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Abstract 

At present, there are an increasing interest at industrial level by the N-methyl pyrrolidone (NMP) 

free polyurethane aqueous dispersion, due to the limitations posed to this solvent in the latest 

years in Europe. Among the several applications of coatings, the protection and decoration of 

objects is one of the most used. Decoration requires color control and new ways to generate 

long-lasting colors. However, these products are traditionally based on synthetic dyes, which 

have a lack of compatibility with the aqueous medium resulting in phase separation or 

agglomerations phenomena. Herein, the use of hydrophilic natural dyes can be envisaged as a 

viable alternative, once these dyes nature increases their compatibility with the aqueous medium, 

leading to the increasing of the final product stability along the time. In this context, the present 

work was devoted to the development of new eco-coatings based on natural dyes and in 

polyurethanes aqueous dispersions exempt of NMP. 

For this study, a polyurethane aqueous dispersion based on isophorone diisocyanate and 

propylene glycol polyol was synthesized. After, the dispersion properties like solids content, 

viscosity, pH and particle size were evaluated. Then, coatings added with carminic acid and 

spirulina blue dyes were produced by solvent casting, by incorporating dyes contents of 0.2, 0.5, 

1.0, 1.5 and 2.0% (w/w) into the dispersion. The films obtained after drying were characterized 

in terms of chemical structure by Fourier Transform Infrared Spectroscopy, which showed the 

lack of influence of the dyes chemical structure on the polyurethane films, even for the higher 

content tested. Differential Scanning Calorimetry evidenced the effect of the dye on the films 

thermal behavior, once when 2% of dyes were added, the values of melting temperature (Tm) 

and the melting enthalpy variation (ΔHm) increased for values higher than the base film. 

Thermogravimetric Analysis showed an increase of the film’s thermal stability as the dyes 

content was increased. The colorimetric analysis was made in order to inspect the color variation 

due to the dye type and content used. By comparing the base film color with the dyed films, an 

increasing on the color variation was detected for both dyes. However, for the films containing 

Spirulina blue this increased with the dye content rising, reaching a maximum value of 65.58 for 

2%Sp. In opposition, for carminic acid, the color variation reached a maximum value of 70.62 

for 1.0%Cr, being constant for the higher dye contents. In a general way this study evidences the 

positive effect of the utilization of natural dyes together with friendly polyurethane aqueous 

dispersions for the production of innovative coatings. 

 



    

 
 

 

Resumo 

Atualmente, a nível industrial regista-se um interesse crescente na utilização de dispersões 

aquosas de poliuretano isentas de N-metil pirrolidona (NMP), devido às limitações impostas a 

este solvente na Europa, nos últimos anos. Entre as diversas aplicações dos revestimentos, a 

proteção e decoração de objetos é uma das mais utilizadas. A decoração requer o controlo das 

cores e novas formas de gerar cores duradouras. No entanto, estes produtos são tradicionalmente 

baseados em corantes sintéticos, os quais apresentam falta de compatibilidade com o meio 

aquoso, resultando em fenómenos de separação de fases ou de aglomeração. Neste contexto, o 

uso de corantes naturais hidrofílicos pode ser considerado como uma alternativa viável, uma vez 

que a natureza destes aumenta a sua compatibilidade com o meio aquoso, incrementando a 

estabilidade do produto final ao longo do tempo. Neste contexto, o presente trabalho foi dedicado 

ao desenvolvimento de novos eco-revestimentos baseados em corantes naturais e em dispersões 

aquosas de poliuretanos isentas de NMP. 

Neste estudo, procedeu-se à síntese de uma dispersão aquosa de poliuretano baseada em 

diisocianato de isoforona e propilenoglicol. Seguidamente avaliaram-se as seguintes 

propriedades da dispersão: teor de sólidos, viscosidade, pH e tamanho de partícula. Na etapa 

seguinte produziram-se filmes base (sem corantes) e modificados através a adição dos corantes 

ácido carmínico e azul da spirulina, pelo método de solvente casting, incorporando os seguintes 

teores 0,2, 0,5, 1,0, 1,5 e 2,0 % (m/m). Os filmes obtidos após a secagem foram caracterizados 

em termos de estrutura química por Espectroscopia de Infravermelho com Transformada de 

Fourier, que mostrou a ausência de contribuições da estrutura química dos corantes nos filmes do 

poliuretano, mesmo para o maior teor testado. Através da Differential Scanning Calorimetry 

verificou-se que o efeito do corante no comportamento térmico dos filmes resultou no 

incremento de temperatura de fusão (Tm) e entalpia de fusão (ΔHm), dado que quando se 

incorporou 2% dos corantes estes aumentaram para valores superiores aos obtidos para o filme 

base. A análise termogravimétrica mostrou um aumento da estabilidade térmica dos filmes com o 

incremento do teor de corantes. Através da análise colorimétrica avaliou-se a variação de cor 

devido ao tipo de corante e ao teor utilizado. Ao comparar a cor dos filme de base com a dos 

filmes modificados com o corante, verificou-se um aumento da variação de cor, para os dois 

corantes testados. No entanto, para os filmes contendo azul da spirulina, esta variação aumentou 

com o incremento do teor do corante, atingindo um valor máximo de 65,58 para a amostra 2% 



    

 
 

Sp. Em oposição, para o ácido carmínico, a variação de cor atinge um valor máximo de 70,62 

para 1,0% de Cr, sendo constante para os teores mais elevados.
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1 Motivation and objectives 
 

Coatings are polymeric materials used as protective and embellishment agents of several 

substrates that are expected to maintain its properties along many years under aggressive 

environments. However, the coatings industry is known by the environmental damage provoked 

during the products manufacture and application. In order to overcome these drawbacks, the 

efforts made by the regulatory agencies together with the researcher’s, improved the 

environmental footprint of the coatings industry over the last several decades. Significant 

reductions in hazardous air pollutants, releases of volatile organic compounds (VOCs) and 

hazardous waste have been reached, mainly due the turnover for the usage of water based 

polymeric materials.  

In fact, the use of environmentally friendly coatings technologies such as waterborne, powder 

and high solids materials have been increasing. Herein, coatings based on polyurethane aqueous 

dispersions were one of the greener alternatives found. Presently, there are an increasing interest 

at industrial level by the N-methyl pyrrolidone (NMP) free dispersions, due to the limitations 

posed to this solvent in the latest years in Europe.  

Additionally, one of the traditional application of coatings involve the protection and decoration 

of objects. Decoration requires color control and new ways to generate long-lasting colors. 

However, these decorative coatings are conventionally based on synthetic dyes, which 

incorporated into the coatings by mixing, as a post-formulation. One of the major issues related 

with this strategy is the lack of compatibility of the dyes with the aqueous medium that result in 

phase separation or agglomerations phenomena. Herein, the use of hydrophilic natural dyes can 

be envisaged as an interesting alternative, once these dyes nature increases their compatibility 

with the aqueous medium, leading to increasing of the final product stability along the time. 

Moreover, natural dyes are known by possessing interesting properties such as antimicrobial or 

antioxidant activities, which can impart novel properties to the coatings, namely increase the 

lifetime due to the reduction of the oxidative phenomena that affect the polymer or to confer 

antimicrobial properties to the coating, beyond the coloring effect. In this context, the present 

work will be devoted to the development of new eco-coatings based on natural dyes and in 

polyurethanes aqueous dispersions exempt of NMP.  

 

The work will be organized in the following stages: 
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● Selection of the natural dye and synthesis of the polyurethane aqueous dispersions using 

the modified pre-polymer process in order to obtain an NMP-free product; 

● Characterization of the polyurethane dispersions in terms of the properties more 

interesting for the final application, namely by evaluating the solids content, pH and 

viscosity; 

● Preparation of the dyed coating by mixing the selected dye with the final dispersion 

(post-formulation), testing different dye concentrations. 

● Characterization of the coating dyed films in terms of chemical structure, thermal 

behavior and stability. Moreover, the color of the final coating’s films will be also 

evaluated. 

