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Abstract

This paper examines inference for quantile treatment effects (QTEs) in randomized exper-

iments with matched-pairs designs (MPDs). We derive the limiting distribution of the QTE

estimator under MPDs and highlight the difficulty of analytical inference due to parameter tun-

ing. We show that a naive weighted bootstrap fails to approximate the limiting distribution of

the QTE estimator under MPDs because it ignores the dependence structure within the matched

pairs. We then propose two bootstrap methods that can consistently approximate that limiting

distribution: the gradient bootstrap and the weighted bootstrap of the inverse propensity score

weighted (IPW) estimator. The gradient bootstrap is free of tuning parameters but requires the

knowledge of pairs’ identities. The weighted bootstrap of the IPW estimator does not require

such knowledge but involves one tuning parameter. Both methods are straightforward to im-

plement and able to provide pointwise confidence intervals and uniform confidence bands that

achieve exact limiting rejection probabilities under the null. We illustrate their finite sample

performance using both simulations and a well-known dataset on microfinance.
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1 Introduction

Matched-pairs designs (MPDs) recently see widespread and increasing use in various randomized

experiments conducted by economists. Here, by MPD, we mean a randomization scheme that first

pairs units based on the closeness of their baseline covariates, and then, randomly assigns one

unit in the pair to be treated. In the field of development economics, researchers pair villages,

neighborhoods, microenterprises, or townships in their experiments (Banerjee, Duflo, Glennerster,

and Kinnan, 2015; Crepon, Devoto, Duflo, and Pariente, 2015; Glewwe, Park, and Zhao, 2016;

Groh and Mckenzie, 2016). In the field of labor economics, researchers pair schools or students

to evaluate the effects of various education interventions (Angrist and Lavy, 2009; Beuermann,

Cristia, Cueto, Malamud, and Cruzaguayo, 2015; Fryer, 2017; Fryer, Devi, and Holden, 2017; Bold,

Kimenyi, Mwabu, Nganga, and Sandefur, 2018; Fryer, 2018). Bruhn and McKenzie (2009) surveyed

leading experts in development field experiments and reported that 56% of them explicitly match

pairs of observations on baseline characteristics.

Often researchers use randomized experiments to estimate not only average treatment effects

(ATEs) but also quantile treatment effects (QTEs), which capture the heterogeneity of the sign

and magnitude of treatment effects, varying depending on their place in the overall distribution

of outcomes. A common practice in making inference on QTEs is to use bootstrapping instead of

analytical method because the latter usually requires tuning parameters. However, the treatment

assignment in MPDs introduces negative dependence as there are exactly half of the units being

treated. The standard (bootstrap) inference procedures that rely on cross-sectional independence

are therefore conservative and lack power. How do we conduct proper bootstrap inference for QTEs

in MPDs? This question is yet to be addressed.

In this paper, we address this question by showing that both the gradient bootstrap and the

weighted bootstrap of inverse propensity score weighted (IPW) estimator can consistently approx-

imate the limiting distribution of the original QTE estimator under MPDs. Consequently, for

testing the null hypotheses that the QTEs equal some pre-specified value involving single or multi-

ple quantile indexes, or some pre-specified function over a compact set of quantile indexes, the usual

pointwise confidence interval or uniform confidence band constructed by using the corresponding

bootstrap standard errors achieves a limiting rejection probability under the null that equals the

nominal level.

We first derive the limiting distribution of the two-sample-difference type QTE estimator in

MPDs uniformly over a compact set of quantile indexes. We notice that analytically computing the

variance of the QTE estimator requires the estimation of two infinite-dimensional nuisance parame-

ters, and thus, two tuning parameters, for every quantile index of interest. This is cumbersome and

motivates us to consider the bootstrap inference which requires no or much less tuning parameters.

However, the observations under MPDs are generally dependent within the pairs; by constrast,

the usual bootstrap counterparts are (asymptotically) independent conditionally on data. Following
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this intuition, we show that the naive weighted bootstrap fails to approximate the limiting distri-

bution of the QTE estimator. Consequently, the usual bootstrap inference with the null hypothesis

that the QTE equals a pre-specified value is conservative and lacks power.

To address this issue, we propose a gradient bootstrap method and show that it can consistently

approximate the limiting distribution of the QTE estimator under MPDs uniformly over a compact

set of quantile indexes. Hagemann (2017) proposed to use the gradient bootstrap for the cluster-

robust inference in linear quantile regression models. Like Hagemann (2017), we rely on the gradient

bootstrap to avoid estimating the Hessian matrix that involves the infinite-dimensional nuisance

parameters. Hence, our gradient bootstrap procedure is free of tuning parameters. On the other

hand, unlike Hagemann (2017), we construct a specific perturbation of the score based on pair and

adjacent pairs of observations, which can capture the dependence structure in the original data.

In order to implement our gradient bootstrap method, researchers need to know the identities

of pairs. Such information may not be available when the researchers are using an experiment that

was run by someone else in the past and the randomization procedure may not have been fully

described. To address this issue, we propose a weighted bootstrap of the IPW QTE estimator,

which can be implemented without such knowledge. We show that such bootstrap can consistently

approximate the asymptotic distribution of the QTE estimator under MPDs. This is a cost of

not using the information about pairs’ identities: we need to introduce one tuning parameter for

the nonparametric estimation of the propensity score. However, we still recommend this weighted

bootstrap over the analytical inference as the latter requires more than one tuning parameters.

Bai, Shaikh, and Romano (2019) first pointed out that, in MPDs, the two-sample t-test for the

null hypothesis that the ATE equals a pre-specified value is conservative. They then proposed to

adjust the standard error of the estimator and studied the validity of the permutation test. We

complement their results by considering the QTEs and bootstrap inference. Unlike the permutation

test, our bootstrap inference does not require studentization, which is cumbersome in the QTE

context. In addition, our weighted bootstrap method complements their results by providing a

way to make inference for both ATEs and QTEs when pairs’ identities are unknown. Bai (2019)

further investigated the optimality of MPDs in randomized experiments. Zhang and Zheng (2020)

considered the bootstrap inference under covariate-adaptive randomization. The key difference

between our paper and theirs is that, in MPDs, the number of strata is proportional to the sample

size, while that for the covariate-adaptive randomization is fixed. Therefore, we use fundamentally

different asymptotic arguments and bootstrap methods from those employed by Zhang and Zheng

(2020). Our paper also fits in the growing literature of studying the inference in randomized

experiments, e.g., Hahn, Hirano, and Karlan (2011), Athey and Imbens (2017), Abadie, Chingos,

and West (2018), Bugni, Canay, and Shaikh (2018), Tabord-Meehan (2018), and Bugni, Canay,

and Shaikh (2019), among others.

The rest of the paper is organized as follows. In Section 2, we describe the model setup and
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notation. In Section 3, we discuss the asymptotic properties of our QTE estimator. In Section

4, we study the naive weighted bootstrap, the gradient bootstrap, and the weighted bootstrap

of the IPW estimator. In Section 5, we provide computation details and recommendations for

practitioners. Section 6 collects simulation results. In Section 7, we apply the bootstrap inference

methods developed in this paper to the data in Banerjee et al. (2015) to examine both ATEs and

QTEs of microfinance on the takeup rates of microcredit. In Section 8, we conclude. We provide

proofs for all results in an appendix.

2 Setup and Notation

Denote the potential outcomes for treated and control groups as Y (1) and Y (0), respectively. The

treatment status is denoted as A, where A = 1 means treated and A = 0 means untreated. The

researcher can only observe {Yi, Xi, Ai}2ni=1 where Yi = Yi(1)Ai + Yi(0)(1 − Ai), and Xi ∈ <dx is a

collection of baseline covariates, where dx is the dimension of X. The parameter of interest is the

τth QTE, denoted as

q(τ) = q1(τ)− q0(τ),

where q1(τ) and q0(τ) denote the τth quantiles of Y (1) and Y (0), respectively. Let Υ be some

compact subset of (0, 1). The testing problems of interest involve single, multiple, or even continuum

of quantile indexes, e.g.,

H0 : q(τ) = q versus q(τ) 6= q,

H0 : q(τ1)− q(τ2) = q versus q(τ1)− q(τ2) 6= q,

and

H0 : q(τ) = q(τ) ∀τ ∈ Υ versus q(τ) 6= q(τ) for some τ ∈ Υ,

for some pre-specified value q or function q(τ).

The units are grouped into pairs based on the closeness of their baseline covariates, which will

be made clear next. Denote the pairs of units as

(π(2j − 1), π(2j)) for j ∈ [n],

where [n] = {1, · · · , n} and π is a permutation of 2n units based on {Xi}2ni=1 as specified in As-

sumption 1(iv) below. Within the pair, one of the two units will be treated with equal probability
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and the other one will be untreated. Specifically, we make the following assumption on the data

generating process (DGP) and the treatment assignment rule.

Assumption 1. (i) {Yi(1), Yi(0), Xi}2ni=1 is i.i.d.

(ii) {Yi(1), Yi(0)}2ni=1 ⊥⊥ {Ai}2ni=1|{Xi}2ni=1.

(iii) Conditionally on {Xi}2ni=1, (π(2j − 1), π(2j)) for j ∈ [n], are i.i.d. and each uniformly dis-

tributed over the values in {(1, 0), (0, 1)}.

(iv) 1
n

∑n
j=1

∥∥Xπ(2j) −Xπ(2j−1)

∥∥r
2

p−→ 0 for r = 1, 2.

Assumption 1 is also assumed by Bai et al. (2019). We refer readers to Bai et al. (2019) for

more discussions on this assumption. In Assumption 1(iv), || · ||2 denotes the Euclidean distance.

However, all our results hold if || · ||2 is replaced by any distance that is equivalent to it, e.g., L∞

distance, L1 distance, and the Mahalanobis distance when all the eigenvalues of the covariance

matrix are bounded and bounded away from zero.

3 Estimation

Let q̂1(τ) and q̂0(τ) be the τth percentiles of outcomes in the treated and control groups, respec-

tively. Then, the τth QTE estimator we consider is just

q̂(τ) = q̂1(τ)− q̂0(τ).

In order to facilitate further analysis and motivate our bootstrap procedure, we note that q̂(τ) can

be equivalently computed from a simple quantile regression. Let

(β̂0(τ), β̂1(τ)) = arg min
b

2n∑
i=1

ρτ (Yi − Ȧ′b),

where Ȧi = (1, Ai)
T and ρτ (u) = u(τ − 1{u ≤ 0}). Then, we have q̂(τ) = β̂1(τ) and q̂0(τ) = β̂0(τ).

Assumption 2. For a = 0, 1, denote Fa(·), Fa(·|x), fa(·), and fa(·|x) as the CDF of Yi(a), the

conditional CDF of Yi(a) given Xi = x, the PDF of Yi(a), and the conditional PDF of Yi(a) given

Xi = x, respectively.

(i) fa(qa(τ)) is bounded and bounded away from zero uniformly over τ ∈ Υ, and fa(qa(τ)|x) is

uniformly bounded for (x, τ) ∈ Supp(X)×Υ, where Υ is a compact subset of (0, 1).

(ii) There exists a function C(x) such that

sup
τ∈Υ
|fa(qa(τ) + v|x)− fa(qa(τ)|x)| ≤ C(x)|v| and EC(Xi) <∞.
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(iii) Let N0 be a neighborhood of 0. Then, there exists a constant C such that for any x, x′ ∈
Supp(X)

sup
τ∈Υ,v∈N0

|fa(qa(τ) + v|x′)− fa(qa(τ) + v|x)| ≤ C||x′ − x||2

and

sup
τ∈Υ,v∈N0

|Fa(qa(τ) + v|x)− Fa(qa(τ) + v|x′)| ≤ C||x− x′||2.

Assumption 2(i) is the standard regularity condition widely assumed for quantile estimations.

The various Lipschitz conditions in Assumptions 2(ii) and 2(iii) are in spirit similar to those assumed

in Bai et al. (2019, Assumption 2.1), which ensure that units that are “close” in terms of their

baseline covariates are suitably comparable. For a = 0, 1, letma,τ (x, q) = E(τ−1{Y (a) ≤ q}|X = x)

and ma,τ (x) = ma,τ (x, qa(τ)).

Theorem 3.1. Suppose Assumptions 1 and 2 hold. Then, uniformly over τ ∈ Υ,

√
n(q̂(τ)− q(τ)) B(τ),

where B(τ) is a Gaussian process with covariance kernel Σ(·, ·) such that

Σ(τ, τ ′) =
min(τ, τ ′)− ττ ′ − Em1,τ (X)m1,τ ′(X)

f1(q1(τ))f1(q1(τ ′))
+

min(τ, τ ′)− ττ ′ − Em0,τ (X)m0,τ ′(X)

f0(q0(τ))f0(q0(τ ′))

+
1

2
E
(
m1,τ (X)

f1(q1(τ))
− m0,τ (X)

f0(q0(τ))

)(
m1,τ ′(X)

f1(q1(τ ′))
−
m0,τ ′(X)

f0(q0(τ ′))

)
.

Several remarks are in order. First, the asymptotic variance of q̂(τ) under MPDs is

Σ(τ, τ) =
τ − τ2 − Em2

1,τ (X)

f2
1 (q1(τ))

+
τ − τ2 − Em2

0,τ (X)

f2
0 (q0(τ))

+
1

2
E
(
m1,τ (X)

f1(q1(τ))
− m0,τ (X)

f0(q0(τ))

)2

.

Further note the asymptotic variance of q̂(τ) under simple random sampling is

Σ†(τ, τ) =
τ − τ2

f2
1 (q1(τ))

+
τ − τ2

f2
0 (q0(τ))

.

It is clear that

Σ†(τ, τ)− Σ(τ, τ) =
1

2
E
(
m1,τ (X)

f1(q1(τ))
+
m0,τ (X)

f0(q0(τ))

)2

≥ 0. (3.1)

The equal sign of the last inequality holds when both m1,τ (X) and m0,τ (X) are zero, which implies

X is irrelevant to the τth quantiles of Y (0) and Y (1).

Second, the asymptotic variance Σ(τ, τ) coincides with the semiparametric efficiency bound of
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the QTE estimator established in Firpo (2007)1 for the observational data under unconfoundedness.

Hahn (1998) points out that, even in the case of simple random sampling, in order to achieve the

semiparametric efficiency bound, one needs to use the IPW estimator with a nonparametrically

estimated propensity score. We view the MPD as an alternative to achieve such efficiency without

the nonparametric estimation.

Third, in order to analytically estimate the asymptotic variance Σ(τ, τ), researchers need to es-

timate at least the infinite-dimensional nuisance parameters f1(q1(τ)) and f0(q0(τ)) which involves

two tuning parameters. In general, if researchers are interested in testing a null hypothesis that

involves G quantile indexes, they need to use 2G tuning parameters to estimate 2G densities, which

is cumbersome. If researchers want to construct the uniform confidence band for the QTE analyt-

ically, they need to use two tuning parameters for each grid of the quantile indexes. Furthermore,

if the pairs’ identities are unknown, analytical inference potentially requires the nonparametric

estimation of ma,τ (·) for a = 0, 1 as well. The nonparametric estimation is sometimes sensitive to

the choice of tuning parameters. The rule-of-thumb tuning parameter may not be appropriate for

every data generating process (DGP). Cross-validating all the tuning parameters is theoretically

possible but practically time-consuming. These difficulties of analytical inference motivate us to

investigate bootstrap inference procedures that require no or much less tuning parameters.

4 Bootstrap Inference

This section discusses three bootstrap inference procedures for the QTEs in MPDs. We first show

that a naive weighted bootstrap method fails to approximate the limiting distribution of the QTE

estimator derived in Section 3. We then propose two bootstrap methods that can consistently

approximate the asymptotic distribution of the QTE estimator.

4.1 Naive Weighted Bootstrap Inference

We first consider the naive weighted bootstrap estimators of β̂0(τ) and β̂1(τ). Let

(β̂w0 (τ), β̂w1 (τ)) = arg min
b

2n∑
i=1

ξiρτ (Yi − Ȧ′b),

where ξi is the bootstrap weight that we will define in the next assumption.

Assumption 3. Suppose {ξi}2ni=1 is a sequence of nonnegative i.i.d. random variables with unit

expectation and variance and a sub-exponential upper tail.

Denote q̂w(τ) = β̂w1 (τ) and recall q̂(τ) = β̂1(τ).

1The propensity score is just a constant of 1/2.
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Theorem 4.1. Suppose Assumptions 1–3 hold, then conditionally on data and uniformly over

τ ∈ Υ,

√
n(q̂w(τ)− q̂(τ)) Bw(τ),

where Bw(τ) is a Gaussian process with covariance kernel Σ†(·, ·) such that

Σ†(τ, τ ′) =
min(τ, τ ′)− ττ ′

f1(q1(τ))f1(q1(τ ′))
+

min(τ, τ ′)− ττ ′

f0(q0(τ))f0(q0(τ ′))
.

Two remarks are in order. First, Σ†(τ, τ ′) is just the covariance kernel of the QTE estimator

when the simple random sampling (instead of the MPD) is used as the treatment assignment

rule. Therefore, the naive weighted bootstrap fails to approximate the limiting distribution of q̂(τ)

(β̂1(τ)). The intuition is straightforward. Given data, the bootstrap weights are i.i.d., and thus

unable to mimic the cross-section dependence in the original sample.

Second, it is possible to consider the conventional nonparametric bootstrap which generates

the bootstrap sample from the empirical distribution of the data. If the observations are i.i.d.,

van der Vaart and Wellner (1996, Section 3.6) showed that the conventional bootstrap is first-

order equivalent to a weighted bootstrap with Poisson(1) weights. However, in the current setting,

{Ai}i∈[2n] are dependent. It is technically challenging to rigorously show that the above equivalence

still holds. We leave it as an interesting topic for future research.

4.2 Gradient Bootstrap Inference

We now approximate the asymptotic distribution of the QTE estimator via the gradient bootstrap.

Denote u =
√
n(b − β(τ)) as the local parameter. Then, from the derivation of Theorem 3.1, we

see that

√
n(β̂(τ)− β(τ)) = arg min

u

2n∑
i=1

ρτ

(
Yi − ȦTβ(τ)− ȦTu√

n

)
,

where

2n∑
i=1

[
ρτ (Yi − ȦTβ(τ)− ȦTu√

n
)− ρτ (Yi − ȦTβ(τ))

]
≈ −u′

(
1 1

1 0

)
Sn(τ) +

uTQ(τ)u

2
, (4.1)

Sn(τ) =

( ∑2n
i=1

Ai√
n

(τ − 1{Yi(1) ≤ q1(τ)})∑2n
i=1

(1−Ai)√
n

(τ − 1{Yi(0) ≤ q0(τ)})

)
,

8



and

Q(τ) =

(
f1(q1(τ)) + f0(q0(τ)) f1(q1(τ))

f1(q1(τ)) f1(q1(τ))

)
.

Then, by minimizing the RHS of (4.1), we have

√
n(β̂(τ)− β(τ)) ≈ Q−1(τ)

(
1 1

1 0

)
Sn(τ). (4.2)

The gradient bootstrap proposes to perturb the objective function by some random error S∗n(τ),

which will be specified later. This effectively perturbs the score function Sn(τ). We obtain the

bootstrap estimator β̂∗(τ) by solving the following optimization problem:

β̂∗(τ) = arg min
b

2n∑
i=1

ρτ (Yi − Ȧ′b)−
√
nbT

(
1 1

1 0

)
S∗n(τ). (4.3)

Then, by the change of variables and (4.1), we have

√
n(β̂∗(τ)− β(τ)) ≈ arg min

u
−u′

(
1 1

1 0

)
[Sn(τ) + S∗n(τ)] +

uTQ(τ)u

2
.

This implies

√
n(β̂∗(τ)− β(τ)) ≈ Q−1(τ)

(
1 1

1 0

)
[Sn(τ) + S∗n(τ)]. (4.4)

By taking the difference between (4.2) and (4.4), we have

√
n(β̂∗(τ)− β̂(τ)) ≈ Q−1(τ)

(
1 1

1 0

)
S∗n(τ).

The second element of β̂∗(τ) is the bootstrap version of the QTE estimator, which is denoted as

q̂∗(τ). We note that, by solving (4.3), we avoid estimating the Hessian Q(τ), which involves the

infinite-dimensional nuisance parameters. Then, in order for the gradient bootstrap to consistently

approximate the limiting distribution of the original estimator β̂(τ), we only need to construct

S∗n(τ) such that its weak limit given data coincides with that of the original score Sn(τ).

