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Abstract. This work concerns the tuning of industrial controllers through the use of the Multistart Coordinate Search Filter algo-
rithm. The task is laid as a bounded nonlinear global optimization problem aiming at achieving the best possible performance of
the control loops at the lowest possible wearing of the costly valves. Moreover, the tuning was successfully carried out both with
and without taking into consideration the existing interactions between different loops.

INTRODUCTION

Proportional-Integral-Derivative (PID) controllers are the most widely used controllers in industry [1, 2, 3] and ex-
pectedly will continue to be the main workhorse of process control [4]. Either performing individually or as a part of
more complex control strategies (such as cascade structures, for example), PID controllers are pivotal in the industry.
Their function consists of issuing an order to the final control elements (usually valves) so that the process is stim-
ulated in a way that pushes the variables under control to the desired values (setpoints). Such controller order relies
on the comparison between the measured value of the controlled variable and its corresponding setpoint. Figure 1
illustrates the situation of a system subjected to the action of a feedback controller.
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FIGURE 1. Block diagram of a closed control loop.

However, PID controllers need to be tuned in order to actually achieve an effective control of the process rather
than contributing to the degradation of the closed loop performance.

The methods used for PID tuning have suffered a remarkable evolution since the unsystematic trial and error.
Ziegler and Nichols [5] and Cohen and Coon [6] introduced the first sets of empirical rules that endured over time
and are still applied today. Meanwhile, different improvements of these rules and more sophisticated methods have
been suggested (for example, Luyben [7], Hang, Åström, and Ho [8], Schei [9], Palmor, Halevi, and Krasney [10]).
The most recent class of methods is based in optimization techniques as the work developed by Dittmar et al. [11].
Seeking better methods for tuning PID controllers continues to be an objective to pursue in the process control field,
as a more efficient method to tune such widespread controllers may have a worldwide significant impact.

The tuning problem gets especially challenging in the case of mutual dependencies among control loops, as the
action needed for controlling a certain variable can have a negative effect in the control of another. A system in which
each of its input variables affects only one output variable is called a Single-Input-Single-Output (SISO) system. In
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opposition, if each input variable affects more than one output variable, the system is designated as Multiple-Input-
Multiple-Output (MIMO). Figure 2 shows schematically these concepts for 2 × 2 systems (two input variables and
two output variables).
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FIGURE 2. Schematic representations of a SISO and a MIMO systems.

The work reported here consists of casting the tuning task as an optimization problem to be solved by the MCS-
Filter. The MCSFilter is a global method that is able to identify multiple minima. It is a derivative-free method based
on a multistart strategy coupled with a local coordinate search filter procedure to find all the minima of a multimodal
problem, particularly, the global minimum. The multistart strategy is related to the exploration feature of the method
and a derivative-free local search is related to the exploitation of promising regions. Further details about the algorithm
are given in [12]. The multistart strategy is based on regions of attraction of all the obtained minimizers.

PROBLEM FORMULATION

The process to be controlled can be represented by the set of ordinary differential equations (ODE)

ẏ(t) = A y(t) + B u(t), (1)

where y represents the output variables vector and u the input variables vector which comprises the stimuli to the
system; A and B are matrices that characterize the system.

At each time instant k, each controller is in charge of keeping an output variable i as close as possible to its
setpoint (yi,k and ysp,i,k, respectively), by issuing an order to a final element of control based on the comparison
between the actual value of the variable and the desired one. For each control loop i and each time instant k, that, for
example according to Seborg, Edgar, and Mellichamp [13], is achieved by

ui,k = ui,k−1 + Kc,i

[
(ei,k − ei,k−1) +

∆t
τI,i

ei,k +
τD,i

∆t
(ei,k − 2ei,k−1 + ei,k−2)

]
, (2)

where the error is given by ei,k = ysp,i,k − yi,k; Kc,i, τD,i, and τI,i are the controller’s parameters for loop i, and ∆t is the
constant sampling time increment.

