
Study of Genetic Algorithm for
Optimization Problems

Beatriz Cristina Flamia de Azevedo - 38798

Report made under the orientation of

Profa. Dra Ana Isabel Pinheiro Nunes Pereira

Profa. Dra Glaucia Maria Bressan

Master in Industrial Engineering - Eletric Engineering

2019-2020

Study of Genetic Algorithm for
Optimization Problems

Thesis report of

Master Degree in Industrial Engineering - Eletric Engineering

Escola Superior de Tecnologia e Gestão

Federal University of Technology – Paraná

Profa. Dra Ana Isabel Pinheiro Nunes Pereira

Profa. Dra Glaucia Maria Bressan

Beatriz Cristina Flamia de Azevedo - 38798

2019-2020

Escola Superior de Tecnologia e de Gestão is not responsible for the opinions expressed

in this document.

I certify that I have read this dissertation and that, in my opinion, is

appropriate in content and form as a demonstrator of the developed

work.

Beatriz Cristina Flamia de Azevedo - 38798

 Beatriz Cristina Flamia de Azevedo

We are like dwarfs on the shoulders of giants, so that we can see more than they, and

things at a greater distance, not by any virtue of any sharpness of sight on our part, or

any physical distinction, but because we are carried high and raised up by their giant

size.

Bernard de Chartres

vii

viii

Acknowledgments

First and foremost, I would like to thank God, for always being by my side protecting

and guiding me. I also appreciate the opportunities and challenges provided and all that

I have.

I would like to thank my parents Cristina and Narcizo and my grandmother Luiza, for

being examples to me, for the incomparable efforts, for supporting and encouraging me

even though it is very difficult to be away from those we love.

I also thank my family for all their support, affection and encouragement for my adven-

tures.

I thank some professors who I had throughout the academic trajectory, for making it

possible to see more distant. In particular, I wish to express my deep gratitude and

sincere thanks to professor Ana Isabel Pereira, for the reception, patience, support and

constant cooperation in the development of this work. I heartily thank Glaucia Bressan,

for affection, for listening to me and advising me whenever I asked her help. I also thank

her for all that I have learned over these years of work and friendship. And I also thank

Roberto Molina, for friendship and for the encouraging words that are often fundamental.

I would like to thank my friends that are part of my journey. I appreciate being able

to have their support, affection and friendship of all those whom I have the honor of

considering my friends. Thanks for everything we have learned from each other, for always

having someone to talk, cry and smile. I would also grateful to my friends of “Centro

ix

de Cálculo” who I spent most of my time with this past year, I appreciate all support,

affection and especially what we learned in our enriching discussions about absolutely

everything.

I appreciate the UTFPR, because this work represents the end of a 10 - year cycle of

which I was part of this institution that provided me personal and professional growth

and has a great contribution to who I am. I especially thank the projects that I was part

of and people that encourage us to seek the best. After all, challenges are meant to be

overcome, obstacles surpass and problems solved.

My thanks to IPB, for the structure and opportunity to be part of this institution.

Finally, to all those who I didn’t mention but somehow helped me get here, my sincere

respect and gratitude.

x

Abstract

This work consists in to explore the Genetic Algorithms to solve non-linear optimization

problems. The aim of this work is to study and develop strategies in order to improve the

performance of the Genetic Algorithm that can be applied to solve several optimization

problems, as time schedule, costs minimization, among others. For this, the behavior of

a traditional Genetic Algorithm was observed and the acquired information was used to

propose variations of this algorithm. Thereby, a new approach for the selection operator

was proposed, considering the abilities of population individuals to generate offspring.

In addition, a Genetic Algorithm that uses dynamic operators rates, controlled by the

amplitude and the standard deviation of the population, is also proposed. Together with

this algorithm, a new stopping criterion is also proposed. This criterion uses population

and the problem information to identify the stopping point. The strategies proposed are

validated by twelve benchmark optimization functions, defined in the literature for testing

optimization algorithms. The dynamic rate algorithm results were compared with a fixed

rate Genetic Algorithm and with the defaultMatlabGenetic Algorithm, and in both cases,

the proposed algorithm presented excellent results, for all considered functions, which

demonstrates the robustness of the algorithm for solving several optimization problems.

