbers a < b,
and then extending to all Borel sets. Then the stochastic integrals I(f) :=

∫
R f(x)B(dx) are

defined for all functions f : R → R such that
∫
f(x)2dx < ∞ as Gaussian random variables with

mean zero and covariance E[I(f)I(g)] =
∫
f(x)g(x)dx – see for example [55, Chapter 3].

A fractional Brownian motion (fBM) is a Gaussian stochastic process with the moving average
representation

Bd(t) =
1

Γ(d+ 1)

∫ [
(t− x)d+ − (−x)d+

]
B(dx), (2.1)

where the memory parameter d satisfies −1
2 < d < 1

2 . The properties of Bd(t) are explored in detail
in [55, Chapter 7]. Meeerschaert and Sabzikar [30] and Sabzikar and Surgailis [53] introduced
tempered fractional Brownian motion (TFBM) and tempered fractional Brownian motion of the
second kind (TFBM II) respectively. A TFBM is a Gaussian stochastic process with the moving
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average representation

Bd,λ(t) =

∫ [
(t− x)d+ e−λ(t−x)+ − (−x)d+ e−λ(−x)+

]
B(dx) (2.2)

where d > −1
2 and λ > 0. A TFBM II is a Gaussian stochastic process defined by

BII
d,λ(t) =

∫
hd,λ(t, x)B(dx), (2.3)

where

hd,λ(t;x) = (t− x)d+ e−λ(t−x)+ − (−x)d+ e−λ(−x)+ + λ

∫ t

0
(s− x)d+ e−λ(s−x)+ ds, y ∈ R (2.4)

for d > −1
2 and λ > 0. TFBM and TFBM II reduce to fBM when λ = 0 and −1

2 < d < 1
2 . In

this paper, since our results relate closely to TFBM II, it will be useful to summarize the basic
properties of BII

d,λ(t). Readers are referred to [53] for the details.

Proposition 2.1 (i) TFBM II BII
d,λ in (2.3) has stationary increments, such that

{
BII

d,λ(ct)
}
t∈R

fdd
=

{
cd+

1
2BII

d,λt(t)
}
t∈R

(2.5)

for any scale factor c > 0 and is not a self-similar process.

(ii) TFBM II BII
d,λ in (2.3) has a.s. continuous paths.

(iii) For d > 0, the covariance function of TFBM II BII
d,λ is given by

EBII
d,λ(t)B

II
d,λ(s) = C(d, λ)

∫ t

0

∫ s

0
|u− v|d−

1
2Kd− 1

2
(λ|u− v|)dv du, (2.6)

where C(d, λ) = 2
√
πΓ(d)(2λ)d−

1
2

, d > 0, and λ > 0. Here Kν(x) is the modified Bessel function
of the second kind (see [1, Chapter 9]).

Remark 2.2 For d > 1
2 the integrand in (2.6), viz.,

1
√
πΓ(d)(2λ)d−

1
2

|u− v|d−
1
2Kd− 1

2
(λ|u− v|) (2.7)

is the Matérn covariance function (in one dimension) with shape parameter ν = d− 1
2 > 0, scale

parameter λ > 0, and variance parameter 1, see e.g. ([7], (1.1)). Note that the integral in (2.6)
diverges when −1

2 < d < 0. A more complex representation of the covariance function of BII
d,λ is

available for the case −1
2 < d < 0, but it is not needed in the present paper.

Next, we define the following stochastic process that plays an important role in the limit distri-
bution theory of this paper.

7



Definition 2.3 A tempered fractional Ornstein-Uhlenbeck (OU) process of the second kind (TFOU
II) is defined as

JII
c,d,λ(r) =

∫ r

0
e(r−s)cdBII

d,λ(s), (2.8)

where {BII
d,λ(s)}s∈R is the TFBM II given by (2.3) .

Lemma 2.4 Let JII
c,d,λ be the TFOU II given by (2.8). Then JII

c,d,λ is a Gaussian stochastic process
with zero mean and finite variance.

Remark 2.5 It can be shown that TFOU II is the unique solution of the following Langevin
equation driven by a TFBM II process

dJII
c,d,λ(r) = cJII

c,d,λ(r)dr + θdBII
d,λ(r) (2.9)

under the initial condition ξIId,λ = θ
∫ 0
−∞ ecrdBII

d,λ(r).

We close this section with a discussion of the tempered fractionally integrated process that is a
special case of tempered linear process given by (1.9). An ARTFIMA(0, d, λ, 0) class of tempered
fractionally integrated processes, generalizing the well-known ARFIMA(0, d, 0) class, is defined
by

Xd,λ(t) = (1− e−λB)−dζ(t) =

∞∑
k=0

e−λkω−d(k)ζ(t− k), t ∈ Z (2.10)

with coefficients given by power expansion (1 − e−λz)−d =
∑∞

k=0 e
−λkω−d(k)z

k, |z| < 1, where
ω−d(k) := Γ(k+d)

Γ(k+1)Γ(d) for d ∈ R \ N−, Bx(t) = x(t − 1) is the backward shift and {ζ(t)}t∈Z
are i.i.d. innovations with Eζ(0) = 0 and Eζ2(0) = 1. Due to the presence of the exponential
tempering factor e−λk the series in (1.9) and (2.10) converges absolutely a.s. and in Lp under
general assumptions on the innovations and thereby defines a strictly stationary process.

Remark 2.6 (i) Time series in the ARTFIMA(0, d, λ, 0) class given by (2.10) have covariance
function

γd,λ(k) = EX0,d,λ,0(0)X0,d,λ,0(k) =
e−λkΓ(d+ k)

Γ(d)Γ(k + 1)
2F1(d, k + d; k + 1; e−2λ), (2.11)

where 2F1(a, b; c; z) is the Gauss hypergeometric function (see e.g. [19]). Moreover,∑
k∈Z

∣∣γd,λ(k)∣∣ <∞,
∑
k∈Z

γd,λ(k) = (1− e−λ)−2d (2.12)

and
γd,λ(k) ∼ Akd−1e−λk, k → ∞, where A = (1− e−2λ)−dΓ(d)−1. (2.13)

(ii) From (2.13) it is evident that for small values of λ the covariance function of the ARTFIMA
model may resemble the covariance function of a long memory model out to a large number
of lags but eventually decays exponentially fast. [18] termed such behavior ‘semi long-
memory’ and noted that models generating such time series may have empirical relevance
for capturing certain long-run features of financial returns ([20]).
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(iii) The ARTFIMA(0, d, λ, 0) class can be extended to ARTFIMA(p, d, λ, q) in two different
ways, as explained in the Online Supplement [51]. However, the present paper mainly
focuses on the ARTFIMA(0, d, λ, 0) class.

3 Near integrated processes with ARTFIMA innovations

This section develops asymptotic theory for near-integrated processes with ARTFIMA innovations
and for autoregressions with such processes, viz.,

Y (t) = aY (t− 1) +Xd,λ(t), (3.1)

where a = aN = exp{c/N} and the error process {Xd,λ(t)}t∈Z is given by (2.10). Our first lemma
provides the asymptotic theory for the sample moments of Y (t). These results are then employed
to obtain the limit distribution of the fitted autoregressive coefficient âN defined by (1.3), which
depends on the TFOU II process – see Theorem 3.3 below. To simplify notation we write

Jc(r) = JII
c,0,0(r), Jc,d(r) = JII

c,d,0(r)

where JII
c,d,λ (r) is the TFOU II process given by (2.8). We recall that, for the tempered pa-

rameter λ = λN with λN = O(1), λ∗ ∈ [0,∞] is defined as the limit of limN→∞NλN , i.e.,
λ∗ = limN→∞NλN .

Lemma 3.1 (i) If λ∗ = ∞ and d ∈ R \ N−, then

N−1/2λdNY [Nr] ⇒ Jc(r)

on D[0, 1] and

N−2λ2dN

N∑
t=1

Y 2(t− 1)
d−→

∫ 1

0
Jc(s)

2 ds.

(ii) If λ∗ = 0 and −1
2 < d < 1

2 , then

N−(d+1/2)Y [Nr] ⇒ Γ(d+ 1)−1Jc,d(r)

on D[0, 1] and

N−(2d+2)
N∑
t=1

Y 2(t− 1)
d−→ Γ(d+ 1)−2

∫ 1

0
Jc,d(s)

2 ds.