Next, we specify S∗n(τ). Let {ηj}nj=1 and {η̂k}
bn/2c
k=1 be two mutually independent i.i.d. sequences

of standard normal random variables. Furthermore, we use indexes (j, 1), (j, 0) to denote the

indexes in (π(2j − 1), π(2j)) with A = 1 and A = 0, respectively. For example, if Aπ(2j) = 1 and

Aπ(2j−1) = 0, then (j, 1) = π(2j) and (j, 0) = π(2j − 1). Similarly, we use indexes (k, 1), · · · , (k, 4)
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to denote the first index in (π(4k − 3), · · · , π(4k)) with A = 1, the first index with A = 0, the

second index with A = 1, and the second index with A = 0, respectively. Let

S∗n(τ) =
S∗n,1(τ) + S∗n,2(τ)

√
2

,

where

S∗n,1(τ) =
1√
n

(∑n
j=1 ηj

(
τ − 1{Y(j,1) ≤ q̂1(τ)}

)∑n
j=1 ηj

(
τ − 1{Y(j,0) ≤ q̂0(τ)}

)) (4.5)

and

S∗n,2(τ) =
1√
n

(∑bn/2c
k=1 η̂k

[(
τ − 1{Y(k,1) ≤ q̂1(τ)}

)
−
(
τ − 1{Y(k,3) ≤ q̂1(τ)}

)]∑bn/2c
k=1 η̂k

[(
τ − 1{Y(k,2) ≤ q̂0(τ)}

)
−
(
τ − 1{Y(k,4) ≤ q̂0(τ)}

)]) . (4.6)

In Section 5 below, we show how to directly compute the bootstrap estimator β̂∗(τ) from

the sub-gradient condition of (4.3). Such method avoids the optimization in (4.3) and is fast in

computation. The following assumption imposes that baseline covariates in adjacent pairs are also

“close”.

Assumption 4. Suppose

1

n

bn/2c∑
k=1

∥∥X(k,l) −X(k,l′)

∥∥r
2

p−→ 0

for r = 1, 2 and l, l′ ∈ [4].

Assumption 4 and Assumption 1(iv) are jointly equivalent to Bai et al. (2019, Assumption 2.4).

We refer readers to Bai et al. (2019) for more discussions of this assumption. In particular, Bai

et al. (2019, Theorems 4.1 and 4.2) established two cases under which both Assumption 4 and

Assumption 1(iv) hold. We repeat their results below for completeness.

Case (1). Suppose X is a scalar and EX2 < ∞. Let π be any permutation of 2n elements

such that

Xπ(1) ≤ · · · ≤ Xπ(2n).

Then, both Assumption 4 and Assumption 1(iv) hold.

Case (2). Suppose Supp(X) ⊂ [0, 1]dx . Let π̆ be any permutation of 2n elements minimizing

1

n

n∑
j=1

||Xπ̆(2j−1) −Xπ̆(2j)||2.

10



Further denote Xj =
Xπ̆(2j−1)+Xπ̆(2j)

2 . Let π be any permutation of n elements minimizing

1

n

n∑
j=1

||Xπ(j) −Xπ(j−1)||2.

Then, the permutation π with π(2j) = π̆(2π(j)) and π(2j− 1) = π̆(2π(j)− 1) satisfies Assumption

4 and Assumption 1(iv).

Denote q̂∗(τ) = β̂∗1(τ) and recall q̂(τ) = β̂1(τ).

Theorem 4.2. Suppose Assumptions 1, 2, and 4 hold. Then, conditionally on data and uniformly

over τ ∈ Υ,

√
n(q̂∗(τ)− q̂(τ)) B(τ),

where B(τ) is the same Gaussian process as defined in Theorem 3.1.

Three remarks on Theorem 4.2 are in order. First, we want to achieve two goals via bootstrap:

(1) avoiding estimating the densities and (2) mimicking the distribution of the original estimator

β̂(τ) under MPDs. We find that issues (1) and (2) are related to the Hessian (Q) and score (Sn) of

the quantile regression, respectively. The gradient bootstrap provides flexible ways to manipulate

both, and thus, fits our need.

Second, Bai et al. (2019) showed adjacent pairs can be used to construct a valid standard error

for the ATE estimator under MPDs. We follow their lead and bootstrap pairs and adjacent pairs

of units. Theorem 4.2 basically means the limiting distribution of the resulting bootstrapped per-

turbation S∗n(τ) given data can consistently approximate that of the original score Sn(τ) uniformly

over τ ∈ Υ. For the inference of ATE, one does not necessarily need to use the gradient bootstrap

as the Hessian does not contain any infinite-dimensional nuisance parameters. In fact, the way

we compute the perturbation S∗n(τ) leads to a standard error estimator ν̂2
n for the ATE estimator

∆̂ = 1
n

∑n
j=1(Y(j,1) − Y(j,0)), where

ν̂2
n =

1

2n

n∑
j=1

(Y(j,1) − Y(j,0) − ∆̂)2 +
1

2n

bn/2c∑
k=1

[
(Y(k,1) − Y(k,3))− (Y(k,2) − Y(k,4))

]2
.

By some manipulation, one can show that ν̂2
n is numerically the same as the adjusted standard

error proposed in Bai et al. (2019, Section 3.3).

Third, to implement the gradient bootstrap, researchers need to know the pairs’ identities. Such

information may not be available when the researchers are using an experiment that was run by

others in the past and the randomization procedure may not be fully described. In such scenario,

we propose to bootstrap the IPW estimator of the QTE, whose validity is established in the next

section.
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4.3 Weighted Bootstrap of Inverse Propensity Score Weighted Estimator

As indicated in Section 3, the QTE estimator under MPDs achieves the semiparametric efficiency

bound established for the observational data. If we use independent bootstrap weights and want

to maintain such efficiency, we need to bootstrap an estimator that can achieve the semiparametric

efficiency bound under observational data. As pointed out by Hahn (1998) and Firpo (2007),

the IPW estimator with a nonparametrically estimated propensity score satisfies this requirement.

Therefore, we now propose a weighted bootstrap of the IPW estimator to approximate the limiting

distribution of the QTE estimator in MPDs.

We estimate the propensity score via the sieve method. Let b(X) and Âi be the K-dimensional

sieve basis on X and the estimated propensity score for the ith individual, respectively. Then,

Âi = b(Xi)
′θ̂, (4.7)

where ξi is the bootstrap weight defined in Assumption 3 and

θ̂ = arg min
θ

2n∑
i=1

ξi(Ai − b(Xi)
′θ)2.

The weighted bootstrap IPW estimator can be computed as

q̂wipw(τ) = q̂wipw,1(τ)− q̂wipw,0(τ),

where

q̂wipw,1(τ) = arg min
q

2n∑
i=1

ξiAi

Âi
ρτ (Yi − q) and q̂wipw,0(τ) = arg min

q

2n∑
i=1

ξi(1−Ai)
1− Âi

ρτ (Yi − q). (4.8)

Assumption 5. (i) The support of X is compact. The first component of b(X) is 1.

(ii) maxk∈[K] Eb2k(Xi) ≤ C <∞ for some constant C > 0. supx∈Supp(X) ||b(x)||2 = ζ(K).

(iii) Kζ(k)2 log(n) = o(n) and K3 log(n) = o(n).

(iv) With probability approaching one, there exist constants C and C such that

0 < C ≤ λmin

(
1

n

2n∑
i=1

ξib(Xi)b(Xi)
′

)
≤ λmax

(
1

n

2n∑
i=1

ξib(Xi)b(Xi)
′

)
≤ C <∞,

where λmin(M) and λmax(M) denote the minimum and maximum eigenvalues of matrix M.
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(v) There exist γ1(τ) ∈ <K and γ0(τ) ∈ <K such that

Ba,τ (x) = ma,τ (x)− b′(x)γa(τ), a = 0, 1,

and supa=0,1,τ∈Υ,x∈Supp(X) |Ba,τ (x)| = o(1/
√
n).

Several remarks are in order. First, requiring X to have a compact support is common in

nonparametric sieve estimation. Second, because the true propensity score is 1/2, by letting the

first component of b(X) be 1, we have 1/2 = b′(X)θ0 where θ0 = (0.5, 0, · · · , 0)T . The linear

probability model for the propensity score is correctly specified. Third, ζ(K) depends on the choice

of basis functions. For example, ζ(K) = O(K1/2) and ζ(K) = O(K) for B-splines and power

series, respectively. We refer readers to Chen (2007) for a thorough treatment of sieve method.

Assumption 5(iii) requires K = o(n1/3). Assumption 5(iv) is standard because K � n. Assumption

5(v) requires that the approximation error of ma,τ (x) via a linear sieve function is sufficiently small.

Suppose ma,τ (x) is s-times continuously differentiable in x with all derivatives uniformly bounded

by some constant C, then supa=0,1,τ∈Υ,x∈Supp(X) |Ba,τ (x)| = O(K−s/dx). Assumptions 5(iii) and

5(v) implies K = nh for some h ∈ (dx/(2s), 1/3), which implicitly requires s > 3dx/2. The choice

of K reflects the usual bias-variance trade-off. This is the only tuning parameter that researchers

need to specify when implementing this bootstrap method.

Theorem 4.3. Suppose Assumptions 1–3 and 5 hold, then conditionally on data and uniformly

over γ ∈ Υ,

√
n(q̂wipw(τ)− q̂(τ)) B(τ),

where B(τ) is the same Gaussian process as defined in Theorem 3.1.

The benefit of the weighted bootstrap of the IPW estimator is that it does not require the

knowledge of the pairs’ identities. The cost is that we have to nonparametrically estimate the

propensity score, which requires one tuning parameter and is subject to the usual curse of dimen-

sionality. However, we still prefer this bootstrap inference method to the analytical one. In order

to analytically estimate the standard error of the QTE estimator without the knowledge of pairs’

identities, researchers need to nonparametrically estimate (ma,τ (X), fa(qa(τ)))a=0,1, which requires

four tuning parameters. In addition, the number of tuning parameters to be specified in the ana-

lytical inference increases with the number of quantile indexes involved in the null hypothesis. In

order to analytically construct the uniform confidence band of QTE over τ , one will need to use 4G

tuning parameters where G is the number of grids. However, to implement the weighted bootstrap

of the IPW estimator, we only need to estimate the propensity score once, which requires only one

tuning parameter.

We can also make inferences about the ATE in MPDs via the weighted bootstrap of the IPW

13



ATE estimator. By a similar argument, one can show that such bootstrap can consistently approx-

imate the asymptotic distribution of the ATE estimator under MPDs. Such result complements

those established by Bai et al. (2019) because it provides a way to make inference for the ATE

in MPDs when the information on pairs’ identities is unavailable; by contrast, such information is

required by Bai et al. (2019) to compute their adjusted standard errors.

5 Computation and Guidance for Practitioners

5.1 Computation of the Gradient Bootstrap

In practice, the order of pairs in the dataset is usually arbitrary and does not satisfy Assumption

4. In order to apply the gradient bootstrap, researchers first need to re-order the pairs. For the

jth pair with units indexed by (j, 1) and (j, 0) in the treatment and control groups, respectively,

let Xj =
X(j,1)+X(j,0)

2 . Then, let π be any permutation of n elements that minimizes

1

n

n∑
j=1

||Xπ(j) −Xπ(j−1)||2.

The pairs are re-ordered by indexes π(1), · · · , π(n). By an abuse of notation, we still index the pairs

after re-ordering by 1, · · · , n. Note the original QTE estimator q̂(τ) = q̂1(τ)− q̂0(τ) is invariant to

the re-ordering.

For the bootstrap sample, we directly compute β̂∗(τ) from the sub-gradient condition of (4.3).

Specifically, we compute β̂∗0(τ) as Y 0
(h0) and q̂∗(τ) ≡ β̂∗1(τ) as Y 1

(h1)−Y
0

(h0), where Y 0
(h0) and Y 1

(h1) are

the h0th and h1th order statistics of outcomes in the treatment and control groups, respectively,2

h0 and h1 are two integers satisfying

nτ + T ∗n,a(τ) + 1 ≥ ha ≥ nτ + T ∗n,a(τ), a = 0, 1, (5.1)

and(
T ∗n,1(τ)

T ∗n,0(τ)

)
=
√
nS∗n(τ) =

1√
2

[(∑n
j=1 ηj

(
τ − 1{Y(j,1) ≤ q̂1(τ)}

)∑n
j=1 ηj

(
τ − 1{Y(j,0) ≤ q̂0(τ)}

))

+

(∑bn/2c
k=1 η̂k

[(
τ − 1{Y(k,1) ≤ q̂1(τ)}

)
−
(
τ − 1{Y(k,3) ≤ q̂1(τ)}

)]∑bn/2c
k=1 η̂k

[(
τ − 1{Y(k,2) ≤ q̂0(τ)}

)
−
(
τ − 1{Y(k,4) ≤ q̂0(τ)}

)])].
As the probability of nτ + T ∗n,a(τ) being an integer is zero, ha is uniquely defined with probability

one.

We summarize the bootstrap procedure below.

2We assume Y a
(1) ≤ · · · ≤ Y a

(n) for a = 0, 1.

14



1. Re-order the pairs.

2. Compute the original estimator q̂(τ) = q̂1(τ)− q̂0(τ).

3. Let B be the number of bootstrap replications. Let G be a grid of quantile indexes. For

b ∈ [B], generate {ηj}j∈[n] and {η̂k}k∈bn/2c. Compute q̂∗b(τ) = Y 1
(h1) − Y

0
(h0) for τ ∈ G, where

h0 and h1 are computed in (5.1). Obtain {q̂∗b(τ)}τ∈G .

4. Repeat the above step for b ∈ [B] and obtain B bootstrap estimators of the QTE, denoted

as {q̂∗b(τ)}b∈[B],τ∈G .

5.2 Computation of the Weighted Bootstrap of the IPW estimator

We first provide more details on the sieve basis. Let b(x) ≡ (b1(x), · · · , bK(x))′, where {bk(·)}Kk=1

are K bases of a linear sieve space B. Given all dx elements of X are continuously distributed, one

can construct the linear sieve space B as follows:

1. For each element X(l) of X, l = 1, · · · , dx, let Bl be the univariate sieve space of dimension

Jn. For example, Bl is a linear span of Jn dimensional power series, i.e.,

Bl =

{ Jn∑
k=0

αkx
k, x ∈ Supp(X(l)), αk ∈ <

}

or a linear span of r-order splines with Jn nodes, i.e.,

Bl =

{r−1∑
k=0

αkx
k +

Jn∑
j=1

bj [max(x− tj , 0)]r−1, x ∈ Supp(X(l)), αk, bj ∈ <
}
,

where −∞ = t0 ≤ t1 ≤ · · · ≤ tJn ≤ tJn+1 = ∞ partition Supp(X(l)) into Jn + 1 subsets

Ij = [tj , tj+1)∩Supp(X(l)), j = 1, · · · , Jn−1, I0 = (t0, t1)∩Supp(X(l)), and IJn = (tJn , tJn+1)∩
Supp(X(l)).

2. Let B be the tensor product of {Bl}dxl=1, which is defined as a linear space spanned by functions∏dx
l=1 gl, where gl ∈ Bl. The dimension of B is then K ≡ dxJn.

Given the sieve basis, we can estimate the propensity score following (4.7). We then obtain

q̂wipw,1(τ) and q̂wipw,0(τ) by solving the sub-gradient conditions for the two optimizations in (4.8).

Specifically, we have q̂wipw,1(τ) = Yh′1 and q̂wipw,0(τ) = Yh′0 , where the indexes h′0 and h′1 satisfy

Ah′a = a, a = 0, 1,

τ

(
2n∑
i=1

ξiAi

Âi

)
−
ξh′1
Âh′1

≤
2n∑
i=1

ξiAi

Âi
1{Yi < Yh′1} ≤ τ

(
2n∑
i=1

ξiAi

Âi

)
, (5.2)
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and

τ

(
2n∑
i=1

ξi(1−Ai)
1− Âi

)
−

ξh′0
1− Âh′0

≤
2n∑
i=1

ξi(1−Ai)
1− Âi

1{Yi < Yh′0} ≤ τ

(
2n∑
i=1

ξi(1−Ai)
1− Âi

)
. (5.3)

In the implementation, we set {ξi}i∈[2n] as i.i.d. standard exponential random variables. In this

case, all the equalities in (5.2) and (5.3) hold with probability zero. Thus, h′1 and h′0 are uniquely

defined with probability one.

We summarize the bootstrap procedure below.

1. Compute the original estimator q̂(τ) = q̂1(τ)− q̂0(τ).

2. Let B be the number of bootstrap replications. Let G be a grid of quantile indexes. For

b ∈ [B], generate {ξi}i∈[2n] as a sequence of i.i.d. exponential random variables. Estimate the

propensity score following (4.7). Compute q̂w,bipw(τ) = Yh′1 − Yh′0 for τ ∈ G, where h′0 and h′1
are computed in (5.2) and (5.3), respectively. Obtain {q̂w,bipw(τ)}τ∈G .

3. Repeat the above step for b ∈ [B] and obtain B bootstrap estimators of the QTE, denoted

as {q̂w,bipw(τ)}b∈[B],τ∈G .

For comparison, we also consider the naive weighted bootstrap in our simulations. Its compu-

tation follows the similar procedure above with only one difference: the nonparametric estimate Âi

of the propensity score is replaced by the truth, i.e., 1/2.

5.3 Bootstrap Confidence Intervals

Given the bootstrap estimates, we discuss how to conduct bootstrap inference for the null hypothe-

ses with single, multiple, and continuum of quantile indexes. We take the gradient bootstrap as an

example. If the IPW bootstrap is used, one can just replace {q̂∗b(τ)}b∈[B],τ∈G by {q̂w,bipw(τ)}b∈[B],τ∈G

in the following cases.

Case (1). We aim to test the single null hypothesis that H0 : q(τ) = q v.s. q(τ) 6= q. Let

G = {τ} in the procedures described above. Further denote Q(ν) as the νth empirical quantile of

the sequence {q̂∗b(τ)}b∈[B]. Let α ∈ (0, 1) be the significant level. We suggest using the bootstrap

estimator to construct the standard error of q̂(τ) as σ̂ = Q(0.975)−Q(0.025)
C0.975−C0.025

, where Cµ is the µth

standard normal critical value. Then the valid confidence interval and Wald test using this standard

error are

CI1(α) = (q̂(τ)− C1−α/2σ̂, q̂(τ) + Cα/2σ̂),

and 1{
∣∣∣ q̂(τ)−q

σ̂

∣∣∣ ≥ C1−α/2}, respectively.
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Further denote the standard and percentile bootstrap confidence intervals as CI2 and CI3,

respectively, where

CI2(α) = (2q̂(τ)−Q(1− α/2), 2q̂(τ)−Q(α/2))

and

CI3(α) = (Q(α/2),Q(1− α/2)).

Theoretically, CI1, CI2, and CI3 are all valid. When α = 0.05, CI1, CI2, and CI3 are centered

at q̂(τ), 2q̂(τ) − Q(0.975)+Q(0.025)
2 , and Q(0.975)+Q(0.025)

2 , respectively, but share the same length

Q(0.975) − Q(0.025). From unreported simulation results, we observe that in small samples, CI1

usually has the best size control while CI2 over-rejects and CI3 under-rejects.

Case (2). We aim to test the null hypothesis that H0 : q(τ1)− q(τ2) = q v.s. q(τ1)− q(τ2) 6= q.

In this case, let G = {τ1, τ2}. Further denote Q(ν) as the νth empirical quantile of the sequence

{q̂∗b(τ1) − q̂∗b(τ2)}b∈[B]. Let α ∈ (0, 1) be the significant level. For the same reason discussed in

case (1), we suggest using the bootstrap standard error to construct the valid confidence interval

and Wald test as

CI1(α) = (q̂(τ1)− q̂(τ2)− C1−α/2σ̂, q̂(τ1)− q̂(τ2) + Cα/2σ̂),

and 1{
∣∣∣ q̂(τ1)−q̂(τ2)−q

σ̂

∣∣∣ ≥ C1−α/2}, respectively, where σ̂ = Q(0.975)−Q(0.025)
C0.975−C0.025

.

Case (3). We aim to test the null hypothesis that

H0 : q(τ) = q(τ) ∀τ ∈ Υ v.s. q(τ) 6= q(τ) ∃τ ∈ Υ.