In order to achieve these objectives, the following sections will be devoted to the bibliographic 

revision of the main coatings used, with a particular focus on the water-based polyurethane 

coatings, synthesis process and main properties, as well as the conventional strategies used for 

dyes incorporation into the coatings and the methodologies used for the coatings 

characterization. 
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2 Literature review 
2.1 Water-based coatings 
 

Coatings are used in different areas of everyday life. They are used mainly for two purposes: (1) 

the protection of materials from chemical and physical external attacks, and (2) decoration of 

objects in order to impart an attractive appearance. The protective function includes resistance 

against weather damage, decay and corrosion, combined with improved superficial mechanical 

properties, such as greater impact and abrasion resistance. The decorative effect may be obtained 

through color, gloss or texture or a combination of these properties. 

Table 1 presents a summary of the different types of waterborne coatings. The advantages of 

these products use are related with good propertied under the final application conditions and 

with their environmentally friend chemical character. The following advantages can be 

mentioned: 

♦ Good resistance to heat and abrasion; 

♦ Provide excellent adhesion; 

♦ Low toxicity and flammability due to low VOC emissions; 

♦ Comparatively to solventborne counterparts, less coating is required to cover the same 

surface area; 

♦ The accessories used for the coating application can be cleaned easily with water or 

water-based solutions and do not require organic solvents; 

♦ Can be applied by conventional application techniques such as brush or spray. 
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Table 1 Types of waterborne coatings 

Types of water-based 
coating Applications Properties 

Waterborne Epoxy 
Food and beverage 

facilities areas (Hart S et 
al, 1996). 

Durable finishing; 
Corrosion, impact and 

abrasion resistant; 
Low odor 

Metal Acrylic 

Construction in general; 
Interior or exterior areas 
where color and gloss 

retention are important. 

Resistant to corrosion, 
chemicals, u/v light, 

fumes, some acids and 
alkalis; Excellent adhesion 

to substrate without 
primer. 

Waterborne Acrylic 
High light reflectance areas 

Structural steel; 
Wood  

High flashpoint; 
Low odor. (Fleischmann et 

al, 2015). 

Water Reducible Emulsion Interior wall paint; 
Woodwork; 

Available in white only; 
VOCs exempt; 
Easy to clean; 

Low odor. 

Water Reducible Alkyds 

Steel, aluminum, and 
plastics; 

General purpose primers 
and topcoats. 

Similar gloss, flow, and 
leveling properties to the 
solvent-based alkyd; Easy 

cleanup. 

Acrylic-Epoxy Hybrids 

General metal finishing 
with good hardness, 

flexibility, and corrosion 
resistance. 

Short pot life; Formulation 
based on of two or three 

components. 

Polyurethane Dispersions 
Primarily wood finishing; 
metals, textiles, leather, 
glass, and rigid plastics. 

Low VOCs;  

 

 

2.2 Coating based on water-based polyurethanes      
 

Among the several waterborne products, the water-based polyurethane coatings are having a 

great attention in the latest years. The main motivation for this growth is related with these 

products low toxicity and environmentally friendly character once they have only residual 

amounts or are completely exempt of solvents and volatile organic compounds (VOCs).  In 

addition, these products have a comparable or even superior performance towards the solvent-

based counterparts (Hart et al,1996). 
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Polyurethane dispersions (PUDs) or water-based polyurethanes (WBPU) are an important and 

versatile group of products that can be used as inks, or protective or decorative coatings. 

Technical quality has improved dramatically during the past decade due to the development of 

the dispersion technology, formulations, and application techniques. Plus, current or pending 

legislation is imposing the reduction of the VOC release (Falco, 2007).  

Regarding the application field, due to the versatile properties, WBPU are used from highly 

flexible to tough coatings for textiles and leather or hard coatings for the protection of wood, 

metal, concrete, and plastic surfaces, among others (Hart et al, 1996). The coatings properties 

imparted are related with glossiness, transparency, flexibility impact resistance, abrasion 

resistance, non-flammability, and adhesion to most substrates. Important applications include 

wood lacquers, plastic coating and paints (Fleischmann et al, 2015). 

Considering the synthesis of the WBPU, chemically speaking, the polyurethanes are polymers 

containing the urethane (or carbamate) group, which is generated through the reaction of the 

isocyanate group (NCO) with the hydroxyl group (OH). This reaction can be based on 

compounds containing two or more isocyanate groups with another bi- or polifunctional alcohol, 

usually named polyol. The diversity of the polyurethane properties is related with the wide range 

of raw-materials that can be used for its synthesis (Falco, 2007). Beyond the OH group, the NCO 

group presents also reactivity with amines forming ureas, with water that generates an amine and 

CO2, and also with organic acids generating amines and CO2. Nevertheless, the NCO can also 

react with urethane group forming allophanates and with urea groups resulting in biurets. 

However, these reactions correspond to the formation of chemical crosslinking, which must be 

avoided when linear polyurethanes are required (Fernandes, 2017).  

The WBPU are a type of polyurethanes that have the particularity of being water-compatible, in 

opposition with the other classes of this polymer. This is achieved through the incorporation of 

hydrophilic ionic moieties into the polyurethane molecular structure, rendering a molecular 

structure were hydrophilic points are distributed into hydrophobic chains. WBPU are defined as 

binary colloidal systems in which the PU particles are dispersed in a continuous aqueous phase 

(Kim, 1996). These polymers present a particular property: the viscosity is independent on the 

polymer molecular weight, being related with the dispersion particle size. WBPU present a film 

forming mechanism dependent of the water evaporation and polymer crystallization (Santos, 

2018). WBPU can be produced by using long-chain polyehter, polyester or polycarbonate 

polyols, diisocyanates (usually aliphatic ones in order to reduce the reactivity towards the water 
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during the dispersion stage), low molecular weight glycols and/or diamines, bis–

hydroxycarboxylic acids (internal emulsifier) and a neutralizing base (Kim, 1996).  

In what concerns the main processes used for WBPU synthesis, the acetone and the prepolymer 

processes are typically employed. Both processes have the following stages: 

♦ Synthesis of an NCO-terminated prepolymer in bulk;  

♦ Prepolymer dispersion in water;  

♦ Chain extension. 

In the acetone process, a prepolymer ended in NCO groups is prepared using acetone as solvent. 

Then, the next stage corresponds to the chain extension, where a sulphonated diamine is used as 

chain extender and also internal emulsifier. After, in the next stage, the dispersion in water is 

formed by adding this solvent to the polymer solution under stirring. The last stage corresponds 

to the acetone removal by distillation in order to obtain the WBPU (Pérez-Limiñana et al., 2006).  

In the case of the prepolymer process, the polyurethane terminated prepolymer is synthesized in 

the first stage, where the hydrophilic groups are introduced on the polymer molecular structure. 

Here, the polyol, the dimethylol propionic acid (DMPA) bused as internal emulsifier (dissolved 

in N-methyl-2-pyrrolidone (NMP)), the diisocyanate and the catalyst are putted into the reaction 

vessel. The solvent NMP is required for the DMPA dissolution, due to its low solubility in the 

reactive medium. The reaction temperature is usually set at 80°C. After, the next stage 

corresponds to the ionic group’s neutralization at a temperature between 30-60°C, by adding a 

tertiary diamine. This reaction ionizes the acid groups of DMPA forming ionic sites. Then, the 

prepolymer dispersion in water is formed by adding this solvent under vigorous stirring. 

Afterwards, the chain extension is made by adding a diamine in order to react with the residual 

NCO groups available on the prepolymer (Santos, 2018). Regarding the use of NMP, this solvent 

has a boiling point around 200°C and will remain in the final dispersion. However, the use of this 

solvent was limited by the European Commission due to its recent classification as carcinogenic, 

mutagenic and toxic for reproduction. Here, products with more than 5% of NMP are classified 

as toxic, and those containing less than 5% are labeled as irritant, since 2015. This imposition 

resulted on the development of new process for WBPU synthesis. In this sense, a new process 

was developed, by modifying the traditional prepolymer process. Here, the modification of the 

prepolymer synthesis stage was done, allowing the addition of the pre-neutralized DMPA in 

acetone (DMPA was previously dissolved in acetone in the presence of the neutralizing agent, 

triethylamine). Then, due to the low boiling point of acetone, the prepolymer synthesis stage was 
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divided in two steps: (1) Reaction of the polyol with the isocyanate at 80°C; (2) Reaction of the 

pre-neutralized DMPA with the residual isocyanate from step (1) at 55°C. The following stages 

of the process correspond to the prepolymer dispersion in water and the chain extension. A last 

stage of acetone removal was introduced (Fernandes, 2017). This process is drawn in Figure 1. 