(iii) If λ∗ ∈ (0,∞) and d > −1
2 , then

N−(d+ 1
2
)Y [Ns] ⇒ Γ(d+ 1)−1JII

c,d,λ∗(s)
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on D[0, 1] and

N−(2d+2)
N∑
t=1

Y 2(t− 1)
d−→ Γ(d+ 1)−2

∫ 1

0
JII
c,d,λ∗(s)2ds.

This lemma, together with the following Proposition 3.2, is vital to derive the limit distributions
in Theorem 3.3, the main result of this section. We refer to [52] for a proof of Proposition 3.2.

Proposition 3.2 Let {Xd,λ(t)}t∈Z be given by (2.10). For any d ∈ R \ N−, if the tempering
parameter λN → 0 and E|ζ(0)|p <∞, for some p > 2, then

1

N

N∑
t=1

X2
d,λN

(t)
p−→ Γ(1− 2d)

Γ2(1− d)
, d < 1/2, (3.2)

λ2d−1
N

N

N∑
t=1

X2
d,λN

(t)
p−→ Γ(d− 1/2)

2
√
π Γ(d)

, d > 1/2, (3.3)

1

N | log λN |

N∑
t=1

X2
d,λN

(t)
p−→ 1

π
, d = 1/2. (3.4)

We now present the main result of this section. Let âN be the OLS estimator of the parameter
a given by (1.3), where Y (t) is generated by the model (3.1).

Theorem 3.3 Suppose that E|ζ(0)|p <∞, for some p > 2 ∨ 1/(d+ 1/2).

(i) (Strongly tempered errors) If λN → 0, λ∗ = ∞ and d ∈ R \ N−, then

min(1, λ−2d
N )N(âN − a)

d−→ 1

2
∫ 1
0 Jc(s)

2 ds


Jc(1)

2 − 2c
∫ 1
0 (Jc(s))

2ds, d > 0,

Jc(1)
2 − 2c

∫ 1
0 Jc(s)

2ds− 1, d = 0,

−Γ(1−2d)
Γ(1−d)2

, d < 0.

(ii) (Weakly tempered errors) If λ∗ = 0 and −1
2 < d < 1

2 , then

N1∧(1+2d)(âN − a)
d−→ 1

2
∫ 1
0 (Jc,d(s))

2 ds


(Jc,d(1))

2 − 2c
∫ 1
0 (Jc,d(s))

2ds, 0 < d < 1
2 ,

(Jc,d(1))
2 − 2c

∫ 1
0 (Jc,d(s))

2ds− 1, d = 0

−Γ(d+1)2Γ(1−2d)
Γ(1−d)2

, −1
2 < d < 0.

(iii) (Moderately tempered errors) If 0 < λ∗ <∞ and d > −1
2 , then

N1∧(1+2d)(âN − a)
d−→ 1

2
∫ 1
0 (J

II
c,d,λ∗(s))2 ds


(JII

c,d,λ∗(1))2 − 2c
∫ 1
0 (J

II
c,d,λ∗(s))2ds, d > 0,

(JII
c,d,λ∗(1))2 − 2c

∫ 1
0 (J

II
c,d,λ∗(s))2ds− 1, d = 0

−Γ(d+1)2Γ(1−2d)
Γ(1−d)2

, −1
2 < d < 0.
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Remark 3.4 For any d > 0, if λN → 0 and NλN → ∞, we have

N(âN − a)
d−→ 1

2
∫ 1
0 Jc(s)

2 ds

[
Jc(1)

2 − 2c

∫ 1

0
(Jc(s))

2ds
]
. (3.5)

Unlike (1.7), the limit distribution in (3.5) is free of the unknown fractional parameter d. Since
Xd,λN

(t) still displays the properties of long memory processes when λN → 0 and NλN → ∞,
the invariance property of result (3.5) reveals an interesting advantage of modeling with such
processes in practical work if the data support a suitable range of values for the sequence λN .
Investigation of this issue, like that of detecting parameter values local to unity is difficult but
seems worthy of future research, much as estimation and confidence interval construction has
been for autoregressive coefficients that include local to unity (LUR) specifications ([41], [42],
[56]).

Although (3.5) is variation free of the unknown parameter d, the limiting distribution is still
not pivotal in general and depends on the unknown localizing coefficient c. However, c is not
consistently estimable even under model (3.1) as observed in much earlier work on the LUR model
(Phillips, 1987; Phillips et al., 2001). For empirical applications, at least in the present setting,
further work is needed for inference about c and even in very simple AR models, the situation
is extremely difficult and presently confined to the simplest AR(1) setting – see Mikusheva ([27])
and Phillips ([42]) for details. For practical work a bootstrap procedure also needs to be developed
and justified for the asymptotic distribution of (3.5). These extensions are well beyond the scope
of this paper and are left for future work

Remark 3.5 Let tN =
(∑N

t=1 Y
2(t− 1)

) 1
2
(âN − a) denote the self normalized centred estimator

or score function. Ahtola and Tiao [2] considered the sampling behavior of tN with i.i.d normal
innovations. Phillips [36, Theorem 1] investigated a similar problem under the assumption that the
innovations follow some mixing conditions and Buchmann and Chan [9, Theorem 2.1] obtained
corresponding asymptotic results when the innovations are strongly correlated. Using similar
arguments to those in Theorem 3.3, we may establish the following theorem, providing an extension
of existing works to tempered fractional processes. The proof of Theorem 3.6 is similar to that of
Theorem 3.3 with only minor modifications and hence the details are omitted.

Theorem 3.6 Under the conditions of Theorem 3.3, we have

(i) (Strongly tempered errors) if λN → 0, λ∗ = ∞ and d ∈ R \ N−, then

λ
|d|
N tN

d−→ 1

2
[ ∫ 1

0 Jc(s)
2 ds

] 1
2


Jc(1)

2 − 2c
∫ 1
0 (Jc(s))

2ds, d > 0,

Jc(1)
2 − 2c

∫ 1
0 Jc(s)

2ds− 1, d = 0,

−Γ(1−2d)
Γ(1−d)2

, d < 0;
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(ii) (Weakly tempered errors) if λ∗ = 0 and −1
2 < d < 1

2 , then

N−|d| tN
d−→ 1

2Γ(d+ 1)
[ ∫ 1

0 (Jc,d(s))
2 ds

] 1
2


(Jc,d(1))

2 − 2c
∫ 1
0 (Jc,d(s))

2ds, 0 < d < 1
2 ,

(Jc,d(1))
2 − 2c

∫ 1
0 (Jc,d(s))

2ds− 1, d = 0

−Γ(d+1)2Γ(1−2d)
Γ(1−d)2

, −1
2 < d < 0;

(iii) (Moderately tempered errors) if 0 < λ∗ <∞ and d > −1
2 , then

N−|d| tN
d−→ 1

2Γ(d+ 1)
[ ∫ 1

0 (J
II
c,d,λ∗(s))2 ds

] 1
2


(JII

c,d,λ∗(1))2 − 2c
∫ 1
0 (J

II
c,d,λ∗(s))2ds, d > 0,

(JII
c,d,λ∗(1))2 − 2c

∫ 1
0 (J

II
c,d,λ∗(s))2ds− 1, d = 0

−Γ(d+1)2Γ(1−2d)
Γ(1−d)2

, −1
2 < d < 0.

Remark 3.7 In comparison with (3.5), the score function tN has a different convergence rate
that depends on the unknown parameter d even when λN → 0 and NλN → ∞. The score function
tN is commonly used for inference in classical situations such as that studied by Ahtola and Tiao
[2]. Surprisingly in the present case self normalization is not adequate in normalizing the centred
estimator when the innovation is a tempered fractional process, and the limit behavior of the score
function tN is more complex due to the involvement of the unknown parameter d.

In applications, when the parameter λ is fixed and does not depend the sample size N , we
can use Whittle estimation or maximum likelihood estimation to estimate the parameters in an
ARTFIMA(0, d, λ, 0) model. In fact, those estimators are strongly consistent under quite general
conditions. For estimation of the parameter λ along these lines, see [54]. But when the parameter
λ is sample size dependent and tends to zero as N → ∞, the problem is much more complex, just
as it is in local to unity (LTU) and local to zero cases in simpler autoregressive models. On the
other hand, those cases reveal that an alternative approach to dealing empirically with a local to
zero sequence λN is to develop confidence intervals (including those for other parameters) that are
uniform and so allow for such localized departures. This approach was explored in LTU cases by
Phillips and Giraitis [21], Mikusheva [27] and Phillips [42], using limit theory for mildly integrated
processes developed in Phillips and Magdalinos [44, 45] which moderate the LTU decay rate so
that the processes are closer to stationarity. Such methods and connections might be considered
in future research in the general context considered here.

