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Abstract 

An unprecedented demographic explosion occurred in the last decades at a global 

level. The negative impacts of this event stand out, affecting the social, economic and 

mainly environmental spheres. In the environmental aspect, an important consequence 

is the growing production of solid wastes, due partially to the population increase. 

However, the development of effective technologies for the treatment of these wastes 

did not accompany such growth, and currently the most used method for this is landfill 

disposal. Even with the possibility of alternatives, the use of landfills for the disposal of 

solid wastes will be necessary over a long period, with the inevitable consequence of the 

generation of leachate streams.  

The objective of this work is the development, design and implementation of 

processes for physicochemical conversion of leachate liquid effluents from a 

composting process in liquid fertilizers with a standardized and reproducible 

composition. 

The leachate sample was collected in February 2019 from the slurry storage tank of 

the company “Resíduos do Nordeste”, EIM (Urjais, Mirandela, Portugal). The stream is 

produced and recovered from a composting line from a mechanical and biological waste 

treatment plant. From this original sample, three additional materials were obtained: a 

filtered sample for the removal of the solid fraction (Filtro 03/04), two concentrated 

samples by simple distillation, with two concentration levels in volume basis: 1,19 and 

1,85 in relation to the original leachate sample. 

The four samples (the original leachate and the three processed samples) were 

submitted to a sequence of analyzes, in order to compare its composition and properties 

with the current Portuguese and European legislation specifications for liquid fertilizers. 

The selected characterization parameters were: Total Organic Carbon (TOC), pH, 

Conductivity, Percentage of Dry Matter, Density, and Heavy Metals, Phosphorus, 

Potassium and Nitrogen contents. 

Adsorption tests were performed with the Filter 03/04 sample, with two adsorbents 

of different origin, the first produced from an organic compound, resulting from a 

centralized composting process, obtained from the same landfill that provided the 
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Original sample. The second adsorbent tested is activated clays, originating from four 

different deposits in Kazakhstan. 

After treatment with the adsorbents, the same analyzes were performed previously, 

aiming to evaluate the efficiency of the adsorbents. 

The characterization results were then used to verify the framework for later use of 

the original leachate and/or the processed samples as liquid organomineral fertilizers, 

and to assess the specific needs of composition tuning for the non-processed leachate 

sample. A concentration process for the original sample of 1,19 (v/v) has been 

determined to allow the reaching of at least 3% TOC, a content legally required. 

Additionally, treatment is required for the removal of nickel and chromium from the 

samples. The metals zinc, copper, cadmium and lead have been quantified and are 

within the limits specified in the Regulation of the European Parliament and of the 

Council (2019). 

A flowchart for the proper treatment of this leachate was proposed, with the 

intention of using it as liquid organomineral fertilizer. 

Keywords: Leachate; Organic Fertilizer; Organomineral Fertilizer; Wastewater 

treatment. 
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Resumo 

Uma explosão demográfica sem precedentes ocorreu nas últimas décadas a nível 

global. Destacam-se os impactos negativos deste evento, afetando as esferas social, 

econômica e principalmente ambiental. No aspeto ambiental, uma consequência 

importante é a crescente produção de resíduos sólidos, em parte devido ao aumento 

populacional. No entanto, o desenvolvimento de tecnologias eficazes para o tratamento 

desses resíduos não acompanhou esse crescimento, e atualmente o método mais 

utilizado para isso é o descarte em aterros sanitários. Mesmo com a possibilidade de 

alternativas, o uso de aterros sanitários para a disposição de resíduos sólidos será 

necessário por um longo período, com a inevitável consequência da geração de caudais 

de chorume. 

O objetivo deste trabalho é o desenvolvimento, proposta e implementação de 

processos de conversão físico-química de efluentes líquidos lixiviados, de um processo 

de compostagem, em fertilizantes líquidos com uma composição padronizada e 

reprodutível. 

A amostra de lixiviados foi coletada em fevereiro de 2019 a partir do tanque de 

armazenamento de chorume da empresa “Resíduos do Nordeste”, EIM (Urjais, 

Mirandela, Portugal). O fluxo é produzido e recuperado de uma linha de compostagem 

de uma estação de tratamento de resíduos mecânica e biológica. Desta amostra original, 

três materiais adicionais foram obtidos: uma amostra filtrada para a remoção da fração 

sólida (Filtro 03/04), duas amostras concentradas por destilação simples, com dois 

níveis de concentração em base volumétrica: 1,19 e 1,85 em relação a amostra 

original. 

As quatro amostras (o lixiviado original e as três amostras processadas) foram 

submetidas a uma sequência de análises, de modo a comparar a sua composição e 

propriedades com as atuais especificações da legislação portuguesa e europeia para 

fertilizantes líquidos. Os parâmetros de caracterização selecionados foram: teor de 

carbono orgânico total (TOC), pH, condutividade elétrica, percentagem de matéria seca, 

densidade e metais pesados, fósforo, potássio e nitrogênio. 

Foram realizados testes de adsorção com a amostra Filtro 03/04, com dois 

adsorventes de origem diferente, o primeiro produzido a partir de um composto 
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orgânico, resultante de um processo de compostagem centralizada, obtido do mesmo 

aterro sanitário que forneceu a amostra Original. O segundo adsorvente testado, são as 

argilas ativadas, originárias de quatro depósitos diferentes do Cazaquistão.  

Após o tratamento com os adsorventes foram realizadas as mesmas análises feitas 

anteriormente, com o objetivo de avaliar a eficiência dos adsorventes. 

Os resultados da caracterização foram então utilizados para verificar a estrutura 

para posterior utilização do lixiviado original e/ou as amostras processadas como 

fertilizantes organominerais líquidos, e para avaliar as necessidades específicas de 

ajuste da composição. Um processo de concentração para a amostra original de 1,19 

(v/v) foi determinado para permitir o alcance de pelo menos 3% de TOC, um conteúdo 

legalmente requerido no Regulamento do Parlamento Europeu e do Concelho (2019). 

Além disso, é necessário um tratamento para a remoção de níquel e cromio das 

amostras. Os metais zinco, cobre, cádmio e chumbo foram quantificados e estão dentro 

dos limites especificados no Regulamento do Parlamento Europeu e do Conselho 

(2019). 

Um fluxograma para o tratamento adequado desse lixiviado foi proposto, com o 

intuito de utilizá-lo como fertilizante organomineral líquido. 

Palavras-Chave: Lixiviado; Fertilizante Orgânico; Fertilizante Organomineral; 

Tratamento de Efluentes. 
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1. Introduction 

 

We are witnessing an unprecedented demographic explosion. The negative impacts 

of this event stand out, affecting the social, economic and mainly environmental 

spheres. 

In the environmental aspect, the growing production of solid waste is highlighted, 

due to the population increase. However, the quality for the treatment of these residues 

did not accompany such growth, and currently the most used method for this is the 

sanitary landfill, being possible still the incineration with energy recovery, selective 

collection (recycling) and organic valorization. 

Even with other options, the use of landfills for the final destination of solid waste 

will be necessary for a long time, with an inevitable consequence, the generation of 

leachate streams. 

The leachates represent the main source of pollution of these infrastructures. It can 

be defined as a set of liquids arising from the organic matter decomposition process, 

from the moisture present in the materials deposited in the pile, from natural water 

sources (infiltration) and from the microbial activity (Sá et al., 2012). 

It is not possible to create a faithful characterization of percolated liquids because of 

their inconstancy, the variability in the composition of the leachate is influenced by the 

age and characteristics of the residues and the type of technology used in landfills. 

According to Kjeldsen et al. (2010), the pollutants in urban solid waste leachate are 

divided into four main groups: dissolved organic matter (TOC), inorganic 

macrocomponents, heavy metals and organic xenobiotics. Nevertheless, other elements 

can be found as: barium, lithium, mercury, arsenic, cobalt, among others. 

As previously mentioned, solid wastes have water in their constitution, however, the 

greater part comes from the percolation, originating from the precipitation. During the 

decomposition of the solid residues, the water dissolves numerous chemical elements, 

among them, some heavy metals, that become the leachate. 

These leaching liquids must be drained to treatment cells attached to the landfill. 

The lack or inadequate treatment of this type of effluent can cause surface water 

pollution, which would lead to deoxygenation of the water, and ammoniacal toxicity, 

causing damage to benthic flora and fauna (Russo, 2005). 
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Even so, the biggest negative impact that a landfill can cause is groundwater 

pollution. Thus, an adequate waterproofing, drainage and treatment system of this 

effluent is therefore necessary.  

Normally, after the treatment of percolated liquid, the treated effluent is released 

into streams. However, other options are emerging for the leachate appreciation. An 

alternative would be its use for the fertilization of soils, being this the focus of study of 

this work. However, due to the variability in leachate composition, the treatment for this 

purpose becomes a relevant challenge. 

1.1. Objective 

 

The objective of this work is the development, design and implementation of 

processes for the physical-chemical conversion of leachate liquid streams from a 

composting process, into liquid fertilizer materials, with standardized and reproducible 

composition. 

 

1.2. Structure of the work 

 

The paper is divided into 8 chapters, which begins with the Introduction chapter, 

which is based on a bibliographical review, presenting the interest of the theme, 

focusing on the possible impacts on the environment. The second chapter was devoted 

to the state of the art, which introduces the most common methods of treatment and the 

clarification of the theme. The legal framework is found in chapter three, presenting the 

conditions and limits established in current legislation. In the fourth chapter, the 

methodology used is presented, the sample features are described, and information is 

given about the analysis performed, equipment used, experimental procedures used, and 

the tests performed with two adsorbents of different origin. In the fifth chapter, Results 

and Discussion, the presentation, treatment and discussion of the data obtained for the 

analyzed samples and for the tests with the adsorbents are made. In the sixth chapter, a 

procedure is proposed for the treatment of leachate, with the purpose of using it as 

fertilizer. The seventh chapter presents the general conclusions, establishing a relation 

with the objectives proposed in the work. Finally, chapter eight, contains suggestions 

for future work, linked to this project.  
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2. State of the Art 

 

2.1. Solid urban waste: a problem of societies 
 

Society changed its way of interacting with waste during different epochs of human 

history, among them we can cite: The Industrial Revolution, which brought the increase 

of productivity and, consequently, the population growth concentrated in some regions; 

the rise of international trade, especially after the Second World War and the increasing 

and constant changes of technologies. These are historical milestones that have led to an 

increase in the amount of urban solid waste per capita (Pinho, 2011). 

Pinho (2011) informs that these misbehaviors are responsible for the change in the 

way society started to consume and discard products. Consumerism, often unbridled, 

has become a major contributor to increased waste generation, as it is no longer used 

only for material survival, reflecting on other stages of the product's life cycle. 

Final destination waste is the most important step for this study, considering that 

treatments are needed to reduce the environmental, social and economic impacts of this 

product at the end of its useful life. 

Mankind has developed several techniques in order to mitigate these impacts, 

among them we can mention the treatments in landfill, the composting of organic 

residues and the incineration. 

 

2.2. Composting as a waste treatment and disposal structure 

 

The purpose of waste treatment is to change the characteristics, which can occur by 

physical, chemical, biological or mixed routes, in a way that reduces the volume and the 

degree of harmfulness. Treatment and destination are considered as the most important 

phases of the waste system, because in these steps, if the correct measures are not taken, 

environmental problems can arise. 

The most commonly used technologies for waste recovery are: landfill deposition, 

incineration and composting. 
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Sousa (1996) says that the higher the rate of reuse and recovery of solid waste, the 

lower the amounts to be deposited, extending the useful life of the landfill and reducing 

the cost of exploration. 

The search for alternatives has become necessary due to the increasing generation 

of waste that needs to be destined and the lack of available area, besides being a form of 

environmental care. Composting is widely used to decrease the volume to be deposited 

in the soil, these reductions are of the order of 40% (Sousa, 1996). 

Composting can be defined as the process of biological decomposition of organic 

matter under controlled aerobic conditions of temperature and humidity, generating a 

stable product (De Bertoldi et al., 1983), which we call organic fertilizer. 

For Mota et al. (2009), composting is the process of biological treatment of the 

organic portion of the residues, allowing a reduction of the volume of the residues and 

the transformation of these into a compound to be used in agriculture as a soil 

reconditioning, that is, this material is incorporated into soils cultivated as fertilizer for 

plants. 

The urban solid waste (USW) has different composition of household residues and 

services (public cleaning, industries), so USW can have different decomposition times 

for organic compound generation (Siqueira & Assad, 2015). 

There are three major types of composting. Domestic, agricultural and centralized 

composting. Centralized composting occurs in facilities where waste from a given 

region is routed and treated. Centralized composting can be done in open systems 

(batteries) or in closed systems (reactors). 

The benefits of composting can be categorized as follows: utilization of waste from 

the region; partnership with private companies and public institutions; development of 

clean technologies for the use of waste; solution for the supply of organic fertilizer; soil 

recovery; not dependence on synthetic inputs; decrease in the cost of production; correct 

destination for environmental liabilities; compliance with environmental legislation; 

participatory management; among others (Mota et al, 2009). 

