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ABSTRACT Product dimensional variability is a crucial factor in the quality control of complex multistage
manufacturing processes, where undetected defects can easily be propagated downstream. The recent
advances in information technologies and consequently the increased volume of data that has become readily
available provide an excellent opportunity for the development of automated defect detection approaches that
are capable of extracting the implicit complex relationships in these multivariate data-rich environments.
In this paper, several machine learning classifiers were trained and evaluated on varied metrics to predict
dimensional defects in a real automotive multistage assembly line. The line encompasses two automated
inspection stages with several human-operated assembly and pre-alignment stages in between. The results
show that non-linear models like XGBoost and Random Forests are capable of modelling the complexity
of such an environment, achieving a high true positive rate and showing promise for the improvement of
existing quality control approaches, enabling defects and deviations to be addressed earlier and thus assist
in reducing scrap and repair costs.

INDEX TERMS Machine learning, quality control, predictivemanufacturing system, multistage, automotive
industry, industry 4.0.

I. INTRODUCTION
Product dimension variability is one of the most challenging
aspects involved in multistage manufacturing processes like
assembly and machining in industries such as automotive,
aerospace and white goods [1]. The complexity of a Multi-
stageManufacturing Process (MMP) is extremely demanding
across the several engineering domains involved, from pro-
cess modeling to process control and fault diagnosis, partic-
ularly regarding the assurance of the product’s dimensional
integrity. Furthermore, this inherent complexity and the ran-
dom nature of uncertainties and disturbances in manufactur-
ing processes make it considerably difficult to guarantee the
desired quality of the product. Therefore, an effective method
to enable the automated and early detection of potential
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defects during production using online data would be highly
advantageous to manufacturers.

In this light, the Predictive Manufacturing Systems (PMS)
paradigm has been gaining traction as an approach to develop
solutions ready to answer this need. Due to the growing adop-
tion of Industry 4.0 [2] concepts and the Industrial Internet of
Things ideology, the foundation for the realization of such
systems is being laid down with smart sensor networks and
smart machines, with more and more data being generated
every day. Hence, the conditions are being created for the
utilization of advanced prediction tools capable of systemat-
ically processing these data into information that can explain
the aforementioned uncertainties and thus assist personnel in
making more informed decisions [3]. An example of this is
the Watchdog Agent developed at the Center for Intelligent
Maintenance Systems (IMS), which consists in a toolbox
of algorithms for multi-sensor performance assessment and
prediction [4], [5]. Some of its tools include signal processing
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and feature extraction, health assessment through logistic
regression and Support Vector Machine (SVM) based con-
dition diagnosis. Another recent example is the IDARTS
framework, proposed in [6] and based on the Cyber-
Physical Production System (CPPS) concept, which presents
a generic approach for the implementation of a PMS
using a combination of flexible data fusion running on
the edge-level with both offline and online data analysis
using Machine Learning (ML) techniques.

In this paper we address the application of a PMS solution
in the automotive industry, comparing the fitness of varied
binary classifiers in the prediction of dimensional defects
in an MMP within the Volkswagen AutoEuropa plant in
Portugal. The remainder of this paper is structured as follows.
Section II presents a brief overview of related work found
in current literature. Afterwards, Section III describes the
case study, data set and methods applied in this work. This
is followed by the presentation of the experimental results
from the training and validation of the different models in
Section IV, along with an identification of the limitations
of the approach and possible solutions in V. Finally, some
discussion and closing remarks are provided in Section VI.

II. RELATED WORK
ML is currently regarded as an extremely promising field to
provide improved quality control and process optimization in
PMS [7]. The reasonwhyML techniques are regarded as such
is greatly due to their capacity to handle high-dimensional,
multivariate data, along with the ability to understand the
implicit relationships within large data sets in complex and
dynamic environments [8].

There are several accounts of the successful employment
of data mining and ML to tackle challenges in areas such
as process optimization [9], fault detection [10] and predic-
tive maintenance [11] in manufacturing environments. While
algorithms like Logistic Regression are typically well suited
for finding primary relationships in the data, the independent
variable matrix can quickly become large when the the prob-
lem involves detecting second or third order interactions [12].
Tree based classifiers like Random Forest (RF) and Gradient
Boosted Tree models can detect relationships that are not as
easily picked up with linear techniques.