4 Near integrated multiple time series with strongly tempered
innovations

In this section, we extend Theorem 3.3 to the multivariate case when the errors are strongly
tempered. We first establish a multivariate generalization of the invariance principles for tempered
fractionally integrated processes due to Sabzikar and Surgailis [52] – see Theorem 4.1 below. We
then obtain limit theory for the sample moments of a near integrated vector process with strongly
tempered errors.

Let ζ(t) = (ζ1(t), ..., ζm(t))′, t ∈ Z, be a time series of iid random vectors with Eζ(t) = 0 and
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covariance matrix Ω. Define a random m-vector of tempered linear processes

Xd,λ(t) =
(
Xd1,λ1(t), . . . , Xdm,λm(t)

)′
(4.1)

such that, as in (1.9), Xdi,λi
(t) is given by,

Xdi,λi
(t) =

∞∑
k=0

e−λikbdi(k)ζi(t− k), bdi(k) ∼
cdi

Γ(di)
kdi−1.

Define the vector partial sums

Sd,λ
N (t) :=

[Nt]∑
k=1

Xd,λ(k), t ∈ [0, 1]. (4.2)

Throughout this section, for all i = 1, . . . ,m, we assume that di > 0, the tempering parameters
λi ≡ λi,N → 0 as N → ∞ and

lim
N→∞

Nλi,N = ∞. (4.3)

Following [52], Xdi,λN
is called strongly tempered. We further assume cdi = 1, i = 1, ...,m, for

convenience of presentation.
Our first result is the weak convergence of Sd,λ

N (t), extending [52] from univariate to multivariate
settings. Unlike [52], only the second moment is required to establish the limit theory in this
case. Let DN = diag(N− 1

2λd11 , · · · , N− 1
2λdmm ) and B(t) = (B1(t), . . . , Bm(t))′ be m-dimensional

Brownian motion with covariance matrix Ω.

Theorem 4.1 We have

DN Sd,λ
N (t) ⇒ B(t), (4.4)

on DRm [0, 1].

It is interesting to note that the limit distribution in (4.4) is multivariate Brownian motion
rather than fractional vector Brownian motion, and is therefore free of the fractional parameters.
This invariance feature of the limit theory differs considerably from previous works involving long
run properties of fractional processes (such as [39]) and has implications for empirical work with
such time series.

For the multiple times series Y(t) = (Y1(t), ..., Ym(t))′, t ≥ 1, generated by

Y(t) = AY(t− 1) +Xd,λ(t), Y(0) = 0,

where A = diag(exp{c1/N}, . . . , exp{cm/N}), as in [39], the coefficient matrix A can be estimated
by vector autoregression giving

ÂN =
[ N∑
t=1

Y(t)Y(t− 1)′
][ N∑

t=1

Y(t− 1)Y(t− 1)′
]−1

.

The next theorem gives a partial multivariate generalization of Theorem 3.3.
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Theorem 4.2 Suppose that E||ζ(0)||4 <∞ and λi,N/λj,N → ηij ∈ [0,∞] as N → ∞. Then,

NDN (ÂN −A)D−1
N

d−→
[ ∫ 1

0
dB(s)JC(s)

′ +∆
][ ∫ 1

0
JC(s)JC(s)

′ds
]−1

,

where JC(s) =
(
Q1s, ..., Qms

)′ with Qjs =
∫ s
0 e

(s−u)cBj(du) and ∆ = (∆ij)m×m with

∆ij =


1
2Eζ

2
i (0), if i = j,

E
[
ζi(0)ζj(0)

]
Γ(d1)Γ(d2)

∫∞
0 xdj−1e−xdx

∫∞
ηij x

ydi−1e−ydy, if i ̸= j.

For the elements of ∆, it is easy to see that ∆ij = E
[
ζi(0)ζj(0)

]
if i ̸= j and ηij = 0, and ∆ij = 0

if i ̸= j and ηij = ∞.

Let Ŷ(t) = DN Y(t). Note that 1
N

∑N
t=1 Ŷ(t− 1) Ŷ(t− 1)′ =

∫ 1
0 Ŷ([Ns])Ŷ([Ns])′ds and

NDN (ÂN −A)D−1
N =

[ N∑
t=1

DNXd,λ(t) Ŷ(t− 1)′
][ 1

N

N∑
t=1

Ŷ(t− 1) Ŷ(t− 1)′
]−1

.

Theorem 4.2 follows directly from the continuous mapping theorem and the following theorem.

Theorem 4.3 Suppose that E||ζ(0)||4 <∞ and λi,N/λj,N → ηij ∈ [0,∞] as N → ∞. We have

(
Ŷ([Ns]),

N∑
t=1

DNXd,λ(t) Ŷ(t− 1)′
)
⇒

(
JC(s),

∫ 1

0
dB(s)JC(s)

′ +∆
)
, (4.5)

on DRm [0, 1]×Rm×m.

Remark 4.4 Unlike the univariate case in Theorem 3.3, the limit distribution in the multivariate
version given in Theorem 4.2 has a bias term ∆ that depends on the ratio of the tempering
parameters λi,N and λj,N and the fractional parameters di, i = 1, ...,m. This bias term comes
from the interaction among the tempered linear processes. If all ηij = limN→∞ λi,N/λj,N are zero
or ∞, this bias term ∆ is free of the fractional parameters di, i = 1, ...,m, and hence the limit
distribution has a similar property.

Remark 4.5 In the proof of Theorem 4.3, we need to investigate asymptotics for components

of the form λ
di
i λ

dj
j

N

∑N
t=1Xdi,λi

(t)Yj(t − 1), which seems difficult without assuming λi,NN → ∞
when i ̸= j. As a consequence, we have been unable to establish Theorem 4.2 in the weakly and
moderately tempered errors cases in the present paper. We plan to investigate this case in later
research.

5 Conclusion

Limit theory for near-unit root autoregressions has proved useful in many econometric contexts,
including the analysis of local power properties, robust confidence interval construction, and
financial bubble detection mechanisms. While most of this work has allowed for short memory
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innovations, some of the limit theory has been extended to the long memory innovation case. The
present work provides an inclusive approach to this near-unit root limit theory that accommodates
both short memory and long memory innovations as well as an intermediate course in which long
memory properties may be attenuated at long lags according to the presence of a tempering
parameter.

Allowing the tempering parameter to drift to zero so that λN → 0 opens up a further range of
potential time series behavior. As we have noted, one advantage of this extension is that under
certain conditions the limit theory becomes robust to the memory parameters, thereby simplifying
inference. This feature opens up some opportunities for further research on procedures that can
free empirical investigators from having to estimate memory parameters, a property that is likely
to be especially useful in multivariate cases when this property holds. A useful starting point in
this extension is result (3.5), which reveals limit theory that is free of memory parameters, the
advantages of which can be explored in simulations and empirical research.

The authors hope that the results given in the present work on tempered linear processes
and subsequent research along these indicated lines will usefully extend some of the goals which
emerged in the early work by Ahtola and Tiao [2] and others on near-unit-root models that began
more than three decades ago.
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This supplement is organized as follows. Section A provides proofs of the results given in the
main paper. The proofs of the propositions employed to establish some of the results in Section
A is given in Section A.1. Appendix B introduces the Wiener integral with respect to TFBMII.
Appendix C shows how to extend the univariate ARTFIMA time series to the multivariate case.
Throughout the supplement, we use the notation d−→ ,

d
= , and fdd−→ ,

fdd
= for weak convergence

and equality of distributions, and finite-dimensional weak convergence and equality, respectively.
We also write ⇒ for weak convergence of random processes in the Skorohod space equipped
with the J1-topology, see [6], and use the notation N± := {±1,±2, . . . },R+ := (0,∞), (x)± :=

max(±x, 0), x ∈ R, and
∫

:=
∫
R. Lp(R) (p ≥ 1) denotes the Banach space of measurable

functions f : R → R with finite norm ∥f∥p =
( ∫

|f(x)|pdx
)1/p. We use op(1) to indicate a

sequence of random variables that converges to zero in probability. The matrix diag(η1, . . . , ηm)

is m×m diagonal with entries η1, . . . , ηm. Finally, all asymptotic results apply as N → ∞.