Although it is one of the best destinations for organic waste, composting also has a 

few disadvantages, the main one being the generation of leachate, a liquid effluent 
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resulting from the process of degradation of the pile that needs treatment before being 

discarded. 

2.3. Formation of leachate 

 

Reis (2005) says that the formation of leachate in composting systems operated in 

uncovered areas occurs in a similar way and is influenced by the same factors as 

percolates generated in landfills. 

El-Fadel et al. (2002) states that the leachate is generated by leaching, 

discontinuous and non-uniform, resulting in the removal of soluble organic and 

inorganic compounds that are incorporated in the liquid. 

The leachate has a high contamination potential, due to the organic load and 

physicochemical composition. The physical-chemical portion is variable and is 

dependent on factors such as: local pluviometric conditions and the time of 

decomposition of the compounds. Due to the degradation of substances such as fats and 

carbohydrates, percolate contains high concentrations of heavy metals and suspended 

solids (Silva L. M., 2009). 

Law Decree nº 152/2002 states in its Annex II, item 2.2 (b), that the leachate 

treatment units must be dimensioned in order to deal with the entire leachate flow rate 

associated with the exceptional rainfall conditions of the site. The drainage and 

treatment systems of the leachate should be designed considering the high organic load 

and the variation of the flow rates, which depend on the atmospheric precipitation. 

In regions such as the north of Portugal, the different seasons of the year must be 

considered, where there are low flow rates in the summer and high flows in the winter. 

 

2.4. Environmental impacts resulting from USW treatment 

 

The undue final destination of USW has become a problem of modern society, 

especially regarding the harm caused to the environment, such as pollution of air, soil 

and water (Mota et al., 2009). 
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According to Mota et al. (2009), the decomposition of USW with or without the 

presence of oxygen in the medium tends to cause the generation of natural gases in the 

mass. This release of gases becomes the source of risk of gas migration, explosions or 

even respiratory diseases if there is direct contact. In the soil, the negative impacts occur 

through the physical-chemical alterations thereof, which makes the environment 

conducive to the development of disease transmitters, besides the possibility of 

contamination of the soil by percolated liquid, compromising it. In the water, this type 

of pollution changes the characteristics of the aquatic environment, due to the leachate 

generated in the USW decomposition process, associated with the rainwater and 

possible sources of pollution around the source of contamination. 

The contamination of the leachate in the soil and its dispersion in the water can 

occur not only while the landfill is in operation, but also after its deactivation, since the 

organic substances continue to degrade. Areas close to landfills have high levels of 

organic compounds and heavy metals. Populations living in the vicinity of these sites 

also have elevated levels of these compounds in the blood. Thus, these solid waste 

deposits are potential sources of exposure to populations. There are reports of high risks 

for some cancers, congenital anomalies, abortions, and neonatal deaths in these 

populations and in populations close to them (Gouveia, 2012). 

 

2.4.1. Leachate 

 

The most striking characteristics of the leaching liquids are the high concentrations 

of organic matter and heavy metals, which imply a particularly complex treatment 

process. The generation of leachates is unique in each treatment unit and is dependent 

on factors such as inputs: precipitation water, moisture from the USW deposited in the 

pile, water from the aerator material; and outputs: surface runoff waters, 

evapotranspiration, evaporation and water consumed by the biological process (Russo, 

2005). 

The amount of leachate generated also varies with the seasonality, since the 

humidity can vary according to the season of the year and the operational state of the 

composting cell. 
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2.4.2. Treatment of leachate 

 

2.4.2.1. Qualitative characteristics of leachate 

 

The leachates from composting systems have variable characteristics, as mentioned 

previously. 

Ripley et al. (1984) conducted a study of the evolution and characteristics of 

leachates in 16 different sanitary landfills, such as electrical conductivity, biochemical 

oxygen demand (BOD), chemical oxygen demand (COD), pH, soluble solids, hardness, 

alkalinity, heavy metals, chlorides e sulfates, pollutants considered essential for 

legislative procedures. The data did not present evolutionary behavior over time, even 

with the different lifetimes of landfills. 

An analogous study was conducted by Ehrig et al. (1989), 15 landfills in Germany 

were studied for 5 years. The results showed that parameters such as BOD, COD and 

heavy metals underwent changes with the evolution of the process of decomposition of 

urban solid waste, more precisely from the anaerobic acid phase to the methanogenic 

phase. COD presented high variability in the first years of the study, with a relative 

stabilization at the end. 

In the United Kingdom, Robinson et al. (1985) conducted a study with detailed 

information on landfill leachates that, like the work done by Ehrig et al. (1993) in 

Germany, presented reduction of the concentrations of some parameters with the arrival 

of the methanogenic phase in the process of decomposition of urban solid waste. In this 

study, the establishment of this phase occurred at the end of three years of operation of 

half of the landfills evaluated. In one of the landfills, the methanogenic phase had not 

yet been reached after eight years of operation. 

The N, P, K and Na macronutrients present higher concentrations in the acidic 

phase than in the methanogenic phase of the waste degradation process (Ehrig, 1989). 

The concentrations of heavy metals in leachates are similar in urban wastewater and 

thus depend on the characteristics of the waste and the operation mode of composting 

cells or landfills. The highest values are found in the acid phase, due to the redox 

potential and the pH variation (Russo, 2005). 
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Russo (2005) reports that the chemical composition of the percolates varies with the 

age of degradation and the stage of the biogas generation phase. In the acid phase, high 

values are found for BOD, COD, total organic carbon (TOC), heavy metals and 

nutrients, whereas in the methanogenic phase, the BOD, COD and TOC have lower 

values. To determine the leachate treatment process as a function of COD, the author 

suggests that if the percolate has COD above 10,000 mg/L, BOD/COD ratio between 

0,4 and 0,8, low ammoniacal nitrogen and significant concentration of volatile fatty 

acids, the treatment can be performed anaerobically or aerobically.  

The treatment for compost cell leachates will be different for each plant, due to the 

variability of the characteristics of the urban solid waste in degradation and the age of 

the composting system analyzed, being able to undergo changes in the treatment system 

during the useful life of the cell. 

Due to so many individual particularities for each treatment process, a detailed 

study and characterization of the parameters of the leachate to be treated is necessary. 

Some treatment possibilities will be presented in the next topic. 

 

2.4.2.2. Precipitation, Coagulation and Flocculation 

Several techniques can be used to remove metals from solutions, making effluents 

suitable for disposal into watercourses. Techniques such as chemical precipitation, 

coagulation-flocculation, flotation, ion exchange, adsorption, membrane filtration, 

liquid-liquid extraction are among the most investigated. 

The main advantages of chemical precipitation are that the technology and 

alkalinizing agents are available and when the objective is only to treat the effluent, the 

operation and maintenance of the equipment is considered relatively simple. This 

process consists in increasing pH, leaving the medium under conditions of low 

solubility for the metal hydroxides, which precipitate in the form of hydroxides or 

various complexes. Thus, colloidal solids are formed, which require 

coagulation/flocculation steps to separate from the liquid phase (Neto et al., 2008). 

According to Russo (2005) the colloidal particles have dimensions ranging from 1 

nm to 1 μm and are characterized by a large specific surface and therefore are very 
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sensitive to surface forces. In order to facilitate the gravitational removal of the colloidal 

particles, during the coagulation process, these particles are destabilized to form larger 

particles, and for that to occur, coagulants are used. The most commonly used 

coagulants are aluminum and iron salts. These salts have an acidic behavior and its 

efficiency depends on the alkalinity of percolates. 

The incorporation of flocculating agents takes place to facilitate the agglomeration 

of the colloidal particles. The most used flocculants are activated silica and clay 

(inorganic), and polyacetates (organic). Sometimes aluminum and iron can also be used, 

which can behave as flocculants, since their low solubility allows them to precipitate 

(Russo, 2005). 

The precipitation process is applied to the removal of heavy metals, causing the 

formation of metal hydroxides or sulfides (Neto et al., 2008). 

Russo (2005) found a greater efficiency in the use of this method in more advanced 

percolates (low BOD/COD), or when the leachate had a previous biological treatment. 

In contrast, a new leachate, which has a high concentration of small volatile fatty acids, 

tends to precipitate less, so the removal involves only a smaller fraction of the organic 

components of the leachate and less efficiency. 

Ehrig (1989) presented a study in which efficiency of COD removal in leachate 

with low BOD (<25 mg/L) was obtained in the order of 50%, obtaining a low 

BOD/COD ratio. The agents used were iron and aluminum salts, and both presented the 

same results. 

 

2.4.2.3. Chemical Oxidation 

Chemical oxidation is the process in which electrons are removed from a substance 

by increasing its oxidation state. In most cases, the oxidation of organic compounds, 

while being thermodynamically favorable, exhibits slow kinetics. Some oxidative 

processes have the great advantage of not generating solid by-products (sludge) which 

does not promote phase transfer of the pollutant (as adsorption in active carbon, for 

example). The final products are carbon dioxide (CO2) and water (H2O). As examples 

of oxidizing agents, hydrogen peroxide (H2O2) and ozone (O3) can be mentioned. When 

the oxidizing agent is chlorine (Cl2) or its derivatives (e.g. hypochlorite), great care 
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must be taken when the effluent presents high levels of organic matter, since it is 

possible to have organochlorine compounds as byproducts, which, in some cases, have 

carcinogenic, teratogenic and mutagenic properties. Permanganate is another oxidizing 

agent widely used in the oxidation of pollutants (Graciano et al., 2012). 

The advanced chemical oxidation processes (AOP) are efficient technologies for 

destroying organic compounds that are difficult to break down and sometimes present in 

low concentrations. Since there is no formation of toxic byproducts, they are often 

considered as clean technologies. Chemical oxidation consists of oxidizing complex 

organic compounds to simple molecules (Castro, 2014). 

In general, the great disadvantage of oxidative processes is the high cost. However, 

these processes have been used in the treatment of old landfill leachates since they have 

low biodegradability and high concentration of recalcitrant compounds. 

 

2.4.2.4. Membrane Separation Processes 

Costa (2015) says that membrane filtration exploits the semipermeable properties of 

some membranes in order to cause separation between the solvent (water) and the 

pollutants present in the leaching waters. The separation is achieved by the passage of 

the leachate under pressure through semipermeable membranes.  

The membrane separation processes basically involve four categories: reverse 

osmosis, nanofiltration, ultrafiltration and microfiltration. It can be said that what 

differentiates the categories of separation by membranes are the pore diameters and the 

type of intensity of the driving force applied to carry out the separation of the 

contaminants. (Galvão & Gomes, 2015). 

What differs membrane separation processes from the conventional filtration 

process is that the flow of water is parallel to the membranes, i.e., not every percolate to 

be treated needs to pass through the membrane, the small particulate solids and the 

organic and inorganic compounds are separated, and further, the pressure in the 

operating system of the membrane separation systems is greater than in the 

conventional filtration processes (Russo, 2005). 
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This system has been applied to the treatment of leachate. The landfill at 

Vennemberg-Lingen, Germany, has a treatment system consisting of activated sludge 

oxidation tanks with ammonia removal and a section of two reverse osmosis modules, 

which showed good results. It was observed that the efficiency of the process increased 

with the existence of a biological pretreatment (Weber & Holz, 2012). 

Weber (2012) emphasizes the disadvantages of the membrane technique due to the 

high concentration of organic components and the precipitation of inorganic 

components, which can cause problems of fouling and bioaccumulation on the surface 

of the membrane. High energy consumption is another negative point, besides the 

limitations concerning low productivity related to the need of low treated flows. 

 

2.4.2.5. Adsorption  

The phenomenon of adsorption involves the accumulation of substances on a 

surface or an interface (Weber & Holz, 2012). The interfaces may be related to the 

liquid-liquid, gas-solid, gas-liquid, or liquid-solid phases, the latter being of interest in 

wastewater treatment. 

According to Campos (2011), the use of activated granular carbon (AGC) or 

powder (ACP) has been commonly used in the treatment of landfill leachates to remove 

biodegradable compounds due to their characteristics of having large surface area, high 

adsorption capacity and microporous structure. 

The adsorption process occurs through the transfer of compounds present in the 

liquid phase to the reactive surface, the matter adheres to the "voids" of the activated 

carbon due to physical and/or chemical interactions (Campos, 2011). 

The adsorption application of carbon dioxide can be used to remove 50-70% of 

COD and N-NH4
+, and its applicability, especially in the reduction of refractory (non-

biodegradable) organic compounds, is suggested by Wiszniowski et al. (2006). 

Li et al. (2010) conducted experiments with stabilized leachate by combining the 

use of coagulants (FeCl3, Al2(SO4)3, PolyChloride and Ferric PolySulfate) with ACP. 