Concerning tree-based classifiers in the manufacturing
domain, several applications can be found in the literature.
Wu et al. [13] applied RFs to predict tool wear in milling
operations based on several features extracted from cutting
force, vibration, and acoustic emission signals, with experi-
mental results showing RFs were capable of yielding more
accurate results in this instance than SVM and artificial neu-
ral network models. In [14] decision trees and RF models
are used for pattern recognition classification of ultrasonic
oscillograms of resistance spot welding joints. The authors
point out that while both can be employed as effective deci-
sion support tools to improve quality control, when com-
pared with regular decision tree models RFs reduced the
error rate at the expense of decision interpretability. Finally,

Syafrudin et al. [15] developed a real-time monitoring sys-
tem using on a combination of outlier detection and RF
classifiers for fault detection based on sensor data, which was
tested on an automotive assembly line in Korea.

Gradient Boosted Trees are another class ofML algorithms
with many succesful applications in the manufacturing indus-
try. In [16], Chen et al. employ data-driven models based
on the XGBoost [17] algorithm for the real-time prediction
of welding quality in a metal active gas welding process.
According to the authors, XGBoost models were shown to
be capable of capturing complex nonlinear characteristics of
the sensor data and dealing with anomalies in the data set.
Jabbar et al. [18] proposed a decision-making tool based
on XGBoost to support operators in the manufacturing of
printed circuit boards. XGBoost was shown to yield both high
accuracy and high recall in the classification of defects when
trained on real-world data.

In summary, the related work presented in this section
builds on previous research to explore how predictive model-
ing can be applied to manufacturing in the context of the PMS
paradigm. While ML shows promise to this effect, the suit-
ability of its techniques and different models still needs to
be assessed on a case by case basis. This paper explores the
application of several ML algorithms to the prediction of
dimensional defects in an automotive MMP, with the goal
of mitigating the propagation of said defects downstream,
enabling an earlier intervention and thus contributing to the
improvement of existing quality control practices by reducing
scrap and repair costs.

III. MATERIALS AND METHODS
A. CASE STUDY SPECIFICATION
This case study is focused on a multistage assembly line from
Volkswagen AutoEuropa’s body shop, specifically between
the framing inspection stage and the body-in-white assembly
inspection. The goal is to apply ML using the data from the
framing inspection to predict whether or not a given car is
likely to carry dimensional defects later on during the inspec-
tion downstream after the different assembly operations and
alignment stages. Figure 1 provides a simplified overview of
this scenario:

In reality, a series of assembly operations is performed
between the framing and the finish line stages, effectively
putting together the car’s body-in-white. On the left side
of Figure 2 the tailgate assembly operation is showcased.
With the help of a jig the operator mounts the tailgate onto

FIGURE 1. Diagram of the multistage assembly process being studied.
Data originates from the automated measurements before and after the
assembly of the tailgate.
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FIGURE 2. Fixture for the tailgate assembly process (left) and the
Perceptron measurement station downstream (right).

the previously naked frame of the car. Once the assembly
operations are concluded, a pre-inspection is conducted after
which the car goes into the doors-to-body Perceptron station
(right side of Figure 2).

This means that data originates from two different dimen-
sional spaces. At the earlier stage, only the X, Y and Z features
of the car’s frame are available along with the respective
symmetries, with the first Perceptron station measuring the
deviations in relation to the product’s CAD design. Once the
different parts are assembled, the last Perceptron is then able
to measure the gap and flush at different points between the
tailgate and the sides of the car.

In this MMP defects and variations in early stages can
have a significant impact in stages downstream and often
remain undetected until the final inspection station. This is
heavily connected to the fact that while in practice one can
monitor and control the different dimensional characteristics
and their boundaries on each stage, combinations of small
variations within the acceptable thresholds can easily remain
undetected and translate into quality problems downstream.
Therefore ML can serve as the means to model the complex
relationships between the framing data and the gap and flush
measurements at the end of the body shop line, enabling
quality control engineers to either improve the earlier stages
to avoid these defects or to provide timely indications to the
assembly stages in between in order to have proper alignment
during their respective operations.

B. CHARACTERIZATION OF THE DATA SET
Within the context of ML, classification can be defined as
the process of finding a model capable of distinguishing data
classes or concepts. In supervised learning, such models are
derived from the analysis of a set of labelled training data (i.e.
data for which the class labels are known), which later enables
the model to be used to predict the class label of previously
unseen, unlabelled objects [19].

For this case study, the data set encompasses a total
of 18148 unique cars with 29 dimensional features from
the framing inspection station. Each car sample is labelled
as ’OK’ or ’NOK’ according to a domain expert’s assess-
ment based on the gap and flush measurements at the last
station, with 11331 and 6545 samples belonging to each

class, respectively. The actual designations of the features
were anonymized as requested by the manufacturer in order
to protect the privacy and property of the use case.

Out of these 29 features, 10 present over 85% entries of
missing values, resulting in only 19 features being used in
the analysis.