A Proofs of the main results

Proof of Lemma 2.4. We prove Lemma 2.4 for the case d > 0. The case −1/2 < d < 0 is similar
and hence we omit the proof. First we note that

JII
c,d,λ(r) =

∫ r

0
e(r−s)cBII

d,λ(ds) =

∫
ecx1{0<x<r}B

II
d,λ(dx) =

∫ (
Id,λ− f

)
(y)B(dy),

where f(x) = ecx1{0<x<r}. Therefore, using Definition B.4, JII
c,d,λ is well-defined if we show that

f ∈ A1. That is (i) f ∈ L2(R) and (ii)
∫ ∣∣(Id,λ− f

)
(y)

∣∣2dy < ∞. The first condition (i) obviously
holds. For the second one, use the Plancherel Theorem to see that ∥Id,λ− f∥22 = ∥F

[
Id,λ− f

]
∥22 < ∞

for all d > 0, where F [f ](f) = f̂(k) = 1√
2π

∫
e−ikxf(x)dx is the Fourier transform of function f .

In fact, we have

∥F
[
Id,λ− f

]
∥22 =

∫
|f̂(k)|2(λ2 + k2)−2d

=
1

2π

∫
1− 2ecr cos kr + e2cr

2π(c2 + k2)
(λ2 + k2)−ddk

which is finite if d > 0.

Proof of Lemma 3.1. The idea of the proof is to use the continuous mapping theorem and Theorem
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4.3 of Sabzikar and Surgaillis [52], i.e., on D[0, 1],

SN ([Ns]) ⇒


BII

0,0(s), under (i)
1

Γ(d+1)B
II
d,0(s), under (ii)

1
Γ(d+1)B

II
d,λ∗(s), under (iii)

, (A.1)

where

SN (k) =

{
N− 1

2λdN
∑k

j=1Xd,λN
(j), under (i)

N−(d+ 1
2
)∑k

j=1Xd,λN
(j), under (ii) & (iii).

(A.2)

We only prove (i). The other derivations are similar and the details are omitted. The second part
of (i) is simple. In fact, by noting that

N−2λ2dN

N∑
t=1

Y 2(t− 1) =

∫ 1

0

( λdN√
N
Y ([Ns])

)2
ds+ oP (1),

the result follows from the first part of (i), i.e., λd
N√
N
Y ([Ns]) ⇒ Jc(s) and the continuous mapping

theorem. To prove λd
N√
N
Y ([Ns]) ⇒ Jc(s), it suffices to show

(a) the tightness of λd
N√
N
Y ([Ns]), and

(b) finite dimensional convergence of λd
N√
N
Y ([Ns]).

Let SN (0) = 0. For any 0 ≤ m < n, we have

λdN√
N

(Y (n)− Y (m))

=
n∑

k=m+1

e(n−k)c/N (SN (k)− SN (k − 1)) +
[
e(n−m)c/N − 1

] λdN√
N
Y (m)

= SN (n)− e(n−m)c/NSN (m) + (ec/N − 1)
n∑

k=m+1

e(m−k)c/NSN (k)

+
[
e(n−m)c/N − 1

] λdN√
N
Y (m). (A.3)

This yields (by letting m = 0)

λdN√
N

max
1≤k≤N

|Y (k)| ≤ max
1≤k≤N

|SN (k)|
[
1 +N(ec/N − 1)

]
≤ C max

1≤k≤N
|SN (k)|,

and, for any 0 ≤ s < t ≤ 1,

λdN√
N

|Y ([Nt])− Y ([Ns])| ≤ |SN ([Nt])− SN ([Ns])|+ C (t− s) max
1≤k≤N

|SN (k)|.

As a consequence, we have proved the tightness of λd
N√
N
Y ([Nt]), 0 ≤ t ≤ 1, since SN ([Nt]), 0 ≤
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t ≤ 1, is tight due to (A.1). We next prove the finite dimensional convergence of λd
N√
N
Y ([Ns]).

Without loss of generality, we only show λd
N√
N
Y (N)

d−→ Jc(1), since the general situation is a
natural application of the Cramér-Wold device. Note that

λdN√
N
Y (N) =

N∑
k=1

e(N−k)c/N (SN (k)− SN (k − 1))

= Sd,λN
N (N) +N(ec/N − 1)

∫ (N−1)/N

0
e(N−1−[Ns])c/NSN ([Ns])ds.

It follows from N(ec/N − 1) → c, e(N−1−[Ns])c/N → e(1−s)c uniformly in s ∈ [0, 1] and (A.1) that

λdN√
N
Y (N)

d−→ BII
0,0(1) + c

∫ 1

0
e(1−s)cBII

0,0(s)ds = Jc(1),

as required. The proof of Lemma 3.1 is complete. �

Proof of Theorem 3.3. The idea is to use Lemma 3.1 and the continuous mapping theorem.
Since all derivations are similar, we only prove part (i) with d > 0 in detail. When d > 0,
min(1, λ−2d

N ) = 1 and then

min(1, λ−2d
N )N(âN − a) =

N−1λ2dN
∑N

t=1 Y (t− 1)Xd,λN
(t)

N−2λ2dN
∑N

t=1 Y
2(t− 1)

. (A.4)

Note that

Y 2(N) =
(
e2c/N − 1

) N∑
t=1

Y 2(t− 1) +

N∑
t=1

Xd,λN
(t)2 + 2ec/N

N∑
t=1

Y (t− 1)Xd,λN
(t).

We may write

N−1λ2dN

N∑
t=1

Y (t− 1)Xd,λN
(t)

=
1

2
e−c/NN−1λ2dN Y

2(N)− 1

2
e−c/NN(e2c/N − 1)N−2λ2dN

N∑
t=1

Y 2(t− 1)− 1

2
N−1e−c/Nλ2dN

N∑
t=1

(Xd,λN
(t))2

=: I11 −
1

2
e−c/NN(e2c/N − 1)I12 + I13.

Using the continuous mapping theorem and part (i) in Lemma 3.1, we see that

(I11, I12)
d−→

(1
2

(
Jc(1)

)2
,

∫ 1

0

(
Jc(s)

)2
ds
)
.
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Employing this result in (A.4), together with I13
p−→ 0 by Proposition 3.2, we have

min(1, λ−2d
N )N(β̂N − β) =

I11 − 1
2N(e2c/N − 1)e−c/NI12 + I13

I12

d−→
[ ∫ 1

0
(Jc(s))

2 ds
]−1 (1

2

(
Jc(1)

)2
− c

∫ 1

0
(Jc(s))

2 ds
)
,

as required.
�

Proof of Theorem 4.1. It suffices to show

(i) the tightness of λ
di
i√
N

∑[Nt]
k=1Xdi,λi

(k), i = 1, . . . ,m; and

(ii) the finite dimensional convergence of

DN Sd,λ
N (t) =

( λd11√
N

[Nt]∑
k=1

Xd1,λ1(k), . . . ,
λdmm√
N

[Nt]∑
k=1

Xdm,λm(k)
)
.

Let bk = e−λ1kbd1(k), A1,m =
∑m

j=1 ζ1(j)
∑m−j

k=0 bk and A2,m =
∑m

j=1

∑∞
k=0 bk+jζ1(j). Since,

for any 0 ≤ t ≤ 1,

[Nt]∑
k=1

Xd1,λ1(k) =

[Nt]∑
k=1

k∑
j=−∞

bk−jζ1(j) = A1,[Nt] +A2,[Nt], (A.5)

the tightness of λ
d1
1√
N

∑[Nt]
k=1Xd1,λ1(k) follows from the following proposition, which will be proved

in Section 2.