In theory, we should let G = Υ. In practice, we let G = {τ1, · · · , τG} be a fine grid of Υ where G

should be as large as computationally possible. Further denote Qτ (ν) as the νth empirical quantile

of the sequence {q̂∗b(τ)}b∈[B] for τ ∈ G. Compute the standard error of q̂(τ) as

σ̂τ =
Qτ (0.975)−Qτ (0.025)

C0.975 − C0.025
.

The uniform confidence band with α significance level is constructed as

CB(α) = {q̂(τ)− Cασ̂τ , q̂(τ) + Cασ̂τ : τ ∈ G},
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where the critical value Cα is computed as

Cα = inf

{
z :

1

B

B∑
b=1

1

{
sup
τ∈G

∣∣∣∣ q̂∗b(τ)− q̃(τ)

σ̂τ

∣∣∣∣ ≤ z} ≥ 1− α

}

and q̃(τ) is first-order equivalent to q̂(τ) in the sense that supτ∈Υ |q̃(τ) − q̂(τ)| = op(1/
√
n). We

suggest choosing q̃(τ) = Qτ (0.975)+Qτ (0.025)
2 over other choices such as q̃(τ) = Qτ (0.5) and q̃(τ) =

q̂(τ) due to its better finite-sample performance. We rejectH0 at α significance level if q(·) /∈ CB(α).

5.4 Practical Recommendations

Our practical recommendations are straightforward. If pairs’ identities are known, we suggest using

the gradient bootstrap to make inference. If pairs’ identities are unknown, we suggest using the

weighted bootstrap of the IPW estimator with a nonparametrically estimated propensity score to

make inference.

6 Simulation

In this section, we assess the finite-sample performance of the methods discussed in Section 4 with

a Monte Carlo simulation study. In all cases, potential outcomes for a ∈ {0, 1} and 1 ≤ i ≤ 2n are

generated as

Yi(a) = µa +ma (Xi) + σa (Xi) εa,i, a = 0, 1, (6.1)

where µa,ma (Xi) , σa (Xi) and εa,i are specified as follows. In each of the specifications below,

n ∈ {50, 100}, (Xi, ε0,i, ε1,i) are i.i.d.. The number of replications is 10,000. For bootstrap methods,

we use B = 5, 000.

Model 1 Xi ∼ Unif[0, 1]; m0 (Xi) = 0; m1 (Xi) = 10
(
X2
i − 1

3

)
; εa,i ∼ N(0, 1) for a = 0, 1;

σ0 (Xi) = σ0 = 1 and σ1 (Xi) = σ1.

Model 2 As in Model 1, but σ0 (Xi) =
(
1 +X2

i

)
and σ1 (Xi) =

(
1 +X2

i

)
σ1.

Model 3 Xi = (Φ (Vi1) ,Φ (Vi2))′, where Φ(·) is the standard normal c.d.f. and

Vi ∼ N

((
0

0

)
,

(
1 ρ

ρ 1

))
,

m0 (Xi) = γ′Xi − 1; m1 (Xi) = m0 (Xi) + 10
(
Φ−1 (Xi1) Φ−1 (Xi2)− ρ

)
; εa,i ∼ N(0, 1) for

a = 0, 1; σ0 (Xi) = σ0 = 1 and σ1 (Xi) = σ1. We set γ = (1, 1)′, σ1 = 1, ρ = 0.2.

Model 4 As in Model 3 but γ = (1, 4)′, σ1 = 2, ρ = 0.7.
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Table 1: The Empirical Size and Power of Tests for ATEs

Model
H0: ∆ = 0 H1: ∆ = 1/2

n = 50 n = 100 n = 50 n = 100

Naive Adj IPW Naive Adj IPW Naive Adj IPW Naive Adj IPW

1 1.32 5.47 5.44 1.22 5.75 6.00 11.80 29.10 29.44 27.67 49.79 50.46
2 1.85 5.35 5.59 1.64 5.63 5.89 10.43 23.26 24.24 23.72 40.42 41.68
3 1.20 4.76 4.92 0.77 4.68 5.16 1.31 5.66 5.91 1.92 8.13 8.74
4 2.32 6.47 6.01 1.25 5.33 4.74 1.08 5.16 4.35 0.93 5.65 4.89

Notes: The table presents the rejection probabilities for tests of ATEs. The columns “Naive” and
“Adj” correspond to the two-sample t-test and the adjusted t-test in Bai et al. (2019), respectively;
the column “IPW” corresponds to the t-test using the standard errors estimated by the weighted
bootstrap of the IPW ATE estimator.

Pairs are determined similarly as those in Bai et al. (2019). Specifically, if Xi is a scalar, then

pairs are determined by sorting the {Xi}i ∈ [2n] as described in Case (1) in Section 4.2. If Xi is

multi-dimensional, then the pairs are determined by the permutation π described in Case (2) in

Section 4.2, which can be obtained by using the R package nbpMatching. After forming the pairs,

we assign treatment status within each pair through a random draw from the uniform distribution

over {(0, 1), (1, 0)}.
We examine the performance of various tests for ATEs and QTEs at a nominal level of α = 5%.

For the ATE, we consider the hypothesis that

E(Y (1)− Y (0)) = truth + ∆ v.s. E(Y (1)− Y (0)) 6= truth + ∆.

For the QTE, we consider the hypotheses that

q(τ) = truth + ∆ v.s. q(τ) 6= truth + ∆,

for τ = 0.25, 0.5, and 0.75,

q(0.25)− q(0.75) = truth + ∆ v.s. q(0.25)− q(0.75) 6= truth + ∆, (6.2)

and

q(τ) = truth + ∆ ∀τ ∈ [0.25, 0.75] v.s. q(τ) 6= truth + ∆ ∃τ ∈ [0.25, 0.75]. (6.3)

To illustrate the size and power of the tests, we set H0 : ∆ = 0 and H1 : ∆ = 1/2. The true value

for the ATE is 0 while the true values for the QTEs are simulated with 10, 000 sample size and

replications.
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We follow the computational procedures described in Section 5 to bootstrap and calculate the

test statistics. To test the single null hypothesis involving one or two quantile indexes, we use the

wald tests specified in Section 5.3. To test the null hypothesis involving a continuum of quantile

indexes, we use the uniform confidence band CB(α) defined in Case (3) in the same section.

The results for ATEs appear in Table 1. Each row presents a different model, and each column

reports rejection probabilities for various methods. Specifically, the columns “Naive” and “Adj”

correspond to the two-sample t-test and the adjusted t-test in Bai et al. (2019), respectively;

the column “IPW” corresponds to the t-test with the standard errors generated by the weighted

bootstrap of the IPW ATE estimator. In all cases, (1) the two-sample t-test has the rejection

probability under H0 far below the nominal level and is the least powerful test among the three;

(2) the adjusted t-test has the rejection probability under H0 close to the nominal level and is not

conservative. These results are consistent with those in Bai et al. (2019). The IPW t-test proposed

in this paper performs similarly to the adjusted one.3 Under H0, it has the rejection probability

close to 5%; under H1, it is more powerful than the Naive method and has similar power with the

adjusted t-test. This illustrates that the IPW t-test provides an alternative to the adjusted t-test

when the identities of pairs are unknown.

The results for QTEs are summarized in Tables 2 and 3. There are four panels (Models 1-4) in

each table. Each row in the panel displays rejection probabilities for the tests using the standard

errors estimated by various bootstrap methods. Specifically, the rows “Naive weight”, “Gradient”,

and “IPW” correspond to the results of the naive weighted bootstrap, the gradient bootstrap, and

the weighted bootstrap of the IPW QTE estimator, respectively.

Table 2 reports the empirical size and power of the tests with a single null hypothesis involving

one or two quantile indexes. Specifically, the columns “0.25”, “0.50”, and “0.75” correspond to

the tests with quantiles at 25%, 50%, and 75%, respectively; the column “Dif” corresponds to the

test with the null hypothesis specified in (6.2). As expected in light of Theorem 4.1, the test using

the standard errors estimated by the naive method performs poorly in all cases. It is conservative

under H0 and lacks power under H1. In contrast, the test using the standard errors estimated by

either the gradient bootstrap or the IPW method has the rejection probability under H0 close to

the nominal level in almost all specifications. When the number of pairs is 50, the tests in the “Dif”

column constructed based on either the gradient or the IPW method are slightly conservative. But

the sizes get closer to the nominal level as n increases to 100.

3Throughout this section, we use B-splines to nonparametrically estimate the propensity score in the weighted
bootstrap of the IPW estimator. If dim(Xi)=1, we choose the basis {1, X, [max(X − qx0, X − qx0.5)]2} where qx0

and qx0.5 are quantiles of X at 0 and 50%, respectively; if dim(Xi)=2, we choose the basis {1,max(X1 − qx1,0, X1 −
x1,0.5),max(X2 − qx2,0, X2 − qx2,0.5), X1X2}. The choices of sieve bases functions and K are ad-hoc. It is possible
to use data-driven methods to select them. The rigorous analysis of the validity of various data-driven methods is
out of the scope of this paper.
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Table 2: The Empirical Size and Power of Tests for QTEs

H0: ∆ = 0 H1: ∆ = 1/2
n = 50 n = 100 n = 50 n = 100

0.25 0.50 0.75 Dif 0.25 0.50 0.75 Dif 0.25 0.50 0.75 Dif 0.25 0.50 0.75 Dif

Model 1
Naive weight 3.00 2.00 2.22 1.98 3.12 2.06 1.93 1.73 16.67 6.05 5.56 3.96 34.93 11.56 8.11 7.35
Gradient 5.13 4.82 4.92 3.66 5.07 5.62 5.30 4.04 23.76 13.03 11.27 8.18 42.92 22.91 17.30 14.57
IPW 5.47 5.31 6.17 4.24 5.26 5.83 5.65 3.95 24.81 13.48 12.12 8.40 43.93 23.33 17.21 13.91

Model 2
Naive weight 3.08 2.32 2.55 1.96 3.64 2.53 2.08 1.87 14.82 6.54 4.71 3.68 30.29 11.50 7.46 6.88
Gradient 4.57 4.63 4.39 3.44 5.00 5.42 5.28 3.68 19.51 12.25 8.76 6.57 35.38 20.86 14.79 12.25
IPW 4.93 5.12 5.78 4.45 5.17 5.73 5.88 4.00 20.29 12.90 10.40 7.35 36.38 21.53 15.14 12.53

Model 3
Naive weight 2.11 1.03 2.10 0.92 1.56 1.37 1.58 0.86 4.98 2.85 1.92 0.98 6.57 7.14 1.73 1.43
Gradient 5.24 3.06 3.14 1.76 4.83 4.20 4.27 3.01 9.71 7.43 3.22 2.39 13.80 16.72 5.67 4.40
IPW 4.76 3.19 5.61 2.60 4.77 3.71 4.95 3.02 8.75 7.81 5.35 3.09 13.04 15.42 6.06 4.21

Model 4
Naive weight 2.59 1.71 1.98 1.65 2.65 1.66 1.55 1.23 6.09 1.94 1.76 1.28 9.85 2.98 1.19 1.18
Gradient 4.75 4.00 3.33 2.82 4.70 4.74 5.06 3.88 9.37 5.76 3.35 2.87 14.67 8.88 5.27 4.25
IPW 3.97 3.97 4.91 3.68 4.23 4.51 5.01 3.48 8.08 5.37 4.79 3.26 13.50 8.33 5.17 3.51

Note: The table presents the rejection probabilities for tests of QTEs involving a continuum of quantile indexes. The columns
“0.25”, “0.50”, and “0.75” correspond to the tests with quantiles at 25%, 50%, and 75%, respectively; the column “Dif” corresponds
to the test with the null hypothesis specified in (6.2). The rows “Naive weight”, “Gradient”, and “IPW” correspond to the results
of the naive weighted bootstrap, the gradient bootstrap, and the weighted bootstrap of the IPW QTE estimator, respectively.

21



Table 3: The Empirical Size and Power of Uniform Inferences for QTEs

H0: ∆ = 0 H1: ∆ = 1/2

n = 50 n = 100 n = 50 n = 100

Model 1
Naive weight 1.07 1.52 7.50 18.12
Gradient 4.08 4.64 17.88 33.30
IPW 4.49 4.94 16.30 32.40

Model 2
Naive weight 1.37 1.85 6.73 16.50
Gradient 3.66 4.57 14.30 27.64
IPW 4.25 4.91 14.27 27.47

Model 3
Naive weight 0.63 0.63 1.43 3.50
Gradient 1.90 3.07 5.19 13.33
IPW 2.19 2.99 4.25 11.34

Model 4
Naive weight 0.99 1.00 1.40 3.05
Gradient 2.87 3.72 4.47 8.57
IPW 2.78 3.36 3.18 6.98

Notes: The table presents the rejection probabilities for tests of QTEs. The rows “Naive weight”,
“Gradient”, and “IPW” correspond to the results of the naive weighted bootstrap, the gradient
bootstrap, and the weighted bootstrap of the IPW QTE estimator, respectively.

Table 3 reports the empirical size and power of the uniform confidence bands for the hypoth-

esis specified in (6.3) with a grid G = {0.25, 0.27, · · · , 0.47, 0.49, 0.5, 0.51, 0.53, · · · , 0.73, 0.75}. We

observe that the test using the standard errors estimated by the naive method has rejection prob-

ability under H0 far below the nominal level in all specifications. In Models 1-2, the test using the

standard errors estimated by either the gradient bootstrap or the IPW bootstrap yields rejection

probability under H0 very close to the nominal level even when the number of pairs is as small

as 50. Nonetheless, in Models 3-4, the tests constructed based on both methods are conservative

when the number of pairs equals 50. When the number of pairs increases to 100, both tests perform

much better and have the rejection probability under H0 close to the nominal level. Under H1,

the tests based on both the gradient and IPW methods are more powerful than those based on the

naive method.

In summary, the simulation results in Tables 2 and 3 are consistent with Theorems 4.2 and

4.3: both the gradient bootstrap and the IPW bootstrap can provide valid pointwise and uniform

inference for QTEs under MPDs. They also illustrate that, when the information on the pairs’
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identities is unavailable, the IPW method can still provide a valid inference.

7 Empirical Application

Questions surrounding the effectiveness of microfinance as a development tool has sparked a great

deal of interest from both policymakers and economists. To answer such questions, a growing num-

ber of studies have implemented randomized experiments in different settings (Banerjee, Karlan,

and Zinman, 2015). In particular, Banerjee et al. (2015) adopted MPD in their randomization. In

this section, we apply the bootstrap inference methods developed in this paper to their data to

examine both the ATEs and QTEs of microfinance on the takeup rates of microcredit.4

The sample consists of 104 areas in Hyderabad of India. Based on average per capita con-

sumption and per-household outstanding debt, the areas were grouped into pairs of similar neigh-

borhoods. This gives 52 pairs in the sample and one area in each pair was randomly assigned

to treatment and the other to control. In the treatment areas, a group-lending microcredit pro-

gram was implemented. Banerjee et al. (2015) then examined the impacts of expanding access to

microfinance on various outcome variables at two endlines.

Here we focus on the impacts of microfinance on two area-level outcome variables at the first

endline. One is the area’s takeup rate of loan from Spandana – a microfinance organization that

implemented the group-lending microcredit program. The other is the area’s takeup rate of loan

from any microfinance institutions (MFIs). Table 4 gives descriptive statistics (means and standard

deviations) for these two outcome variables as well as the matching variables used by Banerjee et al.

(2015) to form the pairs in their experiments.

Table 5 reports the results on the ATE estimates of the effect of microfinance on the takeup rates

of microcredit with the standard errors (in paratheses) calculated by three methods. Specifically,

the columns “Naive” and “Adj” correspond to the two-sample t-test and the adjusted t-test in Bai

et al. (2019), respectively; the column “IPW” corresponds to the t-test using the standard errors

estimated by the weighted bootstrap of the IPW ATE estimator.5 The results permit the following

observations. First, consistent with the findings in Banerjee et al. (2015), the ATE estimates show

that expanding access to microfinance has highly significant average effects on the takeup rates of

microcredit from both Spandana and any MFIs. Second, the standard errors in the adjusted t-test

are lower than those in the naive t-test. This result is consistent with what Bai et al. (2019) found

in their paper. More importantly, the standard errors estimated by the IPW weighted bootstrap are

also lower than those in the naive t-test, and similar to those for the adjusted t-test. For example,

in the test of the ATE on the takeup rate of microcredit from Spandana, the IPW method reduces

4The public-use data provided by the authors do not contain the information of pair assignment. We thank Esther
Duflo and Cynthia Kinnan for providing us this information.

5Throughtout this section, to nonparametrically estimate the propensity score in the IPW weighted bootstrap,
we first standardize the data to have mean zero and variance one, and then fit the standardized data via the sieve
estimation based on the B-splines with the same basis as used in Section 6.
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the standard error by 8 percent compared with the naive one. The magnitude of the reduction is

the same as that in the adjusted t-test. These results imply that the IPW method is an alternative

to the approach adopted in Bai et al. (2019), especially when the information on pair identities is

unavailable.

Next, we estimate the QTEs of microfinance on the takeup rates of microcredit and estimate

their standard errors by the three methods discussed in Section 4. Table 6 presents the results on

the QTE estimates at quantile indexes 0.25, 0.5, and 0.75 with the standard errors (in paratheses)

estimated by three different methods. Specifically, the columns “Naive weight”, “Gradient”, and

“IPW” correspond to the results of the naive weighted bootstrap, the gradient bootstrap6 and the

weighted bootstrap of the IPW QTE estimator, respectively. These results lead to the following

two observations.

First, consistent with our theory in Section 4, the standard errors estimated by the gradient

bootstrap or by the IPW weighted bootstrap are mostly lower than those estimated by the naive

weighted bootstrap. For example in Panel A, at the median, compared with the naive weighted

bootstrap, the gradient bootstrap reduces the standard errors by 12.5% and the IPW weighted

bootstrap reduces the standard errors by over 4%. In Panel B, all the standard errors computed

using methods Gradient and IPW are smaller than those computed using the naive method.

Second, there is a considerable evidence of heterogeneous effects of microfinance. The treatment

effects of microfinance on the takeup rates of microcredit increase as the quantile indexes increase.

For example, in Panel A, the treatment effect increases by about 122% from the 0.25th quantile

to the median and by about 26% from the median to 0.75th quantile. In Panel B, the treatment

effect at the 0.25th quantile is positive but not statistically significantly different from zero. The

treatment effect increases by over 46% from 0.25th quantile to the median and by about 72% from

the median to 0.75th quantile. These findings may imply that expanding access to microfinance

has small, if not negligible, effects on the takeup rates of microcredit for areas in the lower tail of

the distribution and these effects become stronger for upper-ranked areas, exhibiting the so called

Matthew effects.

8 Conclusion

In this paper, we consider the estimation and inference of QTEs under MPDs. We derive the

asymptotic distribution of QTE estimators under MPDs and point out that the analytical inference

requires the estimation of two infinite-dimensional nuisance parameters for every quantile index of

interest. We then show that the naive weighted bootstrap fails to approximate the derived limiting

distribution of the QTE estimator as it cannot preserve the dependence structure in the original

6Using the original pair identities and matching variables in Banerjee et al. (2015), we can re-order the pairs
according to the procedure described in Section 5.1. We follow Banerjee et al. (2015) to use the Euclidean distance
to measure the distance between the covariates in distinctive pairs.
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Table 4: Summary Statistics

Total Treatment group Control group

Loan takeup rate
Spandana 0.128(0.140) 0.193(0.131) 0.062(0.117)
Any MFI 0.224(0.152) 0.265(0.151) 0.182(0.143)

Matching variable
Consumption 1026.4(184.4) 1047.8(195.7) 1005.0(171.5)
Debt 36184.7(36036.5) 32694.1(17755.5) 39675.3(47776.8)

Observations 104 52 52

Notes: Unit of observation: area. The table presents the means and standard deviations (in
paratheses) of two outcome variables – the takeup rate of loan from Spandana and the takeup
rate of loan from any MFI, and two pair-matching variables – average per capita consumption and
per-household debt.

Table 5: ATEs of Micofinance on Takeup Rates of Microcredit

Naive Adj IPW

Spandana 0.131(0.024) 0.131(0.022) 0.131(0.022)
Any MFI 0.083(0.029) 0.083(0.024) 0.083(0.027)

Notes: The table presents the ATE estimates of the effect of microfinance on the takeup rates of
microcredit. Standard errors are in paratheses. The columns “Naive t” and “Adj t” correspond to
the two-sample t-test and the adjusted t-test in Bai et al. (2019), respectively. The column “IPW
t” corresponds to the t-test using the standard errors estimated by the weighted bootstrap of the
IPW ATE estimator.