Furthermore, to address the class imbalance, random
under-sampling was performed on the data, generating a
balanced data set with 12012 samples. Considering that the
chosen sampling technique might result in some information
loss, synthetic minority over-sampling was also tested as an
alternative (after the train-test split) but provided significantly
worse results.

Finally, 119 observations in the balanced data set still
presented missing values, either due to the car still being on
its way along the line between the two inspection stations, or
due to some measuring or communication disturbance. Since
these were relatively rare occurrences the samples with one
or more missing values were discarded, although in future
work it might be interesting to study the impact of different
imputation techniques instead.

The absolute correlation matrix for the resulting data set
can be found in Figure 3.

FIGURE 3. Matrix of the absolute correlations between the different
features based on the Spearman coefficient.

As it can be observed, most features present low correlation
coefficients with the target, suggesting that if there is in
fact a relationship between the features and the car’s quality
downstream, non-linear classifiers might be more adequate
for the case at hand. Also, there is some evidence of mul-
ticollinearity, with cases of high correlation between some
of the features, which is to be expected given that the data
set pertains to several dimensional characteristics of the car
which are expected to be correlated.

To facilitate the visualization of the data set, Principal
Component Analysis (PCA) was applied to reduce the feature
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FIGURE 4. Visualization using PCA to reduce the dimensionality of the
data set. Data points are colored based on the target variable.

space to only three dimensions in order to make it possi-
ble to visualize it in 3D space. The resulting plot is shown
in Figure 4.

Roughly 81% of total variance is captured in the first three
components resulting from the application of PCA. However,
the results seem to suggest that based on the features available
in the data set a reasonable class separation can be achieved.
The following section provides an overview of the different
algorithms employed to this effect in this study, as well as of
the corresponding methods and implementation.

C. ALGORITHMS FOR DEFECT CLASSIFICATION
The implementation of the models contemplated in this study
followed a fairly straightforward methodology, using Python
3.6 and the scikit-learn module [20] for all models except
XGBoost [17].

Firstly, the data set was split into train and test sets. After-
wards, given that several features present skewed distribu-
tions with both positive and negative values, Yeo-Johnson
transform was applied to reduce the shift followed by stan-
dardization to center and scale each feature individually using
the RobustScaler from scikit-learn’s preprocessing module.
This was used instead of a standard scaler due to it beingmore
robust to outliers in the data. Both the power transform and
scaler were fitted only to the train set to avoid test set con-
tamination. An example of the result from this preprocessing
step for F12 is illustrated in Figure 5.

After this preprocessing step, several models were trained
to establish a baseline with 5-fold cross validation being

FIGURE 5. Result from the application of the Yeo-Johnson transform and
robust scaler to F12. Raw distribution is presented on the left,
transformed values are presented on the right.

performed on the top scoring models. Following this, the best
models from this step were selected for hyperparameter tun-
ing and finally tested on a separate holdout set, consisting of
cars collected over the three days after the last sample from
the original data set.

In the remainder of this section a review of the different
types of models used in this work is provided, followed by a
brief description of the evaluation metrics used to assess the
performance of the various models.

1) GAUSSIAN NAIVE BAYES
The Gaussian Naive Bayes (GNB) method is a supervised
learning algorithm based on the Bayes’ theorem with the
naive assumption of conditional independence between the
various pairs of features given the value of the target variable.
TheGaussianNB class from scikit-learn implements GNB for
classification, with the likelihood of the features assumed to
be Gaussian:

P(xi | y) =
1√
2πσ 2

y

exp
(
−

(xi − µy)2

2σ 2
y

)
(1)

where the parameters σy and µy are estimated using maxi-
mum likelihood.

Some practical applications of GNB include text predic-
tion, document classification and spam filtering. It requires
a relatively small amount of training data to estimate the
necessary parameters, can be quite fast in comparison tomore
complex methods and is easy to implement, being often used
as a baseline [21]. However, while its naive assumptions can
make such efficiency possible, they can also adversely affect
the quality of the results in several real world applications,
such as the use case at hand, in which the feature pairs are
unlikely to be independent.

2) K-NEAREST NEIGHBOURS
K-Nearest Neighbours (KNN) is a type of instance-based
learning algorithm, meaning it does not construct a general
internal model, but instead stores instances of the training
data with computation being deferred until classification.
Over the years it has seen several applications in both statisti-
cal estimation and pattern recognition including for instance
the classification of heart disease to provide a decision-
support system for clinicians [22]. Conceptually, such an
approach can be carried over to the use case at hand, as we
are effectively attempting to identify a condition in the cars,
and furthermore, being one of the simplest ML algorithms
for classification it is at least a good candidate to serve as a
baseline.