Keywords: Optimization, Genetic Algorithm, Mathematical Modeling.

xi

xii

Resumo

Este trabalho consiste em explorar o Algoritmo Genético para resolução de problemas de

otimização não-linear. O objetivo deste trabalho é estudar e desenvolver estratégias para

melhorar o desempenho do Algoritmo Genético que possa ser aplicado para resolução de

problemas de otimização variados, como escalonamento de horários, minimização de cus-

tos, entre outros. Para isso, foi observado o comportamento usual do Algoritmo Genético

e as informações adquiridas foram usadas para propor variações deste algoritmo. Assim,

uma nova abordagem para o operador de seleção é proposta, considerando a habilidade

dos indivíduos da população em gerar descendentes. Além disso, também é proposto um

Algoritmo Genético que utiliza taxas dinâmicas nos operadores, controladas pela ampli-

tude e desvio padrão da população. Juntamente com este algoritmo, um novo critério

de paragem também é proposto. Este critério utiliza informações da população e do

problema de otimização para determinar o local de paragem. As estratégias propostas

são validadas por doze funções de teste, definidas na literatura para teste de algoritmos

de otimização. Os resultados do algoritmo de taxas dinâmicas foram comparados com

um Algoritmo Genético de taxas fixas e com o Algoritmo Genético padrão disponível no

Matlab, e em ambos os casos o algoritmo proposto apresentou excelentes resultados, para

todas as funções consideradas, o que demonstra a robustez do método para resolução de

problemas de otimização variados.

Palavras-chave: Otimização, Algoritmos Genéticos, Modelagem Matemática.