Table 6: QTEs of Micofinance on Takeup Rates of Microcredit

Naive weight Gradient IPW

Panel A. Spandana
25% 0.082(0.021) 0.082(0.026) 0.082(0.020)
50% 0.182(0.024) 0.182(0.021) 0.182(0.023)
75% 0.229(0.047) 0.229(0.046) 0.229(0.047)

Panel B. Any MFI
25% 0.056(0.045) 0.056(0.043) 0.056(0.042)
50% 0.082(0.040) 0.082(0.034) 0.082(0.040)
75% 0.141(0.054) 0.141(0.054) 0.141(0.049)

Notes: The table presents the the QTE estimates of the effect of microfinance on the takeup rates
of microcredit at quantiles 25%, 50%, and 75% . Standard errors are in paratheses. The columns
“Naive weight”, “Gradient”, and “IPW” correspond to the results of the naive weighted bootstrap,
the gradient bootstrap, and the weighted bootstrap of the IPW QTE estimator, respectively.
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sample. Next, we propose a gradient bootstrap which can consistently approximate the limiting

distribution of the original estimator and is free of tuning parameters. In order to implement the

gradient bootstrap, one needs to know the pairs’ identities. When such information is unavailable,

we propose a weighted bootstrap of the IPW estimator of QTE and show that it can consistently

approximate the limiting distribution of the original QTE estimator. Monte Carlo simulations

provide finite-sample evidence that supports our theoretical results. We also apply the bootstrap

methods to the real dataset in Banerjee et al. (2015) and find considerable evidence of heterogeneous

effects of microfinance on the takeup rates of microcredit. In both the simulations and the empirical

application, the two proposed bootstrap inference methods perform well in the sense that they

usually provide smaller standard errors than those computed via the naive method.
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A Proof of Theorem 3.1

Let u = (u0, u1)′ ∈ <2 and

Ln(u, τ) =
2n∑
i=1

[
ρτ (Yi − Ȧ′iβ(τ)− Ȧ′iu/

√
n)− ρτ (Yi − Ȧ′iβ(τ))

]
.

Then, by the change of variable, we have that

√
n(β̂(τ)− β(τ)) = arg min

u
Ln(u, τ).

Notice that Ln(u, τ) is convex in u for each τ and bounded in τ for each u. In the following, we

divide the proof into three steps. In Step (1), we show that there exists

gn(u, τ) = −u′Wn(τ) +
u′Q(τ)u

2

such that for each u,

sup
τ∈Υ
|Ln(u, τ)− gn(u, τ)| p−→ 0;

and the maximum eigenvalue of Q(τ) is bounded from above and the minimum eigenvalue of Q(τ)

is bounded away from 0, uniformly over τ ∈ Υ. In Step (2), we show Wn(τ) as a stochastic process

over τ ∈ Υ is tight. Then by Kato (2009, Theorem 2), we have

√
n(β̂(τ)− β(τ)) = [Q(τ)]−1Wn(τ) + rn(τ),

where supτ∈Υ ||rn(τ)|| = op(1). Last, in Step (3), we establish the weak convergence of [Q(τ)]−1Wn(τ),

uniformly over τ ∈ Υ. The second element of the limiting process is B(τ) stated in Theorem 3.1.

Step (1). By Knight’s identity (Knight, 1998), we have

Ln(u, τ)

=−
2n∑
i=1

u′√
n
Ȧi

(
τ − 1{Yi ≤ Ȧ′iβ(τ)}

)
+

2n∑
i=1

∫ Ȧ′iu√
n

0

(
1{Yi − Ȧ′iβ(τ) ≤ v} − 1{Yi − Ȧ′iβ(τ) ≤ 0}

)
dv

≡− u′Wn(τ) +Qn(u, τ),

where

Wn(τ) =

2n∑
i=1

1√
n
Ȧi

(
τ − 1{Yi ≤ Ȧ′iβ(τ)}

)

27



and

Qn(u, τ) =
2n∑
i=1

∫ Ȧ′iu√
n

0

(
1{Yi − Ȧ′iβ(τ) ≤ v} − 1{Yi − Ȧ′iβ(τ) ≤ 0}

)
dv

=

2n∑
i=1

Ai

∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv

+

2n∑
i=1

(1−Ai)
∫ u0√

n

0
(1{Yi(0)− q0(τ) ≤ v} − 1{Yi(0)− q0(τ) ≤ 0}) dv

≡Qn,1(u, τ) +Qn,0(u, τ). (A.1)

We first consider Qn,1(u, τ). Let

Hn(Xi, τ) = E

(∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv|Xi

)
. (A.2)

Then,

Qn,1(u, τ) =

2n∑
i=1

Hn(Xi, τ)

2
+

2n∑
i=1

(
Ai −

1

2

)
Hn(Xi, τ)

+
2n∑
i=1

Ai

[∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv −Hn(Xi, τ)

]
.

(A.3)

For the first term on the RHS of (A.3), we have, uniformly over τ ∈ Υ,

2n∑
i=1

Hn(Xi, τ)

2
=

1

4n

2n∑
i=1

f1(q1(τ) + ṽ|Xi)(u0 + u1)2 p−→ f1(q1(τ))(u0 + u1)2

2
, (A.4)

where ṽ is between 0 and |u0 + u1|/
√
n and we use the fact that, due to Assumption 2,

sup
τ∈Υ

1

2n

2n∑
i=1

|f1(q1(τ) + ṽ|Xi)− f1(q1(τ)|Xi)| ≤

(
1

2n

2n∑
i=1

C(Xi)

)
|u0 + u1|√

n

p−→ 0.

Lemma E.2 shows

sup
τ∈Υ

∣∣∣∣∣
2n∑
i=1

(
Ai −

1

2

)
Hn(Xi, τ)

∣∣∣∣∣ = op(1) (A.5)
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and

sup
τ∈Υ

∣∣∣∣∣
2n∑
i=1

Ai

[∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv −Hn(Xi, τ)

]∣∣∣∣∣ = op(1).

(A.6)

Combining (A.3)–(A.6), we have

sup
τ∈Υ

∣∣∣∣Qn,1(u, τ)− f1(q1(τ))(u0 + u1)2

2

∣∣∣∣ = op(1). (A.7)

By a similar argument, we can show that

sup
τ∈Υ

∣∣∣∣Qn,0(u, τ)− f0(q0(τ))u2
0

2

∣∣∣∣ = op(1). (A.8)

Combining (A.7) and (A.8), we have

Qn(u, τ)
p−→ u′Q(τ)u

2
,

where

Q(τ) =

(
f1(q1(τ)) + f0(q0(τ)) f1(q1(τ))

f1(q1(τ)) f1(q1(τ))

)
. (A.9)

Then,

sup
τ∈Υ
|Ln(u, τ)− gn(u, τ)| = sup

τ∈Υ

∣∣∣∣Qn(u, τ)− u′Q(τ)u

2

∣∣∣∣ = op(1).

Last, because fa(qa(τ)) for a = 0, 1 is bounded and bounded away from zero uniformly over τ ∈ Υ,

so be the eigenvalues of Q(τ) uniformly over τ ∈ Υ.

Step (2). Let e1 = (1, 1)T , e0 = (1, 0)T . Then,

Wn(τ) =
2n∑
i=1

e1√
n
Ai (τ − 1{Yi(1) ≤ q1(τ)}) +

2n∑
i=1

e0√
n

(1−Ai) (τ − 1{Yi(0) ≤ q0(τ)})

≡e1Wn,1(τ) + e0Wn,0(τ).

(A.10)

Recall m1,τ (Xi) = E(τ − 1{Yi(1) ≤ q1(τ)}|Xi). Denote

ηi,1(τ) = τ − 1{Yi(1) ≤ q1(τ)} −m1,τ (Xi).
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For Wn,1(τ), we have

Wn,1(τ) =
2n∑
i=1

Ai√
n
ηi,1(τ) +

2n∑
i=1

1

2
√
n
m1,τ (Xi) +R1(τ) (A.11)

where

R1(τ) =
2n∑
i=1

(Ai − 1/2)√
n

m1,τ (Xi).

By Lemma E.3, we have

sup
τ∈Υ
|R1(τ)| = op(1).

Next, we focus on the first two terms on the RHS of (A.11). Note {Yi(1)}2ni=1 given {Xi}2ni=1 is an

independent sequence that is also independent of {Ai}2ni=1. Let Ỹj(1)|X̃j be distributed according

to Yij (1)|Xij where ij is the j-th smallest index in the set {i ∈ [2n] : Ai = 1} and X̃j = Xij . Then,

by noticing that
∑2n

i=1Ai = n, we have

2n∑
i=1

Ai√
n
ηi,1(τ)|{Ai, Xi}2ni=1

d
=

n∑
j=1

η̃j,1(τ)√
n

∣∣∣∣{X̃j}nj=1, (A.12)

where η̃j,1(τ) = τ − 1{Ỹj(1) ≤ q1(τ)} −m1,τ (X̃j), and given {X̃j}nj=1, {η̃j,1(τ)}nj=1 is a sequence

of independent random variables. Further denote the conditional distribution of Ỹj(1) given X̃j as

P(j) and Λτ (x) = F1(q1(τ)|x)(1− F1(q1(τ)|x)). Then,

1

n

n∑
j=1

P(j)(η̃j,1(τ))2 =
1

n

n∑
j=1

Λτ (X̃j)

=
1

n

2n∑
i=1

AiΛτ (Xi)

=
1

2n

2n∑
i=1

Λτ (Xi) +
1

2n

n∑
j=1

(Aπ(2j−1) −Aπ(2j))
[
Λτ (Xπ(2j−1))− Λτ (Xπ(2j))

]
p−→EΛτ (Xi),

where the last convergence holds because

1

2n

2n∑
i=1

Λτ (Xi)
p−→ EΛτ (Xi)
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and∣∣∣∣∣∣ 1

2n

n∑
j=1

(Aπ(2j−1) −Aπ(2j))
[
Λτ (Xπ(2j−1))− Λτ (Xπ(2j))

]∣∣∣∣∣∣ . 1

2n

n∑
j=1

||Xπ(2j−1) −Xπ(2j)||2
p−→ 0.

In addition, because η̃j,1(τ) is bounded, the Lyapounov’s condition holds, i.e.,

1

n3/2

n∑
i=1

P(j)|η̃j,1(τ)|3 p−→ 0.

Therefore, by the triangular array CLT, for fixed τ , we have

2n∑
i=1

Ai√
n
ηi,1(τ)|{Ai, Xi}2ni=1

d
=

n∑
j=1

η̃j,1(τ)√
n

∣∣∣∣{X̃j}nj=1  N (0,EΛτ (Xi)).

It is straightforward to extend the results to finite-dimensional convergence by the Cramér-Wold

device. In particular, the covariance between
∑2n

i=1
Ai√
n
ηi,1(τ) and

∑2n
i=1

Ai√
n
ηi,1(τ ′) conditionally on

{Xi}2ni=1 converges to

min(τ, τ ′)− ττ ′ − Em1,τ (X)m1,τ ′(X).

Next, we show that the process {
∑2n

i=1
Ai√
n
ηi,1(τ) : τ ∈ Υ} is stochastically equicontinuous.

Denote Pf = 1
n

∑n
j=1 P(j)f for a generic function f . Let

F1 = {[τ − 1{Y ≤ q1(τ)}]−
[
τ ′ − 1{Y ≤ q1(τ ′)}

]
: τ, τ ′ ∈ Υ, |τ − τ ′| ≤ ε}

which is a VC-class with a fixed VC-index, has an envelop Fi = 2, and

σ2
n = sup

f∈F1

Pf2 . sup
τ̃∈Υ

1

n

n∑
i=1

[
ε2 +

f1(q1(τ̃)|X̃j)ε

f1(q1(τ̃))

]
. ε a.s.

Then, by Lemma E.1,

E

 sup
τ,τ ′∈Υ,|τ−τ ′|≤ε

∣∣∣∣∣∣
n∑
j=1

η̃j,1(τ)− η̃j,1(τ ′)√
n

∣∣∣∣∣∣
∣∣∣∣{X̃j}nj=1

 =E
[
‖Pn − P‖F1

∣∣∣∣{X̃j}nj=1

]

.
√
ε log(1/ε) +

log(1/ε)√
n

a.s.
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For any δ, η > 0, we can find an ε > 0 such that

lim sup
n

P

(
sup

τ,τ ′∈Υ,|τ−τ ′|≤ε

∣∣∣∣∣
2n∑
i=1

Ai√
n

(
ηi,1(τ)− ηi,1(τ ′)

)∣∣∣∣∣ ≥ δ
)

= lim sup
n

EP

(
sup

τ,τ ′∈Υ,|τ−τ ′|≤ε

∣∣∣∣∣
2n∑
i=1

Ai√
n

(
ηi,1(τ)− ηi,1(τ ′)

)∣∣∣∣∣ ≥ δ
∣∣∣∣{Ai, Xi}2ni=1

)

≤ lim sup
n

E
E
[
supτ,τ ′∈Υ,|τ−τ ′|≤ε

∣∣∣∑n
j=1

η̃j,1(τ)−η̃j,1(τ ′)√
n

∣∣∣ ∣∣∣∣{X̃j}nj=1

]
δ

. lim sup
n

√
ε log(1/ε) + log(1/ε)√

n

δ
≤ η,

where the last inequality holds because ε log(1/ε) → 0 as ε → 0. This implies {
∑2n

i=1
Ai√
n
ηi,1(τ) :

τ ∈ Υ} is stochastically equicontinuous, and thus, tight.

In addition, note {Xi}2ni=1 are i.i.d. and {m1,τ (x) : τ ∈ Υ} is Donsker, then {
∑2n

i=1
1

2
√
n
m1,τ (Xi) :

τ ∈ Υ} is tight. This leads to the desired result that {Wn,1(τ) : τ ∈ Υ} is tight. In a same manner,

we can show that {Wn,0(τ) : τ ∈ Υ} is tight, which leads to the tightness of {Wn(τ) : τ ∈ Υ}.
Step (3). Recall m0,τ (Xi) = E(τ − 1{Yi(0) ≤ q0(τ)}|Xi) and let ηi,0(τ) = τ − 1{Yi(0) ≤

q0(τ)} −m0,τ (Xi). Then, based on the previous two steps, we have

√
n(β̂(τ)− β(τ)) = Q−1

(
1 1

1 0

)( ∑2n
i=1

Ai√
n
ηi,1(τ) +

∑2n
i=1

1
2
√
n
m1,τ (Xi)∑2n

i=1
1−Ai√

n
ηi,0(τ) +

∑2n
i=1

1
2
√
n
m0,τ (Xi)

)
+R(τ) (A.13)

where supτ∈Υ |R(τ)| = op(1). In addition, we have already established the stochastic equicontinuity

and finite-dimensional convergence of( ∑2n
i=1

Ai√
n
ηi,1(τ) +

∑2n
i=1

1
2
√
n
m1,τ (Xi)∑2n

i=1
1−Ai√

n
ηi,0(τ) +

∑2n
i=1

1
2
√
n
m0,τ (Xi)

)
.

Thus, in order to derive the weak limit of
√
n(β̂(τ)−β(τ)) uniformly over τ ∈ Υ, it suffices to con-

sider its covariance kernel. First, note that, by construction,
∑2n

i=1
Ai√
n
ηi,1(τ) ⊥⊥

∑2n
i=1

1−Ai√
n
ηi,0(τ ′)

for any (τ, τ ′) ∈ Υ. Second, note that
∑2n

i=1
Ai√
n
ηi,1(τ) is asymptotically independent of

∑2n
i=1

1
2
√
n
m1,τ ′(Xi).

To see this, let (s, t) ∈ <2, then

P

(
2n∑
i=1

Ai√
n
ηi,1(τ) ≤ t,

2n∑
i=1

1

2
√
n
m1,τ ′(Xi) ≤ s

)

=E

{
P

(
2n∑
i=1

Ai√
n
ηi,1(τ) ≤ t

∣∣∣∣{Ai, Xi}2ni=1

)
1

{
2n∑
i=1

1

2
√
n
m1,τ ′(Xi) ≤ s

}}
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=Φ(t/
√

EΛτ (Xi))P

(
2n∑
i=1

1

2
√
n
m1,τ ′(Xi) ≤ s

)

+ E
{[

P

(
2n∑
i=1

Ai√
n
ηi,1(τ) ≤ t

∣∣∣∣{Ai, Xi}2ni=1

)
− Φ(t/

√
EΛτ (Xi))

]
1

{
2n∑
i=1

1

2
√
n
m1,τ ′(Xi) ≤ s

}}
→Φ(t/

√
EΛτ (Xi))Φ(s/

√
Em2

1,τ (Xi)/2),

where the last convergence holds due to the fact that

P

(
2n∑
i=1

Ai√
n
ηi,1(τ) ≤ t

∣∣∣∣{Ai, Xi}2ni=1

)
− Φ(t/

√
EΛτ (Xi))

p−→ 0.

We can extend the independence result to multiple τ and τ ′, implying that the two stochastic

processes {
2n∑
i=1

Ai√
n
ηi,1(τ) : τ ∈ Υ

}
and

{
2n∑
i=1

1

2
√
n
m1,τ (Xi) : τ ∈ Υ

}

are asymptotically independent. For the same reason, we can show{(
2n∑
i=1

Ai√
n
ηi,1(τ),

2n∑
i=1

1−Ai√
n

ηi,0(τ)

)
: τ ∈ Υ

}
and

{(
2n∑
i=1

1

2
√
n
m1,τ (Xi),

2n∑
i=1

1

2
√
n
m0,τ (Xi)

)
: τ ∈ Υ

}

are asymptotically independent. Last, it is tedious but straightforward to show that, uniformly

over τ ∈ Υ, (
2n∑
i=1

Ai√
n
ηi,1(τ),

2n∑
i=1

1−Ai√
n

ηi,0(τ)

)
 B̃1(τ)

and (
2n∑
i=1

1

2
√
n
m1,τ (Xi),

2n∑
i=1

1

2
√
n
m0,τ (Xi)

)
 B̃2(τ)

where B̃1(τ) and B̃2(τ) are two Gaussian processes with covariance kernels

Σ̃1(τ, τ ′) =

(
E
[
min(τ, τ ′)− ττ ′ − Em1,τ (X)m1,τ ′(X)

]
0

0 E
[
min(τ, τ ′)− ττ ′ − Em0,τ (X)m0,τ ′(X)

]
.

)
(A.14)
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and

Σ̃2(τ, τ ′) =
1

2

(
Em1,τ (X)m1,τ ′(X) Em1,τ (X)m0,τ ′(X)

Em1,τ ′(X)m0,τ (X) Em0,τ (X)m0,τ ′(X)

)
, respectively. (A.15)

This implies
√
n(β̂(τ)−β(τ)) B̃(τ), where B̃(τ) is a Gaussian process with covariance kernel

Σ̃(τ, τ ′) = Q−1(τ)

(
1 1

1 0

)(
Σ̃1(τ, τ ′) + Σ̃2(τ, τ ′)

)[(1 1

1 0

)
Q−1(τ ′)

]T
.

Focusing on the second element of β̂(τ), we have

√
n(q̂(τ)− q(τ)) B(τ),

where B(τ) is a Gaussian process with covariance kernel

Σ(τ, τ ′) =
min(τ, τ ′)− ττ ′ − Em1,τ (X)m1,τ ′(X)

f1(q1(τ))f1(q1(τ ′))
+

min(τ, τ ′)− ττ ′ − Em0,τ (X)m0,τ ′(X)

f0(q0(τ))f0(q0(τ ′))

+
1

2
E
(
m1,τ (X)

f1(q1(τ))
− m0,τ (X)

f0(q0(τ))

)(
m1,τ ′(X)

f1(q1(τ ′))
−
m0,τ ′(X)

f0(q0(τ ′))

)
.

B Proof of Theorem 4.1

Let u = (u0, u1)′ ∈ <2 and

Lwn (u, τ) =
2n∑
i=1

ξi

[
ρτ (Yi − Ȧ′iβ(τ)− Ȧ′iu/

√
n)− ρτ (Yi − Ȧ′iβ(τ))

]
.

Then, by the change of variable, we have that

√
n(β̂w(τ)− β(τ)) = arg min

u
Lwn (u, τ).