 

 
Figure 1 Schematic representation of the modified pre-polymer process (Adapted from Fernandes, 2017). 

 

3 Strategies used for dyes incorporation into the coatings  
 

The formulation of dyed polymers is a research field of great potential with regard to high-

performance materials. Colored polymers have become increasingly important as materials for a 

miscellaneous of technical applications in recent years.  

Dyes are coloring agents widely used in the textile, pharmaceutical, food, cosmetics, plastics, 

among others. The colored coatings are mainly produced by two approaches: through the dye 

post-mixing into the polymer before the application or by imbedding the dye into the polymer 

molecular structure, by chemical reaction, during the polymer synthesis.  

The first approach is widely used once it allows the usage of a variety of colors, by preparing the 

coating: dye mixture according to the intended color. This process have advantages once the dye 

can it be easily added, and it is simple and low cost to implement. However, the main drawbacks 

associated to this process are related with the lack of chemical bond between the dye and the 
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polymer, once it is only attached by means of physical interactions and the absence of chemical 

compatibility between the dye and the coating solution, can limit the pot life of the mixture (Van 

Der Schueren L et al, 2013).  Despite this, no publications were found about the use of this 

procedure with natural dyes. Their hydrophilic nature can result on an increasing of the water-

based coating:dye compatibility, rendering better dispersion into the coating film. 

Regarding the imbedding the dye into the polymer molecular structure, by chemical reaction the 

dye-containing polymers are an important class of coatings with a comprehensive scope and a 

focus on azo, triphenylmethane, indigoid, perylene and anthraquinone dyes, which chemical 

structure is shown in Figure 2.  

 
Figure 2 Characteristic representatives of (a) triphenylmethane dyes, (b) azo dyes, (c) anthraquinone dyes, 

(d) perylene dyes, and (e) indigoid dyes (Adapted from Fleischmann et al, 2015). 

 

There are several approaches towards the preparation of such materials. The binding modes 

leading to the formation of dye-polymer conjugates can be either covalent or non-covalent 

(Figure 3). While the first approach obviously requires the formation of covalent bonds, non-

covalent binding can occur through different kinds of interactions such as ionic and dipole–

dipole interactions or through the formation of inclusion complexes. 

 
Figure 3 Schematic illustration of non-covalent dye binding to polymers (Adapted from Fleischmann et 

al, 2015). 
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Due to the large number of polar substituents that enable the formation of dipolar interactions 

with adequate substrates, sugar-based macromolecules are suitable materials for the 

supramolecular attachment of dyes. Such oligo-/polysaccharides can be obtained from natural 

products (e.g., starch, cellulose, chitosane) or from chemical linkage of monomeric subunits and 

are therefore readily accessible. The efficient adsorption of anionic azo dyes bearing sulfonate 

moieties to starch and β-cyclodextrin polymers was reported (Ozmen, E.Y et al, 2008). In the 

underlying studies, the polymers were prepared by crosslinking of β-cyclodextrin and starch, 

respectively, with hexamethylene diisocyanate. For both types of polymers, the main effects 

resulting in adsorption of the dyes were found to be hydrogen bonds formed between hydroxyl 

and amine groups located at polymers and the sulfonate moieties of the azo dyes. Additionally, 

cyclodextrins are known to form inclusion complexes with several azo dyes, and the formation 

of host guest complexes was therefore expected to contribute to the dye sorption of 

corresponding cyclodextrin-based polymers. The format.ion of such supramolecular complexes 

was verified, but a strong pH dependence was found and the whole effect was found to be 

inferior to the hydrogen bonding. 

Besides the sugar-based materials discussed above, several other polymers were found to 

establish interactions with the dye molecules through ionic or dipol–dipol interactions. For 

instance, polymers formed via electrostatic self-assembly were described (Guan, Y.; et al, 2005). 

Fiber-like polymeric materials were formed from the combination of a positively charged 

perylenediimide derivative and a negatively charged copper-phthalocyanide derivative.  

The impregnation of poly (methyl methacrylate) (PMMA) with the azo dyes Disperse Red 1 and 

Disperse Orange 25 solved in supercritical carbon dioxide was investigated in 2003 (Ngo, T.T.et 

al, 2003). Supercritical carbon dioxide serves as a good alternative for water in transporting the 

dye molecules, while acting as a swelling agent for the polymer at the same time. Adsorption of 

the dyes to the polymer was found to occur via hydrogen bonding or dipole–dipole interactions.  

However, it was revealed that relatively strong dye–dye interactions hinder the diffusion process. 

A solution to this problem was found by using a dye mixture. In that case, the intramolecular 

dye–dye interactions dominate the dye–polymer interactions, and accordingly, the diffusion rate 

is higher compared to the pure dyes. PMMA was employed for the non-covalent incorporation of 

dyes as well (Müller, M et al, 2000).  

These methods can be considered as tailor-made solutions, once only specific colors can be 

added during the syntheses, meaning that the final user cannot formulate the color according to 
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his taste or requirements. Moreover, these products are usually developed for specific 

applications under high demanding performance conditions. (Broadbent et al, 2001, Zollinger et 

al, 1999).  

3.1 Chemical systems considered as suitable for coatings production 
 

Generally, the strategy adopted for developing polymeric dyes is usually to physically mix the 

dyes with polymeric matrices, where ionic bonds, hydrogen bonds or Van der Waals forces are 

expected to be established, depending on the used dyes. However, there is a thorny problem that, 

with time elapsing, the dyes may migrate and aggregate, leading to color fading of materials due 

to the noncovalent bond interaction between matrices and dyes.  

Moreover, plenty of black dyes containing benzidine groups have a potential risk to humans and 

environment. Therefore, low-toxic and environmentally friendly alternatives are of great 

importance. (Wang et al, 2008). 

An effective method to solve the problem is to chemically link the synthetic dyes to polymeric 

main chains (Alemdaroglu, F.E et al, 2009) or side chains (Tang, B et al, 2006) by various 

chemical reactions, being currently named as polymeric dyes. Generally speaking, polymeric 

dyes are safe and nontoxic for humans because they cannot be absorbed by skin owing to their 

large molecular dimension, excellent chemical and thermal stability. Moreover, polymeric dyes 

with tunable molecular structures exhibit great compatibility and strong binding force within the 

polymer chemical structure. In the past decades, many researchers have been devoted to the 

research about polymeric dyes. For example, in the 1980s, Marechal et al. studied systemically 

on polymeric dyes for the first time (Marechal, E et al, 1980, Libert, C et al, 1980).  

Recently, many polymeric dyes have been prepared by incorporating chromophore groups (the 

molecular group that imparts color to the compound) into common polymeric materials, such as 

polyacrylates, polyethlene and polyamide, in order to enlarge the application fields (Deng, Y, et 

al, 2013).  

Waterborne polyurethanes (WPUs) as a kind of highly versatile polymeric material with 

excellent environment-friendly and low-toxic properties have been widely used as coatings, 

leathers, adhesives, and paints (Zhou, C et al, 2015). By a facile polycondensation reaction, a lot 

of colored WPUs are developed by chemically incorporating the dyes into polyurethane matrices 

(Mao, H et al, 2015). As example, a series of novel black WPU dyes with different ratios of 

black dye, Sudan Black B,were prepared by a polycondensation reaction, resulting in films with  
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good migration and heat resistance, storage stability, while, at the same time, not causing 

significant aggregation or separation between the dye and the WPU matrices. Besides, Black 

WPUs with different polymeric diols was also investigated, in order to develop black metal 

coatings, with excellent performance. 

 

3.2  Examples of typical formulations of coatings 
 

Considering the WBPU synthesis, up to date, most of the raw materials (polyols, isocyanates and 

chain extenders) are derived from petrochemical feedstock (Alam et al., 2014; Zhu et al., 2016).  