xiii

xiv

Contents

1 Introduction 1

1.1 Background . 3

1.2 Objectives . 4

1.3 Report Organization . 5

2 Optimization Problems and Genetic Algorithm 7

2.1 Mathematical Modeling . 7

2.2 Deterministic versus Stochastic Optimization Methods 9

2.3 Genetic Algorithm . 10

2.3.1 Initial Population . 13

2.3.2 Objective Function . 14

2.3.3 Selection Procedure . 14

2.3.4 Crossover Procedure . 17

2.3.5 Mutation Procedure . 19

2.3.6 Termination Criteria . 20

3 Related Works 25

3.1 Genetic Algorithm State-of-Art . 25

4 Genetic Algorithm Variants 31

4.1 Traditional Genetic Algorithm . 31

4.1.1 Analysis of Operators Behavior . 33

xv

4.1.2 Analysis of Amplitude and Standard Deviation 36

4.2 Strategies Proposed for Improve the Genetic Algorithm 39

4.2.1 Conditional Probabilistic Selection 39

4.2.2 Genetic Inheritance Bio-inspired Procedure 41

4.2.3 Dynamic Operators Rates . 42

4.2.4 Stopping Criterion . 46

5 Numerical Results and Discussion 49

5.1 Benchmark Functions . 49

5.2 Results and Comparision of the Genetic Algorithm with Fixed Rates and

the Genetic Algorithm with Conditional Probabilistic Selection 51

5.3 Results and Comparison of Fixed and Dynamic Rates Genetic Algorithms 53

5.4 Results and Comparison of Fixed and Dynamic Rates Genetic Algorithms

with the Default Matlab Genetic Algorithm 55

5.5 Results and Comparison with the Hybrid Genetic Algorithm 57

6 Conclusion and Future Work 61

A Offspring Quality Matrix - OQM A1

B Benchmark Optimization Functions B1

xvi

List of Tables

4.1 Offspring Quality Matrix (OQM) . 33

4.2 Suggested Values for Control Rates of the Genetic Algorithm 43

4.3 Initial Operator Rates for Each Phase . 46

5.1 Solution Proposed in Literature . 51

5.2 Results of Conditional Probabilistic Selection and Fixed Rates Genetic Al-

gorithms with Npop = 100 . 52

5.3 Fixed and Dynamic Rates Genetic Algorithms Results with Npop = 100 . . 54

5.4 Default Matlab, Fixed and Dynamic Rates Genetic Algorithms Results

with Npop = 50 . 56

5.5 Hybrid Genetic Algorithms Results with Npop = 100 58

xvii

List of Figures

2.1 Minimum of f(x) is Same as Maximum of −f(x) 9

2.2 Example of Individuals Representations . 12

2.3 Examples of Crossover Operators . 18

2.4 Examples of Binary Mutation Operators 20

2.5 Example of Continuous Mutation . 20

4.1 Accumulated Value for Crossover Procedure 34

4.2 Accumulated Value for Mutation Procedure 35

4.3 Objective Fuction Value Average . 36

4.4 Examples of Objective Functions Amplitudes 37

4.5 Examples of Objective Functions Standard Deviations 38

4.6 Approximations in the Initial Iterations of the Figures 4.4 and 4.5 39

A.1 Initial Population . A2

A.2 Intermediate Population . A3

A.3 Final Population of the First Iteration . A3

B.1 Gramacy and Lee Function with Nvar = 1 B1

B.2 Forrester Function with Nvar = 1 . B2

B.3 Branin Function with Nvar = 2 . B3

B.4 McCormick Function with Nvar = 2 . B4

B.5 Easom Function with Nvar = 2 . B5

B.6 Ackley Function with Nvar = 2 . B6

xviii

B.7 Rastrigin Function with Nvar = 2 . B7

B.8 Rosenbrock Function with Nvar = 2 . B8

B.9 Sum Squares Function with Nvar = 2 . B9

B.10 Zakharov Function with Nvar = 2 . B10

B.11 Levy Function with Nvar = 2 . B11

B.12 Schwefel Function with Nvar = 2 . B12

xix

xx

Chapter 1

Introduction

Optimization is a mathematics field that studies the identification of functions’ extreme

points, either maximal or minimal. It is an important tool in the decision making and

analysis of systems, currently being used in various areas such as engineering process,

medical research, financial analysis and management decision, for example.

The existence of optimization methods can be traced to days of Newton, Lagrange and

Cauchy. Newton and Lagrange provided expressive contribution to differential calculus.

Later, Bernoulli, Euler and Weirstrass afforded contributions to calculus of variations,

which deals with minimization of function, essential to solve optimization problems [1].

However, the optimization methods had their main development in the early period of

World War II, when the military called upon a team of mathematicians to develop methods

for solving problems of allocating scarce and limited resources (fighter airplanes, radars,

submarines) and improve the war strategies [1].

The positive results achieved by the mathematicians had made research in the area of

optimization widespread in various commercial and industrial segments after the end of

the war. The results of research on (military) operations, subsequently became known as

operations research [1]. However, the main advances in operation research techniques were

1

only possible after the increased processing speed and the amount of computer memory

in 20th century [1], [2].

The optimum seeking methods are also known as mathematical programming techniques

and they are studied as a part of operations research. The computational advances stim-

ulated studies that make it possible to solve large and complex problems. In addition, the

growing interest in optimization has led to discovering new formulations and applications

in several science fields.

Inspired by the Darwin natural selection theory, optimization studies also had consider-

able progress. Scientists observed that nature holds its own optimization mechanisms.

Animals, for example, are naturally able to find forms of lower energy expenditure to

perform tasks necessary for their survival as reproduction, protection, defense, migration,

localization and digestion of food. These natural optimization mechanisms were tightly

studied by professor J. H. Holland and his collaborators, that mathematically formal-

ized the process of natural evolution and adaptation of living being [3], [4]. Holland’s

aim was to improve the understanding of natural adaptation process to design artificial

systems having properties similar to natural systems [5]. Although there are no mathe-

matical demonstrations of the optimality of natural optimization mechanisms, there are

no doubts that they are essential for species survival and when applied to optimization

problem they are able to present excellent results.

The last decade highlighted the use of optimization methods as an essential tool for man-

agement, decision making, improvement and development of technologies as this enables

competitive advantages to the systems [2]. There are several techniques and algorithms

that can be applied to solve optimization problems but there is not an universal algorithm

able to solve all problems. Each algorithm is more appropriated to solve a set of problems

according to their characteristics. The algorithm choice is very important, since it can

determined if it is able to find the exact or approximated solution and how fast this solu-

tion will be found. In this work, the Genetic Algorithm, which is a specific optimization

2

technique is studied with the aim to identify internal patterns and use them to develop

strategies to improve the Genetic Algorithm performance and compete with the existing

algorithms to solve general optimization problems.