Notice that Lwn (u, τ) is convex in u for each τ and bounded in τ for each u. In the following, we

divide the proof into three steps. In Step (1), we show that there exists

gwn (u, τ) = −u′Ww
n (τ) +

u′Q(τ)u

2

such that for each u,

sup
τ∈Υ
|Lwn (u, τ)− gwn (u, τ)| p−→ 0
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and Q(τ) is defined in the proof of Theorem 3.1. In Step (2), we show Ww
n (τ) as a stochastic

process over τ ∈ Υ is tight. Then by Kato (2009, Theorem 2), we have

√
n(β̂w(τ)− β(τ)) = [Q(τ)]−1Ww

n (τ) + rn(τ),

where supτ∈Υ ||rn(τ)||2 = op(1). Last, in Step (3), we establish the weak convergence of

√
n(β̂w(τ)− β̂(τ))

conditionally on data.

Step (1). Similar to Step (1) in the previous section, we have

Lwn (u, τ) = −u′Ww
n (τ) +Qwn (u, τ),

where

Ww
n (τ) =

2n∑
i=1

ξi√
n
Ȧi

(
τ − 1{Yi ≤ Ȧ′iβ(τ)}

)
and

Qwn (u, τ) =
2n∑
i=1

ξi

∫ Ȧ′iu√
n

0

(
1{Yi − Ȧ′iβ(τ) ≤ v} − 1{Yi − Ȧ′iβ(τ) ≤ 0}

)
dv

=

2n∑
i=1

ξiAi

∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv

+

2n∑
i=1

ξi(1−Ai)
∫ u0√

n

0
(1{Yi(0)− q0(τ) ≤ v} − 1{Yi(0)− q0(τ) ≤ 0}) dv

≡Qwn,1(u, τ) +Qwn,0(u, τ). (B.1)

We first consider Qwn,1(u, τ). Note

Hn(Xi, τ) =Eξi

(∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv|Xi

)

=E

(∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv|Xi

)
. (B.2)
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Then,

Qwn,1(u, τ) =
2n∑
i=1

Hn(Xi, τ)

2
+

2n∑
i=1

(
Ai −

1

2

)
Hn(Xi, τ)

+

2n∑
i=1

Ai

[
ξi

∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv −Hn(Xi, τ)

]
.

(B.3)

By (A.4), we have, uniformly over τ ∈ Υ,

2n∑
i=1

Hn(Xi, τ)

2

p−→ f1(q1(τ))(u0 + u1)2

2
,

In addition, (A.5) implies

sup
τ∈Υ

∣∣∣∣∣
2n∑
i=1

(
Ai −

1

2

)
Hn(Xi, τ)

∣∣∣∣∣ = op(1).

Last, Lemma E.2 implies

sup
τ∈Υ

∣∣∣∣∣
2n∑
i=1

Ai

[
ξi

∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv −Hn(Xi, τ)

]∣∣∣∣∣ = op(1).

Combining the above results, we have

sup
τ∈Υ

∣∣∣∣Qwn,1(u, τ)− f1(q1(τ))(u0 + u1)2

2

∣∣∣∣ = op(1). (B.4)

By a similar argument, we can show that

sup
τ∈Υ

∣∣∣∣Qwn,0(u, τ)− f0(q0(τ))u2
0

2

∣∣∣∣ = op(1). (B.5)

Combining (B.4) and (B.5), we have

Qwn (u, τ)
p−→ u′Q(τ)u

2
,

where Q(τ) is defined in (A.9). Then,

sup
τ∈Υ
|Lwn (u, τ)− gwn (u, τ)| = sup

τ∈Υ

∣∣∣∣Qwn (u, τ)− u′Q(τ)u

2

∣∣∣∣ = op(1).
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Step (2). We have

Ww
n (τ) =

2n∑
i=1

e1√
n
ξiAi (τ − 1{Yi(1) ≤ q1(τ)}) +

2n∑
i=1

e0√
n

(1−Ai)ξi (τ − 1{Yi(0) ≤ q0(τ)})

≡e1W
w
n,1(τ) + e0W

w
n,0(τ).

(B.6)

Recall m1,τ (Xi) = E(τ − 1{Yi(1) ≤ q1(τ)}|Xi), e1 = (1, 1)T , and e0 = (1, 0)T , and denote

ηwi,1(τ) = ξi(τ − 1{Yi(1) ≤ q1(τ)})−m1,τ (Xi).

Then, for Ww
n,1(τ), we have

Ww
n,1(τ) =

2n∑
i=1

Ai√
n
ηwi,1(τ) +

2n∑
i=1

1

2
√
n
m1,τ (Xi) +R1(τ), (B.7)

where by Lemma E.3,

sup
τ∈Υ
|R1(τ)| = sup

τ∈Υ

∣∣∣∣∣
2n∑
i=1

(Ai − 1/2)√
n

m1,τ (Xi)

∣∣∣∣∣ = op(1).

The second term on the RHS of (B.7) is stochastically equicontinuous and tight. Next, we focus

on the first term. Similar to the argument in Step (2) in the previous section, we have

2n∑
i=1

Ai√
n
ηwi,1(τ)|{Ai, Xi}2ni=1

d
=

n∑
j=1

η̃wj,1(τ)
√
n

∣∣∣∣{X̃j}nj=1, (B.8)

where η̃wj,1(τ) = ξ̃j(τ−1{Ỹj(1) ≤ q1(τ)})−m1,τ (X̃j), (Ỹj(1), X̃j) are as defined before, ξ̃j = ξij , ij is

the j-th smallest index in the set {i ∈ [2n] : Ai = 1}, and given {X̃j}nj=1, {η̃wj,1(τ)}nj=1 is a sequence

of independent random variables. Further denote the conditional distribution of (ξ̃j , Ỹj(1)) given

X̃j as P(j). Then,

1

n

n∑
j=1

P(j)(η̃wj,1(τ))2 =
1

n

n∑
j=1

{
E
[
(ξ̃wj )2(τ − 1{Ỹj(1) ≤ q1(τ)})2|X̃j

]
−m2

1,τ (X̃j)
}
≤ C <∞,

for some constant C > 0. This implies, pointwise in τ ∈ Υ,

2n∑
i=1

Ai√
n
ηwi,1(τ)|{Ai, Xi}2ni=1

d
=

n∑
j=1

η̃wj,1(τ)
√
n

∣∣∣∣{X̃j}nj=1 = Op(1).
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In addition, let

F2 = {ξ [τ − 1{Y ≤ q1(τ)}]−
[
τ ′ − 1{Y ≤ q1(τ ′)}

]
: τ, τ ′ ∈ Υ, |τ − τ ′| ≤ ε}

which is a VC-class with a fixed VC-index, has an envelop Fi = 2ξi, maxi∈[n] Fi ≤ C log(n), and

σ2
n = sup

f∈F2

Pf2 . sup
τ̃∈Υ

1

n

n∑
i=1

[
ε2 +

f1(q1(τ̃)|X̃j)ε

f1(q1(τ̃))

]
. ε a.s.

Then, by Lemma E.1,

E

 sup
τ,τ ′∈Υ,|τ−τ ′|≤ε

∣∣∣∣∣∣
n∑
j=1

η̃wj,1(τ)− η̃wj,1(τ ′)
√
n

∣∣∣∣∣∣
∣∣∣∣{X̃j}nj=1

 =E
[
‖Pn − P‖F2

∣∣∣∣{X̃j}nj=1

]

.
√
ε log(1/ε) +

log(1/ε) log(n)√
n

a.s.

The RHS of the above display vanishes as n→∞ followed by ε→ 0, which implies

2n∑
i=1

Ai√
n
ηwi,1(τ)|{Ai, Xi}2ni=1

d
=

n∑
j=1

η̃wj,1(τ)
√
n

∣∣∣∣{X̃j}nj=1 (B.9)

is stochastically equicontinuous. Therefore,
∑2n

i=1
Ai√
n
ηwi,1(τ)|{Ai, Xi}2ni=1, and thus, Ww

n,1(τ) is tight.

Similarly, we can show Ww
n,0(τ) is tight.

Step (3). Based on the previous two steps, we have

√
n(β̂w(τ)− β(τ)) = Q−1

(
1 1

1 0

)( ∑2n
i=1

Ai√
n
ηwi,1(τ) +

∑2n
i=1

1
2
√
n
m1,τ (Xi)∑2n

i=1
1−Ai√

n
ηwi,0(τ) +

∑2n
i=1

1
2
√
n
m0,τ (Xi)

)
+Rw(τ) (B.10)

where supτ∈Υ ||Rw(τ)||2 = op(1) and
√
n(β̂w(τ)− β(τ)) is stochastically equicontinuous.

Taking the difference between (A.13) and (B.10), we have

√
n(β̂w(τ)− β̂(τ)) = Q−1

(
1 1

1 0

)( ∑2n
i=1

Ai√
n

(ξi − 1)(τ − 1{Yi(1) ≤ q1(τ)})∑2n
i=1

1−Ai√
n

(ξi − 1)(τ − 1{Yi(0) ≤ q0(τ)})

)
+R∗(τ), (B.11)

where supτ∈Υ |R∗(τ)| = op(1). In addition, because both
√
n(β̂w(τ) − β(τ)) and

√
n(β̂(τ) − β(τ))

are stochastically equicontinuous, so be
√
n(β̂w(τ)−β̂(τ)). Then by Markov inequality,

√
n(β̂w(τ)−

β̂(τ)) is stochastically equicontinuous conditionally on data as well. In order to derive the limiting

distribution of
√
n(β̂w(τ) − β̂(τ)) conditionally on data, we only need to compute the covariance
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kernel. Note

E

( ∑2n
i=1

Ai√
n

(ξi − 1)(τ − 1{Yi(1) ≤ q1(τ)})∑2n
i=1

1−Ai√
n

(ξi − 1)(τ − 1{Yi(0) ≤ q0(τ)})

)( ∑2n
i=1

Ai√
n

(ξi − 1)(τ ′ − 1{Yi(1) ≤ q1(τ ′)})∑2n
i=1

1−Ai√
n

(ξi − 1)(τ ′ − 1{Yi(0) ≤ q0(τ ′)})

)T ∣∣∣∣Data


=
1

n

2n∑
i=1

(
Ai(τ − 1{Yi(1) ≤ q1(τ)})(τ ′ − 1{Yi(1) ≤ q1(τ ′)}) 0

0 (1−Ai)(τ − 1{Yi(0) ≤ q0(τ)})(τ ′ − 1{Yi(0) ≤ q0(τ ′)})

)
.

For the (1, 1) entry, we have

1

n

2n∑
i=1

Ai(τ − 1{Yi(1) ≤ q1(τ)})(τ ′ − 1{Yi(1) ≤ q1(τ ′)})

=
1

n

2n∑
i=1

Aiη1,i(τ)η1,i(τ
′) +

1

n

2n∑
i=1

Aiη1,i(τ)m1,τ ′(Xi) +
1

n

2n∑
i=1

Aiη1,i(τ
′)m1,τ (Xi) +

1

n

2n∑
i=1

Aim1,τ (Xi)m1,τ ′(Xi).

Note

1

n

2n∑
i=1

Aiη1,i(τ)η1,i(τ
′)

d
=

1

n

n∑
j=1

η̃1,j(τ)η̃1,j(τ
′)

p−→ lim
n

1

n

n∑
j=1

(F1(q1(min(τ, τ ′))|X̃j)− F1(q1(τ)|X̃j)F1(q1(τ ′)|X̃j))

= min(τ, τ ′)− EF1(q1(τ)|Xi)F1(q1(τ ′)|Xi). (B.12)

Lemma E.4 shows

1

n

2n∑
i=1

Aiη1,i(τ)m1,τ ′(Xi)
p−→ 0

and

1

n

2n∑
i=1

Aiη1,i(τ
′)m1,τ (Xi)

p−→ 0.

Lemma E.6 implies

1

n

2n∑
i=1

Aim1,τ (Xi)m1,τ ′(Xi)
p−→ Em1,τ (Xi)m1,τ ′(Xi).

This means

1

n

2n∑
i=1

Ai(τ − 1{Yi(1) ≤ q1(τ)})(τ ′ − 1{Yi(1) ≤ q1(τ ′)}) p−→ min(τ, τ ′)− ττ ′.
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For the same reason,

1

n

2n∑
i=1

(1−Ai)(τ − 1{Yi(0) ≤ q0(τ)})(τ ′ − 1{Yi(0) ≤ q0(τ ′)} p−→ min(τ, τ ′)− ττ ′.

Then, for the second element β̂w1 (τ) of β̂w(τ), conditionally on data,

√
n(β̂w1 (τ)− β̂1(τ)) Bw(τ),

where Bw(τ) is a Gaussian process with covariance kernel

Σ†(τ, τ ′) =
min(τ, τ ′)− ττ ′

f1(q1(τ))f1(q1(τ ′))
+

min(τ, τ ′)− ττ ′

f0(q0(τ))f0(q0(τ ′))
.

C Proof of Theorem 4.2

Let u ∈ <2 and

L∗n(u, τ) =
2n∑
i=1

[
ρτ (Yi − Ȧ′iβ(τ)− Ȧ′iu/

√
n)− ρτ (Yi − Ȧ′iβ(τ))

]
− uT

(
1 1

1 0

)
S∗n(τ).

Then,

√
n
(
β̂∗(τ)− β(τ)

)
= arg min

u
L∗n(u, τ).

By the same argument in the proof of Theorem 3.1, we have

L∗n(u, τ) = −uTWn(τ) +Qn(u, τ)− uT
(

1 1

1 0

)
S∗n(τ) = −uT

(
1 1

1 0

)
(Sn(τ) + S∗n(τ)) +Qn(u, τ).

Further note that S∗n(τ) = 1√
2

(
S∗n,1(τ) + S∗n,2(τ)

)
. In the following, we divide the proof into three

steps. In Step (1), we derive the weak limit of S∗n,1(τ) given data. In Step (2), we derive the weak

limit of S∗n,2(τ). In Step (3), we derive the desired result of this theorem.

Step (1). Given data, S∗n,1(τ) is a Gaussian process with covariance kernel

Σ̃∗1(τ, τ ′) =

(
Σ̃∗1,1,1(τ, τ ′) Σ̃∗1,1,2(τ, τ ′)

Σ̃∗1,2,1(τ, τ ′) Σ̃∗1,2,2(τ, τ ′)

)

where

Σ̃∗1,1,1(τ, τ ′) =
1

n

n∑
j=1

(
τ − 1{Y(j,1) ≤ q̂1(τ)}

) (
τ ′ − 1{Y(j,1) ≤ q̂1(τ ′)}

)
,
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Σ̃∗1,1,2(τ, τ ′) =
1

n

n∑
j=1

(
τ − 1{Y(j,1) ≤ q̂1(τ)}

) (
τ ′ − 1{Y(j,0) ≤ q̂0(τ ′)}

)
,

Σ̃∗1,2,1(τ, τ ′) =
1

n

n∑
j=1

(
τ − 1{Y(j,0) ≤ q̂0(τ)}

) (
τ ′ − 1{Y(j,1) ≤ q̂1(τ ′)}

)
,

and

Σ̃∗1,2,2(τ, τ ′) =
1

n

n∑
j=1

(
τ − 1{Y(j,0) ≤ q̂0(τ)}

) (
τ ′ − 1{Y(j,0) ≤ q̂0(τ ′)}

)
.

Next, we derive the limit of Σ̃∗1(τ, τ ′) uniformly over τ, τ ′ ∈ Υ. Recallm1,τ (Xi, q) = E (τ − 1{Yi(1) ≤ q}|Xi)

and define η1,i(q, τ) = (τ − 1{Yi(1) ≤ q})−m1,τ (Xi, q). Then

Σ̃1,1,1(τ, τ ′) =
1

n

n∑
j=1

η1,(j,1)(q̂1(τ), τ)η1,(j,1)(q̂1(τ ′), τ ′) +
1

n

n∑
j=1

η1,(j,1)(q̂1(τ), τ)m1,τ ′(X(j,1), q̂1(τ ′))

+
1

n

n∑
j=1

η1,(j,1)(q̂1(τ ′), τ ′)m1,τ (X(j,1), q̂1(τ)) +
1

n

n∑
j=1

m1,τ (X(j,1), q̂1(τ))m1,τ ′(X(j,1), q̂1(τ ′))

=I(τ, τ ′) + II(τ, τ ′) + III(τ, τ ′) + IV (τ, τ ′), (C.1)

where we use the fact that Y(j,1) = Y(j,1)(1) and Y(j,0) = Y(j,0)(0). Given {Ai, Xi}2ni=1, {Y(j,1)(1)}nj=1

is a sequence of independent random variables with probability measure Πn
j=1P(j), where P(j) is the

conditional probability of Y (1) given X evaluated at X = X(j,1). Therefore,

I(τ, τ ′) = Pη1,(j,1)(q̂1(τ), τ)η1,(j,1)(q̂1(τ ′), τ ′) +
(
Pn − P

)
η1,(j,1)(q̂1(τ), τ)η1,(j,1)(q̂1(τ ′), τ ′), (C.2)

where Pη1,(j,1)(q̂1(τ), τ)η1,(j,1)(q̂1(τ ′), τ ′) is interpreted as Pη1,(j,1)(q, τ)η1,(j,1)(q
′, τ ′)|q=q̂1(τ),q′=q̂(τ ′).

In addition, by Theorem 3.1, for any ε > 0, it is possible to find a sufficiently large constant L such

that

P(sup
τ∈Υ
|q̂(τ)− q(τ)| ≤ L/

√
n). (C.3)

Therefore, we have,

Pη1,(j,1)(q̂1(τ), τ)η1,(j,1)(q̂1(τ ′), τ ′)

=
1

n

n∑
j=1

[
F1(min(q̂1(τ), q̂1(τ ′))|X(j,1))− F1(q̂1(τ)|X(j,1))F1(q̂1(τ ′)|X(j,1))

]
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=
1

n

n∑
j=1

[
F1(min(q1(τ), q1(τ ′))|X(j,1))− F1(q1(τ)|X(j,1))F1(q1(τ ′)|X(j,1))

]
+RI(τ, τ

′)

=
1

n

2n∑
i=1

Ai
[
F1(min(q1(τ), q1(τ ′))|Xi)− F1(q1(τ)|Xi)F1(q1(τ ′)|Xi)

]
+RI(τ, τ

′)

=
1

2n

2n∑
i=1

[
F1(min(q1(τ), q1(τ ′))|Xi)− F1(q1(τ)|Xi)F1(q1(τ ′)|Xi)

]
+

1

n

2n∑
i=1

(
Ai −

1

2

)[
F1(min(q1(τ), q1(τ ′))|Xi)− F1(q1(τ)|Xi)F1(q1(τ ′)|Xi)

]
+RI(τ, τ

′), (C.4)

where supτ,τ ′∈Υ |RI(τ, τ ′)|
p−→ 0 due to (C.3) and Lipschitz continuity of F1(·|X).

By the standard uniform convergence theorem (van der Vaart and Wellner (1996, Theorem

2.4.1)), uniformly over τ, τ ′ ∈ Υ,

1

2n

2n∑
i=1

[
F1(min(q1(τ), q1(τ ′))|Xi)− F1(q1(τ)|Xi)F1(q1(τ ′)|Xi)

] p−→ min(τ, τ ′)− ττ ′ − Em1,τ (X)m1,τ ′(X).

By the same argument in Lemma E.3,

sup
τ,τ ′∈Υ

∣∣∣∣∣ 1n
2n∑
i=1

(
Ai −

1

2

)[
F1(min(q1(τ), q1(τ ′))|Xi)− F1(q1(τ)|Xi)F1(q1(τ ′)|Xi)

]∣∣∣∣∣ p−→ 0

Therefore, uniformly over τ, τ ′ ∈ Υ,

Pη1,(j,1)(q̂1(τ), τ)η1,(j,1)(q̂1(τ ′), τ ′)
p−→ min(τ, τ ′)− ττ ′ − Em1,τ (X)m1,τ ′(X).

To deal with the second term in (C.2), first denote

F3 = {(τ − 1{Y ≤ q1(τ) + v})
(
τ ′ − 1{Y ≤ q1(τ ′) + v′}

)
: τ, τ ′ ∈ Υ, |v|, |v′| ≤ L/

√
n}.

Note F3 has an envelope F = 1 and is nested by a VC-class of functions with a fixed VC-index.

Then, by Lemma E.1,

E‖Pn − P‖F3 . 1/
√
n.