Proposition A.1 λ
d1
1√
N
A1,[Nt], 0 ≤ t ≤ 1, is tight and

E max
1≤m≤N

|A2,m| = o(1)λ−d1
1

√
N. (A.6)

The proof for the tightness of λ
di
i√
N

∑[Nt]
k=1Xdi,λi

(k), i = 2, . . . ,m, is similar.
We next prove the finite dimensional convergence of DN Sd,λ

N (t). We first claim: for any fixed
0 ≤ t ≤ 1,

λdii√
N

[Nt]∑
k=1

Xdi,λi
(k) =

1√
N

[Nt]∑
k=1

ζi(k) + oP (1), i = 1, 2, . . . ,m. (A.7)

In fact, by recalling (A.5), we may write (without loss of generality, assume t = 1 and i = 1)

N∑
k=1

Xd1,λ1(k) =

N∑
k=0

bk

N∑
j=1

ζ1(j) +A2,N −
N∑
j=1

ζ1(j)

N∑
k=N−j

bk

:=
N∑
k=0

bk

N∑
j=1

ζ1(j) +A2,N −A3,N .
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It is readily seen by using (A.16) of Lemma A.5 in Section 2 that

λd11

N∑
k=0

bk =
λd11
Γ(d1)

N∑
k=1

kd1−1e−λ1k + o(1)

= 1 + o(1)

Similarly, by using (A.19) of Lemma A.5, we get

EA2
2N + EA2

3N ≤ 2

∞∑
j=0

( N∑
k=1

bk+j

)2
= o(1)λ−2d1

1 N,

i.e., λ
d1
1√
N
(|A2N | + |A3N |) = oP (1). Combining these facts, we have established (A.7) with i = 1.

The other cases are similar.
Due to (A.7), for any fixed 0 ≤ t ≤ 1, we have

DN Sd,λ
N (t) = SN (t) + oP (1), (A.8)

where SN (t) =
(

1√
N

∑[Nt]
k=1 ζ1(k), · · · ,

1√
N

∑[Nt]
k=1 ζm(k)

)
. This, together with the classical result:

SN (t) ⇒ B(t), on DRm [0, 1],

yields the finite dimensional convergence of DN Sd,λ
N (t). The proof of Theorem 4.1 is now com-

plete. �

Proof of Theorem 4.2. It follows from Theorem 4.1 and Theorem 4.3. �

Proof of Theorem 4.3. It only needs to be show that, for all 1 ≤ i, j, l ≤ m,

(
Ŷ(t),

λdii λ
dj
j

N

N∑
k=1

Xdi,λi
(k)Yj(k − 1)

)
⇒

(
JC(t),

∫ 1

0
QjsBi(ds) + ∆ij

)
, (A.9)

jointly on DR3m [0, 1]. Let SN (t) =
(

1√
N

∑[Nt]
k=1 ζ1(k), · · · ,

1√
N

∑[Nt]
k=1 ζm(k)

)
as in the proof of

Theorem 4.1. It follows from (A.8) that

DN Sd,λ
N (t) = SN (t) + oP (1).

Since Ŷ(t) = DN Y(t) can be presented as a functional of DN Sd,λ
N (t) as seen in (A.3) (taking

m = 0 and n = [Ns]), result (A.9) will follow if we prove

(
SN (t),

λdii λ
dj
j

N

N∑
k=1

Xdi,λi
(k)Yj(k − 1)

)
⇒

(
B(t),

∫ 1

0
QjsdBi(t) + ∆ij

)
, (A.10)

jointly on DR3m [0, 1], by using the same arguments as in the proof of Lemma 3.1.
We only prove (A.10) with i = 2, j = 1 and m = 2. Due to linearity, extensions to the general

m > 2 case and to joint convergence are straightforward and the details are omitted for brevity.
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Let bk = e−λ1kbd1(k) and ck = e−λ2kbd2(k) as in the proof of Theorem 4.1. Recall that

Xd1,λ1(k) =
∞∑
j=0

bjuk−j ,

where uk−j = ζ1(k − j), bj ∼ 1
Γ(d1)

jd1−1 e−λ1j , λ1 ≡ λ1,N ;

Xd2,λ2(k) =

∞∑
j=0

cjwk−j ,

where wk−j = ζ2(k − j), cj ∼ 1
Γ(d2)

jd2−1 e−λ2j , λ2 ≡ λ2,N ; and

Y1(k) = ec/NY1(k − 1) +Xd1,λ1(k), Y1(0) = 0, c ≥ 0

=

k∑
s=1

e(k−s)c/NXd1,λ1(k).

As in (3.1)-(3.3), (4.1)-(4.2) and (4.4) of Davidson and Hashimzade [15], we may write

N∑
t=1

Xd2,λ2(t)Y1(t− 1) =: G1N +G2N +G3N ,

where

G1N =

N−1∑
t=1

t∑
s=1

e(t−s)c/N
t∑

m=−∞

min(s,m)∑
i=−∞

bs−ict−muiwm+1

=

N−1∑
m=−∞

qmNwm+1

with qmN =
∑m

i=−∞ am,i ui and

am,i := am,i(N) =

N−1−m∑
k=max(1−m,0)

ck

k+m−i∑
j=max(1−i,0)

e(k+m−i−j)c/Nbj ;

G2N =
N−1∑
t=1

t∑
s=1

e(t−s)c/N
∞∑
k=0

bkck+t−s+1us−kws−k;

G3N =
N−1∑
t=1

t∑
s=1

e(t−s)c/N
∞∑
k=0

∞∑
j=k+t−s+2

bkcjus−kwt+1−j

=
N−1∑
i=−∞

hi−1,Nui,
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with hi,N =
∑i

m=−∞ em,iwm and

em,i := em,i(N) =

N−1−i∑
s=max(1−i,0)

bs

N−m∑
t=s+i+1−m

e(t−s−i−1+m)c/Nct.

Next let

âm,i = e(m−i)c/N
N−1−m∑

k=0

ekc/Nck

N∑
j=k+m−i+1

e−jc/Nbj

+e(m−i)c/N
N−1∑

k=N−m

ekc/Nck

N∑
j=0

e−jc/Nbj ,

ãm,i = e(m−i)c/N
N−1∑
k=0

ekc/Nck

N∑
j=0

e−jc/Nbj .

Note that am,i = ãm,i − âm,i. We further have

G1N =
N−1∑

m=−∞
qmNwm+1

=
N−1∑
m=1

qmN,1wm+1 +
N−1∑
m=1

qmN,2wm+1 +
0∑

m=−∞
qmNwm+1

=

N−1∑
m=1

q̃mN,1wm+1 −
N−1∑
m=1

q̂mN,1wm+1 +

N−1∑
m=1

qmN,2wm+1 +

0∑
m=−∞

qmNwm+1

=: G1N,1 −G1N,2 +G1N,3 +G1N,4,

where qmN,1 =
∑m

i=1 am,i ui, qmN,2 = qmN − qmN,1 =
∑0

i=−∞ am,i ui, q̂mN,1 =
∑m

i=1 âm,i ui and

q̃mN,1 =
m∑
i=1

ãm,i ui =
N−1∑
k=0

ekc/Nck

N∑
j=0

e−jc/Nbj

m∑
i=1

e(m−i)c/N ui

After these preliminaries, result (A.10) with i = 2 and j = 1 will follow if we prove the following
propositions.

Proposition A.2 We have

(
SN (t),

1√
N

[Nt]∑
i=1

e([Nt]−i)c/N ui

)
⇒

(
B(t), Q1t

)
, (A.11)

on DR3 [0, 1] in the Skorohod topology, and

λd11

N∑
j=0

e−jc/Nbj → 1, λd22

N−1∑
k=0

ekc/Nck → 1. (A.12)
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Proposition A.3 We have

N−1 λd11 λ
d2
2

(
|G1N,2|+ |G1N,3|+ |G1N,4|+ |G3N |

)
= oP (1), (A.13)

Proposition A.4 Suppose that E||ζ(0)||4 <∞ and λ2,N/λ1,N → η21 as N → ∞. We have

N−1 λd11 λ
d2
2 G2N = ∆21 + oP (1). (A.14)

Indeed, by noting that G1N,1, N ≥ 1, forms a martingale sequence, Proposition A.2, together
an application of Kurtz and Protter [25] [also see Jacod and Shiryaev [23]], yield that

(
SN (t),

λd11 λ
d2
2

N
G1N,1

)
⇒D

(
B(t),

∫ 1

0
Q1tdB2(t)

)
.

This result, together with Propositions A.3 and A.4, imply the required (A.10) with i = 2 and
j = 1. The proof of Theorem 4.3 is then complete.

�

The proofs of Propositions A.2 - A.4 are given in next section.