The tests were conducted, firstly, to obtain the optimal dosage of each coagulant and, 

later, with the addition of different dosages of ACP ranging from 0,5 to 50 g/L to the 
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supernatant. It was possible, therefore, to compare the combined action of each 

coagulant with the addition of ACP. The best results obtained by the researchers were 

with the addition of 10g ACP/L in 90 minutes of contact time, with a significant 

reduction of COD (53-70%), Suspended Solids (> 93%), Turbidity (> 99%) and 

Toxicity (78%). 

Jimenez et al. (2004) says that since the recovery of metal ions from dilute 

solutions using classical methods is inefficient and, considering the current 

environmental policy, alternative methods have been investigated, such as 

electrodialysis, osmosis reverse polarization, ultrafiltration and adsorption in natural 

materials, which promote the selective and reversible retention of metal cations. Among 

the natural materials that can be used, zeolites have received attention due to their low 

cost and simplicity in the process. Its microporous structure allows the mobility of ions 

through the channels and cavities, providing selectivity to ion exchange processes.  

 

2.4.2.6. Biological Treatment 

The biological treatment processes that can be applied in the treatment of leaching 

water share the same principles of processes used in the treatment of urban waste water, 

taking advantage of the ability of bacteria to degrade organic matter into simpler 

compounds. Its application also aims at the removal of nutrients such as nitrogen and 

phosphorus. 

In treatment plants that use biological processes, some parameters such as: 

temperature, pH and dissolved oxygen are controlled, in order to provide an 

environment that favors the growth of microorganisms, and increase the efficiency of 

biodegradation (Telles, 2010). 

Telles (2010) carried out treatability tests in order to verify if the diversity of 

compounds present in the leachate could be assimilated by a bacterial community. The 

tests were carried out with leachate samples pretreated by the ozonation process with 

0,06 g.L-1 ozone for 15 minutes and 45 minutes of reaction; leachate samples pretreated 

by the removal process of ammoniacal nitrogen by entrainment with air followed by 

ozonation with 0,06 g.L-1 ozone for 15 minutes and 45 minutes of reaction; leachate 

samples pretreated only by the process of removal of ammoniacal nitrogen by 
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entrainment with air; and crude leachate. The tests were conducted in six reactors and a 

previously acclimated biomass was used in the tests. 

The performance of the treatability test was evaluated by calculating COD removal 

in the six reactors. It was verified that the efficiency of removal of organic matter, 

represented by the removal of COD, was in the range of 80 to 86%. 

Table 1 presents the effluent treatment processes and their applicability for the 

removal of different pollutants. 

Table 1. Processes of treatments described. 

Treatment Process Application 

Biologic treatment Removal of organic matter 

Coagulation / flocculation Removal of color and turbidity, suspended 

solids and heavy metals 

Chemical oxidation Removal of organic and inorganic matter 

Membranes Removal of organic and inorganic matter 

Adsorption Removal of organic and inorganic matter and 

heavy metals 

 

2.5. Final Destination 

2.5.1. Application to soil 

 

The method of treatment of leachates in the soil is recommended by several authors 

with the argument that the natural bacterial activity of the soil, combined with the 

physical processes (filtration and evaporation) and physical-chemical (ion exchange and 

adsorption) promote the purification of leachates. Thus, sandy soils tend to eliminate 

organic matter and clay soils with their great cation exchange capacity, potentiate the 

elimination of heavy metals. Another advantage pointed out is the fertilizer character of 

the leachate (Robinson & Maris, 1985). 

New solutions have been studied for the use of pre-treated leachate, one of them is 

its application as a liquid fertilizer, being considered organic fertilizers. Organic 

fertilizers are safer at the ecological level. Bacteria and fungi in the soil decompose the 
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organic matter of the fertilizer and release the nutrients progressively and according to 

the requirements of the soil. 

Pinto et al. (2005) carried out an experiment aimed at the use of leachate from 

forage crops in substrate for fertilization of orchards (this type of leachate can be 

considered like that extracted from compost piles). The authors concluded that this use 

as fertilizer may be a viable alternative to these leachates. 

For a percolate to be used as liquid fertilizer, a pretreatment process is necessary. In 

order to analyze its nutritive composition for later use in the soil, it is still necessary that 

this leachate fulfills the legal requirements to be considered liquid fertilizer. 

Decree-Law nº 103/2015 provides recommendations for the process of sanitizing 

the fertilizer matter, resulting from the composting process. The composting units shall, 

for an appropriate period, subject the wastes to conditions of temperature and humidity 

capable of inactivating the pathogenic micro-organisms and weed seeds and propagating 

material, as follows: 

Systems in which the biological treatment of waste is carried out entirely by 

composting: (a) in static aerated stack systems where the waste pile is not revolved and 

is covered with a layer of material used as a thermal insulator, if the composting mass is 

to be aerated by means of insufflation or suction, the entire mass of the waste must 

remain for at least two weeks at a temperature of at least 60 °C and a degree of humidity 

of more than 40%; (b) in heavier pile systems where composting is periodically 

revolved, with or without forced aeration, the waste must be subjected for at least four 

weeks to conditions of temperature and humidity exceeding 55 °C and 40% , 

respectively, by carrying out at least three revolutions. 
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3. Legal Framework 

 

The regulation of the European Parliament and of the Council of May 2019 defines 

fertilizers as: substance, mixture, micro-organism or any other material applied or 

intended for application to plants or rhizosphere, fungi or their myosphere, or intended 

for to form the rhizosphere or the myosphere, on its own or mixed with other materials, 

in order to provide nutrients to the plants or mushrooms or to improve their nutritional 

efficiency. 

This Regulation lays down the criteria according to which waste material as defined 

in Directive 2008/98/EC may be no longer waste if it is part of an EU fertilizer product. 

In such cases, the recovery operation in accordance with this Regulation shall take place 

before the material ceases to constitute waste and the material is deemed to comply with 

the conditions laid down in Article 6 of that Directive and, consequently, is not a waste 

as soon as the EU declaration of conformity has been established. 

According to European Parliament and Council (2019), in an organic fertilizer the 

contaminants must not exceed the following concentrations (see Table 2). 

 

Table 2. Limit values of contaminants in liquid organomineral fertilizers. 

Contaminants 
Concentrations 

(mg/kg dry matter) 

Biuret (C2H5N3O2) 12000 

hexavalent chromium (Cr VI) 2 

Mercury (Hg) 1 

Nickel (Ni) 50 

Lead (Pb) 120 

Arsenic (As) 40 

Copper (Cu) 600  

Zinc (Zn) 1500 

 

Cadmium: If an onganomineral fertilizer has a total phosphorus (P) content of less 

than 5% expressed as phosphorus pentoxide (P2O) in mass: 3 mg/kg dry matter, or if an 

organomineral fertilizer has a total phosphorus (P) content of 5% expressed as 



                               
 

16 
 

phosphorus pentoxide (P2O) in bulk (phosphorus fertilizer): 60 mg/kg of Phophorus 

pentoxide. 

The regulation further provides that pathogens must not be present in organic 

fertilizers in a concentration higher than the limits indicated in Table 3. 

Table 3. Concentration of pathogens that should not be exceeded.  

Microorganisms under test 
sampling plans 

Limit 
 

n c m 
M 

 

Salmonela spp. 5 0 0 absence in 25g or 25 mL 

 

Escherichia coli or enterococos 5 5 0 1000 in 1g or 1 mL 

 

Source. Regulation of the European Parliament and of the Council (2019). 

 

n- number of test samples, 

c- number of samples in which number of bacteria expressed in colony forming units (cfu) 

and between m and M, 

m- The limited value of the number of expressive services in the cfu considered 

satisfactory, 

M- maximum value of the number of bacteria expressed in cfu. 

 

The European Parliament and Council Regulation (2019) also sets out the limit 

values for organic matter and nutrients required for the product to be considered as 

organic-mineral liquid fertilizer. 

A liquid organic-mineral fertilizer will contain at least one of following declared 

primary nutrients: Nitrogen (N), Phosphorus pentoxide (P2O5) or Potassium oxide 

(K2O). 

When a liquid organomineral fertilizer contains only a declared primary nutrient, 

said nutrient will be present in the following minimum concentrations: 

 2% by mass of Total Nitrogen (N), with 0,5% by mass of an organomineral 

fertilizer liquid organic nitrogen (Norg). 

 2% by mass of total phosphorus pentoxide (P2O5), or 

 2% by mass of Potassium oxide (K2O) total. 
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The organic carbon (Corg) will be present in a liquid organomineral fertilizer at a 

minimum of 3% by mass.  

In order to meet the requirements that are fundamental to the sustainable use of 

fertilizers with organic components, Decree No. 103/2015 establishes quality criteria for 

materials produced from waste and organic biodegradable materials. It also establishes 

that the production of these fertilizer materials, in accordance with the provisions of the 

said decree, configures the application of the end of residue status to the production of 

compound constituting as a product. 

The decree of Law nº 103/2015 defines organic fertilizer as: the fertilizer whose 

nutrients are, in their totality, of vegetal origin and, or, animal. It also defines 

organomineral fertilizer as the fertilizer obtained by mechanical mixing of mineral 

fertilizers and organic fertilizers. 

The Decree-Law nº 103/2015, contains in its Annex I the types of non-harmonized 

fertilizer material, separated by groups. Table 4 presents group 2, Organic Fertilizers, 

and Table 5 summarizes group 3, Organomineral Fertilizers. 
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Table 4. Group 2 - Organic Fertilizers.  

Nº Type designation 

Information on the procurement 

process and the essential 

components 

Minimal nutrient content (% by 

mass). Indications concerning the 

determination of nutrients. Other 

indications. 

Other indications 

concerning the type 

designation 

Nutrients whose content it is 

necessary to declare. Forms 

and solubilities of nutrients. 

Other criteria 

1 2 3 4 5 6 

1 
Whipped organic 

fertilizer (N) 

Fertilizer obtained entirely from 
products or by-products of animal or 

vegetable origin only with a declared 

nitrogen content. 

N organic: 3%. 

Organic matter: 50% 

Other usual trade names 

may be added. 

Organic Nitrogen and Organic 

Matter. 

2 Organic fertilizer NPK 

Fertilizer obtained entirely from 

products or by-products of animal or 

vegetable origin with declared 

nitrogen, phosphorus and potassium 

N organic: 2%. 

P2O5   total: 2%. 

K2O total: 2%. 

N+ P2O5 + K2O: 10%. 

Organic matter: 50% 

Other usual trade names 

may be added. 

Total nitrogen, Organic nitrogen, 

Phosphorus soluble in mineral 

acids (total), Total potassium and 

Organic matter 

3 Organic fertilizer NP..... 

Fertilizer obtained entirely from 

products or by-products of animal or 

vegetable origin with declared nitrogen 

and phosphorus content. 

N organic: 2% 

P2O5 total: 3%. 

N+ P2O5: 6%. 

Organic matter: 50% 

Other usual trade names 

may be added. 

Total nitrogen, Organic nitrogen, 

Phosphorus soluble in total 

mineral acids, Total potassium 

and Organic matter 

4 Organic fertilizer NK.... 

Fertilizer obtained entirely from 

products or by-products of animal or 

vegetable origin with declared nitrogen 

and potassium. 

N organic: 3%. 

K2O total: 6%. 

N+ K2O: 10%. 

Organic Matter: 50%. 

Other usual trade names 

may be added. 

Total Nitrogen, Organic 

Nitrogen, Total Potassium and 

Organic Matter. 

Source. Decree Law nº103 (2015). 
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Table 5. Group 3- Organomineral Fertilizers.  

Nº 
Type 

designation 

Information on the procurement process and the 

essential components 

Minimal nutrient content 

(% by mass). Indications 

concerning the 

determination of nutrients. 

Other indications. 

Other 

indications 

concerning 

the type 

designation 

Nutrients whose content it is necessary to 

declare. Forms and solubilities of nutrients. 

Other criteria 

1 

Nitrogenated 

organomineral 
fertilizer (N) 

Fertilizer obtained by mixing products or by-

products of animal or vegetable origin with mineral 
fertilizers and having only declared nitrogen 

content. 

N total: 5% 

N organic: 1%.                   
Organic matter: 25% 

Other usual 

trade names 
may be 

added. 
For types 1 to 5: 
1 - Total nitrogen. 

2 - Organic nitrogen. 

3 - Organic matter. 

4 - If one of the forms of nitrogen (nitric, 

ammoniacal, urea and cyanamide) is present with 

a content equal to or greater than 1%, it may be 

declared.                                                                     

For types 2 and 3: 
5 - Total phosphorus. 

6 - Phosphorus soluble in neutral ammonium 

citrate if its content is equal to or greater than 2% 
(P2O5) and less than this value is the water-

soluble phosphorus content. 

7 - Phosphorus soluble in neutral ammonium 

citrate and water if the 

of phosphorus soluble in water is equal to or 

greater than 2% (P2O5). In this case, the latter 

solubility will also be declared. 

For types 2, 4 and 5: 
8 - Total potassium. 

9 - Potassium soluble in water. 