This implies, with probability greater than 1− ε,

sup
τ,τ ′∈Υ

|
(
Pn − P

)
η1,(j,1)(q̂1(τ), τ)η1,(j,1)(q̂1(τ ′), τ ′)| p−→ 0. (C.5)
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Since ε is arbitrary, we have, uniformly over τ, τ ′ ∈ Υ,

I(τ, τ ′)
p−→ min(τ, τ ′)− ττ ′ − Em1,τ (X)m1,τ ′(X). (C.6)

By Lemma E.5, we have

sup
τ,τ ′∈Υ

|II(τ, τ ′)| = op(1) and sup
τ,τ ′∈Υ

|III(τ, τ ′)| = op(1).

For IV (τ, τ ′), we note

IV (τ, τ ′) =
1

n

n∑
j=1

m1,τ (X(j,1))m1,τ ′(X(j,1)) +RIV (τ, τ ′)

=
1

n

2n∑
i=1

Aim1,τ (Xi)m1,τ ′(Xi) +RIV (τ, τ ′)

=
1

2n

2n∑
i=1

m1,τ (Xi)m1,τ ′(Xi) +
1

n

2n∑
i=1

(
Ai −

1

2

)
m1,τ (Xi)m1,τ ′(Xi) +RIV (τ, τ ′). (C.7)

By the standard uniform convergence theorem (van der Vaart and Wellner (1996, Theorem 2.4.1)),

uniformly over τ, τ ′ ∈ Υ,

1

2n

2n∑
i=1

m1,τ (Xi)m1,τ ′(Xi)
p−→ Em1,τ (X)m1,τ ′(X).

Lemma E.6 further shows

sup
τ,τ ′∈Υ

|RIV (τ, τ ′)| = op(1) and sup
τ,τ ′∈Υ

∣∣∣∣∣ 1n
2n∑
i=1

(
Ai −

1

2

)
m1,τ (Xi)m1,τ ′(Xi)

∣∣∣∣∣ = op(1).

Combining the above results, we have, uniformly over τ, τ ′ ∈ Υ,

Σ̃∗1,1,1(τ, τ ′)
p−→ min(τ, τ ′)− ττ ′.

Now we turn to Σ̃∗1,1,2(τ, τ ′). Recall m0,τ (Xi, q) = E (τ − 1{Yi(0) ≤ q}|Xi) and define η0,i(q, τ) =

(τ − 1{Yi(0) ≤ q})−m0,τ (Xi, q). Then,

Σ̃∗1,1,2(τ, τ ′) =
1

n

n∑
j=1

η1,(j,1)(q̂1(τ), τ)η0,(j,0)(q̂0(τ ′), τ ′) +
1

n

n∑
j=1

η1,(j,1)(q̂1(τ), τ)m0,τ ′(X(j,0), q̂0(τ ′))

+
1

n

n∑
j=1

η0,(j,0)(q̂0(τ ′), τ ′)m1,τ (X(j,1), q̂1(τ)) +
1

n

n∑
j=1

m1,τ (X(j,1), q̂1(τ))m0,τ ′(X(j,0), q̂0(τ ′))
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=Ĩ(τ, τ ′) + ĨI(τ, τ ′) + ĨII(τ, τ ′) + ĨV (τ, τ ′).

We derive the uniform limit for each term on the RHS of the above display. First, note

Ĩ(τ, τ ′) = Pη1,(j,1)(q̂1(τ), τ)η0,(j,0)(q̂0(τ ′), τ ′) + (Pn − P)η1,(j,1)(q̂1(τ), τ)η0,(j,0)(q̂0(τ ′), τ ′). (C.8)

Similar to (C.4), we have

sup
τ,τ ′∈Υ

∣∣Pη1,(j,1)(q̂1(τ), τ)η0,(j,0)(q̂0(τ ′), τ ′)− Pη1,(j,1)(q1(τ), τ)η0,(j,0)(q0(τ ′), τ ′)
∣∣ p−→ 0.

Furthermore, because (j, 1) 6= (j, 2), conditionally on {Ai, Xi}2ni=1, η1,(j,1)(q1(τ), τ) ⊥⊥ η1,(j,0)(q0(τ), τ),

Pη1,(j,1)(q1(τ), τ)η0,(j,0)(q0(τ ′), τ ′) = 0.

Similar to (C.5), we have

sup
τ,τ ′∈Υ

∣∣(Pn − P)η1,(j,1)(q̂1(τ), τ)η0,(j,0)(q̂0(τ ′), τ ′)
∣∣ p−→ 0.

This implies, uniformly over τ, τ ′ ∈ Υ,

Ĩ(τ, τ ′)
p−→ 0.

By the same argument in the proof of Lemma E.5, we can show that

sup
τ,τ ′∈Υ

∣∣∣ĨI(τ, τ ′)
∣∣∣ p−→ 0 and sup

τ,τ ′∈Υ

∣∣∣ĨII(τ, τ ′)
∣∣∣ p−→ 0.

Last, by the same argument in the proof of Lemma E.6, we can show that, uniformly over

τ, τ ′ ∈ Υ,

ĨV (τ, τ ′) =
1

n

n∑
j=1

m1,τ (X(j,1))m0,τ ′(X(j,0)) + op(1)

=
1

n

n∑
j=1

m1,τ (X(j,1))m0,τ ′(X(j,1)) +
1

n

n∑
j=1

m1,τ (X(j,1))[m0,τ ′(X(j,0))−m0,τ ′(X(j,1))] + op(1)

p−→Em1,τ (X)m0,τ ′(X),

where the op(1) holds uniformly over τ, τ ′ ∈ Υ, and the last line holds because m1,τ (x) is bounded

and m0,τ (x) is Lipschitz.
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Combining the above results, we have uniformly over τ, τ ′ ∈ Υ,

Σ̃∗1,1,2(τ, τ ′)
p−→ Em1,τ (X)m0,τ ′(X).

The limits of Σ̃∗1,2,1 and Σ̃∗1,2,2 can be derived similarly. To sum up, we have established that,

uniformly over τ, τ ′ ∈ Υ,

Σ̃∗1(τ, τ ′)
p−→

(
min(τ, τ ′)− ττ ′ Em1,τ (Xi)m0,τ ′(Xi)

Em0,τ (Xi)m1,τ ′(Xi) min(τ, τ ′)− ττ ′

)
.

Lemma E.7 shows S∗n,1(τ) is stochastically equicontinuous and tight. This concludes the proof

of this step.

Step (2). Given data, S∗n,2(τ) is a Gaussian process with covariance kernel

Σ̃∗2(τ, τ ′) =

(
Σ̃∗2,1,1(τ, τ ′) Σ̃∗2,1,2(τ, τ ′)

Σ̃∗2,2,1(τ, τ ′) Σ̃∗2,2,2(τ, τ ′)

)

where

Σ̃∗2,1,1(τ, τ ′) =
1

n

bn/2c∑
k=1

[(
τ − 1{Y(k,1) ≤ q̂1(τ)}

)
−
(
τ − 1{Y(k,3) ≤ q̂1(τ)}

)]
×
[(
τ ′ − 1{Y(k,1) ≤ q̂1(τ ′)}

)
−
(
τ ′ − 1{Y(k,3) ≤ q̂1(τ ′)}

)]
,

Σ̃∗2,1,2(τ, τ ′) =
1

n

bn/2c∑
k=1

[(
τ − 1{Y(k,1) ≤ q̂1(τ)}

)
−
(
τ − 1{Y(k,3) ≤ q̂1(τ)}

)]
×
[(
τ ′ − 1{Y(k,2) ≤ q̂0(τ ′)}

)
−
(
τ ′ − 1{Y(k,4) ≤ q̂0(τ ′)}

)]
,

Σ̃∗2,2,1(τ, τ ′) =
1

n

bn/2c∑
k=1

[(
τ − 1{Y(k,2) ≤ q̂0(τ)}

)
−
(
τ − 1{Y(k,4) ≤ q̂0(τ)}

)]
×
[(
τ ′ − 1{Y(k,1) ≤ q̂1(τ ′)}

)
−
(
τ ′ − 1{Y(k,3) ≤ q̂1(τ ′)}

)]
,

and

Σ̃∗2,2,2(τ, τ ′) =
1

n

bn/2c∑
k=1

[(
τ − 1{Y(k,2) ≤ q̂0(τ)}

)
−
(
τ − 1{Y(k,4) ≤ q̂0(τ)}

)]
×
[(
τ ′ − 1{Y(k,2) ≤ q̂0(τ ′)}

)
−
(
τ ′ − 1{Y(k,4) ≤ q̂0(τ ′)}

)]
.
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In the following, we derive the limit of Σ̃∗2(τ, τ ′). For Σ̃∗2,1,1(τ, τ ′), we have

Σ̃∗2,1,1(τ, τ ′)

=
1

n

bn/2c∑
k=1

[
η1,(k,1)(q̂1(τ), τ)− η1,(k,3)(q̂1(τ), τ)

] [
η1,(k,1)(q̂1(τ ′), τ ′)− η1,(k,3)(q̂1(τ ′), τ ′)

]
+

1

n

bn/2c∑
k=1

[
η1,(k,1)(q̂1(τ), τ)− η1,(k,3)(q̂1(τ), τ)

] [
m1,τ ′(X(k,1), q̂1(τ ′))−m1,τ ′(X(k,3), q̂1(τ ′))

]
+

1

n

bn/2c∑
k=1

[
m1,τ (X(k,1), q̂1(τ))−m1,τ (X(k,3), q̂1(τ))

] [
η1,(k,1)(q̂1(τ ′), τ ′)− η1,(k,3)(q̂1(τ ′), τ ′)

]
+

1

n

bn/2c∑
k=1

[
m1,τ (X(k,1), q̂1(τ))−m1,τ (X(k,3), q̂1(τ))

] [
m1,τ ′(X(k,1), q̂1(τ ′))−m1,τ ′(X(k,3), q̂1(τ ′))

]
≡Î(τ, τ ′) + ÎI(τ, τ ′) + ÎII(τ, τ ′) + ÎV (τ, τ ′).

Also note that

Î(τ, τ ′)

=
1

n

bn/2c∑
k=1

[
η1,(k,1)(q̂1(τ), τ)η1,(k,1)(q̂1(τ ′), τ ′) + η1,(k,3)(q̂1(τ), τ)η1,(k,3)(q̂1(τ ′), τ ′)

]
− 1

n

bn/2c∑
k=1

η1,(k,1)(q̂1(τ), τ)η1,(k,3)(q̂1(τ ′), τ ′)− 1

n

bn/2c∑
k=1

η1,(k,1)(q̂1(τ ′), τ ′)η1,(k,3)(q̂1(τ), τ)

=
1

n

n∑
j=1

η1,(j,1)(q̂1(τ), τ)η1,(j,1)(q̂1(τ ′), τ ′)

− 1

n

bn/2c∑
k=1

η1,(k,1)(q̂1(τ), τ)η1,(k,3)(q̂1(τ ′), τ ′)− 1

n

bn/2c∑
k=1

η1,(k,1)(q̂1(τ ′), τ ′)η1,(k,3)(q̂1(τ), τ).

The first term on the RHS of the above display is just I(τ, τ ′) defined in Step (1), whose limit is es-

tablished in (C.6). For the second and third terms, we note that (k, 1) 6= (k, 3), which implies, given

{Xi, Ai}2ni=1, (η1,(k,1)(q̂1(τ), τ), η1,(k,1)(q̂1(τ ′), τ ′)) ⊥⊥ (η1,(k,3)(q̂1(τ), τ), η1,(k,3)(q̂1(τ ′), τ ′)). Then, by

the same argument in (C.8) and the discussion below, we have

sup
τ,τ ′∈Υ

∣∣∣∣∣∣ 1n
bn/2c∑
k=1

η1,(k,1)(q̂1(τ), τ)η1,(k,3)(q̂1(τ ′), τ ′)

∣∣∣∣∣∣ p−→ 0
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and

sup
τ,τ ′∈Υ

∣∣∣∣∣∣ 1n
bn/2c∑
k=1

η1,(k,1)(q̂1(τ ′), τ ′)η1,(k,3)(q̂1(τ), τ)

∣∣∣∣∣∣ p−→ 0.

This implies, uniformly over τ, τ ′ ∈ Υ,

Î(τ, τ ′)
p−→ min(τ, τ ′)− ττ ′ − Em1,τ (X)m1,τ ′(X).

By the same argument in the proof of Lemma E.5, we have

sup
τ,τ ′∈Υ

∣∣∣ÎI(τ, τ ′)
∣∣∣ p−→ 0 and sup

τ,τ ′∈Υ

∣∣∣ÎII(τ, τ ′)
∣∣∣ p−→ 0.

For ÎV (τ, τ ′), we note m1,τ (x, q) is Lipschitz in x by Assumption 2. Therefore, by Assumption

4, we have

sup
τ,τ ′∈Υ

∣∣∣ÎV (τ, τ ′)
∣∣∣ . 1

n

bn/2c∑
k=1

||X(k,1) −X(k,3)||22
p−→ 0.

Combining the above results, we show that, uniformly over τ, τ ′ ∈ Υ,

Σ̃∗2,1,1(τ, τ ′)
p−→ min(τ, τ ′)− ττ ′ − Em1,τ (X)m1,τ ′(X).

For Σ̃∗2,1,2(τ, τ ′), we have

Σ̃∗2,1,1(τ, τ ′)

=
1

n

bn/2c∑
k=1

[
η1,(k,1)(q̂1(τ), τ)− η1,(k,3)(q̂1(τ), τ)

] [
η0,(k,2)(q̂0(τ ′), τ ′)− η0,(k,4)(q̂0(τ ′), τ ′)

]
+

1

n

bn/2c∑
k=1

[
η1,(k,1)(q̂1(τ), τ)− η1,(k,3)(q̂1(τ), τ)

] [
m0,τ ′(X(k,2), q̂0(τ ′))−m0,τ ′(X(k,4), q̂0(τ ′))

]
+

1

n

bn/2c∑
k=1

[
m1,τ (X(k,1), q̂1(τ))−m1,τ (X(k,3), q̂1(τ))

] [
η0,(k,2)(q̂0(τ ′), τ ′)− η0,(k,4)(q̂0(τ ′), τ ′)

]
+

1

n

bn/2c∑
k=1

[
m1,τ (X(k,1), q̂1(τ))−m1,τ (X(k,3), q̂1(τ))

] [
m0,τ ′(X(k,2), q̂0(τ ′))−m0,τ ′(X(k,4), q̂0(τ ′))

]
≡I(τ, τ ′) + II(τ, τ ′) + III(τ, τ ′) + IV (τ, τ ′).
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Because (k, 1), · · · , (k, 4) are distinctive,

(
η1,(k,1)(q, τ), η1,(k,3)(q, τ), η0,(k,2)(q

′, τ), η0,(k,4)(q
′, τ)

)
are mutually independent conditionally on {Xi, Ai}2ni=1. Then, by the same arguments in (C.4) and

(C.5), we have

sup
τ,τ ′∈Υ

|I(τ, τ ′)| p−→ 0.

By the same argument in the proof of Lemma E.5, we have

sup
τ,τ ′∈Υ

|II(τ, τ ′)| p−→ 0 and sup
τ,τ ′∈Υ

|III(τ, τ ′)| p−→ 0.

Last, by Assumption 4, we have

sup
τ,τ ′∈Υ

|IV (τ, τ ′)| . 1

n

bn/2c∑
k=1

||X(k,1) −X(k,3)||2||X(k,2) −X(k,4)||2

.
1

n

bn/2c∑
k=1

||X(k,1) −X(k,3)||22 +
1

n

bn/2c∑
k=1

||X(k,2) −X(k,4)||22
p−→ 0.

Combining the above results, we have

sup
τ,τ ′∈Υ

|Σ̃∗2,1,2(τ, τ ′)| p−→ 0.

We can derive the limits of Σ̃∗2,2,1(τ, τ ′) and Σ̃∗2,2,2(τ, τ ′) in the same manner. To sum up,

uniformly over τ, τ ′ ∈ Υ, we have

Σ̃∗2
p−→

(
min(τ, τ ′)− ττ ′ − Em1,τ (Xi)m1,τ ′(Xi) 0

0 min(τ, τ ′)− ττ ′ − Em0,τ (Xi)m0,τ ′(Xi)

)

The stochastic equicontinuity and tightness of S∗n,2(τ) can be established similarly to S∗n,1(τ).

Step (3). Because both Sn(τ) and S∗n(τ) are stochastically equicontinuous and tight, we can

apply Kato (2009, Theorem 2) and have

√
n(β̂∗(τ)− β(τ)) = Q−1

(
1 1

1 0

)
(Sn(τ) + S∗n(τ)) +R∗(τ), (C.9)
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where supτ∈Υ ||R∗(τ)||2 = op(1). Taking the difference between (C.9) and (A.13), we have

√
n(β̂∗(τ)− β̂(τ)) = Q−1

(
1 1

1 0

)
S∗n(τ) + R̃∗(τ),

where supτ∈Υ ||R̃∗(τ)||2 = op(1). In addition, given data, S∗n,1(τ) and S∗n,2(τ) are independent.

Steps (1) and (2) show that uniformly over τ ∈ Υ and conditionally on data, S∗n(τ) =
S∗n,1(τ)+S∗n,2(τ)

√
2

converges to a Gaussian process with covariance kernel

1

2

[
Σ̃1(τ, τ ′) + Σ̃2(τ, τ ′)

]
,

where Σ̃1(τ, τ ′) and Σ̃2(τ, τ ′) are defined in (A.14) and (A.15), respectively. The weak limit of

S∗n(τ) given data coincides with the weak limit of Sn(τ). This implies, given data,

√
n(q̂∗(τ)− q̂(τ)) B(τ),

where B(τ) is the Gaussian process defined in Theorem 3.1. This concludes the proof.

D Proof of Theorem 4.3

We first focus on q̂wipw,1(τ). Let u ∈ < and

L̃wn (u, τ) =

2n∑
i=1

ξiAi

2Âi

[
ρτ (Yi − q1(τ)− u/

√
n)− ρτ (Yi − q1(τ))

]
.

Then, by the change of variable, we have that

√
n(q̂wipw,1(τ)− q1(τ)) = arg min

u
L̃wn (u, τ).

Notice that L̃wn (u, τ) is convex in u for each τ and bounded in τ for each u. In the following, we

divide the proof into three steps. In Step (1), we show that there exists

g̃wn (u, τ) = −u′W̃w
n,1(τ) +

f1(q1(τ))u2

2

such that for each u,

sup
τ∈Υ
|L̃wn (u, τ)− g̃wn (u, τ)| p−→ 0.
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In Step (2), we show W̃w
n,1(τ) as a stochastic process over τ ∈ Υ is tight. Then by Kato (2009,

Theorem 2), we have

√
n(q̂wipw,1(τ)− q1(τ)) = [f1(q1(τ))]−1W̃w

n,1(τ) + r̃n,1(τ),

where supτ∈Υ |r̃n,1(τ)| = op(1). For the same reason, we can show

√
n(q̂wipw,0(τ)− q0(τ)) = [f0(q0(τ))]−1W̃w

n,0(τ) + r̃n,0(τ),

for some W̃w
n,0(τ) to be specified later and supτ∈Υ |r̃n,0(τ)| = op(1). Last, in Step (3), we establish

the weak convergence of

√
n(q̂wipw(τ)− q̂(τ))

conditionally on data.

Step (1). Similar to Step (1) in the previous section, we have

L̃wn (u, τ) = −W̃w
n,1(τ)u+ Q̃wn (u, τ),

where

W̃w
n,1(τ) =

2n∑
i=1

ξiAi

2
√
nÂi

(τ − 1{Yi(1) ≤ q1(τ)})

and

Q̃wn (u, τ) =

2n∑
i=1

ξiAi

2Âi

∫ u√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv

=
2n∑
i=1

ξiAi

∫ u√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv

+

2n∑
i=1

ξiAi(1/2− Âi)
Âi

∫ u√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv

≡Q̃wn,1(u, τ) + Q̃wn,2(u, τ). (D.1)

Exactly the same as Qwn,1(u, τ) in Section B, we have

sup
τ∈Υ

∣∣∣∣Q̃wn,1(u, τ)− f1(q1(τ))u2

2

∣∣∣∣ = op(1). (D.2)
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For Q̃wn,2(u, τ), we have, with probability approaching one,

|Q̃wn,2(u, τ)| ≤ max
i∈[2n]

|Âi − 1/2|
2n∑
i=1

ξi

1/2−maxi∈[2n] |Âi − 1/2|
1{|Yi(1)− q1(τ)| ≤ u/

√
n} |u|√

n

≤ max
i∈[2n]

|Âi − 1/2|
2n∑
i=1

4ξi1{|Yi(1)− q1(τ)| ≤ u/
√
n} |u|√

n
, (D.3)

where the second inequality follows the fact that, w.p.a.1, |Âi − 1/2| ≤ 1/4 as proved in Lemma

E.8. Because {ξi, Yi(1)}i∈[2n] are i.i.d., by the usual maximal inequality, we can show that

sup
τ∈Υ

∣∣∣∣∣
2n∑
i=1

4ξi1{|Yi(1)− q1(τ)| ≤ u/
√
n} |u|√

n
− E

2n∑
i=1

4ξi1{|Yi(1)− q1(τ)| ≤ u/
√
n} |u|√

n

∣∣∣∣∣ = op(1).