A.1 Proofs of the Propositions

Except where mentioned explicitly, the notations are the same as in previous sections. We start
with the following lemma, which plays a key role in the proofs of the three propositions.

Lemma A.5 (a) For any d > 0 and 0 < ln → ∞, we have

∣∣∣ 1
n

[na]∑
s=1+[nb]

e[γn]/n e−ln s/n(s/n)d−1 −
∫ a

b
eγ e−lnuud−1du

∣∣∣ = o(1), (A.15)

uniformly for 0 ≤ b < a ≤ A0 for some A0 <∞, as n→ ∞.

(b) For any d > 0 and 0 < λ ≡ λN → 0 satisfying λN → ∞,

N∑
k=1

kd−1e−λk = O(λ−d),
∞∑

k=N

kd−1e−λk = o(λ−d) (A.16)

and uniformly for 0 ≤ s < t ≤ 1,

N∑
m=0

( [Nt]−[Ns]+m∑
k=1+m

kd−1e−λk
)2

≤ C λ−2dN(t− s). (A.17)
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(c) For any d > 0 and 0 < λ ≡ λN → 0 satisfying λN → ∞, we have

N∑
m=1

( ∞∑
k=m

k2d−2e−2λk
)1/2

= o(1)λ−d
√
N. (A.18)

∞∑
m=0

( N+m∑
k=1+m

kd−1e−λk
)2

= o(1)λ−2dN, (A.19)

Proof. (A.15) is a well-known result. The proof of result (A.16) is simple. Result (A.17) follows
from

N∑
m=0

( [Nt]−[Ns]+m∑
k=1+m

kd−1e−λk
)2

≤ C N1+2d

∫ 1

0

(∫ t−s+x

x
yd−1e−λNydy

)2
dx

≤ C λ−2dN
(∫ t−s

0
+

∫ 1

t−s

)(∫ λN{(t−s)+x}

λNx
yd−1e−ydy

)2
dx

≤ C λ−2dN (t− s)
(∫ ∞

0
sd−1e−sds

)2

+C λ−2dN

∫ 1

t−s

[
e−λNx(λNx)d−1λN(t− s)

]2
dx

≤ C1 λ
−2dN (t− s) + C λ−2d+1N2(t− s)2

∫ ∞

λN(t−s)
e−2xx2(d−1)dx

≤ C1 λ
−2dN (t− s) + C λ−2dN(t− s)

∫ ∞

λN(t−s)
e−2xx2d−1dx

≤ C2λ
−2dN (t− s).

Similarly, (A.18) follows from

N∑
m=1

( ∞∑
k=m

k2d−2e−2λk
)1/2 ≤ C

N∑
j=1

( ∫ ∞

j
x2d−2e−2λxdx

)1/2
≤ C λ1/2−d

N∑
j=1

( ∫ ∞

jλ1

x2d−2e−2xdx
)1/2

≤ C λ1/2−dN

∫ 1

0

( ∫ ∞

λNy
x2d−2e−2xdx

)1/2
dy

≤ C λ−1/2−d

∫ λN

0

( ∫ ∞

y
x2d−2e−2xdx

)1/2
dy

= o(1)λ−d
√
N,
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due to λN → ∞, where we have used the fact:∫ ∞

0

( ∫ ∞

y
x2d−2e−2xdx

)1/2
dy

≤
∫ ∞

0
y−1/2e−y/2dy

( ∫ ∞

0
x2d−1e−xdx

)1/2
<∞.

We finally prove (A.19). As in the proof of (A.17), we have

N∑
m=0

( N+m∑
s=1+m

sd−1e−λs
)2

≤ C N1+2d

∫ 1

0

(∫ 1+x

x
sd−1e−λNsds

)2
dx

≤ C λ−2dN
(∫ 1/(λN)1/2

0
+

∫ 1

1/(λN)1/2

)(∫ ∞

λNx
sd−1e−sds

)2
dx

≤ C λ−2dN (λN)−1/2
(∫ ∞

0
sd−1e−sds

)2
+ C λ−2dN

(∫ ∞

(λN)1/2
sd−1e−sds

)2

= o(1)λ−2dN, (A.20)

as λN → ∞. On the other hand, it is readily seen that

∞∑
m=N

( N+m∑
s=1+m

sd−1e−λs
)2

≤
∞∑

m=N

m2de−2λm

≤ C λ−2d−1

∫ ∞

λN
x2de−xdx = o(1)λ−2dN, (A.21)

as λN → ∞. Hence (A.19) follows from (A.20) and (A.21). �

We now turn to the proofs of the propositions. Recall that

ui = ζ1(i), wi = ζ2(i), bj ∼
1

Γ(d1)
jd1−1 e−λ1j , cj ∼

1

Γ(d2)
jd2−1 e−λ2j .

Proof of Proposition A.1. It follows from (A.18) that

E max
1≤m≤N

|A2,m| ≤
N∑
j=1

E
∣∣∣ ∞∑
k=0

bk+juj

∣∣∣ ≤ (Eu20)1/2
N∑
j=1

( ∞∑
k=j

b2k
)1/2

= o(1)× λ−d1
1

√
N,

i.e., (A.6) is proved. To prove the tightness of λ
d1
1√
N
A1,[Nt], we first assume E|u0|2+δ <∞ for some

δ > 0. Since, for any m1 < m2,

A1,m2 −A1,m1 =

m2∑
j=m1+1

uj

m2−j∑
k=0

bk +

m1∑
j=1

uj

m2−j∑
k=m1+1−j

bk,
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classical arguments yield [see, for instance, Lemma 1 of Gorodetskii [22]] that

E
∣∣A1,[Nt2] −A1,[Nt1]

∣∣2+δ

≤ CE|u0|2+δ
( [Nt2]∑

j=[Nt1]+1

[ [Nt2]−j∑
k=0

bk
]2

+

[Nt1]−1∑
j=0

[ [Nt2]−[Nt1]+j∑
k=j+1

bk
]2)(2+δ)/2

≤ C
(√
N/λd11

)2+δ
(t2 − t1)

1+δ/2,

for any 0 ≤ t1 < t2 ≤ 1, due to (A.16) and (A.17). This yields the tightness of λ
d1
1√
N
A1,[Nt], 0 ≤ t ≤

1, by Theorem 15.6 of Billingsley [6].
We next prove the tightness of λ

d1
1√
N
A1,[Nt] without the restriction: E|u0|2+δ <∞ for some δ > 0.

In fact, by Major [26], we may redefine {uk, k ≥ 1} on a richer probability space together with a
sequence of independent normal random variables {Yk, k ≥ 1} with EY1 = 0 and EY 2

1 = σ21 such
that for all ϵ > 0,

P
(

max
1≤k≤N

∣∣Sk − Zk

∣∣ ≥ ϵ
√
N
)
→ 0, (A.22)

as N → ∞, where Sk =
∑k

j=1 uj and Zk =
∑k

j=1 Yj . Result (A.22), together with (A.16), implies

the tightness of λ
d1
1√
N
A1,[Nt]. Indeed, by letting ZN,m =

λ
d1
1√
N

∑m
j=1 Yj

∑m−j
k=0 bk, we have

λd11√
N
A1,m − ZN,m =

λd11√
N

m∑
k=1

bm−k

(
Sk − Zk

)

for any 1 ≤ m ≤ N . Since ZN,[Nt], 0 ≤ t ≤ 1, is tight as proved above, the tightness of λ
d1
1√
N
A1,[Nt]

follows from

max
1≤m≤N

∣∣∣ λd11√
N
A1,m − ZN,m

∣∣∣ ≤ C
1√
N

max
1≤m≤N

|Sk − Zk|λd11
N∑
k=1

bk = oP (1),

due to (A.22) and (A.16). The proof of Proposition A.1 is now complete. �

Proof of Proposition A.2. The proof of (A.11) is similar to that of Lemma 3.1 but simpler. The
proof of (A.12) is similar to (A.23) below and the details are omitted. �

Proof of Proposition A.3. We only prove N−1λd11 λ
d2
2 |G2N | = oP (1) . The other results are
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similar but simpler. By using the independence of (uk, wk), we have

EG2
3N =

N−1∑
i=−∞

Eh2i−1,NEu21

=
N−1∑
i=−∞

i−1∑
m=−∞

e2m,i−1Eu21Ew2
1

≤ C
N−1∑
i=−∞

i−1∑
m=−∞

( N−1−i∑
s=max(1−i,0)

bs

N−m∑
t=s+i+1−m

ct

)2

≤ C

N−1∑
i=1

i−1∑
m=−∞

(N−1−i∑
s=0

bs

N−m∑
t=s+i+1−m

ct

)2
+ C

∞∑
i=0

∞∑
m=i+1

( N+i∑
s=1+i

bs

N+m∑
t=s−i+m

ct

)2

≤ C
( N∑

s=0

bs

)2
N∑
i=1

∞∑
m=1

(N+m−i∑
t=1+m

ct

)2
(by using transformation i−m→ m)

+C

∞∑
i=0

∞∑
m=i+1

( N+i∑
s=1+i

bs

N+m∑
t=1+m

ct

)2

≤ C
[
N

( N∑
s=0

bs

)2
+

∞∑
i=0

( N+i∑
s=1+i

bs

)2] ∞∑
m=0

( N+m∑
t=1+m

ct

)2
.