2 
Organomineral 

Fertilizer NPK 

Fertilizer obtained by mixing products or by-

products of animal or vegetable origin with mineral 

fertilizers and having declared contents of nitrogen, 

phosphorus and potassium. 

N total: 5% 
N organic:12%. 

P2O5 total: 3%. 

K2O total: 3%. 

N+ P2O5 + K2O: 15%.                    

Organic matter: 25% 

Other usual 

trade names 

may be 

added. 

3 
Organomineral 

Fertilizer NP 

Fertilizer obtained by mixing products or by-

products of animal or vegetable origin with mineral 

fertilizers and having declared contents of nitrogen 

and phosphorus. 

N total: 3% 

N organic: 1% 

K2O total: 5% 

N2+K2O: 10% 

Organic matter: 25% 

Other usual 

trade names 

may be 

added. 

4 
Organomineral 

Fertilizer NK 

Fertilizer obtained by mixing products or by-

products of animal or vegetable origin with mineral 

fertilizers and having declared nitrogen and 

potassium contents. 

N total: 3% 

N organic: 1% 

K2O total: 5% 

N2+K2O: 10% 

Organic matter: 25% 

Other usual 

trade names 

may be 

added. 

5 

organomineral 

fertilizer NK 

Fluid 

Solution or Suspension of a type 4 fertilizer. 

N total: 3% 

N organic: 1% 

K2O total: 3% 

N2+K2O: 8% 

Organic matter: 12% 

pH,                               

Other usual 

trade names 

may be 

added. 

Source. Decree Law nº103 (2015). 
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4. Methodology 

 

The leachate sample was collected in the leachate storage tank (see Figure 1) of the 

company Resíduos do Nordeste, EIM (Urjais, Mirandela, Portugal). The flow is 

produced and recovered from a composting line of a mechanical and biological waste 

treatment plant.  

 
Figure 1: Leachate storage tank. 

 

The storage tank has no cover and is susceptible to rainfall and runoff, which can 

cause leachate dilution. 

The sample was collected in February 2019 and stored at 4 °C in 5 L bottle of 

polyethylene terephthalate (see Figure 2). 

 

Figure 2. Original Sample. 
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This sample was characterized through the measuring of selected parameters, like: 

Total Organic Carbon (TOC), pH, Conductivity, Percentage of Dry Matter, Density, 

Heavy Metals, Phosphorus and Nitrogen (TKN). 

The collected sample was named as "Original sample", and from this sample, three 

different processes were applied. 

The first process was the concentration of the original sample, obtaining two 

samples. The second process was performed by centrifuging and filtering the original 

sample. These processes were carried out in order to evaluate the influence of the solids 

on the analyzed parameters and the concentration was made to reach parameters 

required by the legislation. 

The concentration of the samples (see Figure 3) was carried out by heating 100 mL 

of the original sample and boiling it until the concentration of 3% of organic carbon was 

attained, eliminating at least 7 mL of water. This process resulted in 84 mL of 1,19 

times concentrated sample from the original in volume, which was named "1,19". The 

same procedure was used to concentrate another sample: 200 mL was used and after the 

concentration 108 mL was obtained, i.e. 1,85 times the original in concentration. This 

sample was named "1,85", so that a percentage of 5% of total organic carbon would be 

reached. 

 

Figure 3. Concentrated samples. 

 

For the preparation of the last sample, a centrifuge was used (see Figure 4) in order 

to facilitate the filtration of the solids contained in the original sample. 250 mL of the 

original sample was centrifuged, followed by vacuum filtration. Hence, 220 mL of 

sample without solids was obtained, which was named "Filtro 03/04” (see Figure 5).  
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Figure 4. Centrifuge. 

 

Figure 5. Filtered sample. 

 

4.1. Total Organic Carbon (TOC) analysis 

 

TOC analyzes were performed on Shimadzu 5000A TOC-L equipment (Total 

Organic Carbon Analyzer). This apparatus operates by a catalytic combustion principle. 

This is achieved in a combustion pipe where the catalyst is contained, and heated to a 

temperature of 680 °C with a drag gas flow at 200 kPa. This gas must be synthetic air 

with a purity of 99,995%. 

The analysis of TOC allows the estimation of the amount of organic matter present 

in the sample, where the organic carbon present is quantified. 

The amount of organic carbon is given by the difference between Total Carbon 

(TC) and Inorganic Carbon (IC).  

Total Organic Carbon (TOC) analysis was performed with a 1:500 dilution. 0,5 mL 

of sample was added to a 250 mL volumetric flask, and the volume of the flask was 

then quenched with distilled water. Measurements were performed in triplicate. Prior to 

the first measurement, the procedure was performed on the equipment using only 
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distilled water, in order to make sure that the equipment would not contaminate the 

sample. This step was repeated every time after the analysis of each sample, ensuring 

the nonexistence of possible contaminants which would affect the results. 

The data acquired by the Shimadzu TOC-L equipment were then sent to the TOC-L 

Sample Table Editor program, where the values of TC, IC and consequently TOC were 

organized. 

The same procedure for TOC analysis was applied for the four samples cited above. 

 

4.2. Density 

 

To obtain the density, the equipment of the brand Anton Paar-Density meter-DMA- 

5000M was used. The settings were adjusted so that the data was obtained at 20 °C. 

20 mL of sample was put in a 50 mL beaker, and the equipment collected the 

sample through a capillary. This parameter was measured for all previously mentioned 

samples, and all analyzes were performed in triplicates. 

To clean the equipment, a density measurement was made with ultrapure water 

before and after use. 

 

4.3. pH and conductivity analyses 

 

For the pH measurements, a WTW SenTix 41 pH electrode (see Figure 6) was 

used. For this measurement 90 mL of the leachate sample was added in a 100 mL 

beaker. Along with the effluent was added a magnetic bar and the beaker was placed on 

a magnetic heating plate. In this way the sample remained homogenized while being 

heated. 
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Figure 6. pH measurements. 

 

The electrode for pH measurement was placed in the liquid sample when it was at 

10 °C and again at 20 °C, thus measuring the respective pH values.  

On the other hand, to assess the electrical conductivity of the sample, the WTW 

conductivity cell TetraCon 325 was used. In a procedure similar to the previous one, the 

electrical conductivity of the collected leachate was measured using the same beaker. 

The conductivity cell was inserted into the effluent on a magnetic heating plate, also at 

10 °C and 20 °C. 

This method was used for the analysis of pH and conductivity of the original 

sample, and 1,19, 1,85 and Filtro 03/04 samples. 

 

4.4. Dry matter 

  

The total solids (ST) content, or dry matter, was determined by gravimetry after 

drying the material in an oven at 105 °C for 48 hours. The results were expressed in g 

per kg. 

For the determination of this parameter, three empty crucibles were weighed and 

approximately 0,5g of sample was added in each one, weighing them again. The 

crucibles were brought to the oven at 105 °C for 48 hours and weighed after this period. 
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The dry matter determination was performed by the difference of the weighed values 

with the fresh and dry samples. 

This analysis was performed in an analogous way for the original sample, and 

1,19, 1,85 and Filtro 03/04 samples. 

 

4.5. Ash analysis 

 

Ash analysis was determined after drying of the material at 450 °C. For the 

determination of this parameter, three empty crucibles were weighed and approximately 

0,5g of sample was added in each one, weighing them again. The crucibles were 

brought to the muffle at 450 °C for 2 hours and weighed after this period were returned 

to the muffle for another hour and weighed again, this process was carried out until the 

weighed value became constant. Ash determination was performed by the difference of 

the weighed values with the fresh sample. 

This analysis was performed in an analogous way for the original samples, 1,19, 

1,85 and Filtro 03/04. 

 

4.6. Phosphorus 

 

4.6.1. Preparation of standard solution and vanadomolybdic solution 

 

a) Standard solution of 500 ppm (m/v) P2O5: 0,9640 g of primary standard 

KH2PO4 in 99,5% purity, dried for 2 hours at 105 °C, was transferred to a 

1000 mL volumetric flask, with distilled water. This solution contained 500 

mg of P2O5 per liter (500 ppm, m/v). 

b) Vanadomolybdic solution: 20g of ammonium molybdate (NH4MoO4, p.a.) 

was dissolved in 200-250 mL of distilled water at 80-90 °C and allowed to 

cool. 1g of ammonium metavanadate (NH4VO3, p.a.) was dissolved in 120-

140 mL of distilled water, after cooling the solution, 180 mL of concentrated 

nitric acid was added. Gradually the solutions of molybdate and 
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metavanadate were mixed. The solution was transferred to a 1000 mL 

volumetric flask, making up the volume with distilled water. 

 

4.6.2. Preparation of the calibration curve 

 

Pipette the standard solution 2,0 - 2,5 – 3,0 – 3,5 and 4,0 mL into 50 mL volumetric 

flasks, to each flask was added 20 mL of distilled water and 15 mL of the 

vanadomolybdic solution. The flasks were shaken and swollen with distilled water. 

These solutions contained 20, 25, 30, 35 and 40 ppm (m/v) of P2O5, respectively. 

The 5 flasks were allowed to rest for 10 minutes, so that color development was 

complete, the absorbance of the solutions at 400 nm was determined using the solution 

containing 20 ppm of P2O5 as blank. 

 

4.6.3. Determination of Total Phosphorus Concentration 

 

To determine the total phosphorus concentration, 10 mL of sample was used in a 

250 mL beaker. Then 25 mL of concentrated nitric acid was added, allowing to boil 

gently for 45 minutes to oxidize the organic matter. 

After this process, the beaker was allowed to cool and 10 mL of perchloric acid was 

added. This solution was carefully heated for one hour, replacing the acid if necessary, 

to prevent it from drying. After this period, the solution was let to cool and 50 mL of 

distilled water was added, continuing the heating for another 5 minutes. 

After this process, the liquid was vacuum filtered with paper filter, and then 

transferred to a 100 mL volumetric flask, along with 15 mL of reagent 

(Vanadomolybdic solution) and diluted with distilled water. The solution was then 

allowed to stand for 10 minutes to complete color development. 
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4.7. Nitrogen 

4.7.1. Total Kjeldahl Nitrogen (TKN) 

 

10 mL of the original sample was measured and transferred to a 250 mL round 

bottom flask, 10 mL of concentrated sulfuric acid, a catalyst pellet and glass beads were 

added. The flask was then placed in a heating blanket with the neck tilted 60 ° (see 

Figure 7). Heating was started at controlled temperature for a smooth boiling procedure. 

This process occurred to ensure a complete mineralization of the sample. 

 

Figure 7. Balloon with drooping neck. 

 

The mineralization was stopped after about an hour and a half, when the liquid was 

already clear, and the white smoke was gone. The flask could cool for 10 minutes and 

50 mL of distilled water was added slowly with stirring. 

In Figure 7 it is presented the experimental setup used to carry out the distillation. 

50 mL of 40% NaOH was added to the flask to neutralize the acid and displace the 

ammonia. In a 200 mL Erlenmeyer flask, 50 mL of 4% boric acid and 3 drops of mixed 

indicator (methyl red/methylene blue) were charged to the exit of the distillation unit 

(see Figure 8). After the start of the process, the distillate was collected for 15 minutes. 

The distillate was titrated with 0,1M hydrochloric acid (HCl) (see Figure 9), and the 

equivalence point was established by the turn of color from green to slightly pinkish. By 
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the amount of HCl used in the titration the percentage of total nitrogen present in the 

sample was estimated. 

 

Figure 8. Destillation unit. 

 

Figure 9. Titration of the distillate. 

This methodology for determination of total nitrogen was also used for sample 

Filtro 03/04. All analyzes were performed in triplicate. 
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4.7.2. Amoniacal Nitrogen 

 

10 mL of the original sample was measured and transferred to a 200 mL round-

bottom flask, 10 mL of concentrated sulfuric acid, a catalyst pellet and glass beads were 

added. This flask was placed on a heating blanket with the neck tilted 60 °. Heating was 

started at controlled temperature to ensure a smooth boiling process. This process 

occurred to promote the mineralization of the sample (see Figure 10). 

.  

Figure 10. Mineralization of the sample. 

 

The mineralization was stopped after about an hour and a half, when the liquid was 

already clear, and the white smoke was gone. The mineralized solution was titrated with 

0,1M hydrochloric acid (HCl). Again, the equivalence point was detected by a color 

change from green to slightly pinkish. 

This methodology for determination of ammoniacal nitrogen was also used for 

sample Filtro 03/04. All analyzes were performed in triplicate. 
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4.8. Heavy metals 

 

The analysis of heavy metals was performed for all samples under study. First, a 

mixture was prepared of 2 mL of 65% nitric acid and 6 mL of 37% hydrochloric acid. 

Then 5 mL of this mixture was added to a further 5 mL of sample. The reactor (see 

Figure 11) was sealed and brought to the oven at 60 °C for 48 hours to perform 

digestion. 

 

Figure 11. Reactor used to digestion of the sample. 