With the depletion of the world crude oil stock and increasing environmental concerns, efforts on 

a global scale are dedicated to find a renewable resource (such as cellulose, natural oils, lignin, 

and so on) for bio-based polyurethanes to replace petroleum-based counterparts (Gaikwad et al., 

2015; Zhang et al., 2014).   

Vegetable oils as a kind of typical renewable biomass resources are among the most promising 

for polyol synthesis due to its low cost, and readily available (Pawar et al., 2015). Vegetable oils 

are triglyceride of fatty acid that usually bears 12–22 carbon atoms and 0–3 carbon–carbon 

double bonds. Except for castor oil, most vegetable oils do not contain hydroxyl groups 

(Gurunathan et al., 2015). The reactive ester and carbon–carbon double bonds in triglyceride oils 

offer several routes to introduce hydroxyl groups necessary in polyols for PU synthesis, 

including epoxidation/ring opening, ozonolysis/reduction, hydroformylation/reduction, 

transesterification, thiol-ene click reactions (Bullermann et al., 2013; Feng et al., 2017; Zhang et 

al., 2013). According to Zhang and co-workers, anionic and cationic PU dispersions have been 

synthesized from different vegetable oil-based polyols. It is found that the hydrophobic nature of 

triglycerides and long fatty acid chains endow PU films excellent chemical and physical 

properties, including enhanced hydrolytic stability, flexibility and toughness (Zhang et al., 2017). 

Lu et al. successfully prepared soybean oil-based cationic waterborne PU films with tensile 

strengths from 5.7 to 23.2 MPa and elongation at break from 235 to 291% . Moreover, the effect 

of polyols functionalities on the size of the polyurethane particle and the thermo-mechanical 

properties of the PU films were studied and discussed (Lu and Larock, 2010). 

Fu and his co-worker synthesized a castor oil-based anionic waterborne PU film with a high 

flexibility (1 mm) and excellent chemical resistance (1.75% water absorption and 90% toluene 

absorption for 168 h) (Fu et al., 2014). Saalah et al. investigated the effect of the OH number, 
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DMPA content and hard segment content on the stability of the anionic waterborne PU 

dispersions from jatropha oil, as well as the physical, mechanical and thermal properties of the 

resulting films. The resulting PU film exhibited excellent hydrophobicity, with a contact angle of 

90° or more, indicating a nonwetting surface (Saalah et al., 2015).  

Considering the dyes incorporation, a series of polymeric dyes have been synthesized using 

anthraquinone and azo dyes as chromophores and epoxy, polyurethane, and polyvinylamine as 

polymer skeletons, to overcome the limitations of the original dyes. For example, the new 

polymerizable anthraquinone dyes were employed as comonomers and reacted with styrene, 

butyl acrylate and methacrylic acid via the semicontinuous emulsion copolymerization to prepare 

red and yellow polymer latexes (B. Li et al, 2012).  

The resultant films exhibited better light fastness than the non-covalently colored latex films. In 

another study the stilbene chromophore and azo carboxyl diol were separately introduced into 

polyurethane chains to obtain polyurethane cationomers/anionomers. The resultant polyurethane 

exhibited good film-forming ability and their chemical structure can be photochemically induced 

to a high level upon UV light exposure ( Buruiana, et al, 2001). Nevertheless, most of 

polyurethane polymeric dyes are based on covalent bonding by fluorescent dyes in relation to 

fluorescence investigations and photoelectric materials (D. W. Kim, et al, 2002).  

The anthraquinone polyurethane have good adhesion to polymeric and glass surfaces and good 

film forming ability. A dyed silicon-containing anionic waterborne polyurethane was synthesized 

via grafting a reactive dye into a waterborne PU polymer, which displayed lower dye migration 

and greater light fastness (Wang et al, 2003). However, reactive dyes usually show complicated 

structures which limit their reactivity towards the terminal isocyanate groups of the prepolymer, 

leading to their low concentration in the final PU. 

4 Synthetic vs natural dyes  
 

  Natural dyes can be extracted from plants leaves, fruits, vegetables, and flowers or from insects, 

bacteria and fungi (Fleischmann, C, et al, 2015). 

Additionally, since time immemorial human beings have associated product qualities with their 

colors, this is especially true for meals. Historically, at the beginning of the food industry, the 

consumers were not worried about the nature of the dyes used in food coloring (natural or 

synthetic), but recently people have shown concerns related with these coloring agents.  
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Based on this framework, the use of natural dyes can be considered as a viable route to develop 

friendly alternatives. Natural dyes are derived from plants, animal, or mineral sources without 

any synthetic chemical treatment. One of the great parts of the natural dyes is vegetable-based 

being extracted from roots, berries, bark, leaves, and wood. Some filamentous fungi strains are 

also dye producers.  

However, the main disadvantages of using natural dyes is related with their low stability under 

pH or temperature variations, depending on their groups. The natural dyes can be divided into 

four groups, according to the contained colouring substances: betalains, anthocyanins, 

carotenoids and carminic acid. Betalains are dyes with good stability under different pH values, 

presenting however a low thermal stability. Anthocyanins are highly unstable when subjected at 

pH variation, once their color varies from purple at acid pH to blue at pH around 10. Carotenoids 

have a good stability under pH variation from acidic to basic, having a low thermal stability. 

Carminic acid is, in its turn, stable under temperature variation and unstable under pH variation. 

Regarding the nature, carotenoids are hydrophobic compounds while betalains, anthocyanins and 

carminic acid are hydrophilic compounds. Considering the application of these dyes into WBPU 

coatings formulations, only the hydrophilic compounds can be considered as being an 

alternative.  

 

5 Coating characterization methodologies 
 

The variety of physical and chemical properties of coatings is determined by evaluating their 

thickness, structure and chemical composition. A fundamental understanding of coating 

properties requires a good knowledge of these parameters. Properties such as chemical structure 

can be evaluated by Fourier Transform Infrared Spectroscopy (FTIR) where contributions from 

the polymer and the dye chemical structure can be identified.  

Thermal characterization is useful to understand the effect of the dye addition onto the polymeric 

film thermal behavior, with particular interest, when these materials are intended to be used 

under heat exposure. Moreover, the molecular weight analysis can be also important as it can be 

related with the mechanical resistance. Other properties like dye migration after the coating 

exposure under specific ambient conditions can be also useful for preview their behavior under 

real conditions application. 
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Regarding the evaluation of the dye effect on the coating color, colorimetric assays can be made, 

in order to evaluate the color variation according the dye concentration. Here, the color of each 

sample can be compared with a base coating without dye; this analysis is made by using a 

colorimeter. This can be done based on the CIELAB (also known as CIE L*a*b* or sometimes 

abbreviated as simply "Lab" color space) color space specifications (Velmurugan, P., et al, 2010) 

The 1976 formula is the first formula that related a measured color difference to a known set of 

CIELAB coordinates. This formula has been succeeded by the 1994 and 2000 formulas because 

the CIELAB space turned out to be not as perceptually uniform as intended, especially in the 

saturated regions. This means that this formula rates these colors too highly as opposed to other 

colors. Given two colors in CIELAB color space, their comparison can be made according to 

equation (1): 

∆𝐸 = $∆𝑙& + ∆𝑎& + ∆𝑏&					(1)	
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6  Materials and Methods  
 Materials  

 

PUD synthesis process 

The PUD dispersion was synthesized using a propylene glycol polyol with molecular weight of 

2000 (PPG 2000) supplied by DOW chemical company (Midland, Michigan, USA). The internal 

emulsifier dimethylol propionic acid (DMPA) and the neutralizing agent triethylamine (TEA) 

were both supplied by Fluka (Milwaukee, USA). Isophorone diisocyanate (IPDI) was supplied 

by Alfa Aesar (Karlsruhe, Germany) and dry acetone was eused as solvent, while 1,2-ethylene 

diamine (EDA) was the chain extender, being both supplied by Panreac (Barcelona, Spain). 

Toluene from analytical grade and the catalyst tin (II) 2-ethylhexanoate (SO) were purchased 

from Sigma-Aldrich (St. Louis, USA). 2-propanol was obtained from Honeywell (Germany), n-

dibutylamine (DBA) and bromophenol blue were purchased from Riedel-deHaën (Seelze, 

Germany). The spirulina bleu and carminic acid dyes were kindly offered by ADM Wild Europe 

GmbH.  