Now, it follows from (A.16) and (A.19) of Lemma A.5 that

EG2
3N = o(1)×N2λ−2d1

1 λ−2d2
2 ,

i.e., N−1λd11 λ
d2
2 |G3N | = oP (1) as required. �

Proof of Proposition A.4. Write

AN =
N−1∑
t=1

t∑
s=1

e(t−s)c/N
N∑
k=0

bkck+t−s+1.
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By recalling the definition of bk and ck, it follows from (A.15) and λ1N → ∞ and λ2N → ∞ that

AN =

N−1∑
s=1

N∑
k=0

bk

N−1−s∑
t=0

etc/Nck+t+1

∼ N1+d1+d2

Γ(d1)Γ(d2)

∫ 1

0

∫ 1

0

∫ 1−s

0
xd1−1e−λ1Nxeyc(y + x)d2−1e−λ2N(y+x)dy dx ds

∼ Nλ−d1
1 λ−d2

2

Γ(d1)Γ(d2)

∫ 1

0

∫ λ1N

0

∫ λ2N(1−s+x)

λ2x/λ1

xd1−1e−xeyc/λ2Nyd2−1e−ydy dx ds

∼ Nλ−d1
1 λ−d2

2

Γ(d1)Γ(d2)

∫ ∞

0

∫ ∞

λ2x/λ1

xd1−1e−xyd2−1e−ydy dx

∼ Nλ−d1
1 λ−d2

2


1, if λ2/λ1 → 0,

1
Γ(d1)Γ(d2)

∫∞
0

∫∞
ηx x

d1−1e−xyd2−1e−ydy dx,

if λ2/λ1 → 0 < η21 <∞
o(1), if λ2/λ1 → ∞.

(A.23)

This, together with the fact that

|EG2N −ANEu1w1| ≤ E(u1w1)

N−1∑
t=1

t∑
s=1

∞∑
k=N+1

bkck+t−s+1

≤ CN
∞∑

k=N+1

kd1−1e−λ1k
∞∑

k=N+1

kd2−1e−λ2k = o(1)×Nλ−d1
1 λ−d2

2 ,

due to (A.16), yields

N−1λd11 λ
d2
2 EG2N = ANE

[
ζ1(0)ζ2(0)

]
= ∆21 + o(1).

Result (A.14) will follow if we prove

G2N − EG2n = oP
[
Nλ−d1

1 λ−d2
2

]
. (A.24)

In fact, by noting

G2N − EG2n =
N−1∑
t=1

t∑
s=1

e(t−s)c/N
s∑

k=−∞
bs−kct−k+1ηk

=
N−1∑
k=−∞

ηk

N−1∑
t=max{1,k}

t∑
s=max{1,k}

e(t−s)c/Nbs−kct−k+1,

where ηk = ukwk − E(ukwk), we have

E
(
G2N − EG2n

)2 ≤ Eη21
N−1∑
k=1

( N∑
t=1

ct−k+1

)2( t∑
s=1

bs−k

)2
+

∞∑
k=0

(N−1∑
t=1

ct+k+1

)2( t∑
s=1

bs+k

)2

≤ CN λ−2d1
1 λ−2d2

2 ,
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due to (A.16) - (A.19) and Eη20 ≤ 4(Eu40)1/2(Ew4
0)

1/2 < ∞. This yields (A.24). The proof of
Proposition A.4 is complete. �

B Stochastic integration with respect to TFBM II

In this section, we define the stochastic integral of a non-random function f with respect to TFBM
II by applying the connection between tempered fractional calculus and TFBM II. Recall from
[29] that the (positive and negative) tempered fractional integrals (TFI) and tempered fractional
derivatives (TFD) of a function f : R → R are defined by

Iκ,λ± f(y) :=
1

Γ(κ)

∫
f(s)(y − s)κ−1

± e−λ(y−s)±ds, κ > 0 (B.1)

and

Dκ,λ
± f(y) := λκf(y) +

κ

Γ(1− κ)

∫
(f(y)− f(s))(y − s)−κ−1

± e−λ(y−s)±ds, 0 < κ < 1, (B.2)

respectively. The TFI in (B.1) exists a.e. in R for each f ∈ Lp(R) and defines a bounded linear
operator in Lp(R), p ≥ 1 ([29], Lemma 2.2). The TFD in (B.2) exists for any absolutely continuous
function f ∈ L1(R) such that f ′ ∈ L1(R); moreover, it can be extended to the fractional Sobolev
space

W κ,2(R) :=
{
f ∈ L2(R) :

∫
(λ2 + ω2)κ|f̂(ω)|2 dω <∞

}
, (B.3)

where f̂ denotes the Fourier transform of f . See ([29], Theorem 2.9 and Definition 2.11).
The following proposition shows that TFBM II can be written as a stochastic integral of

TFI/TFD of the indicator function of the interval [0, t]. We refer the reader to see [53] for
the details. For t < 0, let 1[0,t](y) := −1[−t,0](y), y ∈ R.

Proposition B.1 Let d > −1
2 , λ > 0, and t ∈ R. Then

BII
d,λ(t) = Γ(d+ 1)


∫
Id,λ− 1[0,t](y)B(dy), d > 0,∫
D−d,λ
− 1[0,t](y)B(dy), −1

2 < d < 0.
(B.4)

Now we discuss a general construction for stochastic integrals of non-random functions with
respect to TFBM II. For a standard Brownian motion {B(t)}t∈R on (Ω,F , P ), the stochastic
integral I(f) :=

∫
f(x)B(dx) is defined for any f ∈ L2(R), and the mapping f 7→ I(f) defines an

isometry from L2(R) into L2(Ω), called the Itô isometry:

⟨I(f), I(g)⟩L2(Ω) = Cov[I(f), I(g)] =
∫
f(x)g(x) dx = ⟨f, g⟩L2(R). (B.5)

Define E as the space of elementary functions

f(u) =

n∑
i=1

ai1[ti,ti+1)(u), (B.6)
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where ai, ti are real numbers such that ti < tj for i < j. It is natural to define the stochastic
integral

Id,λ(f) =

∫
R
f(x)BII

d,λ(dx) =

n∑
i=1

ai

[
BII

d,λ(ti+1)−BII
d,λ(ti)

]
. (B.7)

Now, assume d > 0. It follows immediately from Proposition B.1 that for f ∈ E , the stochastic
integral

Id,λ(f) =

∫
R
f(x)BII

d,λ(dx) =

∫
R

(
Id,λ− f

)
(x) B(dx)

is a Gaussian random variable with mean zero, such that for any f, g ∈ E we have

⟨Id,λ(f), Id,λ(g)⟩L2(Ω) = E
(∫

R
f(x)BII

d,λ(dx)

∫
R
g(x)BII

d,λ(dx)
)

=

∫
R

(
Id,λ− f

)
(x)

(
Id,λ− g

)
(x) dx,

(B.8)

in view of (B.4), when d > 0, and the Itô isometry (B.5).
Based on (B.8), we define the following class of functions:

Definition B.2
A1 :=

{
f ∈ L2(R) :

∫
R

∣∣∣(Id,λ− f
)
(x)

∣∣∣2 dx <∞
}
, (B.9)

for d > 0 and λ > 0.

Theorem B.3 Given d > 0 and λ > 0, the class of functions A1, defined by (B.9), is a linear
space with the inner product

⟨f, g⟩A1
=

∫
R

(
Id,λ− f

)
(x)

(
Id,λ− g

)
(x) dx (B.10)

The set of elementary functions E is dense in the space A1.