For KNN, the input consists in the k closest training
examples in the feature space, with the output being a class
membership attributed by a simple majority vote of the near-
est neighbours based on some distance metric such as the
Euclidean distance.
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3) XGBOOST
XGBoost [17] stands for eXtreme Gradient Boosting and
is an optimized implementation of gradient boosted trees,
designed to be highly efficient and flexible. It is a non-
linear algorithm which typically works well with numerical
features and requires relatively less feature engineering and
hyperparameter tuning to yield good results.

Generally, such methods can be prone to overfitting,
as they constantly involve fitting a model on the gradient.
To mitigate this, one can optimize for the number of trees
until the out of sample error starts increasing once more.

XGBoost models are frequently used to solve Kaggle
challenges across several domains, with real world appli-
cations including for instance the identification of complex
relationships between variables for rare failure prediction in
manufacturing processes [12].

4) RANDOM FOREST
In the context of classification problems, RF is an ensemble
learning method that operates by constructing several deci-
sion trees at training time and outputting the class that is the
mode of the classes of the individual trees. While a single
decision tree can easily run into overfitting problems, being
also sensitive to small variations in the data, due to their
nature RFs are more robust to such challenges.

5) SUPPORT VECTOR MACHINE
The SVM algorithm constructs hyperplanes in infinite-
dimensional spaces to classify data into distinct classes. One
can consider a good separation to be achieved by the hyper-
plane with the largest distance to the nearest training-data
point of any class (functional margin), as typically larger
margins correspond to a lower generalization error.

While this is a fairly formal approach to the classification
problem, one disadvantage mentioned in the scikit-learn doc-
umentation for the SVC implementation is that fit time com-
plexity is more than quadratic with the number of samples,
making it hard to scale for data sets with more than a couple
of 10000 samples. While this is not the case for this particular
case study, it is something to keep in mind when comparing
to other approaches.

D. EVALUATION METRICS
1) ACCURACY
Accuracy can be used as a statistical measure of how well a
binary classifier identifies or excludes a condition. It is the
proportion of true results among all the observed cases. The
formula for quantifying binary accuracy is:

Accuracy =
tp+ tn

tp+ fp+ fp+ fn
. (2)

where tp, tn, fp and fn refer to true positives, true negatives,
false positives and false negatives, respectively.

However, while high accuracy is typically regarded as a
good indicator of performance, accuracy alone can be very

misleading, particularly for imbalanced cases. Also as a met-
ric for comparison the same holds true, as two models can
yield the same accuracy results while performing differently
with respect to the types of correct or incorrect predictions
they provide.

2) RECALL
To assist with the aforementioned challenge, one other metric
that can be calculated is recall. Recall represents the propor-
tion of true positives that was identified correctly, thus being
a suitable metric to use for model selection when there is a
high cost associated with false negatives. It can be calculated
as follows:

Recall =
tp

tp+ fn
. (3)

3) PRECISION
To complement this, precision is then the proportion of
the values identified as positives that was actually correct.
As such, it is an adequate measure to use when the cost
associated with false positives is high, being calculated as
indicated in 4.

Precision =
tp

tp+ fp
. (4)

4) F1 SCORE
For cases in which a balance between precision and recall
is preferable, and particularly when there is an uneven class
distribution, the F1 score is often used as the evaluation
metric. It is the harmonic average of the precision and recall,
with 1 and 0 being its best and worst values, respectively,
as given by the formula:

F1 = 2 ·
Precision · Recall
Precision+ Recall

. (5)

5) AREA UNDER THE RECEIVER OPERATING
CHARACTERISTICS
Area Under the Curve (AUC) - Receiver Operating Char-
acteristics (ROC) curve is a performance measurement for
classification problems at various thresholds settings. ROC is
a probability curve and AUC represents degree or measure of
separability. It provides an indication of how well a model is
capable of distinguishing between classes. More specifically
for this case study, the higher the AUC, the better the model is
at predicting cars that are OK as OK, and cars that are NOK
as NOK.

The ROC curve is plotted with True Positive Rate (TPR)
against the False Positive Rate (FPR) where TPR is on y-axis
and FPR is on the x-axis.

IV. RESULTS
At first, several models were implemented without any hyper-
parameter tuning to create a baseline. The model training was
performed on a machine with an Intel Core i7-9700K, 2x8GB
4000MHz DDR4 memory and an NVIDIA GeForce RTX
2070. The results are summarized in Table 1.
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FIGURE 6. Test results from 5-Fold Cross Validation. Results are divided by accuracy, precision, recall, f1 and roc_auc scores.