In order to perform the calculations (2) which will generate adequate stimulation of the system, the controllers
parameters have to be known. The estimation of these parameters is the so-called “controller tuning”. The tuning
problem is cast at the present work as a bounded nonlinear optimization problem, expressed mathematically by

min
P

J(P) =

n∑
k=1

m∑
i=1

w1,i
(

ysp,i,k − yi,k(P)
)2

+ w2,i
(

ui,k(P) − ui,k−1(P)
)2
, (3a)

s.t. PL ≤ P ≤ PU (3b)

where P is the vector containing the three parameters per controller, PL and PU are the lower and upper bounds, and
w1 and w2 are the weights attributed to the mismatch between the actual values and the desired ones for the m variables
to be controlled and the intensity of the change along time imposed to the final control elements, respectively. It is
noteworthy that such design of the objective function balances the tightness of the setpoint tracking with the degree
of aggressiveness of the controller, since the excessive motion of the final control elements provokes its fast wear out.

SIMULATION RESULTS

The simulation experiment compares the results obtained in the tuning of the two PID controllers in an independent
manner (that is, SISO tuning) and those obtained in their simultaneous tuning (MIMO tuning).



In this study, the process simulator described by (1) has two controlled and two manipulated variables:

A =

[
−1 0.1
−0.2 −0.3

]
; B =

[
1 −0.1

0.01 0.03

]
. (4)

The tuning is performed within a time horizon of 150 elements of 600 ms each (∆t = 0.6 s). The setpoint for variable y1
is 1.0 before element 50 and 0.5 afterwards. The setpoint for variable y2 is 0.75 before element 100 and 1.2 afterwards.
In all of the experimental runs, the weights in (3) are 1.0 (w1 = w2 =

[
1.0 1.0

]
).

SISO tuning
In this setup, each of the PID controllers is tuned independently. The manipulated variable of the other controller is
maintained at a fixed value. The resulting closed loop responses for the situations used in the SISO procedure are
presented in Figure 3.
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FIGURE 3. Closed loop responses for the SISO tuning procedure.

The resulting tuning parameters are summarized in Table 1(a).

TABLE 1. Tuning parameters.
(a) SISO case.

Parameter Loop 1 Loop 2 Units

Kc 0.3890625 0.7226806 [u]/[y]
τI 0.7537841 1.7482910 s
τD 0.0252685 0.0 s

(b) MIMO case.

Parameter Loop1 Loop2 Units

Kc 0.3915039 0.7203613 [u]/[y]
τI 0.8005371 1.1180419 s
τD 0.0 0.0 s

MIMO tuning
The multivariable nature of the process is taken into account in the case of multivariable tuning where both controllers
are in automatic mode. The resulting closed-loop response for the situation used in the tuning procedure is shown in
Figure 4 and the tuning parameters are given in Table 1(b).

Given the linear nature of the process, the parameters obtained via SISO and MIMO tuning are similar, particu-
larly, the controller gains. However, the integral time constants show a tangible difference that can be attributed to the
interactivity between the controlled and manipulated variables of the loops.

The value of τD is zero in order to minimize the error. In this particular case, the system is linear and has no
deadtime. Therefore, the derivative action (nonzero τD) would unnecessarily slow down the closed loop dynamics
that would increase the overall setpoint tracking error. The value of zero corresponds to the industrial practice in such
systems.
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FIGURE 4. Closed loop response for the MIMO tuning procedure.

CONCLUSIONS

PID controllers are the bulk option in industrial plants, but they require a proper tuning. Optimization techniques can
be advantageously used for this purpose compared to traditional methods. The tuning task was cast as a bounded opti-
mization problem whose design was based on two different perspectives of the system: SISO and MIMO approaches.
The minimization problems were solved by means of the MCSFilter algorithm and the found minimizers allow an
adequate dynamic response of the system operating in closed loop.
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