Methods 

 

Synthesis of waterborne polyurethane dispersion  

Waterborne polyurethane dispersions was synthesized using the modified prepolymer method, 

developed by Fernandes and co-workers (2017). The prepolymer synthesis was done at a scale of 

100 g using a reactor previously designed for this purpose by the LSRE-LCM group (Figure 4). 

This system is composed by a 500 ml glass vessel and is equipped with a temperature, stirring 

and reactant’s addition control, and pH monitoring. 

The first stage of this procedure corresponded to the prepolymer synthesis, where the IPDI, the 

polyether-based polyol (PPG2000) and catalyst (SO) were put into the reactor and stirred at 200 

rpm, being heated at 80°C in order to start the prepolymer synthesis.  During the reaction, the di-

n-dibutylamine back-titration method was used for the NCO conversion (Appendix A). When the 

theoretical NCO conversion was reached, the reactor was cooled down to 50 °C in order to allow 

the addition of the pre-neutralized DMPA in acetone solution. This former was prepared by 

partially dissolving the DMPA (5%, w/w, pre-polymer basis) in 20 ml of dry acetone, under 

stirring, being TEA then added. After feeding this solution to the synthesis reactor, the reaction 

was maintained until the theoretical conversion to the NCO (typically 0.60) was reached. The 
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next stage corresponded to the dispersion of the prepolymer in water, at 25 °C. In this stage, the 

water was added at controlled flow rate under stirring at 500 rpm, being the total used volume 

100 ml. If viscosity constrains were noticed during the phase inversion process, more acetone 

was added to dilute the medium. The obtained dispersion was heated to 35°C and the stirring rate 

was decreased to 200 rpm.  

Then, the chain extension was made by adding an EDA aqueous solution (total volume of 25 ml) 

at a flow rate of 0.505 ml/min, being the amount of EDA calculated based on the NCO 

conversion achieved after the dispersion stage. This reaction was maintained during 2 hours, in 

order to promote the reaction of the NCO groups with the amine (NH2) groups of EDA.Finally, 

acetone was removed in a rotary (Buchi Rotavapor R114 (Flawil, Switzerland)) evaporator at 

50°C and 300 mbar, thus obtaining a dispersion with a solids content of around 35-40 wt%. 

 

 
Figure 4 Reactor designed by the LSRE-LCM group for the synthesis of aqueous polyurethane dispersion. 

 

 

 

 

 

Dispersion characterization  
 
Dispersions were characterized in what concerns solids content, pH, particle size and viscosity. 

 

● Solid content determination  
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            The solid content of the PUD was determined through the procedure described in the 

standard EN 827:1996 In this procedure a sample of around 1 g of dispersion was 

weighted before and after being dried in an oven at 100 °C for 1 h, in duplicate. At the 

end of this period, the sample was placed in a desiccator until it was cooled to ambient 

temperature, being then weighed at intervals of 30 minutes until 3 consecutive values 

with a difference of less than 2 mg was obtained. The residual mass of the last weighing 

(mf) is related with the initial mass according to Equation 2 

 

𝑠𝑜𝑙𝑖𝑑	𝑐𝑜𝑛𝑡𝑒𝑛𝑡	(%) = 	78
79
× 100      (2) 

 
● pH determination  

           The pH of the PUD depends directly on the free amine content in the dispersion. High pH 

values indicate the presence of unreacted amine exists in the dispersion. For this reason, 

the value of pH should be in the 7-8 range. The pH of the dispersion was measured 

according to with EN 1245: 1998, and the pH electrode (WTW, Weilheim, Germany) 

was calibrated using the standard solutions (4.01, 7.00) placed into the dispersion kept 

under stirring. The pH was registered when a constant value was achieved during 2 

minutes (Fernandes, I.P, 2008).  

 

● Viscosity determination  

The viscosity measurement is performed according to the procedure described in 

European standard EN 12092: 2001 using spindle used was TL5 (which requires a 

sample volume of 8 ml). The viscosities of the PUD were measured using a Visco Star 

Fungilab Brookfield viscometer (Barcelona, Spain) equipped with an Electro Temp 

heating/cooling bath to ensure a constant temperature during the measurement.  The 

viscosity of the PUD is directly dependent on the particle size and influences the product 

handling and film-forming capacity, thereby affecting the performance of the product in 

the final application. For this reason, the viscosity of PUD varies in wide ranges, 

depending on the application for which they are intended. The suitable shear rate should 

be chose based on the equipment % EOS (viscometer parameter), which must be above 

85%. When the measurement is complete, the viscometer has been stopped and left at 

equilibrium before a new measurement. The measurement is repeated for the same 
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sample until there are no more differences between two consecutive measurements 

greater than 3%. 

 

 

● The PUD particle size distributions 

The PUD particle size distributions (in number and volume) were measured by using a 

Malvern Mastersizer 3000 laser diffraction apparatus, equipped with a Hydro MV 

dispersion unit (Malvern, UK), using water as solvent. The obtained data was registered 

with Mastersizer software version 3.10. The results are presented as average values from 

five measurements. 

 

Dyes incorporation into the PUD 

Coating production through solvent casting  

 

Spirulina blue (Figure 5) or carminic acid (Figure 6) were selected as hydrophilic dyes for 

coatings production. Both dyes were supplied in powder form, containing maltodextrin as drying 

agent, being the dye content of 18.0% for spirulina blue and 11.50% for carminic acid.   PUD 

films with dye contents of 0.2, 0.5, 1.0, 1.5 and 2.0% (wdye/wPU), separately for each dye, were 

prepared in duplicated.  Base films from PUD and dyed films with carminic acid and spirulina 

blue were prepared by solvent-casting. Briefly, 15 ml of the PUD were added to a beaker. Then 

the required amount of dye, according to the information described in Table 3, was added to the 

PUD and the mixture was left under stirring using a magnetic plate until the dye was completely 

dissolved. After, this mixture was poured into a Teflon mold and allowed to dry at room 

temperature during 1 week.  Finally, films were dried at 60°C under reduced pressure (0.4 bar) 

for 1 day. The base films were produced by pouring the PUD directly into the mold, being after 

dried under the same conditions. The films were then stored in a desiccator before 

characterization. Waterborne polyurethane samples were coded as X% Spirulina blue or 

Carminic acid, where X referred to Spirulina weight content in the polyurethane dispersion, like 

for example 0.2%Sp. 
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Figure 5 Spirulina blue dye in powder form. 

 
 

Table 2 Spirulina Blue (Sp) and Carminic acid (Cr) dyes contents added to the PUD films. 

Dye content (%) Sp mass (g) Cr mass (g) 

0.2 0.013 0.014 
0.5 0.034 0.035 
1.0 0.066 0.070 
1.5 0.100 0.110 
2.0 0.130 0.140 

 

 
Figure 6  Carminic acid dye in powder form 

 

 

 

Film characterization  

Differential Scanning Calorimetry Differential Scanning Calorimetry (DSC) analysis were 

performed using a DSC 204 F1 Phoenix equipment from Netzsch (Figure 7).  Aluminum pans 
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containing 7-11 mg of sample film were heated from -80°C to 250°C under nitrogen atmosphere. 

The heating rate was 10°C/min.  

 

 
Figure 7 Differential Scanning Calorimeter, DSC 204 F1 Phoenix. 

 

Colorimetry analysis 

Colorimetric analysis was carried out using a CHROMA METER CR-400 from Konica Minolta, 

shown in Figure 8.  This method allows the evaluation of color between samples. The color 

variation (ΔE) measured color difference based on the CIELAB coordinates and is calculated 

using the Equation (1):  

 

∆𝐸 = $∆𝑙& + ∆𝑎& + ∆𝑏&			(1)	
 

Where: ΔL, Δa and Δb values provide a complete numerical description of the color 

differences between a reference or standard and a 

sample ΔL represents a lightness difference between sample and the standard. 

● Δa represents a redness or greenness difference between the sample and the standard. 

Δb represents blueness-yellowness difference between the sample and the standard.  
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Figure 8 CHROMA METER CR-400 from Konica Minolta used to measure the color of films. 