TABLE 1. Baseline model results.

As hypothesized during the exploratory data analysis from
Section III-B, the two linear models, Logistic Regression
and Naive Bayes, performed significantly worse than the
worst performing non-linear classifier, suggesting a stronger
non-linear relationship between the features and the target.
Based on this, 5-fold cross validation was performed on the
four non-linear classifiers in order to obtain a more realistic
measure of accuracy and avoid overfitting on the training
data. The results from the cross validation step can be found
in Figure 6.

From the observation of Figure 6, it can be said that the
baseline RF model performed better on average across all
metrics except for recall, for which XGBoost was consid-
erably superior. The XGBoost and SVM models performed
slightly worse, with KNN performing considerably worse
overall. One particularity to take into account in this MMP is
the possibility of the feature distributions to change over time.
This can happen for several reasons and is further discussed
in Section V, but to tackle this challenge, an approach could
be to monitor the accuracy of the deployed model and retrain
it if it drops below a certain threshold. This means that more
computationally expensive models that take longer to train
and perform cross validation on, like SVM, might not be
adequate for such a scenario.

Based on this, hyperparameter tuning through randomized
search was performed on the three best models, which were
then compared on the test set based on the same evalua-
tion metrics used for cross validation. The tuned parame-
ters can be found in Table 2, where any omitted parameters

TABLE 2. Parameters for each model resulting from the tuning through
randomized search optimizing for roc_auc. Tuning was performed on
100 iterations with 5-fold cross validation.

TABLE 3. Tuned model results. Models are evaluated based on the same
metrics used for the baseline models’ cross validation.

are assumed to take the default values from their respective
implementations.

The results are summarized in Table 3. Additionally,
the corresponding ROC curves can be found in Figure 7,
in which the dashed diagonal line defines the reference point
for which the models have no capacity to distinguish between
classes.

The results are extremely close, especially for the two
ensemble models, with XGBoost being superior in three out
of the five evaluation metrics, if only by a slight margin when
compared to the values scored by the RF model. The SVC
model appears to not have generalized as well as the others as
evidenced by its lower capacity to separate the target classes
in the ROC curve, albeit with marginal differences and while
still yielding fairly improved results over those of its baseline
counterpart.

Finally, each model was tested on a new holdout data set,
originating from measurements taken from 1000 cars over
the three days following the last entry of the original data set
(8 samples were discarded due to missing values). The result-
ing confusion matrices are depicted in Figure 8. The results
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FIGURE 7. ROC curves for each of the models compared in this study.
ROC is a probability curve and AUC represents a measure of separability
between classes.

FIGURE 8. Confusion matrices for the holdout validation. The tuned
XGBoost model achieved perfect recall on cars predicted over the three
days after the last sample from the original data set.

suggest that the models were capable of generalizing well,
being able to accurately predict the occurrence of defects in
real car samples outside of the original data and thus provide
important support in the earlier identification of deviations in
the assembly line.

V. LIMITATIONS OF THE APPROACH
One possible barrier to the success of such a predictive solu-
tion in the long term is the possibility of drastic changes in
the underlying distributions of the dimensional characteristics
of the cars. This can happen for instance due to a change
in the materials’ suppliers or the replacement of parts in the
stations before the first stage considered in this study. This
is typically known as Concept Drift, referring to the change
in relationships between the input and output data of the
underlying problem over time [23].

A possible solution in the occurrence of this case during
production would be through online monitoring and/or train-
ing of the models using for instance an architecture similar
to the one showcased in Figure 9 based on the IDARTS
framework [6].

For such an architecture, a Multi-Agent System (MAS)
can be used to implement the CPPS that abstracts the MMP
with one agent associated to the framing stage and another
to the final one. While the framing agent can request qual-
ity predictions from a server hosting the deployed classifier
and alert operators as defects are identified, the other can
check for the ground truth associated with the measurements
taken at the end of the line. These values can be stored

FIGURE 9. Possible deployment architecture based on the IDARTS
framework [6]. Legend: DI - Data Ingestion; DP - Data Preprocessing;
P - Prediction; E- Evaluation; H - Historical database; 1 - Prediction
request; 1 (dashed) - Store ground truth; 2 (dashed) - Request mode
evaluation; 3 (dashed) - Request updated model.

in a historical database, with the agent either periodically
requesting a re-evaluation of the model to trigger a re-fit if
the performance goes below a given threshold, or having the
model be periodically updated using the static model as a
starting point, for models that support such a functionality.
This can be more efficient than the first approach, as it reuses
the existing state instead of discarding it, only updating it on
the most recent historical data.