 

After completion of the digestion, the product in the reactor was filtered using a 

0,45-micron syringe filter into a 50 mL volumetric flask. This solution was further 

diluted with 5% nitric acid (see Figure 12) and brought to refrigeration. 

 

Figure 12. Samples after digestion, ready to be read on atomic absorption 

equipment. 
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4.8.1. Preparation of standard solution for quantification of heavy metals 

through atomic absorption 

 

For quantification of the heavy metals through atomic absorption, it was necessary 

to prepare standard solutions. The quantified metals were: cadmium, lead, nickel and 

chromium. To prepare the initial concentration solution, which would be used for the 

preparation of other concentrations, a salt of each metal was used. 

Cadmium sulfate A.R. grade (3CdSO4.8H2O) was used for cadmium analysis, to 

prepare the initial solution with a concentration of 100 ppm. 

The preparation of the initial concentration of lead standard solution was carried out 

with lead in a 100 mL flask, in order to achieve the concentration of 100 ppm. 

Nickel was used for the preparation of the initial solution of 100 ppm in a 100 mL 

flask. 

Preparation of the initial chromate solution was performed using A.R. grade 

potassium dichromate (K2Cr2O7), the desired concentration was 100 ppm for a 100 mL 

flask. 

The stock solution of potassium was prepared with potassium chloride KCl A.R. 

grade, to reach the concentration of 1000 ppm in a 200 mL flask. The atomic absorption 

equipment used in the methodology of preparing the potassium standard requires that 

the standards and samples to be analyzed have a concentration of cesium chloride of 

1000 mg/L, so that 0,5 g of Cesium chloride and dilution in 5% nitric acid was 

performed, increasing in 250 mL. After this preparation, 10 mL of the solution with 

cesium chloride and 10 mL of sample or standard potassium solution. 

The stock solution of copper was prepared using Copper metal strip. 1000 g of 

copper metal was dissolved in a minimum volume of 1:1 nitric acid and diluted to 1 L to 

obtain 1000 μg/mL of Cu. 

The standard zinc solution was prepared using zinc metal granules. 1000 g of zinc 

was dissolved in 40 mL of 1:1 hydrochloric acid and diluted to 1 L to obtain 1000 

μg/mL of zinc. 
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The European Union legislation stipulates limits for the metals Mercury, Arsenic 

and Biuret; however, to date these analyzes have not been carried out due to the lack of 

adequate equipment.  

The other standard solutions were prepared from each stock solution described 

above. The concentrations produced are shown in Table 6. 

Table 6. Concentrations for standard solutions of heavy metals. 

Atomic Absorption Analysis Leachate 

Cd Ci=100ppm Legis. UE = 3ppm 

Conc. (ppm) 0,02 0,5 1,5 2 3 

Vi (mL) 0,02 0,5 1,5 1 1,5 

  

Pb Ci=100ppm Legis. UE = 120ppm 

Conc. (ppm) 0,1 0,25 0,5 10 30 

Vi (mL) 0,1 0,25 0,5 5 15 

  

Ni Ci=100ppm Legis. UE = 50ppm 

Conc. (ppm) 1 5 10 50 100 

Vi (mL) 1 5 5 25 50 

            

Cr (VI) Ci=100ppm Legis. UE = 2ppm 

Conc. (ppm) 0,06 1 2 5 15 

Vi (mL) 0,06 0,5 1 2,5 7,5 

  

K Ci=1000ppm Legis. UE = 20000ppm 

Conc. (ppm) 100 200 400 600 800 

Vi (mL) 5 10 20 30 40 

  

Cu Ci=1000ppm Legis. UE = 600ppm 

Conc. (ppm) 10 100 300 600 1000 

Vi (mL) 1 5 15 30 50 

  

Zn Ci=3000ppm Legis. UE =1500ppm 

Conc. (ppm) 150 600 1500 2100 3000 

Vi (mL) 5 10 25 35 50 

 

The calibration curves used for each heavy metal are shown in Figure 13. 
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Figure 13. Calibration curve of metals Zn, Cu, Cd, Pb, Ni and Cr. 

 

4.9. Tests of adsorbents produced locally 

 

The Filtro 03/04 sample was later treated with two different types of adsorbents 

produced at the Polytechnic Institute of Bragança.  

 

4.9.1. Activated carbon obtained from compost 

 

The first one was obtained through the compound recovered from the composting 

process of the company Resíduos do Nordeste, EIM, the same company that supplied 

the original effluent sample for this work. The compost was washed with distilled water, 

dried in a furnace for 12h at 110 ºC, powdered and sifted, with the intention of 

homogenizing the compost. 
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Different amounts of the organic compound were mixed with distilled water to 

obtain different initial concentrations. The reaction vessel was then inserted in an oven 

at three pre-set temperatures, which differentiated the samples from each other. After 

reaching the desired reaction time, the samples were cooled to room temperature for up 

to 24 h. The solids were separated by vacuum filtration with 0,45 μm pore filter, washed 

with distilled water and dried for 12-15 h at 100 °C. 

This process resulted in the production of 3 different adsorbents of the same origin. 

The activated carbons "10” and “11" were baked at 230 ºC for 4 and 2 hours, 

respectively. The "12" sample had its thermal treatment at 150 ºC, for a period of 2 

hours. 

For each adsorbent, two different masses were used for the tests, resulting in six 

tests. Six erlenmeyers were used with 10 mL of the 3/4 Filtro sample each. 0,1g and 

0,2g of each activated carbon sample was weighed and added to the Erlenmeyer. The 

six sample vials and the adsorbents were placed on a shaking plate for 48 hours, as 

shown in Figure 14. 

 

Figure 14. Agitation plate with the Filtro 03/04 sample and the adsorbents under test. 
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After this period of 48 hours, the treated samples were taken to the centrifuge for 20 

minutes, in 10000 rpm, to separate the solids from treated effluent. These samples were 

stored in individually in labeled plastic bottles, as shown in Figure 15, for further 

analyzes of parameters that could influence the quality of the liquid fertilizer. 

 

Figure 15. Samples treated with adsorbents. 

 

4.9.2. Adsorbent obtained by clay activation 

 

The second test was performed with adsorbents also produced in the IPB, obtained 

through the activation of clay samples.  

Four clays originating in Kazakhstan were taken from Karatau (KAN), Akzhar 

(AKN), Kokshetau (KON) and Asa (ASN) deposits and were used as feedstocks to 

prepare activated clays.  

The clays were activated with acid. 150 mL of 4 M H2SO4 was heated at 80 °C in a 

three-neck round bottom flask. When the system temperature stabilized, 3 g of natural 

sample was added to the flask. The resulting suspension was stirred at 80 °C for 3 h. 

After cooling the dispersion, the suspension was filtered, and the supernatant 

discharged. The activated clay was washed repeatedly until the wash water reached a 

pH near the natural pH, which is 7. The material was recovered and then dried in a static 

air oven at 60 °C overnight to obtain the samples AKA, ASA, KAA and KOA, activated 

clays of AKN, ASN, KAN and KON, respectively (Silva A. S., 2019). 
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The samples provided are shown in Figure 16.  

 

Figure 16. Clay adsorbents. 

 

For each sample, 0,1g and 0,2g were weighed, and eight samples of filtered effluent 

treated with these adsorbents were obtained. The masses were placed in eight 

erlenmeyers (see Figure 17) with 20 mL of filtered effluent each. The erlenmeyers were 

left on shaken for 48 hours (see Figure 18), then, the treated samples were taken to the 

centrifuge for 20 minutes, in 10000 rpm, to separate the solids from treated effluent. 

The treated samples were refrigerated for further analysis. 

 

Figure 17. Different masses of clay adsorbent. 

 

 

Figure 18. Samples being treated with shaking.  
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5. Results and discussion 

 

5.1. Total Organic Carbon 

 

One of the main parameters that must be present in liquid fertilizers is organic 

carbon, this parameter is directly related to the amount of organic matter present in the 

fertilizer. According to the European Parliament and the Council (2019), this ratio is 

given by: 

𝐶𝑜𝑟𝑔 = 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑚𝑎𝑡𝑡𝑒𝑟 × 0,56                                   (1) 

 

The regulation approved in 2019 states that to be considered liquid organomineral 

fertilizer, the product must contain at least 3% of organic carbon, and 5% for organic 

fertilizer liquid, in this way, Table 7 presents the values of total organic carbon in mg/L 

found for samples: Original, Filtro 03/04, 1,19 and 1,85. Table 8 shows the 

percentages that will be used for comparison with legislation. 

 

Table 7. Amount of Total Organic Carbon present in the samples with and without 

dilution. 

Sample 

TOC 

(mg/L)  

dilution 

TC (mg/L)  

dilution 

IC 

(mg/L)  

dilution 

TOC 

(mg/L) 

TC 

(mg/L) 

IC 

(mg/L) 

Original 500x 56,26 61,03 4,77 28130 30515 2385 

Filtro 03/04 55,84 59,19 3,35 27920 29595 1675 

1,19x 500x 65,33 68,69 3,36 32665 34345 1680 

1,85x 500x 107,23 110,3 3,05 53615 55150 1525 
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Table 8. Percentage of Total Organic Carbon present in the samples. 

Sample % TOC % TC % IC 

Original 500x 2,813 ± 3,79E-4 3,051± 2,31E-4 0,238 ± 1,55E-5 

Filtro 03/04 2,792 ± 1,51E-3 2,959 ± 1,64E-3 0,167 ± 2,55E-6 

1,19x 500x 3,266 ± 1,13E-2 3,434 ± 1,15E-2 0,168 ± 4,66E-7 

1,85x 500x 5,361 ± 1,88E-3 5,515 ± 2,00E-3 0,152 ± 4,41E-6 

Liquid Organomineral 

Fertilizer (EU, 2019) 3,00 --- 

Organic Liquid Fertilizer 

(EU, 2019) 5,00 --- 

 

It is observed that the original sample reaches close to 3% of TOC required by 

European legislation, however, this value is slightly reduced when filtering this leachate 

with the sole intention of removing the solids, it can be stated in this way that the total 

organic carbon is mostly present in the liquid part of the leachate, which is interesting 

since the intention is to use it as a liquid fertilizer. 

The concentration procedure was performed by simple distillation to remove the 

small excess of water in the samples and meet the minimum requirements. 

The filtered sample only 1,19 and has already reached the minimum required by 

the European Parliament and the Council (2019). The Filtro 03/04 sample was again 

subjected to a distillation process, this time a little longer, so that the value of 5% TOC 

for liquid organic fertilizers could be reached, even for this percentage, the necessary 

concentration was considered relatively low, being only 1,85. 

 

5.2. Density 

 

The density of the samples was measured and are presented in Table 9. 
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Table 9. Density of the samples. 

Samples Density 20 °C (g/cm³) 

Original 1,032 

Filtro 03/04 1,030 

1,19x 1,035 

1,85x 1,056 

 

 The density showed low variations between the samples.  

 It is observed a slight increase in this parameter, for the 1,85 sample, due to 

loss of water during the concentration process, leaving the sample with the highest 

solids concentration. 

 It was also observed that the total organic carbon content has a great influence 

on the density of the samples. In this way a statistical analysis was used to verify this 

correlation between TOC and sample density. 

Figure 19 shows how the density is affected by the presence of TOC. 

 

Figure 19. Correlation between TOC and Density. 
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Note that with higher percentage of total organic carbon, the density increases 

slightly, with an exponential increase trend. A significance test, Pearson's correlation 

coefficient, was then applied. Pearson's correlation coefficient measures the degree of 

correlation (and the direction of this correlation - whether positive or negative) between 

two metric scale variables. This coefficient, usually represented by ρ, only assumes 

values between -1 and 1 (Figueiredo Filho & Silva Junior, 2009). 

ρ = 1, means a perfect positive correlation between the two variables. 

ρ = -1 It means a perfect negative correlation between the two variables, that is, if 

one increases, the other always decreases. 

ρ = 0, means that the two variables do not depend linearly on each other. 

A correlation coefficient ρ= 0,998479 was obtained for the samples. Thus, it can be 

stated that the correlation between density and TOC values is statistically significant for 

a 99% confidence interval. 

 

5.3. pH and Conductivity 

 

In the distillation process, due to the removal of water, also occurs the 

concentration of inorganic carbon content, such as carbonates, which must be corrected 

to a neutral pH before a possible use as fertilizer. Table 10 shows the measured pH and 

conductivity values for the samples. 
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Table 10. pH and conductivity of samples at 20° C. 

Samples Temperature (°C) pH 
Condutivity 

(mS/cm) 
% IC 

Original 20 7,53 39 0,238 ± 1,55E-5 

Filtro 03/04 20 7,81 40 0,167 ± 2,55E-6 

1,19x 20 7,98 38,8 0,168 ± 4,66E-7 

1,85x 20 6,55 52,3 0,152 ± 4,41E-6 

 

The pH and conductivity of the samples did not show high variations between the 

original, Filtro 03/04 and concentrated samples, it was expected that the 1,85 sample, 

which is the most concentrated, had a higher pH value than the samples as well as 

conductivity, however, it is observed that the pH values follow the inorganic carbon 

content, which presents the carbonates and bicarbonates present in the samples. 