 
 

Fourier Transform Infrared Spectroscopy (FTIR) 

The analysis of the films chemical structure was made by Fourier Transform infrared 
spectroscopy (FTIR) using a MB3000 spectrometer from on ABB Inc operating in ATR mode 
(ATR cell equipped with a diamond crystal).  The spectra acquisition was made by co-adding 32 
scans, with a resolution of 16 cm-1, between 4000-550 cm-1, using the software Horizon MB 
v.3.4. Baseline correction was performed.  
 

 
Figure 9 Fourier Transform Infrared (FTIR) equipment used to the analyze the films chemical structure
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7 Results and discussion  
 

The production of the eco-coatings based on natural dyes and polyurethane aqueous dispersions 

(PUD) was divided in three sequential stages: 

1. PUD production through the modified prepolymer method. Here 4 synthesis assays 

were done in order to obtain 1L of dispersion. After the PUD properties (in dispersion form) 

were evaluated, by measuring the viscosity, solids contents, pH and particle size; 

2. Eco-coatings production and films characterization. Films of PUD alone and with 

added carminic acid and spirulina blue dyes were produced by solvent casting. Then the films 

were characterized in terms of chemical structure (FTIR) and thermal properties (DSC) and 

thermal stability (TGA) in order to evaluate the influence of the dyes on these properties. In 

addition, the color variation generated by the different dyes incorporation comparatively with the 

base PUD coating (without dyes) was measured.  

 

7.1 PUD characterization  
 

The solid content, pH and viscosity determined for the PUD (Figure 10) are described in Table 5.  

Regarding the pH a value of 7.37 was measured, being a typical value that confirms the success 

of the chain extension step, once the presence of free EDA will result in the pH increment 

(Fernandes, 2017; Santamaria Echart, 2017). In the case of the viscosity the mean value obtained 

was 177.52 mPa.s, being dependent of the dispersion particle, where lower sizes give higher 

viscosity values due to the increase of the particles interaction while larger sizes result in lower 

viscosity (Fernandes, 2017). With respect to the solids content, the value of 39.2% obtained is 

close to the commercial products in general. This solid content was expected, once the dispersion 

synthesis was made in order to maximize this content without impair the dispersion stability 

(Palloma, et al, 2018). 
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Figure 10 Typical white color of the produced PUD. 

 
 

 
Sample 

 
pH 

 
Viscosity 
(mPa.s)* 

 
Solid content 

(%, m/m) 

 
PUB 

 
7.37 

 
177.52 

 
39.23 

Table 3 Values of pH, viscosity and solids content obtained for the PUD. 

             

Particle size distribution  

The particle size distributions in volume and number of the PUD are shown in Figure 10. The 

mean values of the D10 D50and D90 percentiles are described in Table 6. 

Analyzing the PUD particle size distribution in volume (Figure 11 (a)), and in number 

distribution (Figure 11 (b)) two unimodal pattern were identified, being typical from this type of 

products (Fernandes, 2017).  The mean particle size based on the volume distribution is 1.15 µm 

(D50 mean value), while the obtained from the number distribution is 0.801 µm. These results 

are related with the internal emulsifier (DMPA) content (5%, w/w) used on this dispersion, 

which usually lead to products with mean particle sizes lower than 10 µm (Son et al., 1998). 
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Figure 11 Particle size distributions of PUD sample: (a) volume distribution and (b) number distribution. 

 

                                 Volume distribution                              Number distribution 

Sample D10 

(µm) 

D50 

(µm) 

D90 

(µm) 

D10 

(µm) 

D50 

(µm) 

D90 

(µm) 

 

PUD 

 

0.722 ± 

2.1x10-4 

 

1.150 ±  

2.5x 10-4 

 

1.840 ± 

3.0x 10-4 

 

0.570 ± 

2.1x 10-4 

 

0.801 ± 

2.6x 10-4 

 

1.260 ± 

3.0x 10-4 

Table 4 Values of D10, D50, and D90 obtained from volume number distributions of the PUD sample. 
 

 

7.2 PUD films characterization  
 

Analyzing the appearance of the films, which is shown in Figure 12 and 13, some remarkable 

differences can be noticed being related with the amount of dye incorporated. For PUD, a 

transparent film was obtained, being a typical aspect of this type of films. With the Spirulina dye 

incorporation, the films became bluer as the dye content increased from 0.2 to 2.0%. For the 

films produced with carminic acid a similar behavior was identified once the films became redish 

with the dye increment, meaning that the dye increase on the formulations results in the color 

intensification of the coating films.  
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Figure 12 PUD films with different amount of Spirulina dye obtained after drying 

 

 

 

Figure 13 PUD films with different amount of Carminic acid obtained after drying. 
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Considering the FTIR analysis, the spectra of PUD and Spirulina blue dyed PUD films and 

Carminic acid films are shown in Figure 14 and 15, respectively.The analysis of the Spirulina 

spectra shows a vibration centered at 3390 cm-1 that is related with the OH groups from 

phycocyanin (chromophore group) and maltodextrin, together with the contribution of the 

phycocyanin’s NH groups. The C=O from acid groups and NH stretching from amides II groups 

vibrations, both from phycocyanin, were identified at 1651 and 1542 cm-1. The presence of 

maltodextrin is identified due to the vibration centered at 1006 cm-1, being assigned to its 

polysaccharide’s structures.  

Considering the spectra of the pure PUD film, the following features can be assigned: the 

vibration detected between 3500-3100 cm-1 correspond to N-H of urethane and urea groups, 

while the peak around 1720 cm-1 is assigned to the C=O vibrations of the urethane, urea and 

DMPA acid groups (Santamaria Echart, 2017; Tsou et al., 2017). Moreover, the prominent peak 

identified between 1300-1000 cm-1 is attributed to the C-O vibration from PPG ether group. 

Additionally, the non-appearance of the vibration at 2270 cm-1 indicates the absence of the NCO 

groups, proving its complete conversion during the synthesis process. Analyzing the carminic 

acid FTIR spectra (Figure 15) the presence the OH vibration at 3390 cm-1 due to the contribution 

of both the carminic acid and maltodextrin is identified, together with the C=O and C=C 

vibrations both from anthraquinone structure, noticed at 1643 cm-1 and 1552 cm-1, respectively. 

The peak at 1006 cm-1 is due to the polysaccharide structures of maltodextrin.  Analyzing the 

spirulina dyed films, no major contributions of the dye can be observed on the film’s spectra, 

meaning that the dye is not chemically bound to the PUD structure. Also, the amounts of dye 

added are not enough to have significant contribution on the film spectra. For carminic acid 

films, the same behavior is identified.  
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Figure 14 FTIR spectra of Spirulina dye, PUD film and PUD films added with 0.2, 0.5, 1.0, 1.5 and 2.0% 

of Spirulina dye 
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Figure 15 FTIR spectra of Carminic acid dye, PUD film and PUD films added with 0.2, 0.5, 1.0, 1.5 and 

2.0% of carminic acid dye. 

 

Differential scanning calorimetry 

The thermal behavior of PUD film and films added with the different contents of the dyes  was 

evaluated by differential scanning calorimetry (DSC) being the obtained thermograms shown in 

Figure 16 and 17. The glass transition temperature (Tg), melting temperature (Tm) and melting 

enthalpy variation (∆Hm) of Spirulina and Carminic acid films are summarized in Table 8 and 9 

respectively.  