The usage of a MAS also enables the system to adapt to
other changes in run-time, including for instance the addition
or removal of elements from the line during production with-
out requiring additional programming effort or downtime.
This means that for instance handheld smart inspection tools
can be added in to provide additional measurements for the
stages in between with the system being able to automati-
cally enact a self-organized response and accommodate such
devices and new data into the existing solution.

VI. DISCUSSION AND CONCLUSIONS
In this study we have addressed the application of an
ML-based solution for multistage quality control. The
performance of several binary classification models was eval-
uated and validated on data from a real automotive mul-
tistage assembly line within the Volkswagen AutoEuropa
plant, encompassing two automated measurement stages on
each end with human operated assembly and pre-alignment
stages in between.

The analysis of thisMMP is particularly challenging due to
the amount of variability introduced by the human operators
in the loop, responsible for the alignment and inspection of
the assembled cars. However, the results suggest that there
are certain dimensional variations in the early stages (even
those within specification) that can be used to predict devia-
tions at the end of the line regardless of these interventions,
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indicating that some of these feature interactions are consid-
erably hard to detect without the assistance of more complex
data analytics approaches like the one being proposed.

While domain expert knowledge is critical for the correct
assessment of the corrective actions that need to be carried out
during the assembly operations (i.e. offsetting the jig), such
an approach can provide further insights to enable an earlier
intervention in the framing stages to prevent the propagation
of the defects downstream, as well as a quicker identification
of problematic cars for the final assembly.

We showed that non-linear algorithms like XGBoost and
RFs are capable of detecting the complex relationships
encompassed in this multivariate data set, providing quality
estimations with a high capacity to distinguish between OK
and NOK cars in an automotive multistage assembly process
with high recall. We validated this results on two different test
sets, one pertaining to the original data set and the other con-
taining samples collected over the course of the 3 months fol-
lowing the last sample from the original data set. On both we
show that the selected models are capable achieving high per-
formance across all the evaluation metrics considered in this
study, namely accuracy, recall, precision, F1 score and AUC.

Limitations and possible obstacles to the long term success
of the predictive approach presented in this work were also
discussed, more concretely in regards to the detection of
concept drift, with possible solutions and venues for future
research having been proposed in Section V. Overall we con-
sider that the approach shows real potential in contributing
towards the improvement of existing quality control strate-
gies, with results hinting that reliable predictions can be pro-
vided to assist domain knowledge experts inmaking informed
decisions towards the mitigation of defect propagation in
multistage assembly scenarios.

ACKNOWLEDGMENT
The authors would like to thank Pedro Escorcio and Luis Per-
alta from Volkswagen AutoEuropa for their precious assis-
tance with all matters pertaining to the acquisition and inter-
pretation of the data related to the case study.

REFERENCES
[1] Y. Ding, D. Ceglarek, and J. Shi, ‘‘Fault diagnosis of multistage manu-

facturing processes by using state space approach,’’ J. Manuf. Sci. Eng.,
vol. 124, no. 2, pp. 313–322, 2002.

[2] H. Kagermann, J. Helbig, A. Hellinger, and W. Wahlster,
Recommendations for implementing strategic initiative INDUSTRIE 4.0:
Securing future German Manuf. industry; final Rep. Industrie 4.0 Work.
Group. Forschungsunion, Berlin, Germany, 2013. [Online]. Available:
https://www.din.de/blob/76902/e8cac883f42bf28536e7e8165993f1fd/
recommendations-for-implementing-industry-4-0-data.pdf

[3] J. Lee, E. Lapira, B. Bagheri, and H.-A. Kao, ‘‘Recent advances and trends
in predictive manufacturing systems in big data environment,’’ Manuf.
Lett., vol. 1, no. 1, pp. 38–41, Oct. 2013.

[4] D. Djurdjanovic, J. Lee, and J. Ni, ‘‘Watchdog agent-an infotronics-based
prognostics approach for product performance degradation assessment and
prediction,’’ Adv. Eng. Informat., vol. 17, nos. 3–4, pp. 109–125, 2003.

[5] J. Lee, J. Ni, D. Djurdjanovic, H. Qiu, and H. Liao, ‘‘Intelligent prognostics
tools and e-maintenance,’’ Comput. Ind., vol. 57, no. 6, pp. 476–489,
Aug. 2006.

[6] R. S. Peres, A. D. Rocha, P. Leitao, and J. Barata, ‘‘IDARTS—Towards
intelligent data analysis and real-time supervision for industry 4.0,’’ Com-
put. Ind., vol. 101, pp. 138–146, Oct. 2018.