 Electric conductivity is used to measure the amount of salts present in soil 

solution. The greater the amount of salts present in the solution, the greater the value of 

electrical conductivity obtained. Excess salts in the root zone, regardless of ions present, 

impair plant germination, development and productivity. This is because a higher 

concentration of the solution requires more energy from the plant to absorb water 

(Brandão, 2002). 

 

5.4. Dry matter and Ash 

 

The dry matter, often also referred to as Total Solids (TS), is the term used for the 

material remaining in the crucible after evaporation of sample water and subsequent 

drying in the oven at 105 °C. 

When this residue is calcined at 450 °C, the organic substances volatilize and the 

minerals remain as ash, thus forming the total volatile solid (TVS) and the total fixed 

solids (TFS). 
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The TFS form the inorganic fraction that compose the leachate, having as main 

constituents the inorganic minerals (calcium, potassium, carbonates, sulfates, among 

others). Table 11 shows the dry matter and ash values of the samples under study.  The 

analyzes were performed to quantify TS and TFS contents. For the calculation of TVS, 

the difference between the total and fixed solids was made (see Table 12). 
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Table 11. Percentage of dry mass and ash in samples. 

Dry matter 

Samples 
crucible mass 

(g) 
full (g) dry (g) 

inicial mass 

(g) 

dry matter 

(g) 
% dry matter 

Original 39,16 41,86 39,33 2,70 0,17 6,46 ± 0,07 

Filtro 03/04 35,80 37,48 35,90 1,68 0,10 6,03 ± 0,04 

1,19x 41,75 43,38 41,86 1,63 0,11 7,07 ± 0,27 

1,85x 35,87 37,10 36,01 1,23 0,14 11,50 ± 0,25 

Ash 

Samples 
crucible mass 

(g) 
full (g) dry (g) 

inicial mass 

(g) 
Ash (g) % Ash 

Original 33,80 36,42 33,88 2,61 0,08 3,07 ± 0,25 

Filtro 03/04 35,01 37,10 35,07 2,09 0,06 2,96 ± 0,13  

1,19x 35,91 37,02 35,94 1,11 0,03 2,94 ± 0,05 

1,85x 36,16 37,09 36,21 0,93 0,05 5,59 ± 0,02 
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Table 12. Percentage of Total volatil solids. 

Samples % dry matter % Ash % TVS 

Original 6,46 3,07 3,39 

Filtro 03/04 6,03 2,96 3,07 

1,19x 7,07 2,94 4,13 

1,85x 11,50 5,59 5,91 

 

Observing the values presented in Table 11, it can be verified that the dry matter 

contents do not have high variability between the original, Filtro 03/04 and 1,19x 

samples. The 1.85x sample has higher solids content due to the concentration process. It 

was possible to observe that the organic and inorganic fractions have smaller difference 

with the higher concentration of the samples. 

The original and “Filtro 03/04” samples showed similar ash content and lower than 

the concentrated samples. 

When the ash value is greater than the value of the TVS, then the fraction of 

inorganic matter prevails in relation to the fraction of organic matter that constitute the 

effluent. 

Thus, for the original and “Filtro 03/04” samples, the organic matter fraction is 

higher, whereas in the concentrated samples the predominant fraction is inorganic. This 

is because, for the concentration of these samples, it was necessary to raise the 

temperature, that is, portions of the organic contents were volatized. 

The importance of measuring this parameter is therefore, according to Oliveira et 

al. (2000), irrigation with liquids containing high concentrations of solids can cause 

changes in the water infiltration capacity in the soil, caused by the clogging of 

macropores and the formation of crusts on its surface. The formation of superficial 

crusts causes infiltration problems. 

  

5.5. Phosphorus 
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After the preparation of the samples and standards, none of the samples were 

determined to contain the minimum concentration required for the absorbance 

equipment to read, that is, the samples had values lower than the lowest calibration 

curve standard value (<20 ppm). 

These values denote a low concentration of P2O5 in the sample collected from the 

supernatant residue in the storage tank. 

The figures are below the minimum required by legislation, even in more 

concentrated samples, since the Regulation of the European Parliament and of the 

Council (2019) provides that an organomineral fertilizer must contain at least one of the 

declared primary nutrients: N, P2O5, K2O. And when this fertilizer contains only one of 

these nutrients, in the case of P2O5, the minimum concentration should be 2% by mass 

of total phosphorus pentoxide (P2O5). 

 

5.6. Nitrogen 

 

The procedure for the characterization of nitrogen was carried out to obtain the 

parameters of the leachate, in order to compare it with the current legislation, aiming the 

conformity for its use as liquid organomineral fertilizer. 

The results obtained from ammoniacal nitrogen, total nitrogen and by difference, 

organic nitrogen, are shown, respectively, in Tables 13, 14 and 15. 

 

Table 13. Amount of ammoniacal nitrogen present in the samples. 

Ammoniacal Nitrogen 

Samples HCl (mL) NH3 (mg/L) % mass 

Original 5,22 289,28 0,03  

Filtro 03/04 3,40 188,54 0,02  
 

Table 14. Amount of total nitrogen present in the samples. 

TKN 

Samples HCl (mL) NH3 (mg/L) % mass 
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Original 24,43 4064,68 0,41 

Filtro 03/04 23,07 3837,32 0,38  

 

Table 15. Amount of organic nitrogen present in the samples. 

Nitrogen organic 

Samples NH3 (mg/L) % mass 

Original 3775,39 0,38 

Filtro 03/04 3648,78 0,36  

 

This analysis was applied only to the original anda Filtro 03/04 samples that present 

the maximum possible value for the leachate. The concentrated samples were not 

analyzed because with the distillation process some amount of volatile nitrogen is lost 

due to the heating process. Therefore, the N content for the concentrated slurry samples 

should be underestimated. 

According to the Parliament and Council Regulation (2019), to be considered as a 

liquid organomineral fertilizer, the product must contain at least one of the nutrients 

declared in the minimum quantities, which for nitrogen is: 2% by weight of total 

nitrogen, of which 0,5% by mass of the fertilizer product should be organic nitrogen. 

Therefore, the nitrogen values do not meet the requirements of the legislation. 

Thus, it was necessary to carry out the potassium analysis, for comparison with the 

legislation and possible compliance with at least one of the necessary nutrients, so that 

the leachate can be used as a liquid organomineral fertilizer. 

 

5.7. Heavy Metals 

 

The concentration of heavy metals is shown in Table 16. 
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Table 16. Comparison of the values of heavy metals recommended by the European legislation and the values found in the samples, for use as 

commercial fertilizer. 

Samples Zn (mg/kg) Cu (mg/kg) Cd (mg/kg) Pb (mg/kg) Ni (mg/kg) Cr (mg/kg) 

EU 2019 1500 600 3 120 50 2 

Original 468,60 101,60 0,37 4,76 116,33 10,74 

Filtro 03/04 252,80 241,10 0,91 4,11 148,93 9,83 

1,19 1077,60 56,07 0,69 15,77 155,51 11,08 

1,85 1299,80 11,30 0,41 11,01 62,81 10,47 
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It is noted that the heavy metals zinc, cadmium, copper and lead found in the 

samples are all below the limit values set by European legislation. However, it is 

observed that the results are not cohesive, since it is assumed that in concentrated 

samples, the values of heavy metals would be higher, and this was not confirmed in all 

metals. This discrepancy is suggested due to the minimum reading range of the atomic 

absorption equipment, which equipment does readings in ppm, that is, the values of 

these metals are below the minimum reading range of the equipment, in this way, it is 

known that limits are not achieved, however, it is not possible to determine the exact 

concentration of each metal. New analyzes must be performed on atomic absorption 

equipment with capacity for ppb readings, in order to determine the exact concentration 

of each heavy metal in the leachate under study. 

The detection limit (LD) of an analytical method corresponds to the smallest 

amount of an analyte that can be detected but not necessarily quantified as an exact 

value. In the case of quantitative methods, it may not be essential to estimate this 

parameter, since the greatest interest is in knowing which is the smallest amount that 

can be quantified. However, its determination is usual. The quantification limit (LQ) 

corresponds to the smallest amount of an analyte that can be determined quantitatively 

with adequate accuracy using an experimental procedure. The quantification below the 

LQ is not acceptable. Therefore, results below this value should only be expressed as 

semiquantitative or qualitative (Mustra, 2009). 

For nickel and chromium, it was observed that all the samples exceeded the 

maximum values allowed by the European Union, so a treatment of this leachate is 

necessary to reduce the concentration of these metals so that it can be marketed as liquid 

organomineral fertilizer. 

Excess chromium and nickel can cause diverse negative adversities to human health 

and the environment. 

Chromium is bioacumulative, therefore, special care is requiring both in handling 

of chromium compounds as well in the treatment of generated waste. Exposure to 

hexavalent chromium may occur, generally through inhalation, skin contact and 

ingestion. In addition to cancer, exposure may cause allergic dermatitis, skin ulcers, 

scars, and even perforations of the nasal septum (Cheis, 2013). 
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The presence of harmful amounts to the plants can result in damages such as 

chlorosis, reduction of leaf and root growth and death (Castro, 2014). 

Soluble Ni salts and Ni sulfides and oxides are carcinogenic to humans and may 

affect the lungs and nasal tissues. Because of its potential for toxicity, nickel may have 

as effects, after inhalation, chronic bronchitis, asthma, reduced vital capacity and 

pulmonary emphysema (Agency, 2009). 

The solubility of Ni in the soil is influenced by the pH, the presence of organic 

matter and clays and manganese and iron ions in the soil, and the mobility of the nickel 

in the soil increases with the decrease of pH. Most Ni compounds are soluble at pH 

values below 6.5. Compared to other heavy metals such as Cd and Zn, Ni presents 

greater mobility in soils (Ribeiro, 2013). 

According to the Environment Agency (2009), the plants have different Ni 

tolerance capacities, and the species with the greatest absorption capacity of this metal 

are Cruciferae (which includes turnip, cabbage and cauliflower) and Leguminosae (such 

as peas and bean). 

 It is then concluded that zinc, cadmium, copper and lead meet EU requirements in 

all samples analyzed, however, nickel and chromium must be removed. 

From the characterization of the slurry samples, a flowchart for the appropriate 

treatment, with the intention of using the leachate as fertilizer, can now be proposed. 

The concentration of biuret, arsenic and mercury were not determined due to the 

lack of materials for analysis, therefore, it is necessary to characterize this metal before 

asserting the use of the leachate as fertilizer.  
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5.8. Results and discussions of adsorbent tests  
 

The results of the two leachate treatment tests with the three types of organic 

compound adsorbents and the four types of clays adsorbents are set forth below. 

 

5.8.1. Test with adsorbent- Activated Carbon 

 

The first test was carried out using the adsorbents from the organic compound 

provided by the same landfill company that supplied the leachate samples. 

 

5.8.1.1. Total Organic Carbon 

 

Analyzes were performed to determine the total organic carbon present in the 

samples, after being submitted to the treatment. Table 17 shows the TOC values 

provided by the analytical equipment, that is, with the diluted sample (1:500) and 

presents these values already converted to the actual value present in the leachate. 

In Table 18, the percentage of total organic carbon present in the analyzed product 

can be observed, so that the values can be compared with the current legislation. 

 

Table 17. Total organic Carbon of treated samples with activated carbon. 

Sample 

TOC 

(mg/L) 

TC 

(mg/L) 

IC 

(mg/L) 
TOC 

(mg/L) 
TC (mg/L) 

IC 

(mg/L) 
dilution dilution dilution 

10- 0,1 40,52 43,56 3,04 20261,67 21780,00 1519,83 

11- 0,1 39,65 42,54 2,89 19825,00 21268,33 1443,17 

12- 0,1 40,42 43,21 2,80 20208,33 21606,67 1399,00 

10- 0,2 46,00 49,04 3,04 22998,33 24520,00 1522,33 

11- 0,2 47,13 49,85 2,72 23563,33 24925,00 1361,00 

12- 0,2 41,47 43,99 2,53 20733,33 21996,67 1262,50 
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Table 18. Percentage of total organic Carbon of treated samples with activated carbon. 

Sample % TOC % TC % IC 

Filtro 03/04 2,79 ± 1,88E-3 2,96 ± 2,00E-3 0,17 ± 1,55E-5 

10- 0,1 2,03 ± 5,88E-4 2,18 ± 6,75E-4 0,15 ± 2,70E-6 

11- 0,1 1,98 ± 9,08E-4 2,13 ± 9,98E-4 0,14 ± 2,16E-6 

12- 0,1 2,02 ±2,12E-4 2,16 ±2,21E-4 0,14 ± 2,09E-7 

10- 0,2 2,30 ± 1,78E-4 2,45 ± 1,93E-3 0,15 ± 2,26E-6 

11- 0,2 2,36 ± 4,84E-4 2,49 ± 5,10E-4 0,14 ± 4,46E-7 

12- 0,2 2,07 ± 5,27E-4 2,20 ± 5,61E-4 0,13 ± 2,89E-7 

 

The regulation of the European Parliament and the Council (2019), stipulates that 

for a fertilizer to be classified as a liquid organomineral, it must contain at least 3% of 

TOC. 