Looking to the values to the PUD base film, the values of Tg and Tm were -52.0°C and 99.1°C, 

respectively, while the enthalpy of 27.82 Jg-1 was registered. For the films containing 0.2, 0.5, 1, 

1.5 and 2% of both Spirulina blue and carminic acid, the Tg values were equal to the obtained for 

the PUB, meaning that no differences of the thermal behavior at low temperatures was achieved 

due to the dye incorporation. However, regarding the Tm values of the carminic acid films a 
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diminution for 94.0 and 90.7°C was registered for the 0.2 and 0.5%Cr samples, comparatively to 

the PUD film. In addition, a decrease from 97.0 to 94.3 was noticed for the samples 1.0 e 

1.5%Cr, while for 2%Cr the Tm value increased again for 98.5°C, being near to the one obtained 

for the PUB sample. For ∆Hm, the value registered for PUD film was 27.82 Jg-1. For the dyed 

films different patterns were found, depending on the amount and type of dye. For 0.2%Sp an 

increase of ∆Hm to 28.30 Jg-1, comparatively with the PUD film. However, as the dye content 

increased from 0.2% to 1.5%, the ∆Hm decreased until 24.33 Jg-1, increasing again until 31.40 

Jg-1 for the 2.0%Sp sample. For carminic acid the ΔHm value was 23.4 Jg-1, decreasing to a 

minimum value of 21.28 Jg-1 for the 0.5%Cr sample.  After, ΔHm increased as the dye content 

increased until the maximum value of 36.48 Jg-1 was reached for 2%Cr.  Analyzing these results 

it can be seen that both the Tm and the ΔHm values lowered until a minimum value when the 

dye content was 1.5%, being probably related with the dye distribution on the PUD molecular 

structure rearrangement, interfering with the hard segments organization, leading to a decrease of 

both the Tm and ΔHm, comparatively with the base PUD. However, when the dye amount was 

increased till 2%, an increment of both Tm and ΔHm was noticed, which might be attributed to 

the favoring of the hard segments rearrangement, leading to more organized structures that will 

result in both Tm and ΔHm increase. These observations are in good agreement with the findings 

of Santamaria-Echart and co-workers (2018) for other natural additives. 
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Figure 16 DSC thermograms of PUD film and PUD films added with 0.2, 0.5, 1.0, 1.5 and 2.0% of 

Spirulina dye. 

Table 5 Thermal properties of PUD film and PUD films added with 0.2, 0.5, 1.0, 1.5 and 2.0% of 
Spirulina blue. 

 

Sample 

 

Tg (°C) 

 

Tm (°C) 

 

∆Hm (Jg-1) 

PUD  -52.0 99.1 27.82 

0.2% Sp -52.2 94.1 28.30 

0.5% Sp -52.4 105.4 20.79 

1.0% Sp -52.7 95.3 21.70 

1.5% Sp -52.3 112.7 24.33 

2.0% Sp -52.2 104.5 31.40 
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Figure 17 DSC thermograms of PUD film and PUD films added with 0.2, 0.5, 1.0, 1.5 and 2.0% of 
Carminic acid. 

Table 6 Thermal properties of PUD film and PUD films added with 0.2, 0.5, 1.0, 1.5 and 2.0% of 
Carminic acid. 

 
 

sample 

 

Tg (°C) 

 

Tm (°C) 

 

∆Hm (Jg-1) 

PUD  -52.0 99.1 27.82 

0.2%Cr -53.8 94.0 23.46 

0.5%Cr -52.5 90.7 21.28 

1.0%Cr -52.9 97.0 23.76 

1.5%Cr -52.8 94.3 22.94 

2.0%Cr -52.7 98.5 36.48 
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Thermogravimetric analysis 

The TGA analysis was applied to evaluate the thermal stability of the dyes, the PUD film and the 

dyed films. The obtained results are registered in Table 9 and 10, while the TG and DTG curves 

are shown in Figure 20 and 21. Considering the Spirulina blue, two degradation stages are 

identified, where the first one occurs from 32 °C to 148 °C (mass loss 5.34%) was related with 

the water removal. Then, the second stage occurring between 148 to 419°C is due to the 

decomposition of phycocyanin and maltodextrin, corresponding to a mass loss of 54%. The final 

residue obtained at 750ºC is was 16.3%. 

Looking at the thermal degradation profile of the PUD film samples three main decomposition 

stages can be identified.  Where the first degradation stage starts at 191°C, being related with the 

urethane group decomposition. Next, the second degradation stage starting at 278°C, correspond 

to the urea decomposition, while the third one starting at 341°C is related with the soft segment 

decomposition. This is a typical degradation pattern of water-based polyurethane, since two 

different hard segments were formed during the synthesis, due to the reaction of the polyol and 

the diamine with the NCO, resulting on the formation of urethane.  

Analyzing the degradation pattern of the Spirulina blued dyed films, for 0.2%Sp sample, a 

displacement of the first and second degradation stages for higher temperatures is noted 

(maximum temperature of the PUB were 278 and 341°C, increasing to 274 and 324°C for the 

PUD 0.2%Sp, as it can be seen in Figure 18. This is also detected for the PUD 0.5%Sp, 1%Sp, 

1.5%Sp and 2%Sp samples and can be related with the dye incorporation, which contains 

compounds able to increase the thermal stability of the polymer (López-de-Dicastillo et al., 

2010; López-de-Dicastillo et al., 2011). The presence of the dye into the films is also visible 

through the residue obtained at 750°C, once for 2%Sp a final residue of 2.80%was registered, 

while for the PUB a total degradation was achieved at this temperature (Table 7).  

 

� Carminic acid’s films 

Analyzing the Carminic acid TG degradation pattern present two main stages, where the first one 

comprised between 32 and 105 °C, is due to the loss of the free water contained together with the 

water adsorbed by the maltodextrin, representing a mass loss of 6.24%. The second degradation 

stage occurs from 105 to 408 °C (mass loss of 52%) being related with the carminic acid and 

maltodextrin degradation. However, here two degradation stages can be distinguished, where the 
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first one occurred at 277 and 408 °C is typical of the maltodextrin decomposition, and the second 

starting at 164 °C corresponds to the carminic acid degradation. The final residue obtained at 750 

°C was 28.2%. 

Looking at the thermal degradation profile of the carminic acid dyed film’s 0.2%Cr, 0.5%Cr, 

1%Cr, 1.5%Cr and 2%Cr, three main decomposition stages can be identified. Analyzing the 

degradation pattern of the PUD 0.2%Cr sample, a displacement of the first and second 

degradation stages for higher temperatures is noted (maximum temperature of the PUD film 

were 278 and 341°C, increasing to 274 and 324°C for the 0.2%Cr), as it can be seen in Figure 

19. This is also detected for the PUD 0.5%Cr, 1%Cr, 1.5% Cr and 2%Cr samples and can be 

related with the dye incorporation, which contains compounds able to increase the thermal 

stability of the polymer (López-de-Dicastillo et al., 2010; López-de-Dicastillo et al., 2011). The 

presence of the carminic dye on the 0.2%Cr, 0.5%Cr and 1%Cr films is also visible through the 

residue obtained at 750°C, once for 2%Cr a final residue of 1.11% was obtained, while for the 

PUD film a total degradation was achieved at this temperature (Table 8). 

 

 

 

Figure 18 TG and DTG curves of the Spirulina dye, PUD film and Spirulina dyed films. 
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Table 7 Weight loss, initial (Ti), final (Tf) degradation temperatures, and residue at 750°C of the 
Spirulina dye, PUD film and Spirulina dyed films. 

 

Sample 

 

Residue 

 

Ti (°C) 

 

Tf 

 

Weight loss (%) 

 

Spirulina dye 

 

16.32 

148 

419 

600 

419 

600 

750 

63.26 

9.77 

5.13 

 

PUB base 

 

0.0 

191 

278 

341 

278 

341 

423 

7.12 

36.47 

53.54 

 

0.2%Sp 

 

1.03 

189 

274 

326 

274 

326 

469 

6.62 

22.49 

66.13 

 

0.5%Sp 

 

0.20 

202 

266 

326 

266 

326 

480 

5.02 

19.72 

71.10 

 

1%Sp 

 

5.48 

194 

276 

338 

276 

338 

481 

6.84 

19.99 

64.47 

 

1.5%Sp 

 

0.0 

190 

269 

333 

269 

333 

480 

6.05 

22.59 

67.18 

 

2%Sp 

 

2.80 

245 

326 

358 

326 

358 

480 

19.95 

19.64 

53.18 
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Figure 19 TG and DTG curves of the carminic acid, PUD film and carminic acid dyed films. 
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Table 8 Weight loss, initial (Ti), final (Tf) degradation temperatures, and residue obtained at 750°C for of 
the carminic acid, PUD film, and carminic acid dyed films. 