[7] T. Wuest, D. Weimer, C. Irgens, and K.-D. Thoben, ‘‘Machine learning in
manufacturing: advantages, challenges, and applications,’’ Prod. Manuf.
Res., vol. 4, no. 1, pp. 23–45, Jan. 2016.

[8] G. Köksal, I. Batmaz, and M. C. Testik, ‘‘A review of data mining appli-
cations for quality improvement in manufacturing industry,’’ Expert Syst.
Appl., vol. 38, no. 10, pp. 13448–13467, Sep. 2011.

[9] D.-S. Kwak and K.-J. Kim, ‘‘A data mining approach considering missing
values for the optimization of semiconductor-manufacturing processes,’’
Expert Syst. Appl., vol. 39, no. 3, pp. 2590–2596, Feb. 2012.

[10] D. Kim, P. Kang, S. Cho, H.-J. Lee, and S. Doh, ‘‘Machine learning-based
novelty detection for faulty wafer detection in semiconductor manufactur-
ing,’’ Expert Syst. Appl., vol. 39, no. 4, pp. 4075–4083, Mar. 2012.

[11] G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, and A. Beghi, ‘‘Machine
learning for predictive maintenance: Amultiple classifier approach,’’ IEEE
Trans. Ind. Informat., vol. 11, no. 3, pp. 812–820, Jun. 2015.

[12] J. Hebert, ‘‘Predicting rare failure events using classification trees on large
scale manufacturing data with complex interactions,’’ in Proc. IEEE Int.
Conf. Big Data (Big Data), Dec. 2016, pp. 2024–2028.

[13] D. Wu, C. Jennings, J. Terpenny, R. X. Gao, and S. Kumara, ‘‘A compar-
ative study on machine learning algorithms for smart manufacturing: Tool
wear prediction using random forests,’’ J. Manuf. Sci. Eng., vol. 139, no. 7,
2017, Art. no. 071018.

[14] Ó. Martín, M. Pereda, J. I. Santos, and J. M. Galán, ‘‘Assessment of
resistance spot welding quality based on ultrasonic testing and tree-based
techniques,’’ J. Mater. Process. Technol., vol. 214, no. 11, pp. 2478–2487,
Nov. 2014.

[15] M. Syafrudin, G. Alfian, N. Fitriyani, and J. Rhee, ‘‘Performance analysis
of IoT-based sensor, big data processing, and machine learning model
for real-time monitoring system in automotive manufacturing,’’ Sensors,
vol. 18, no. 9, p. 2946, Sep. 2018.

[16] K. Chen, H. Chen, L. Liu, and S. Chen, ‘‘Prediction of weld bead geometry
of MAG welding based on XGBoost algorithm,’’ Int. J. Adv. Manuf.
Technol., vol. 101, no. 12, pp. 2283–2295, 2018.

[17] T. Chen and C. Guestrin, ‘‘Xgboost: A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2016, pp. 785–794.

[18] E. Jabbar, P. Besse, J.-M. Loubes, N. B. Roa, C. Merle, and R. Dettai,
‘‘Supervised learning approach for surface-mount device production,’’ in
Proc. Int. Conf. Mach. Learn., Optim., Data Sci. New York, NY, USA:
Springer, 2018, pp. 254–263.

[19] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques.
Amsterdam, The Netherlands: Elsevier, 2011.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Oct. 2011.

[21] J. D. Rennie, L. Shih, J. Teevan, and D. R. Karger, ‘‘Tackling the poor
assumptions of naive bayes text classifiers,’’ in Proc. 20th Int. Conf. Mach.
Learn., 2003, pp. 616–623.

[22] M. A. Jabbar, B. Deekshatulu, and P. Chandra, ‘‘Classification of heart dis-
ease using K- nearest neighbor and genetic algorithm,’’ Procedia Technol.,
vol. 10, pp. 85–94, Jul. 2013.

[23] I. V. Z. E. Liobait, M. Pechenizkiy, and J. Gama, ‘‘An overview of concept
drift applications,’’ in Big Data Analysis: New Algorithms for A New
Socity. New York, NY, USA:Springer, 2016, pp. 91–114.

RICARDO SILVA PERES was born in Lisbon,
Portugal, in 1991. He received the M.Sc. degree
in electrical and computer engineering from the
Nova University of Lisbon, in 2015, where he is
also concluding the Ph.D. degree. Since 2014, he
has been a Researcher with UNINOVA–Centre of
Technology and Systems focusing on the develop-
ment of predictive manufacturing systems. He has
participated in several national and international
research projects including FP7 PRIME, H2020

PERFoRM, H2020 OpenMOS, and H2020 GO0D MAN. He has authored
over a dozen publications in high-ranked international scientific journals
and conference proceedings (peer-reviewed). His research interests include
predictive manufacturing, cyber-physical systems, artificial intelligence, and
multi-agent systems. He has also been a member of the IEEE IES Technical
Committee on Industrial Agents, since 2018.