The samples treated with the activated carbon presented values lower than the 

provisions of the regulation, which was already expected, since the sample Filtro 03/04, 

which was treated, had only 2,8% TOC. 

However, it is observed that with increasing mass of the same type of adsorbent, a 

slight increase in the percentage of TOC occurs as well. This may have occurred due to 

the origin of the adsorbent.  

It is expected that this increase in TOC would occur, because it is probable that the 

adsorbent will leach some species that were analyzed, in this way, there are exchanges 

between the solid and the liquid. 

Activated carbon 11-0,2 was the most leaching of this component for the samples, in 

relation to the other adsorbents of this origin. 

 

5.8.1.2. Density 

 

The density of the samples treated with the activated carbon did not change in 

relation to the sample Filtro 03/04, which was used for the treatment, therefore, for the 

evaluations of these results, the value previously measured was assumed, 1,03g/cm³. 
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5.8.1.3. pH and Conductivity 

 

The pH and conductivity of the samples treated with this adsorbent did not show 

significant changes that influenced leachate characteristics after treatment. 

 

5.8.1.4. Dry matter and Ash 

 

The dry matter, or total solids, was quantified by mass and percentage, as well as 

ash analyzes, or fixed solids. The measurements are set out in Tables 19 and 20, 

respectively. 

Table 19. Percentage of dry matter of treated samples with activated carbon. 

Dry matter 

Samples 

crucible 

mass (g) full (g) 

inicial 

mass (g) dry (g) 

dry 

matter (g) 

% dry 

matter 

Filtro 03/04 35,80 37,48 1,68 35,90 0,10 6,03 

10- 0,1 36,26 37,46 1,20 36,34 0,08 6,33 

11- 0,1 35,36 36,53 1,17 35,43 0,07 5,74 

12- 0,1 38,19 39,22 1,03 38,26 0,06 5,97 

10- 0,2 35,11 36,67 1,56 35,20 0,09 5,86 

11- 0,2 36,30 37,84 1,53 36,39 0,09 5,60 

12- 0,2 37,94 39,47 1,54 38,02 0,09 5,68 

 

It is observed that the percentage of dry matter has little variation among the 

samples tested. There was a slight reduction of the total solids of the Filtro 03/04 

sample for the samples treated with the adsorbents, with the exception of 10-0,1, this 

increase of solids in this case may have occurred due to the separation of the activated 

carbon from the sample, after the treatment, has not been carried out in order to 

eliminate all the adsorbent. 
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Table 20. Percentage of ash of treated samples with activated carbon. 

Ash 

Samples 
crucible 

mass (g) 
full (g) 

inicial 

mass (g) 
dry (g) Ash (g) % Ash 

Filtro 03/04 35,00 37,09 2,09 35,07 0,06 3,00 

10-0,1 36,26 37,46 1,20 36,30 0,04 3,00 

 11-0,1 35,36 36,53 1,17 35,40 0,03 2,90 

 12-0,1 38,19 39,22 1,03 38,22 0,03 2,91 

 10-0,2 35,11 36,67 1,56 35,15 0,04 2,90 

 11-0,2 36,30 37,84 1,53 36,34 0,04 2,64 

 12-0,2 37,94 39,47 1,54 37,98 0,04 2,77 

 

With the difference between the dry matter and the ash, the equivalent value of 

the volatile solids was obtained, these data can be found in Table 21. 

 

Table 21. Percentage of total volatil solids of treated samples. 

Samples % dry matter % Ash TVS (%) 

Filtro 03/04 6,03 3,00 3,03 

 10-0,1 6,33 3,00 3,33 

 11-0,1 5,74 2,90 2,84 

 12-0,1 5,97 2,91 3,06 

 10-0,2 5,86 2,90 2,96 

 11-0,2 5,60 2,64 2,96 

 12-0,2 5,68 2,77 2,91 

 

Through Table 21, show that the percentage of total volatile solids was higher for 

most of the adsorbents tested, except for a small difference in the sample 11-0,1. 

This indicates that the leachate treated with activated carbon has a higher fraction of 

organic matter than of inorganic matter in its composition.  

 

5.8.1.5. Phosphorus 

 

No analyzes were carried out for quantification of the phosphorus nutrient, since the 

initial analysis made for the original sample had a lower value for this nutrient, so after 
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the treatment with the adsorbents, it was known that this value would not be legally 

enough for a liquid organomineral fertilizer classification. 

 

5.8.1.6. Nitrogen 

 

Total ammoniacal and organic nitrogen analyzes were not performed for the 

samples treated with the adsorbents under test, since the original sample and the Filtro 

03/04 had already shown values below that required for liquid organomineral fertilizers, 

that is, there was no need of quantification of this nutrient after the treatment with the 

adsorbent, since it was already known that the value would not exceed the stipulated by 

the legislation. 

 

5.8.1.7. Heavy Metals 

 

As shown above, for the Original, Filtro 03/04 and concentrated samples, chromium 

and nickel metals did not meet the values determined by the legislation. 

In this way, this treatment was carried out with activated carbon in order to adsorb 

heavy metals from the leachate. 

Table 22 shows the results of heavy metals provided by the atomic absorption 

equipment. 
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Table 22. Heavy metals quantified in the treated samples with activated carbon. 

Samples Zn (mg/kg) Cu (mg/kg) Cd (mg/kg) Pb (mg/kg) Ni (mg/kg) Cr (mg/kg) 

EU 2019 1500 600 3 120 50 2 

Filtro 03/04 252,10 241,10 0,91 4,11 148,93 9,83 

 10-0,1 480,93 250,26 0,77 3,91 11,14 6,35 

 10-0,2 259,73 22,53 1,35 1,06 132,40 6,50 

 11-0,1 265,20 253,00 1,06 1,08 131,67 7,00 

 11-0,2 543,56 306,42 0,65 1,10 158,33 6,80 

 12-0,1 254,97 309,58 1,02 1,04 3,38 7,44 

 12-0,2 268,01 23,24 0,53 1,09 101,13 8,94 
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Data presented previously show that only Chromium and Nickel metals do not meet 

the limits stipulated by the legislation. However, for the other metals, it was observed 

that there was an increase in the obtained concentration data, in relation to the sample 

before the treatment. 

The obtained data do not provide consistency between them, two hypotheses are 

suggested as possible sources of this problem. The first would be that the adsorbent 

used, that is, the activated carbon, has leached heavy metal components (since it 

originates from a compound that has these metals) during the adsorption process. The 

second hypothesis would be the fact that the data obtained are below the smallest point 

of the calibration curve of the atomic absorption equipment, thus, although it shows that 

the values are below the limits, the reading is not accurate as to the real value of the 

metals present in the leachate.  

5.8.2. Test with adsorbent - Clays 

 

Four adsorbents originating from the clays were tested in two different masses each, 

totaling eight tests. The results found in the analyzes are presented below. 

 

5.8.2.1. Total Organic Carbon 

 

Table 23 presents the values of total organic carbon in mg/L and, Table 24 shows 

the percentage of TOC corresponding to the leachate under study after treatment with 

the clay adsorbents. 
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Table 23. Total organic Carbon of treated samples with adsorbent of Clays. 

Sample 

TOC 

(mg/L) 

TC 

(mg/L) 

IC 

(mg/L) 
TOC 

(mg/L) 
TC (mg/L) IC (mg/L) 

dilution dilution dilution 

ASA- 0,1 49,62 52,83 3,20 24810,00 26415,00 1602,17 

ASA- 0,2 48,18 51,25 3,07 24091,67 25626,67 1533,67 

KAA- 0,1 47,85 51,05 3,20 23923,33 25525,00 1602,33 

KAA- 0,2 50,18 53,47 3,29 25091,67 26735,00 1644,00 

AKA- 0,1 47,81 51,06 3,25 23905,00 25528,33 1622,50 

AKA- 0,2 47,51 49,87 2,63 23756,67 24936,67 1314,17 

KOA- 0,1 47,44 50,31 2,86 23720,00 25153,33 1432,17 

KOA- 0,2 50,34 53,31 2,97 25171,67 26655,00 1484,33 

 

Table 24. Percentage of total organic carbon of treated samples with adsorbent of Clays. 

Sample % TOC % TC % IC 

Filtro 03/04 2,79 ± 1,88E-3 2,96 ± 2,00E-3 0,16 ± 4,41E-6 

ASA- 0,1 2,48 ± 3,65E-4 2,64 ± 3,98E-4 0,16 ± 6,01E-7 

ASA- 0,2 2,41 ± 1,51E-3 2,56 ± 1,65E-3 0,15 ± 2,35E-6 

KAA- 0,1 2,39 ± 7,19E-4 2,55 ± 7,85E-4 0,16 ± 1,43E-6 

KAA- 0,2 2,51 ± 1,63E-3 2,67 ± 1,76E-3 0,16 ± 9,96E-7 

AKA- 0,1 2,39 ± 1,76E-3 2,55 ± 1,91E-3 0,16 ± 2,81E-6 

AKA- 0,2 2,38 ± 1,15E-3 2,49 ± 8,14E-4 0,13 ± 5,31E-7  

KOA- 0,1 2,37 ± 7,13E-4 2,51 ± 7,85E-4 0,14 ± 1,51E-6 

KOA- 0,2 2,52 ± 1,64E-4 2,66 ± 1,80E-4 0,15 ± 2,00E-6 

 

It is possible to observe that there was a slight reduction of the TOC content, in 

relation to the sample Filtro 03/04, after the treatment with the adsorbents.  

It can be observed in the AKA sample that the increase in adsorbent mass did not 

influence the removal of TOC content, thus, it can be concluded that the removal 

reaches a constant value with a certain mass of activated clays. 

The use of adsorbents is commonly used for the removal of heavy metals in 

effluents, however, the reduction of the total organic carbon content was already 

expected. It is indicated that there is a concentration of the leachate prior to treatment 

with adsorbents so that the final product contains at least 3% TOC, which is 

recommended by the Regulation of the European Parliament and of the Council, 

approved in May 2019, for liquid organomineral fertilizers. 
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5.8.2.2. Density 

 

The density of the samples treated with the activated carbon did not change in 

relation to the sample Filtro 03/04, which was used for the treatment, therefore, for the 

evaluations of these results, the value previously measured was assumed, 1,03g/cm³. 

 

5.8.2.3. pH and Conductivity 

 

The pH and conductivity of the samples treated with this adsorbent did not show 

significant changes that influenced leachate characteristics after treatment. 

 

5.8.2.4. Dry matter and Ash 

 

Total solids (TS) and fixed solids (TFS) analyzes were performed for the clay 

adsorbent samples tested (Table 25 and 26). The difference between TS and TFS, gives 

the value of the volatile solids present in the leachate sample, after treatment (see Table 

27), i.e. the fraction of organic compounds. 

 

Table 25. Percentage of dry matter of treated samples with adsorbents of clays. 

Dry matter 

Samples 
crucible 

mass (g) 
full (g) 

inicial 

mass (g) 
dry (g) 

dry matter 

(g) 
% dry matter 

Filtro 03/04 35,80 37,48 1,68 35,90 0,10 6,03 

ASA 0,1 35,29 36,78 1,49 35,38 0,09 6,07 

KOA 0,1 37,60 38,73 1,13 37,66 0,06 5,65 

KAA 0,1 36,87 38,78 1,90 36,99 0,11 5,90 

AKA 0,1 36,30 37,68 1,38 36,38 0,08 5,89 

ASA 0,2 39,25 41,08 1,82 39,36 0,11 5,93 

KOA 0,2 31,31 33,47 2,16 31,43 0,13 5,83 

KAA 0,2 35,11 36,81 1,70 35,21 0,10 5,96 

AKA 0,2 38,19 39,95 1,76 38,28 0,09 5,38 
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Table 26. Percentage of ash of treated samples with adsorbents of clays. 

Ash 

Samples 
crucible 

mass (g) 
full (g) 

inicial mass 

(g) 
dry (g) Ash (g) % Ash 

Filtro 03/04 35,01 37,10 2,09 35,07 0,06 2,99 

ASA 0,1 35,29 36,78 1,49 35,34 0,05 3,15 

KOA 0,1 37,60 38,73 1,13 37,63 0,03 2,75 

KAA 0,1 36,88 38,78 1,90 36,93 0,06 2,95 

AKA 0,1 36,30 37,68 1,38 36,34 0,04 2,99 

ASA 0,2 39,25 41,08 1,82 39,30 0,05 2,86 

KOA 0,2 31,31 33,47 2,16 31,38 0,06 2,84 

KAA 0,2 35,11 36,81 1,70 35,16 0,05 2,98 

AKA 0,2 38,19 39,95 1,76 38,24 0,05 2,81 

 

The content of total solids and ash has little variation among the samples treated 

with the clay adsorbents. For the most part, the treated samples have a lower amount of 

TS and TFS than the Filtro 03/04 sample. There is only one exception, the adsorbent 

ASA 0,1, which presented the percentage of dry matter and ash slightly larger, this may 

have occurred by remnants of solid at the time of separation of the adsorbent from the 

sample. 