 

Sample 

 

Residue 

 

Ti (°C) 

 

Tf 

 

Weight loss (%) 

 

Carminic acid 

dye 

 

28.22 

105 

276 

398 

276 

398 

750 

16.9 

35.31 

13.16 

 

PUB base 

 

0.0 

191 

278 

341 

278 

341 

423 

7.12 

36.47 

53.54 

 

0.2%Cr 

 

0.0 

200 

283 

319 

283 

319 

480 

9.34 

13.08 

73.86 

 

0.5%Cr 

 

1.18 

191 

286 

345 

286 

345 

480 

10.52 

25.54 

59.07 

 

1%Cr 

 

0.34 

200 

281 

348 

281 

348 

481 

9.17 

32.46 

53.93 

 

1.5%Cr 

 

1.06 

200 

304 

357 

304 

357 

480 

14.63 

27.26 

52.29 

 

2%Cr 

 

1.11 

196 

281 

355 

281 

355 

479 

10.10 

28.79 

55.19 
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Colorimeter analysis 

The color variation was measured by comparing the color of the PUD film with the dyed films.  

Each sample was measured in three different zones and the L, a and b values described 

correspond to an average value.   The color coordinates and the respective variations values are 

detailed in Tables 9 and 10.  
For spirulina blue and carminic acid film’s color intensity varied according to the dye content 

added. It is known that ∆𝐸 values higher indicate that the color difference is visually appreciable. 

For Spirulina blue the color variation increase with the dye content rise, reaching a maximum 

value of 65.58 for 2%Sp, as it can be observed in Figure 18. However, for carminic acid, the 

color variation reaches a maximum value of 70.62 for 1.0%Cr, being constant for the higher dye 

content.   

 

Table 9 Color coordinates and respective variation obtained for the PUD film and the films dyed with the 
tested spirulina contents. 

Sample L* a* b* ΔL ΔL2 Δa Δa2 Δb Δb2 ΔE 

PUD 86.50 -0.60      9.60   -   -  -   -  -   -   - 

0.2%Sp 76.21 -0.47 3.50 -10.29 105.88  0.13 0.017 -6.10 37.21 11.96 

0.5%Sp 65.36 -0.33 -6.37 -21.14 446.89  0.27 0.073 -15.80 255.04 26.50 

1.0%Sp 54.37 2.02 -13.35 -32.13 1032.33  2.62 6.86 -22.30 526.70 39.57 

1.5%Sp 46.78 3.11 -27.97 -39.72 1577.67  3.71 13.76 -37.60 1411.50 54.80 

2.0%Sp 40.69 8.36 -36.46 -45.81 2098.55  8.96 80.28 -46.06 2121.52 65.58 
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Figure 20 Color variation of the film’s samples dyed with spirulina. 

 

Table 10 Color coordinates and respective variation obtained for the PUD film and the films dyed with 
the tested carminic acid contents. 

 

 

Sample L* a* b* ΔL ΔL2 Δa Δa2 Δb Δb2 ΔE 

Control 
sample 86.50 -0.60      9.60   -   -  -   -  -   -   - 

0.2%Cr 65.24 38.25 5.41 -21.26 451.99 

. 

38.85 1509.32 -4.19 17.55 44.48 

0.5%Cr 35.94 44.66 21.66 -50.56 2556.31 45.26 2048.48 12.06 145.44 68.92 

1.0%Cr 35.77 46.83 22.40 -50.73 2573.53 47.43 2249.60 12.80 163.84 70.62 

1.5%Cr 34.76 45.49 20.93 -51.74 2677.02 46.09 2124.29 11.33 128.36 70.21 

2.0%Cr 35.61 46.78 21.48 -50.89 2589.80 47.38 2244.90 11.88 141.13 70.54 
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Figure 21 Color variation of the film’s samples dyed with carminic acid.
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8 Conclusion and Future Work 
 

The main objective of the present work is to study the production of bio and eco-coating with 

based on natural dyes and polyurethane aqueous dispersions. For this study a polyurethane 

aqueous dispersion based on PPG was synthesized. After the characterization of the dispersion 

properties, namely solids content, viscosity, pH and particle size. Typical values were obtained, 

namely: Solid content: 39.23, pH: 7.37, Viscosity: 177.52, and the mean particle size based on 

the volume distribution is 1.15 µm (D50 mean value), while the obtained from the number 

distribution is 0.801 µm. Afterwards coatings modified with carminic acid and spirulina blue 

dyes were produced by incorporating dyes contents of 0.2, 0.5, 1.0, 1.5 and 2.0% (w/w) into the 

PUD. After drying, dyed films were obtained and characterized.  With respect to films 

characterization, the polyurethane chemical structure was confirmed through Fourier Transform 

Infrared Spectroscopy. Differential Scanning Calorimetry analysis confirmed the effect of the 

Dye (Spirulina or carminic acid) on the films thermal behavior, once when 2% of dyes were 

added, the values of melting temperature (Tm) and the melting enthalpy variation (ΔHm) 

changed. This behavior was attributed to the dye interference with the hard segment 

rearrangement occurring at molecular level, comparatively with the one observed for PUB film. 

The thermogravimetric analysis showed an increase of the films thermal stability related with the 

incorporation of the dye. Regarding the color variation evaluation, by analyzing and comparing 

the PUD film color with the dyed films, an increasing of the color variation was detected for both 

dyes. However, for the films containing Spirulina blue the color variation increase with the dye 

content rise, reaching a maximum value of 65.58 for 2%Sp, but for carminic acid, the color 

variation reaches a maximum value of 70.62 for 1.0%Cr, being constant for the higher dye 

content.  

As future work, it would be very interesting to study the antimicrobial activity of Spirulina and 

carminic acid dyed and produced films. It would be also important to study the influence of 

higher dyes content. It would be also interesting to do the evaluation of the film’s mechanical 

properties. In addition, other strategies of incorporation should be tested, for example during the 

phase inversion stage of the PUD synthesis, in order to study the dyes, influence on the films 

thermal and mechanical properties. 
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Appendices  
Appendix 1 
Determination of the NCO content through Dibutylamine (DBA) method 
 

The residual NCO groups were quantified according to the guidelines of the EN 1242:1993 

standard. The adopted procedure can be described as follows: 

1.   Add 25 ml of toluene to 4 erlenmeyers with lids;  

2. Add 6.3 ml of the dibutylamine/toluene solution (108 ml DBA + 400 ml toluene) were added 

to the erlenmeyers (vA) 

3.  For each reaction time (15, 30, 45 min and after the dispersion production), approximately 2g 

of prepolymer were collected and weighted into each Erlenmeyer. 

4.  Next, the Erlenmeyer was kept under heating at 60°C during 5 minutes. Then, the sample 

solution was left to cool until ambient temperature under stirring. 

5.  Next, 50 ml of 2-propanol and 0.25 ml of bromophenol blue were added to the sample’s 

solution before the titration with HCl 1N until a persistent yellow color appear. 

A Blank sample was also prepared following the same procedure, without the sample addition. 

The NCO content was calculated and expressed as a percentage using Equation (1), where VB is 

the volume of titrant consumed in the blank titration (ml), VA is the volume of titrant consumed 

in the sample titration (ml), NHCl is the concentration of the titrant solution expressed in 

normality (N), and mA is the mass of the sample (g). The obtained NCO conversion is calculated 

by Equation (2):  

																𝑁𝐶𝑂	(%) 	= 	
(𝑣𝐵 − 𝑣𝐴)	𝑥	𝑁𝐻𝐶𝑙	𝑥	4.2

𝑚𝐴
		(1)	

		𝜌𝑁𝐶𝑂	 = 	 (JKL)9M(JKL)8(JKL)9
										 (2
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Appendix 2 
 

1 Table 1 Experimental records of the NCO groups obtained along the PUD synthesis 
              Reaction NCO:OHPPG                       Reaction NCO:OHDMPA          After phase inversion 

Assay Theoretical  
conversion 

Experimental 
conversion 

Theoretical  
conversion 

Experimental 
conversion 

Experimental 
conversion 

1 0.28 0.33 0.29 0.29 0.70 
2 0.29 0.30 0.29 -* 0.73 
3 0.29 0.30 0.60 0.67 0.67 

*values not available
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Appendix 3 
Abstract accepted for poster communication on the 10th Conference on Green Chemistry and 
Nanotechnologies in Polymeric Materials, to be held in Latvia in October 2019.

 