VOLUME 7, 2019 79915



R. S. Peres et al.: Multistage Quality Control Using Machine Learning in the Automotive Industry

JOSE BARATA received the Ph.D. degree in
robotics and integrated manufacturing from the
Nova University of Lisbon, 2004. He is a Pro-
fessor with the Department of Electrical Engi-
neering, Nova University of Lisbon, and a Senior
Researcher with the UNINOVA Institute. He
has participated in more than 15 international
research projects involving different programmes
(NMP, IST, ITEA, ESPRIT). Since 2004, he has
been leading the UNINOVA participation in EU

projects, namely EUPASS, self-learning, IDEAS, PRIME, RIVERWATCH,
ROBO-PARTNER, and PROSECO. His main research interests are in the
areas of intelligent manufacturing with particular focus on complex adaptive
systems, involving intelligent manufacturing devices. In the last years, he
has participated actively in the research of SOA-based approaches for the
implementation of intelligent manufacturing devices (e.g., within the Inlife
project). He has published over 100 original papers in international journals
and conferences. He is a member of the IEEE Technical Committees on
Industrial Agents (IES), Self-Organisation and Cybernetics for Informatics
(SMC), and Education in Engineering and Industrial Technologies (IES).
He is also a member of the IFAC Technical Committee 4.4 (Cost Oriented
Automation).

PAULO LEITAO received the M.Sc. and Ph.D.
degrees in electrical and computer engineering,
both from the University of Porto, Portugal, in
1997 and 2004, respectively. He joined the Poly-
technic Institute of Braganca, in 1995, where he
is a Professor with the Department of Electrical
Engineering and Coordinator of CeDRI (Research
Centre in Digitalization and Intelligent Robotics).
His research interests are in the field of indus-
trial informatics, intelligent and reconfigurable

systems, cyber-physical systems, the Internet of Things, distributed data
analysis, factory automation, multi-agent systems, holonic systems, and
self-organized systems. He participates/has participated in several national
and international research projects (EU FP7 and H2020) and networks of
excellence. He has published four books and more than 200 papers in high-
ranked international scientific journals and conference proceedings (peer-
review). He is the coauthor of three patents and received four paper awards
at INCOM’06, BASYS’06, IEEE INDIN’10, and INFOCOMP’13 confer-
ences. He served as a General Co-Chair of several international conferences,
namely IEEE INDIN’18, SOHOMA’16, IEEE ICARSC’16, HoloMAS’11,
and IFAC IMS’10. He is a Senior Member of the IEEE Industrial Electronics
Society (IES) and Systems, Man, and Cybernetics Society (SMCS), past
Chair of the IEEE IES Technical Committee on Industrial Agents, and
member at-large of the IEEE IES Administrative Committee (AdCom). He
is currently the Chair of the IEEE Standards Association P2660.1 Working
Group.

GISELA GARCIA received the degree in environ-
mental engineering from Technical Superior Insti-
tute, Technical University of Lisbon, Portugal, and
the post-graduate degree in industrial engineering
from Faculty of Science and Technology of New
University of Lisbon, Portugal. She has beenwork-
ing in the automotive industry since 2005 as Lean
Manufacturing Specialist and as Project Manager.
Her current main activities are related with R&D
and Innovation Project Management, Government

Incentives Management, and Industry 4.0 Activities Coordinator. Her past
main activities were related with shop floor management, KPIs system
management, and product change management.

79916 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	MATERIALS AND METHODS
	CASE STUDY SPECIFICATION
	CHARACTERIZATION OF THE DATA SET
	ALGORITHMS FOR DEFECT CLASSIFICATION
	GAUSSIAN NAIVE BAYES
	K-NEAREST NEIGHBOURS
	XGBOOST
	RANDOM FOREST
	SUPPORT VECTOR MACHINE

	EVALUATION METRICS
	ACCURACY
	RECALL
	PRECISION
	F1 SCORE
	AREA UNDER THE RECEIVER OPERATING CHARACTERISTICS


	RESULTS
	LIMITATIONS OF THE APPROACH
	DISCUSSION AND CONCLUSIONS
	REFERENCES
	Biographies
	RICARDO SILVA PERES
	JOSE BARATA
	PAULO LEITAO
	GISELA GARCIA