We omit the proof of Theorem B.3 since it is similar to [29, Theorem 3.5].
We now define the stochastic integral with respect to TFBMII for any function in A1 in the

case where d > 0.

Definition B.4 For any d > 0 and λ > 0, we define∫
R
f(x)BII

d,λ(dx) :=

∫
R

(
Id,λ− f

)
(x) B(dx) (B.11)

for any f ∈ A1.

Next we investigate stochastic integrals with respect to TFBMII in the case −1
2 < d < 0. It

follows from (B.4) that the stochastic integral (B.7) can be written in the form

Id,λ(f) =

∫
R
f(x)BII

d,λ(dx) =

∫
R
D−d,λ
− f(x) B(dx)
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for any f ∈ E . Then Id,λ(f) is a Gaussian random variable with mean zero, such that

⟨Id,λ(f), Id,λ(g)⟩L2(Ω) = E
(∫

R
f(x)BII

d,λ(dx)

∫
R
g(x)BII

d,λ(dx)
)

=

∫
R

(
D−d,λ
− f

)
(x)

(
D−d,λ
− g

)
(x) dx

(B.12)

for any f, g ∈ E , using (B.7) and the Itô isometry (B.5). Equation (B.12) suggests the following
space of integrands for TFBM II in the case −1

2 < d < 0.

Definition B.5
A2 :=

{
f : φf = D−d,λ

− f for some φf ∈ L2(R)
}
. (B.13)

for any −1
2 < d < 0.

Theorem B.6 Given −1
2 < d < 0 and λ > 0, the class of functions A2, defined by (B.13), is a

linear space with the inner product

⟨f, g⟩A2
=

∫
R

(
D−d,λ
− f

)
(x)

(
D−d,λ
− g

)
(x) dx (B.14)

The set of elementary functions E is dense in the space A2.

We omit the proof of Theorem B.6 since it is similar to [29, Theorem 3.10].
We now define the stochastic integral with respect to TFBM II for any function in A2 in the

case where −1
2 < d < 0.

Definition B.7 For any −1
2 < d < 0 and λ > 0, we define∫
R
f(x)BII

d,λ(dx) :=

∫
R

(
D−d,λ
− f

)
(x) B(dx) (B.15)

for any f ∈ A2.

C Tempered fractional linear processes

This section outlines the univariate ARTFIMA class of processes, introduces the vector autore-
gressive tempered fractionally moving average (VARTFIMA) class, and discusses some of its
properties.

The univariate ARTFIMA (p, d, λ, q) was introduced and discussed in [50] based on tem-
pered fractional difference operator. Here we recall some definitions and primary properties
of ARTFIMA(p, d, λ, q) class in the univariate case. A tempered fractional difference operator is
defined by

∆d,λf(x) = (I − e−λB)df(x) =

∞∑
j=0

ωd,λ(j)f(x− j) (C.1)

where d > 0, λ > 0, and

ωd,λ(j) := (−1)j
(
d

j

)
e−λj where

(
d

j

)
=

Γ(1 + d)

j!Γ(1 + d− j)
(C.2)
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using the gamma function Γ(d) =
∫∞
0 e−xxd−1 dx. Using the recurrence property Γ(d+1) = dΓ(d),

we can extend (C.1) to non-integer values of d < 0. By a common abuse of notation, we call this
a tempered fractional integral.

If λ = 0, then equation (C.1) reduces to the usual fractional difference operator. See [28, 50]
for more details.

Definition C.1 The discrete time stochastic process {Xt}t∈Z is called an autoregressive tempered
fractional integrated moving average time series, denoted by ARTFIMA(p, λ, d, q), if {Xt} is a
stationary solution with zero mean of the tempered fractional difference equations

Φ(B)∆d,λXt = Θ(B)ζt, (C.3)

where Zt is a white noise sequence (i.i.d. with E[ζt] = 0 and E[ζ2t ] = σ2), d /∈ Z, λ > 0, and
Φ(z) = 1 − ϕ1z − ϕ2z

2 − . . . − ϕpz
p, and Θ(z) = 1 + θ1z + θ2z

2 + . . . + θqz
q are polynomials of

degrees p, q ≥ 0 with no common zeros.

Remark C.2 Assuming polynomials Φ(·) and Θ(·) have no common zeros and∣∣Φ(z)∣∣ > 0 and
∣∣Θ(z)

∣∣ > 0 (C.4)

for |z| ≤ 1, it can be shown that the ARTFIMA(p, d, λ, q) process is causal and invertible.

Remark C.3 Another version of tempered fractionally integrated process was defined in [52] as
follows: The discrete time stochastic process {X∗

t }t∈Z is called ARTFIMA(p, d, λ, q) process with
innovation process Z(t) if

X∗
t =

∞∑
k=0

e−λka−d(k)ζt−k, t ∈ Z (C.5)

where the coefficients ad(k) are the coefficients of ARFIMA(p, d, q). That is

ad(k) =
k∑

s=0

ωd(k)ψ(k − s), (C.6)

where ωd(k) = Γ(k−d)
Γ(k+1)Γ(d) , and ψ(j) are the coefficients of the power series

∑∞
j=0 ψ(j)z

j =

Θ(z)/Φ(z), |z| ≤ 1.
(ii) When p = q = 0, Xt and X∗

t are the same time series. However, in general, they are different

stochastic processes. For instance, Xt has the spectral density fX(ν) = σ2

2π
|Θ(e−iν)|2
|Φ(e−iν)|2

∣∣1− e−(λ+iν)
∣∣−2d

for −π ≤ ν ≤ π, while X∗
t has the spectral density fX(ν) = σ2

2π
|Θ(e−(λ+iν))|2

|Φ(e−(λ+iν))|2
∣∣1− e−(λ+iν)

∣∣−2d for
the same range of ν.

We now proceed to define the vector ARTFIMA model. First, let X(t) be a real-valued covari-
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ance stationary m-vector time series generated by the following model:
(1− e−λ1B)d1 . . . 0

... . . . ...
0 . . . (1− e−λmB)dm




X1t − EX1t

...
Xmt − EXmt

 =


u1t
...

umt

 , (C.7)

where d1, . . . dm, λ1, . . . , λm are the memory and tempering parameters respectively, B is the
lag operator, and ut = (u1t, . . . , umt)

′ is a covariance stationary process. By assuming ut is
a vector autoregressive integrated moving average (VARIMA) process, we can define a vector
autoregressive tempered fractionally integrated moving average (VARTFIMA) process as follows.
Suppose ut = (Φ(B))−1Θ(B)ζ(t), where Φ(B) = Φ0−

∑p
i=1ΦiB

i and Θ(B) = Θ0+
∑q

i=1ΘiB
i

are (m×m) matrix polynomials in B. A VARTFIMA model is defined by

Φ(B)∆d,λ(B)(X(t)− µ) = Θ(B)ζ(t),

where µ = (EX1t, . . . ,EXmt)
′ = (µ1, . . . , µm)′ is the m × 1 mean vector, ζ(t) is m-dimensional

vector with E(ζ(t)) = 0 and covariance matrix Ω. The operator ∆d,λ(B) is the m×m diagonal
matrix given by (C.7).

The following remark gives the autocovariance function of X(t) and its asymptotic form for
large lags when p = q = 0.

Remark C.4 (i) If da ∈ R \ N− and λa > 0 for all a = 1, . . . ,m and the spectral density matrix
fuu(ω) of ut is continuously differentiable, then

[Γxx]ab =
2fuaub

(0)e−λbkΓ(k + db) 2F1(da, k + db; k + 1; e−(λa+λb))

Γ(k + 1)Γ(db)
. (C.8)

(ii) As k → ∞, we have
[Γxx]ab ∼ Kab e

−λbkkdb−1, (C.9)

where Kab =
2fuaub

(0)
(
1−e−(λa+λb)

)−da

Γ(db)
.

(iii) Assuming λa = λb = 0 in (C.8), we have the specialization

[Γxx]ab ∼
2fuaub

(0)Γ(1− da − db) sinπdb
k1−da−db

, k → ∞,

which is the asymptotic behavior of the elements of the autocovariance matrix in the untempered
case, see [39, Section 2.1] or [43, Theorem 1].
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