(D.4)

In addition,

E
2n∑
i=1

4ξi1{|Yi(1)− q1(τ)| ≤ u/
√
n} |u|√

n
.
√
nu

(
F1(q1(τ) +

|u|√
n

)− F1(q1(τ)− |u|√
n

)

)
. u2. (D.5)

Combining (D.3)–(D.5) with the fact that maxi∈[2n] |Âi−1/2| = op(1) as proved in Lemma E.8, we

have

sup
τ∈Υ
|Q̃wn,2(u, τ)| = op(1).

This concludes the proof of Step (1).

Step (2). We have

W̃w
n,1(τ) =

2n∑
i=1

ξiAi√
n

(τ − 1{Yi(1) ≤ q1(τ)})−
2n∑
i=1

2ξiAi(Âi − 1/2)√
n

(τ − 1{Yi(1) ≤ q1(τ)})

+

2n∑
i=1

2ξiAi(1/2− Âi)2

√
nÂi

(τ − 1{Yi(1) ≤ q1(τ)})

≡W̃w
n,1,1(τ)− W̃w

n,1,2(τ) + W̃w
n,1,3(τ). (D.6)

First, W̃w
n,1,1(τ) is tight following the exact same argument in Step (2) of Section B. Second, we

have

W̃w
n,1,2(τ) =

2n∑
i=1

ξim1,τ (Xi)(Âi − 1/2)√
n

+
2n∑
i=1

2ξi(Ai − 1/2)m1,τ (Xi)(Âi − 1/2)√
n

+
2n∑
i=1

2ξiAiη1,i(τ)(Âi − 1/2)√
n
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≡I(τ) + II(τ) + III(τ).

Lemma E.9 shows

sup
τ∈Υ

∣∣∣∣∣I(τ)−
2n∑
i=1

ξim1,τ (Xi)(Ai − 1/2)√
n

∣∣∣∣∣ = op(1),

sup
τ∈Υ
|II(τ)| = op(1), and sup

τ∈Υ
|III(τ)| = op(1).

Combining the above results, we have

sup
τ∈Υ

∣∣∣∣∣W̃w
n,1,2(τ)−

2n∑
i=1

ξim1,τ (Xi)(Ai − 1/2)√
n

∣∣∣∣∣ = op(1). (D.7)

Last, we have, w.p.a.1,

sup
τ∈Υ
|W̃w

n,1,3(τ)| ≤
2n∑
i=1

2ξi√
n(1/2−maxi∈[2n] |1/2− Âi|)

(1/2− Âi)2

.
4√
n

∑
i=1

ξi(1/2− Âi)2 = op(1), (D.8)

where the first inequality holds because supτ∈Υ |τ − 1{Yi(1) ≤ q1(τ)}| ≤ 1, the second inequality

holds because maxi |1/2− Âi| ≤ 1/4 w.p.a.1 as proved in Lemma E.8, and the last inequality holds

due to Lemma E.8.

Combining (D.6)–(D.8), we have

W̃w
n,1(τ) =

2n∑
i=1

ξiAiη1,i(τ)√
n

+

2n∑
i=1

ξim1,τ (Xi)

2
√
n

+ op(1),

where the op(1) term holds uniformly over τ ∈ Υ. By (B.9) and the argument above, we can

show
∑2n

i=1
ξiAiη1,i(τ)√

n
as a stochastic process over τ ∈ Υ is stochastically equicontinuous and tight.

Furthermore, {ξi, Xi}i∈[2n] is a sequence of i.i.d. random variables. Then, by the usual maxi-

mal inequality, we can show
∑2n

i=1
ξim1,τ (Xi)

2
√
n

as a stochastic process over τ ∈ Υ is stochastically

equicontinuous and tight. This implies, W̃w
n,1(τ) as a stochastic process over τ ∈ Υ is stochastically

equicontinuous and tight, and thus, is stochastically equicontinuous conditionally on data by the

Markov inequality. Therefore, we have

√
n(q̂wipw,1(τ)− q1(τ)) =

1

f1(q1(τ))

(
2n∑
i=1

ξiAiη1,i(τ)√
n

+

2n∑
i=1

ξim1,τ (Xi)

2
√
n

)
+ r̃n,1(τ),
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where supτ∈Υ |r̃n,1(τ)| = op(1). Similarly, we can show that

√
n(q̂wipw,0(τ)− q0(τ)) =

1

f0(q0(τ))

(
2n∑
i=1

ξi(1−Ai)η0,i(τ)√
n

+
2n∑
i=1

ξim0,τ (Xi)

2
√
n

)
+ r̃n,0(τ),

where supτ∈Υ |r̃n,1(τ)| = op(1).

Step (3). In the proof of Theorem 3.1, we establish that

√
n(q̂(τ)− q(τ))

=
1

f1(q1(τ))

(
2n∑
i=1

ξiAiη1,i(τ)√
n

+
2n∑
i=1

ξim1,τ (Xi)

2
√
n

)

− 1

f0(q0(τ))

(
2n∑
i=1

ξi(1−Ai)η0,i(τ)√
n

+

2n∑
i=1

ξim0,τ (Xi)

2
√
n

)
+ rb(τ),

where supτ∈Υ |rb(τ)| = op(1). Then, we have

√
n(q̂wipw(τ)− q̂(τ)) =

1

f1(q1(τ))

(
2n∑
i=1

(ξi − 1)Aiη1,i(τ)√
n

)
− 1

f0(q0(τ))

(
2n∑
i=1

(ξi − 1)(1−Ai)η0,i(τ)√
n

)

+

2n∑
i=1

(ξi − 1)

2
√
n

(
m1,τ (Xi)

f1(q1(τ))
− m0,τ (Xi)

f0(q0(τ))

)
+ r̃b(r),

where supτ∈Υ |r̃b(τ)| = op(1). The conditional stochastic equicontinuity of the first three terms on

the RHS of the above display has been established in Step (2). Here, we only need to determine

the covariance kernel of
√
n(q̂wipw(τ) − q̂(τ)) given data. Specifically, the covariance kernel is the

limit of the display below:

1

f1(q1(τ))f1(q1(τ ′))

2n∑
i=1

Aiη1,i(τ)η1,i(τ
′)

n
+

1

f0(q0(τ))f0(q0(τ ′))

2n∑
i=1

(1−Ai)η0,i(τ)η0,i(τ
′)

n

+

2n∑
i=1

1

4n

(
m1,τ (Xi)

f1(q1(τ))
− m0,τ (Xi)

f0(q0(τ))

)(
m1,τ ′(Xi)

f1(q1(τ ′))
−
m0,τ ′(Xi)

f0(q0(τ ′))

)

+
1

2n

2n∑
i=1

(1−Ai)η0,i(τ)

f0(q0(τ))

(
m1,τ ′(Xi)

f1(q1(τ ′))
−
m0,τ ′(Xi)

f0(q0(τ ′))

)
+

1

2n

2n∑
i=1

Aiη1,i(τ)

f1(q1(τ))

(
m1,τ ′(Xi)

f1(q1(τ ′))
−
m0,τ ′(Xi)

f0(q0(τ ′))

)

+
1

2n

2n∑
i=1

(1−Ai)η0,i(τ
′)

f0(q0(τ ′))

(
m1,τ (Xi)

f1(q1(τ))
− m0,τ (Xi)

f0(q0(τ))

)
+

1

2n

2n∑
i=1

Aiη1,i(τ
′)

f1(q1(τ ′))

(
m1,τ (Xi)

f1(q1(τ))
− m0,τ (Xi)

f0(q0(τ))

)
.

(D.9)

53



Note (B.12) implies

1

f1(q1(τ))f1(q1(τ ′))

2n∑
i=1

Aiη1,i(τ)η1,i(τ
′)

n

p−→min(τ, τ ′)− EF1(q1(τ)|Xi)F1(q1(τ ′)|Xi)

f1(q1(τ))f1(q1(τ ′))

=
min(τ, τ ′)− ττ ′ − Em1,τ (Xi)m1,τ ′(Xi)

f1(q1(τ))f1(q1(τ ′))
.

Similarly,

1

f0(q0(τ))f0(q0(τ ′))

2n∑
i=1

(1−Ai)η0,i(τ)η0,i(τ
′)

n

p−→
min(τ, τ ′)− ττ ′ − Em0,τ (Xi)m0,τ ′(Xi)

f0(q0(τ))f0(q0(τ ′))
.

By the law of large numbers,

2n∑
i=1

1

4n

(
m1,τ (Xi)

f1(q1(τ))
− m0,τ (Xi)

f0(q0(τ))

)(
m1,τ ′(Xi)

f1(q1(τ ′))
−
m0,τ ′(Xi)

f0(q0(τ ′))

)
p−→1

2
E
(
m1,τ (Xi)

f1(q1(τ))
− m0,τ (Xi)

f0(q0(τ))

)(
m1,τ ′(Xi)

f1(q1(τ ′))
−
m0,τ ′(Xi)

f0(q0(τ ′))

)
.

Last, by Lemma E.4, the last four terms on the RHS of (D.9) will vanish. Hence,

(D.9)
p−→ Σ(τ, τ ′),

where Σ(τ, τ ′) is defined in Theorem 3.1. This concludes the proof.

E Technical Lemmas

E.1 A Maximal Inequality with i.n.i.d. Random Variables

Although Chernozhukov, Chetverikov, and Kato (2014) derived their Corollary 5.1 for i.i.d. data,

the result is still valid when the data are independent but not identically distributed (i.n.i.d.). In

this section, we clearly state their corollary for i.n.i.d. data and provide a brief justification. The

proof is due to Chernozhukov et al. (2014). We include this section purely for clarification purpose.

Let {Wi}ni=1 be a sequence of i.n.i.d. random variables taking values in a measurable space (S,S)

with distributions Πn
i=1P(i). Let F be a generic class of measurable functions S 7→ < with envelope

F . Further denote Pf = 1
n

∑n
i=1 P(i)f , ||f ||P,2 =

√
Pf2 and Pnf is the usual empirical process

Pnf = 1
n

∑n
i=1 f(Wi), σ

2 = supf∈F Pf2 ≤ PF 2, and M = maxi∈[n] F (Wi).

Lemma E.1. Suppose PF 2 <∞ and there exist constants a ≥ e and v ≥ 1 such that

sup
Q
N(F , eQ, ε||F ||Q,2) ≤

(a
ε

)v
, ∀ε ∈ (0, 1], (E.1)
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where eQ(f, g) = ||f−g||Q,2 and the supremum is taken over all finitely discrete probability measures

on (S,S). Then,

E||
√
n(Pn − P)||F .

√√√√vσ2 log

(
a||F ||P,2

σ

)
+
v||M ||2√

n
log

(
a||F ||P,2

σ

)
.

The proof of Lemma E.1 is exactly the same as that for Chernozhukov et al. (2014, Corollary

5.1) with P replaced by P. For brevity, we just highlight some key steps below.

Proof. Let {εi}ni=1 be a sequence of Rademacher random variables that are independent of {Wi}ni=1,

σ2
n = supf∈F Pnf2, and Z = E

[∥∥∥ 1√
n

∑n
i=1 εif(Wi)

∥∥∥
F

]
. Then, by van der Vaart and Wellner (1996,

Lemma 2.3.1) or Ledoux and Talagrand (2013, Lemma 6.3),

E||
√
n(Pn − P)||F ≤ 2Z.

Note Ledoux and Talagrand (2013, Lemma 6.3) only requires {Wi}ni=1 to be independent. In

addition, let the uniform entropy integral be

J(δ) ≡ J(δ,F , F ) =

∫ δ

0
sup
Q

√
1 + logN(F , eQ, ε||F ||Q,2)dε (E.2)

where eQ(f, g) = ||f−g||Q,2 and the supremum is taken over all finitely discrete probability measures

on (S,S). Then, we have

Z =EE
[∣∣∣∣∣∣∣∣ 1√

n

n∑
i=1

εif(Wi)

∣∣∣∣∣∣∣∣
F
|W1, · · · ,Wn

]
.E
[
||F ||Pn,2J(σn/||F ||Pn,2)

]
.||F ||P,2J(

√
Eσ2

n/||F ||P,2),

(E.3)

where the second inequality is due to the Jensen’s inequality and the fact that J(
√
x/y)
√
y is

concave in (x, y) as shown by Chernozhukov et al. (2014). To see the first inequality, note that by

the Hoeffding’s inequality,

P

(∣∣∣∣∣ 1√
n

n∑
i=1

εif(Wi)

∣∣∣∣∣ ≥ t
∣∣∣∣{Wi}ni=1

)
. exp

(
− t2/2

1
n

∑n
i=1 f(Wi)2

)
,

which implies the stochastic process 1√
n

∑n
i=1 εif(Wi) indexed by f is sub-Gaussian conditionally

on {Wi}ni=1. Then, the first inequality in (E.3) follows van der Vaart and Wellner (1996, Corollary

2.2.8), where we let δ = σn/||F ||Pn,2 and σn can be viewed as the diameter of the class of functions
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F . We also note that this is a conditional argument, which is still valid even when {Wi}ni=1 is

i.n.i.d.

Next, we aim to bound Eσ2
n. Recall σ2 = supf∈F Pf2. We have, for i.n.i.d. {Wi}ni=1,

Eσ2
n ≤σ2 + E(||(Pn − P)f2||F )

≤σ2 + 2E[

∥∥∥∥∥ 1

n

n∑
i=1

εif
2(Wi)

∥∥∥∥∥
F

]

≤σ2 + 8E[M

∥∥∥∥∥ 1

n

n∑
i=1

εif(Wi)

∥∥∥∥∥
F

]

≤σ2 + 8||M ||P,2{E[||Pnεif(Wi)||2F ]}1/2

≤σ2 + C||M ||P,2{E[||Pnεif(Wi)||F ] + n−1||M ||P,2}

=σ2 + Cn−1/2||M ||P,2Z + Cn−1||M ||2P,2,

(E.4)

where the first inequality is due to the triangle inequality, the second inequality is due to Ledoux

and Talagrand (2013, Lemma 6.3), the third inequality is due to Ledoux and Talagrand (2013,

Theorem 4.12), the fourth inequality is due to the Cauchy-Schwarz inequality, the fifth inequality

is due to Ledoux and Talagrand (2013, Lemma 6.8) with q = 2.

Given (E.4), Chernozhukov et al. (2014) then proved the results that, for δ = σ/||F ||P,2,

E[
√
n||Pn − P||F ] . J(δ,F , F )||F ||P,2 +

||M ||Ps,2J2(δ,F , F )

δ2
√
n

. (E.5)

In this step, they relied on the facts that J(δ) = J(δ,F , F ) is concave in δ and δ 7→ J(δ)/δ is

nonincreasing. The desired result is a quick corollary of (E.5) by noticing that, under (E.1),

J(δ) ≤
∫ δ

0

√
1 + ν log

(a
ε

)
dε ≤ 2

√
2νδ

√
log
(a
δ

)
. (E.6)

E.2 Technical Lemmas Used in the Proof of Theorem 3.1

Lemma E.2. Recall Hn(Xi, τ) defined in (A.2). Under the assumptions in Theorem 3.1,

sup
τ∈Υ

∣∣∣∣∣
2n∑
i=1

(
Ai −

1

2

)
Hn(Xi, τ)

∣∣∣∣∣ = op(1)
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and

sup
τ∈Υ

∣∣∣∣∣
2n∑
i=1

Ai

[
ξ∗i

∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv −Hn(Xi, τ)

]∣∣∣∣∣ = op(1),

where either ξ∗i = 1 or ξ∗i = ξi which satisfies Assumption 3.

Proof. For the first result, we have

sup
τ∈Υ

∣∣∣∣∣
2n∑
i=1

(
Ai −

1

2

)
Hn(Xi, τ)

∣∣∣∣∣
≤1

2

n∑
j=1

sup
τ∈Υ
|Hn(Xπ(2j−1),τ )−Hn(Xπ(2j),τ )|

≤
n∑
j=1

1

2

∫ |u0+u1|√
n

0
sup
τ∈Υ
|f1(q1(τ) + ṽj |Xπ(2j−1))− f1(q1(τ) + ṽj |Xπ(2j))|vdv

.
n∑
j=1

∫ |u0+u1|√
n

0
||Xπ(2j−1) −Xπ(2j)||2vdv

.
(u0 + u1)2

n

n∑
j=1

||Xπ(2j−1) −Xπ(2j)||2
p−→ 0,

where the first inequality is due to the fact that for the j-th pair, (Aπ(2j−1) − 1/2, Aπ(2j) − 1/2) is

either (1/2,−1/2) or (−1/2, 1/2), the second inequality is by the standard Taylor expansion to the

first order where |ṽj | ≤ (|u0 + u1|)/
√
n, the third inequality is due to Assumption 2, and the last

convergence is due to Assumption 1.

Let (ξ̃∗j , Ỹj(1), X̃j) = (ξ∗ij , Yij (1), Xij ) where ij is the j-th smallest index in the set {i ∈ [2n] :

Ai = 1}. Then, similar to (B.8), we have

sup
τ∈Υ

∣∣∣∣∣
2n∑
i=1

Ai

[
ξ∗i

∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv −Hn(Xi, τ)

]∣∣∣∣∣
∣∣∣∣{Ai, Xi}2ni=1

d
=||Pn − P||F4 |{X̃j}nj=1,

where F4 = {ξ̃∗
∫ (u0+u1)/

√
n

0

(
1{Ỹ (1) ≤ q1(τ) + v} − 1{Ỹ (1) ≤ q1(τ)}

)
dv : τ ∈ Υ}, Pnf is the

usual empirical process, Pf = 1
n

∑n
j=1 P(j)f , and P(j) denotes the probability measure of (ξ̃∗j , Ỹj(1))

given X̃j . Note F4 is a VC-class with a fixed VC index, has an envelop Fj = (|u0 + u1|ξ̃∗j )/
√
n,

M = maxj∈[n] Fj = (|u0 + u1| log(n))/
√
n, and

σ2 = sup
f∈F4

Pf2 ≤ sup
τ∈Υ

1

n

n∑
j=1

[
F1

(
q1(τ) +

|u0 + u1|√
n

∣∣∣∣X̃j

)
− F1

(
q1(τ)− |u0 + u1|√

n

∣∣∣∣X̃j

)]
u2

n
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≤ 1

n

n∑
j=1

C(X̃j)
(u0 + u1)2

n3/2

=
1

n

2n∑
i=1

AiC(Xi)
(u0 + u1)2

n3/2

≤

(
1

n

2n∑
i=1

C(Xi)

)
(u0 + u1)2

n3/2
.

As
(

1
n

∑2n
i=1C(Xi)

)
a.s.→ E2C(Xi), we have

(
1
n

∑2n
i=1C(Xi)

)
≤ 3EC(Xi) a.s. Given such sequence

of {Xi}i≥1, Lemma E.1 implies

E
[
||Pn − P||F4 |{X̃j}ni=1

]
.

√
3EC(Xi) log(n)

n3/2
+

log2(n)

n
= oa.s.(1).

This implies

sup
τ∈Υ

∣∣∣∣∣
2n∑
i=1

Ai

[
ξ∗i

∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv −Hn(Xi, τ)

]∣∣∣∣∣ = op(1).

Lemma E.3. Under the assumptions in Theorem 3.1,

sup
τ∈Υ

∣∣∣∣∣
2n∑
i=1

(Ai − 1/2)√
n

m1,τ (Xi)

∣∣∣∣∣ = op(1).