Using the TS and TFS data, the volatile solids content was calculated. Table 27 

shows the corresponding values. 

Table 27. Percent volatile solids of samples treated with clay adsorbent. 

Samples 
% dry 

matter % Ash TVS (%) 

Filtro 03/04 6,03 3,00 3,03 

ASA 0,1 6,07 3,15 2,92 

KOA 0,1 5,65 2,75 2,90 

KAA 0,1 5,90 2,95 2,95 

AKA 0,1 5,89 2,99 2,90 

ASA 0,2 5,93 2,86 3,07 

KOA 0,2 5,83 2,84 2,99 

KAA 0,2 5,96 2,98 2,98 

AKA 0,2 5,38 2,81 2,57 
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In Table 27, through the contents of fixed solids and volatile solids, it is noted that 

there is little difference between the organic and inorganic fractions of samples treated 

with activated clay, presenting relatively constant values after treatment. 

 

5.8.2.5. Phosphorus 

 

No analyzes were carried out for quantification of the phosphorus nutrient, since the 

initial analysis made for the original sample had a lower value for this nutrient, so after 

the treatment with the adsorbents, it was known that this value would not be legally 

allowed for liquid organomineral fertilizers. 

 

5.8.2.6. Nitrogen 

 

Total ammoniacal and organic nitrogen analyzes were not performed for the 

samples treated with the adsorbents under test, since the original sample and the Filtro 

03/04 had already shown values below that required for liquid organomineral fertilizers, 

that is, there was no need of quantification of this nutrient after the treatment with the 

adsorbent, since it was already known that the value would not exceed the stipulated by 

the legislation. 

 

5.8.2.7. Heavy Metals 

 

Heavy metals are usually found in raw effluents, and in the case of landfill effluents, 

the concentration of this parameter may have variability. In this context, tests were 

carried out with adsorbents to remove these pollutants. 

Table 28 presents the values obtained through atomic absorption, for the Filtro 

03/04 sample, after the treatment with the clay adsorbents.
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Table 28. Heavy metals quantified in the treated samples with adsorbents of clays. 

Samples Zn (mg/kg) Cu (mg/kg) Cd (mg/kg) Pb (mg/kg) Ni (mg/kg) Cr (mg/kg) 

EU 2019 1500 600 3 120 50 2 

Filtro 03/04 252,10 241,10 0,91 4,11 148,93 9,83 

ASA 0,1 250,51 195,53 0,70 4,07 61,36 8,35 

KAA 0,1 1077,58 140,18 0,86 1,09 19,62 14,60 

AKA 0,1 1290,32 201,43 0,62 2,10 174,25 10,40 

KOA 0,1 775,40 448,31 0,31 2,10 203,61 13,65 

ASA 0,2 1282,34 378,13 1,53 1,04 105,26 9,98 

KAA 0,2 1304,52 45,25 1,35 5,30 65,63 11,60 

AKA 0,2 765,41 442,55 0,71 1,04 163,83 11,70 

KOA 0,2 1131,02 98,09 0,79 6,90 97,33 14,54 
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Kalmakhanova et al. (2019), reports in their study the heavy metal composition 

of the clays used to obtain the adsorbent. Of the metals reported by the authors, Cu is 

common with this study. However, this metal was not identified in the adsorbents. 

It is observed that in three of the tested samples, there is an increase in the 

concentration of this metal, although the values are well below the established limit. 

Except nickel and chromium, the other metals analyzed have values within the 

limits allowed by the legislation, as indicated in Table 25. Although they are imprecise 

values among them. 

There are some justifications, as previously explained in the tests with activated 

carbon, for the results that do not have coherence between them. In the case of tests with 

clays, the equipment reading signal is the main source of imprecision because the values 

of some heavy metals in the samples are smaller than the first point of the calibration 

curve used for the measurements and in the case of nickel, values above the maximum 

of the calibration curve. Thus, values of these heavy metals were measured, above the 

limit of detection, but these values are not within the limit of quantification of the 

equipment used. 
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6. Proposal for the leachate treatment system 

 

The analyzed parameters show that for this leachate under study to be used as 

Fertilizer and classified specifically as a liquid organomineral fertilizer, according to the 

Regulation of the Parliament and Municipality (2019), it is necessary a slight water 

removal from the effluent, so that it exhibits at least 3% TOC. It is also necessary to 

remove the nickel and chromium metals, since they are above the limits allowed by 

legislation. Additionally, the leachate must possess enough potassium for this 

classification, because as it can be observed from the presented results, the contents of 

nitrogen and phosphorus were not enough. 

Therefore, it is emphasized that for the treatment to be effective for the desired 

purpose, it is important to choose the treatment process efficiently. Physico-chemical 

processes are recommended for the removal of inorganic pollutants, heavy metals and 

oils and greases (Oliveira Junior, 2013). In this case it is not indicated that there is 

biological treatment, because it would cause organic matter removal, and having in 

mind the goal of using this final product, it is important that this organic content 

remains. 

Knowing that the storage tank of this liquid waste in the Company Resíduos do 

Nordeste, EIM, receives all the effluent without any type of separation, that is, it has 

coarse material in its composition, it is suggested the implementation of grids as a 

preliminary treatment, where the effluent passes through coarse grids to remove large 

solids. 

After the grids, there must be an equalization tank, the effluent will enter a large 

tank, from which it is pumped to the treatment line, this process allows to control the 

flow rates in the system, to avoid variations in the organic load, to control the pH of the 

effluent, which must be kept close to the neutral so as not to alter the soil characteristics 

in which it will be applied. The equalization tank also serves to keep the leachate 

homogeneous within that space, maintaining the same characteristics at any point. 

Next, the filtration process, which is a mechanical method of separation, is 

indicated, with the main objective being the removal of suspended solids. This method 

consists of forcing the solution stream through a porous structure, the filter, which will 

retain particles of larger dimensions than the pores. It is noteworthy that analyzes of the 
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same parameters were performed, after filtration of the leachate, in a laboratory scale. It 

is suggested to use a filter press for this purpose. 

The use of unitary operations such as chemical precipitation or 

coagulation/flocculation is not recommended, since phosphorus and organic matter 

present in the suspension may be eliminated, respectively, which would impair the 

required concentration of these components in the composition of the liquid 

organomineral fertilizer. 

It is then necessary to perform the concentration of the leachate so that it reaches the 

TOC content required to be used as fertilizer. The concentration should be performed 

with the minimum factor of at least 1,19 times the original. There are some options for 

carrying out this process, such as evaporation or reverse osmosis. 

To carry out the evaporation of this effluent, it would be necessary a high energy 

expenditure, which could not be economically viable for the company. With the 

development of membrane separation processes where the removal of water from the 

effluent does not require phase transfer it has become economically viable to use this 

process to concentrate solutions. Reverse osmosis is a very viable option as it separates 

and concentrates the compounds without modifying their molecular form. In addition, 

the membrane process requires less energy than other alternatives because there is no 

phase change, the equipment is compact and could operate continuously (Rosa, 2014). 

It is important to consider the economic viability of these two concentration systems 

and the concentration factor achieved for each process, so that the best option chosen in 

this step is chosen. 

For the removal of heavy metals, the ion exchange process is suggested. 

Jimenez et al. (2004), tested the natural zeolite in this process, and pointed out that 

the mineral has a high adsorbent power for the removal of cadmium, chromium, 

manganese and nickel metals. 

According to the authors, the tests indicated that there was no change in the 

concentration of the solutions in the absence of the adsorbent. They stated that the 

amount of solute adsorbed at a constant temperature increases with the concentration of 

the solution. In the tests performed, the authors verified a total removal of chromium in 



                               
 

65 
 

concentrations up to 50 mg/L, and reaching 96,5% retention when the effluent contained 

100 mg/L of chromium. The retention of cadmium, nickel and manganese was also 

practically total at low concentrations and reached about 75% with 50 mg/L of each 

metal. 

The solids that will be removed throughout the treatment process should be sent to 

the landfill, which is in the same plant where would be implemented the treatment plant 

for the recovery of the leachate in liquid fertilizer. 

After the treatment and application of the leachate in legislation, the final product 

must be transported, stored and marketed, following the recommendations of the 

Regulation of the European parliament and the municipality (2019). 

Figure 20 shows the suggested treatment scheme to meet the standards required by 

legislation for liquid organomineral fertilizers. 

 

Figure 20. Suggested treatment scheme for leachate recovery in liquid organomineral 

fertilizer. 
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7. Conclusions 

 

Faced with the adversities encountered for the most adequate final destination of 

waste, research and studies are essential to propose alternatives that can be performed in 

order to transform waste into products, attributing monetary value to that previously to a 

treatment, was considered a problem. 

This study presented the characterization of a leachate obtained through a recovery 

line from the company Resíduos do Nordeste, EIM, so that the obtained data could be 

compared to the current legislation, in order to use this slurry as a liquid fertilizer, in 

this way, with the characterization, an effluent treatment system has been proposed so 

that this leachate can be used in the future as fertilizer liquid organomineral, following 

the standards required by the Regulation of the European Parliament and of the Council 

(2019). 

With the analysis of total organic carbon, it was observed that the concentration of 

at least 1,19 of the original leachate is necessary, so that the required minimum content 

is reached, i.e. 3% of TOC. It was also observed a dependence of the density on the 

TOC content, the higher the percentage of total organic carbon present in the sample, 

the greater the density of the leachate. This correlation was proved through the Pearson 

coefficient, obtaining correlation in the order of ρ = 0,998479. 

For application to the soil, it is interesting that the liquid fertilizer has pH close to 

the neutral, so that it does not alter soil characteristics. The Original, Filtro 03/04 and 

concentrated samples showed pH between 6 and 8. 

The analyzes of total solids and fixed solids showed little variation for the Original 

and Filtro 03/04 samples, and it was observed that the fraction of organic material in 

these samples is higher than the inorganic fraction. The concentrated samples show 

slightly higher solids content due to the elimination of water. During the process of 

concentration of these samples, volatilization of organic components occurred, due to 

the heating process. In this way, it was verified that the inorganic fraction, in this case, 

is greater. 

The concentration of phosphorus in the samples did not reach the minimum value 

established by the legislation, being less than 20 ppm in all samples analyzed. 
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Total Nitrogen, Ammoniacal and Organic Nitrogen levels were not enough to fit the 

leachate as an organomineral liquid fertilizer. 

The Regulation of the European Parliament and the county (2019), calls for at least 

one of the primary nutrients to meet the established values. It is believed that the sample 

has Potassium content higher than the minimum required, however, it has not been 

possible to perform this analysis so far. 

With the quantification of heavy metals, Zinc, Copper, Cadmium and Lead were 

found to be below the limit allowed by the legislation. However, it is necessary for the 

Nickel and Chromium metals to undergo a removal process prior to the use of the 

leachate as a fertilizer material. 

Tests were performed with adsorbents from two different origins, produced by 

parallel research at the Polytechnic Institute of Bragança. Three adsorbents obtained 

from an organic compound were tested in the four leachate samples. The activated 

carbon showed that in addition to adsorbing the components, it also leaches them to the 

sample, which can become a difficulty for the use of this product.  

Another test was carried out with four adsorbents obtained through clays, under 

the same previous conditions. Only the AKA sample showed to adsorb and did not 

leach the TOC with the increase of its mass, the other tests presented the same behavior 

as the activated carbon. 

It is believed to be possible the valorization of the studied leachate, however, 

complementary analyzes are necessary for a complete classification as liquid 

organomineral fertilizer. In addition to an economic feasibility analysis for the 

implementation of the proposed treatment system.  
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8. Suggestions for future work 

 

For completeness and success of this project, there are some considerations to be 

made for future work.  

It is necessary to rework the heavy metals analyzes for all the samples and to carry 

out the analyzes for the Hg, As and Biuret, which could not be carried out so far, in 

order to know the exact concentration of the metals present in the leachate. It is also 

necessary to carry out the analyzes of the Potassium content for the Original, Filtro 

03/04, 1,19 and 1,85 samples, with the objective of confirming the classification of 

the material as a liquid organomineral fertilizer. 

The microbiological analysis must be carried out in order to comply with the 

Regulation of the European Parliament and of the Council (2019). 

After completing the work with these analyzes, it is suggested that other types of 

adsorbent materials, such as the aforementioned zeolites, be tested for the efficient 

removal of heavy metals. 

Another work that would make great contribution to this line of study would be the 

laboratory-scale test of the product submitted to the suggested treatments, i.e. the test of 

the application of the liquid organomineral fertilizer to cultivable soils. 
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