Proof. We have

sup
τ∈Υ

∣∣∣∣∣
2n∑
i=1

(Ai − 1/2)√
n

m1,τ (Xi)

∣∣∣∣∣ = sup
τ∈Υ

∣∣∣∣∣∣
n∑
j=1

1

2
√
n

(Aπ(2j−1) −Aπ(2j))(F1(q1(τ)|Xπ(2j−1))− F1(q1(τ)|Xπ(2j)))

∣∣∣∣∣∣ .
Note that

F5 = {F1(q1(τ)|X)− F1(q1(τ)|X ′) : τ ∈ Υ}

is a VC-class with a fixed VC-index and has an envelop F = 2. It implies (E.1) holds with some

constants a ≥ e and v ≥ 1. Then, as discussed in the (E.6), the uniform entropy integral J(δ) of

F5 satisfies

J(δ) ≤
∫ δ

0

√
1 + ν log

(a
ε

)
dε ≤ 2

√
2νδ

√
log
(a
δ

)
.
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In addition,

σ2
n = sup

τ∈Υ

1

n

n∑
j=1

(F1(q1(τ)|Xπ(2j−1))− F1(q1(τ)|Xπ(2j)))
2 .

1

n

n∑
j=1

∥∥Xπ(2j−1) −Xπ(2j)

∥∥2 p−→ 0.

We focus on the set An = {σ2
n ≤ ε} for some arbitrary ε > 0 so that P(An) ≥ 1 − ε for n

sufficiently large. Note that An belongs to the sigma field generated by {Xi}2ni=1. In addition, note

that conditional on {Xi}2ni=1, {Aπ(2j−1) − Aπ(2j)}nj=1 is a sequence of i.i.d. Rademacher random

variables. Then, following the same argument in (E.3)

E sup
τ∈Υ

∣∣∣∣∣
2n∑
i=1

(Ai − 1/2)√
n

m1,τ (Xi)

∣∣∣∣∣ 1{An}
=E

E

∥∥∥∥∥∥ 1

2
√
n

n∑
j=1

(Aπ(2j−1) −Aπ(2j))f(Xπ(2j−1), Xπ(2j))

∥∥∥∥∥∥
F5

∣∣∣∣{Xi}2ni=1

 1{An}


.EJ(σn/2)1{An}

.J(ε/2) .
√

2νε

√
log

(
2a

ε

)
,

where the first inequality is due to van der Vaart and Wellner (1996, Corollary 2.2.8) and the fact

that, by the Hoeffding’s inequality, for any f ∈ F5,

P
(∣∣∣∣∣∣

n∑
j=1

(Aπ(2j−1) −Aπ(2j))f(Xπ(2j−1), Xπ(2j))

∣∣∣∣∣∣ ≥ x
∣∣∣∣{Xi}2ni=1

)
≤ 2 exp

(
−1

2

x2∑n
j=1 f

2(Xπ(2j−1), Xπ(2j))

)
.

As
√

2νε
√

log
(

2a
ε

)
→ 0 as ε → 0, we can derive the desired result by letting n → ∞ followed by

ε→ 0.

E.3 Technical Lemmas Used in the Proof of Theorem 4.1

Lemma E.4. Suppose the assumptions in Theorem 4.1 hold, then

1

n

2n∑
i=1

Aiη1,i(τ)mj,τ ′(Xi)
p−→ 0,

1

n

2n∑
i=1

Aiη1,i(τ)m0,τ ′(Xi)
p−→ 0,
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1

n

2n∑
i=1

(1−Ai)η0,i(τ)m0,τ ′(Xi)
p−→ 0,

and

1

n

2n∑
i=1

(1−Ai)η0,i(τ)m1,τ ′(Xi)
p−→ 0.

Proof. We focus on the first statement. The rest can be proved in the same manner. Based on the

notation in Section 4.2, we have

1

n

2n∑
i=1

Aiη1,i(τ)m1,τ ′(Xi) =
1

n

n∑
j=1

η1,(j,1)(q1(τ), τ)m1,τ ′(X(j,1), q1(τ ′)).

where η1,i(q, τ) = (τ − 1{Yi(1) ≤ q})−m1,τ (Xi, q). Then, (E.7) implies the desired result.

E.4 Technical Lemmas Used in the Proof of Theorem 4.2

Lemma E.5. Recall II(τ, τ ′) and III(τ, τ ′) defined in (C.1). Suppose the assumptions in Theorem

3.1 hold, then

sup
τ,τ ′∈Υ

|II(τ, τ ′)| p−→ 0 and sup
τ,τ ′∈Υ

|III(τ, τ ′)| p−→ 0.

Proof. We focus on bounding II(τ, τ ′). The bound for III(τ, τ ′) can be established similarly. By

(C.3), we have, with probability greater than 1− ε,

|II(τ, τ ′)| ≤ sup
τ,τ ′∈Υ,|v|,|v′|≤L/

√
n

∣∣∣∣∣∣ 1n
n∑
j=1

η1,(j,1)(q1(τ) + v, τ)m1,τ ′(X(j,1), q1(τ ′) + v′)

∣∣∣∣∣∣ . (E.7)

We aim to bound the RHS. Denote {εj}nj=1 as a sequence of i.i.d. Rademacher random variables

that is independent of data. Further denote the class of functions

F6 = {η1,(j,1)(q1(τ) + v, τ)m1,τ ′(X(j,1), q1(τ ′) + v′) : τ, τ ′ ∈ Υ, |v|, |v′| ≤ L/
√
n}.

Note F6 has an envelope F = 1 and is nested by a VC-class of functions with a fixed VC-index.

Then,

E

 sup
τ,τ ′∈Υ,|v|,|v′|≤L/

√
n

∣∣∣∣∣∣ 1n
n∑
j=1

η1,(j,1)(q1(τ) + v, τ)m1,τ ′(X(j,1), q1(τ ′) + v′)

∣∣∣∣∣∣


60



=E

E

 sup
τ,τ ′∈Υ,|v|,|v′|≤L/

√
n

∣∣∣∣∣∣ 1n
n∑
j=1

η1,(j,1)(q1(τ) + v, τ)m1,τ ′(X(j,1), q1(τ ′) + v′)

∣∣∣∣∣∣ |{Xi, Ai}2ni=1


.E

E

 sup
τ,τ ′∈Υ,|v|,|v′|≤L/

√
n

∣∣∣∣∣∣ 1n
n∑
j=1

εjη1,(j,1)(q1(τ) + v, τ)m1,τ ′(X(j,1), q1(τ ′) + v′)

∣∣∣∣∣∣ |{Xi, Ai}2ni=1


=E

E

 sup
τ,τ ′∈Υ,|v|,|v′|≤L/

√
n

∣∣∣∣∣∣ 1n
n∑
j=1

εjη1,(j,1)(q1(τ) + v, τ)m1,τ ′(X(j,1), q1(τ ′) + v′)

∣∣∣∣∣∣ |{Xi, Ai, Yi(1)}2ni=1


≤
||F ||P ,2J(

√
Eσ2

n/||F ||P,2)
√
n

.
1√
n
, (E.8)

where the first equality is due to the law of iterated expectation, the first inequality is due to

Ledoux and Talagrand (2013, Lemma 6.3) and the fact that {η1,(j,1)(q1(τ) + v, τ)}nj=1 is a sequence

of independent and centered random variables given {Xi, Ai}2ni=1, the second inequality follows the

same argument in (E.3) with F = 2,

σ2
n = sup

τ,τ ′∈Υ,|v|,|v′|≤L/
√
n

1

n

n∑
j=1

[
η1,(j,1)(q1(τ) + v, τ)m1,τ ′(X(j,1), q1(τ ′) + v′)

]2 ≤ 4,

and J(·) being the uniform entropy integral for the class of functions F6 defined in (E.2), and

the last inequality holds because when F6 is nested by a VC-class, εi is bounded, and thus, has a

sub-Gaussian tail, and δ =
√

Eσ2
n/||F ||P,2 ≤ 1, we have

J(δ) . δmax(
√

log(1/δ), 1) . 1,

as shown in (E.6). This implies, uniformly over τ, τ ′ ∈ Υ,

II(τ, τ ′)
p−→ 0.

Lemma E.6. Recall RIV (τ, τ ′) defined in (C.7). Suppose assumptions in Theorem 3.1 hold, then

sup
τ,τ ′∈Υ

|RIV (τ, τ ′)| = op(1) and sup
τ,τ ′∈Υ

∣∣∣∣∣ 1n
2n∑
i=1

(
Ai −

1

2

)
m1,τ (Xi)m1,τ ′(Xi)

∣∣∣∣∣ = op(1).

Proof. Note

RIV (τ, τ ′) =
1

n

n∑
j=1

[
m1,τ (X(j,1))m1,τ ′(X(j,1))−m1,τ (X(j,1), q̂1(τ))m1,τ ′(X(j,1), q̂1(τ ′))

]
.
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By (C.3) and the fact that F1(·|X) is Lipschitz continuous, we have

sup
τ,τ ′∈Υ

|RIV (τ, τ ′)|

≤ sup
τ,τ ′∈Υ

1

n

n∑
j=1

∣∣m1,τ (X(j,1))m1,τ ′(X(j,1))−m1,τ (X(j,1), q̂1(τ))m1,τ ′(X(j,1), q̂1(τ ′))
∣∣ p−→ 0.

By the same argument in the proof of Lemma E.3, we have

sup
τ,τ ′∈Υ

∣∣∣∣∣ 1n
2n∑
i=1

(
Ai −

1

2

)
m1,τ (Xi)m1,τ ′(Xi)

∣∣∣∣∣ p−→ 0.

Lemma E.7. Recall S∗n,1(τ) defined in (4.5). Suppose assumptions in Theorem 3.1 hold. Then,

{S∗n,1(τ) : τ ∈ Υ} is stochastically equicontinuous and tight.

Proof. It suffices to show the two marginals of S∗n,1(τ) are stochastically equicontinuous and tight.

We focus on the first marginal 1√
n

n∑
j=1

ηj(τ − 1{Y(j,1) ≤ q̂1(τ)}) : τ ∈ Υ

 .

By (C.3), it suffices to establish the stochastic equicontinuity and tightness of 1√
n

n∑
j=1

ηj(τ − 1{Y(j,1) ≤ q1(τ) + v/
√
n}) : τ ∈ Υ, |v| ≤ L


for any fixed L. Let

F7 =

{
(τ − 1{Y(j,1) ≤ q1(τ) + v/

√
n})− (τ ′ − 1{Y(j,1) ≤ q1(τ ′) + v′/

√
n}) :

τ, τ ′ ∈ Υ, |v|, |v′| ≤ L, |τ − τ ′| ≤ ε, |v − v′| ≤ ε

}
,

which is nested by a VC-class with envelope 2. Then, by (E.2) and (E.6), the uniform entropy

integral J(δ) of F7 satisfies

J(δ) . δmax(1,
√

log(1/δ)).

By the calculation of Σ̃∗1,1,1(τ, τ ′) (with q̂1(τ) replaced by q1(τ) + v√
n

) in Section C, we have,
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uniformly over τ, τ ′ ∈ Υ, v, v′ ∈ [−L,L],

σ2
n(τ, τ ′, v, v′) =

1

n

n∑
j=1

[
(τ − 1{Y(j,1) ≤ q1(τ) + v/

√
n})− (τ ′ − 1{Y(j,1) ≤ q1(τ ′) + v′/

√
n})
]2

p−→τ(1− τ) + τ ′(1− τ ′)− 2(min(τ, τ ′)− ττ ′) = |τ − τ ′| − (τ − τ ′)2. (E.9)

Let An(ε) = 1{supτ,τ ′∈Υ,v,v′∈[−L,L] |σ2
n(τ, τ ′, v, v′) −

(
|τ − τ ′| − (τ − τ ′)2

)
| ≤ ε}, which will occur

with probability approaching one. Also by construction, conditionally on data, 1√
n

∑n
j=1 ηj(τ −

1{Y(j,1) ≤ q1(τ) + v/
√
n}) is a sub-Gaussian process. Then,

E

sup
1√
n

n∑
j=1

ηj(τ − 1{Y(j,1) ≤ q1(τ) + v/
√
n})− (τ ′ − 1{Y(j,1) ≤ q1(τ ′) + v′/

√
n})
∣∣∣∣Data

 1{An(ε)}

.J(
supσn(τ, τ ′, v, v′)

2
)1{An(ε)}

.J(
√
ε) .

√
εmax(1,

√
log(1/ε)),

where the supremum is taken over τ, τ ′ ∈ Υ, |v|, |v′| ≤ L, |τ−τ ′| ≤ ε, |v−v′| ≤ ε, the first inequality

is due to (van der Vaart and Wellner, 1996, Corollary 2.2.8), and the second inequality is due to

(E.9) and the definition of An. Then, for any t > 0

P

sup
1√
n

n∑
j=1

ηj
[
(τ − 1{Y(j,1) ≤ q1(τ) + v/

√
n})− (τ ′ − 1{Y ≤ q1(τ ′) + v′/

√
n})
]
≥ t


≤P(Ac

n(ε)) + P

sup
1√
n

n∑
j=1

ηj
[
(τ − 1{Y ≤ q1(τ) + v/

√
n})− (τ ′ − 1{Y ≤ q1(τ ′) + v′/

√
n})
]
≥ t,An(ε)



≤E


E
[
sup 1√

n

∑n
j=1 ηj(τ − 1{Y(j,1) ≤ q1(τ) + v/

√
n})− (τ ′ − 1{Y(j,1) ≤ q1(τ ′) + v′/

√
n})
∣∣∣∣Data] 1{An(ε)}

t


+ P(Ac

n(ε))

.P(Ac
n(ε)) +

√
εmax(1,

√
log(1/ε))

t
,

where the supremum is taken over τ, τ ′ ∈ Υ, |v|, |v′| ≤ L, |τ − τ ′| ≤ ε, |v − v′| ≤ ε. Let n → ∞
followed by ε→ 0, we have

lim
ε→0

lim sup
n

P

sup
1√
n

n∑
j=1

ηj
[
(τ − 1{Y(j,1) ≤ q1(τ) + v/

√
n})− (τ ′ − 1{Y(j,1) ≤ q1(τ ′) + v′/

√
n})
]
≥ t

 = 0,

which implies
{

1√
n

∑n
j=1 ηj(τ − 1{Y(j,1) ≤ q̂1(τ)}) : τ ∈ Υ

}
is stochastically equicontinuous. In ad-
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dition, for any fixed τ ,

1√
n

n∑
j=1

ηj(τ − 1{Y(j,1) ≤ q̂1(τ)}) = Op(1).

This implies it is also tight over τ ∈ Υ.

E.5 Technical Lemmas Used in the Proof of Theorem 4.3

Lemma E.8. Suppose the assumptions in Theorem 4.3 hold, then

max
i∈[2n]

|Âi − 1/2| = op(1)

and

1

n

2n∑
i=1

ξi(Âi − 1/2)2 = op(n
−1/2).

Proof. Let θ0 = (0.5, 0, · · · , 0)T be a K × 1 vector. Then,

||θ̂ − θ0||2 =

∥∥∥∥∥∥
[

1

n

2n∑
i=1

ξib(Xi)b(Xi)
T

]−1 [
1

n

2n∑
i=1

ξib(Xi)(Ai −
1

2
)

]∥∥∥∥∥∥
2

.

∥∥∥∥∥ 1

n

2n∑
i=1

ξib(Xi)(Ai −
1

2
)

∥∥∥∥∥
2

.
√
K

∥∥∥∥∥ 1

n

2n∑
i=1

ξib(Xi)(Ai −
1

2
)

∥∥∥∥∥
∞

.

Next, we aim to bound
∥∥∥ 1
n

∑2n
i=1 ξib(Xi)(Ai − 1

2)
∥∥∥
∞

. Let bk(X) be the kth component of b(X).

Then,

max
k∈[K]

1

n

n∑
j=1

(ξπ(2j−1)bk(Xπ(2j−1))− ξπ(2j)bk(Xπ(2j)))
2

. max
k∈[K]

1

n

2n∑
i=1

ξ2
i b

2
k(Xi)

. max
k∈[K]

Eξ2
i b

2
k(Xi) + max

k∈[K]

∣∣∣∣∣ 1n
2n∑
i=1

[
ξ2
i b

2
k(Xi)− Eξ2

i b
2
k(Xi)

]∣∣∣∣∣ .
The first term on the RHS of the above display is bounded by C based on Assumption 5. Let
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{εi}i∈[2n] be a sequence of i.i.d. Rademacher random variables. Then,

E max
k∈[K]

∣∣∣∣∣ 1n
2n∑
i=1

[
ξ2
i b

2
k(Xi)− Eξ2

i b
2
k(Xi)

]∣∣∣∣∣ ≤ 2E max
k∈[K]

∣∣∣∣∣ 1n
2n∑
i=1

εi
[
ξ2
i b

2
k(Xi)− Eξ2

i b
2
k(Xi)

]∣∣∣∣∣ .
By Hoeffding’s inequality,

P

(∣∣∣∣∣ 1√
2n

2n∑
i=1

εi
[
ξ2
i b

2
k(Xi)− Eξ2

i b
2
k(Xi)

]∣∣∣∣∣ ≥ t
∣∣∣∣{ξi, Xi}i∈[2n]

)
≤ 2 exp(− t2

2σ2
k

),

where σ2
k = 1

2n

∑2n
i=1

[
ξ2
i b

2
k(Xi)− Eξ2

i b
2
k(Xi)

]2
. Then, by van der Vaart and Wellner (1996, Lemmas

2.2.1 and 2.2.2),

E

[
max
k∈[K]

∣∣∣∣∣ 1n
2n∑
i=1

εiξ
2
i b

2
k(Xi)

∣∣∣∣∣
∣∣∣∣{ξi, Xi}i∈[2n]

]
.

√
log(K)

n

√
max
k∈[K]

σ2
k.

Applying expectation on both sides and noticing that the square root function is concave, we have

E max
k∈[K]

∣∣∣∣∣ 1n
2n∑
i=1

εiξ
2
i b

2
k(Xi)

∣∣∣∣∣ ≤
√

log(K)

n

√
E max
k∈[K]

σ2
k

≤
√

log(K)

n

√∑
k∈[K]

Eσ2
k

≤
√
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n
ζ(K) = o(1).

Therefore,

max
k∈[K]

∣∣∣∣∣ 1n
2n∑
i=1

[
ξ2
i b

2
k(Xi)− Eξ2

i b
2
k(Xi)

]∣∣∣∣∣ = op(1)

and with probability approaching one,

max
k∈[K]

1

n

n∑
j=1

(ξπ(2j−1)bk(Xπ(2j−1))− ξπ(2j)bk(Xπ(2j)))
2 ≤ 2C.

Let I ′n = {maxk∈[K]
1
n

∑n
j=1(ξπ(2j−1)bk(Xπ(2j−1))−ξπ(2j)bk(Xπ(2j)))

2 ≤ 2C}. For t =
√

log(n)C,

we have

P

(∥∥∥∥∥ 1

n

2n∑
i=1
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1

2
)
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≥ t/
√
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)
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=EP
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n

2n∑
i=1

ξib(Xi)(Ai −
1

2
)
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∞
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)
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=EP
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√
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EP
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√
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≤
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(
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≤2 exp

(
log(K)− t2

C

)
→ 0,

where the second last inequality is due to the Hoeffding’s inequality and the fact that given

{Xi, ξi}i∈[2n], {Aπ(2j−1) −Aπ(2j)}j∈[n] is i.i.d. sequence of Rademacher random variables.

This implies,

||θ̂ − θ0||2 = Op(

√
K log(n)

n
),

and thus

max
i∈[2n]

|Âi − 1/2| = max
i
|b(Xi)

′(θ̂ − θ0)| = Op

(
ζ(K)

√
K log(n)

n

)
= op(1).

For the second result, we have

1

n

2n∑
i=1

ξi(Âi − 1/2)2 ≤ λmax

(
1

n

2n∑
i=1

ξib(Xi)b(Xi)
′

)
||θ̂ − θ0||22 = Op

(
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n

)
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−1/2),

as K2 log2(n) = o(n).

Lemma E.9. Suppose assumptions in Theorem 4.3 hold, then
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and
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Proof. For the first result, notem1,τ (Xi) = b(Xi)
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where the third equality holds because
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Furthermore,
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This leads to the first result.

67



For the second result, we have∣∣∣∣∣
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Conditionally on {Xi, ξi}i∈[2n], {(Aπ(2j−1)−Aπ(2j))}nj=1 is a sequence of i.i.d. Rademacher random
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≤ 1. Then, by van der Vaart and Wellner (1996,
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This implies
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Last, for the third result, we have
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Let {ε̃j}j∈[n] and {εi}i∈[2n] be two sequences of i.i.d. Rademacher random variables that are inde-

pendent of data. By (A.12), we have
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where conditionally on {X̃j}j∈[n], {ξ̃j η̃1,j(τ)}j∈[n] is a sequence of independent random variables.

Then, by the same argument in (E.8), we have
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Let
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Then, by (E.10) and Lemma E.8, we have
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