1.1 Background

The idea and necessity of new techniques to solve problems made the optimization impor-

tant tools, due to several satisfactory results presented by different areas of knowledge.

Even though optimization is already used in many areas, it is still a promising field, with

a lot of space to be explored.

Many works in the literature study strategies to improve optimization algorithms and

consequently improve optimization problem results. Nevertheless, in most works, these

improvements are limited to specific applications, not being possible to use them to solve

optimization problems in general. Furthermore, to propose algorithms to solve general

optimization problems is considered a hard challenge.

The motivation of this work is to explore the Genetic Algorithm and to create variations

of the Genetic Algorithm to be used in general optimization problems. This study is dedi-

cated to finding strategies to improve the genetic operators’ procedures, aiming to acceler-

ate the population convergence without loss of quality of the optimum solution. For this,

the genetic operators’ behavior and the population amplitude and standard deviation of

the traditional Genetic Algorithm will be observed in order to use the patterns to propose

a variation of the Genetic Algorithm based on the population performance throughout the

evolutionary process. So, a new approach to select individuals to crossover and mutation,

considering the ancestors’ ability to generate offspring, is proposed. Moreover, a Genetic

Algorithm with dynamic operator rates is also proposed in conjunction with a new stop-

ping criterion. The new algorithm considers three phases in the evolutionary process, in

which the operators rates are dynamically adjusted by the amplitude and the standard

3

deviation of the current population. In the end, the methodologies proposed are validated

by twelve benchmark functions and compared with other Genetic Algorithm approaches.

1.2 Objectives

The general objective of this work is to propose some strategies to improve the Genetic

Algorithm performance, using information extracted from the traditional Genetic Algo-

rithm, in order to solve general optimization problems. In addition, the specific objectives

are listed below:

• To study the characteristics and patterns of Genetic Algorithm, especially of the

three main genetic operators: selection, crossover and mutation.

• To study mathematical and statistical strategies to analyse the information present

in the algorithms.

• To use the patterns observed to develop variations of the traditional algorithm, that

will be competitive with existing algorithms.

• To propose new procedures for select individuals to accelerate the algorithm con-

vergence.

• To propose a Genetic Algorithm with dynamic operator rates.

• To validate the strategies using benchmark optimization functions defined in the

literature.

• To compare the results with other Genetic Algorithms approaches.

4

1.3 Report Organization

This work is structured in 6 chapters and 2 appendixes. In the second chapter, followed

by this introduction, are introduced the concepts of mathematical optimization modeling.

Besides, the Genetic Algorithm procedures are described. The details of genetic operators

(Selection, Crossover and Mutation) and the most useful procedures of these operators

are also presented in this chapter.

In the third chapter are presented some studies and variations of the Genetic Algorithm.

Different approaches of genetic operators are introduced and compared with the tradi-

tional approach.

In the fourth chapter are presented the algorithms and strategies proposed in this work.

First, the traditional Genetic Algorithm is described and an analysis of operators’ behav-

ior, population amplitude and standard deviation are done. After that, the approaches

for a new selector operator are presented. Thereafter, a proposal of a Genetic Algorithm

with dynamic operators rates and a new stopping criterion are described.

In the fifth chapter are presented the results obtained and its discussion to taking into

account the proposed methods. Besides, some comparisons are done with the traditional

Genetic Algorithm from Matlab and a comparison involved the Hybrid Genetic Algorithm

is also presented.

The conclusion and suggestion for future work are presented in the sixth chapter.

Finally, the Appendix A presents an example of the Offspring Quality Matrix proposed

in chapter four, while the Appendix B describes the benchmark functions used to test

and to validate the algorithm variations presented in this work.

5

6

Chapter 2

Optimization Problems and Genetic

Algorithm

In this chapter are presented the concepts of mathematical optimization modeling in the

Section 2.1 and the main difference between the optimization methods in the Section 2.2.

Besides, the Genetic Algorithm is detailed in Section 2.3, as well as the genetic operators

procedures, in the posterior sections.

2.1 Mathematical Modeling

Mathematical modeling has the mission to describe a real world problem into a mathe-

matical problem, allowing the problems to be solved by algorithms or other computational

resources, in a quick and efficient way. An optimization problem can be expressed by a

mathematical function named objective function and some algebraic equations and in-

equalities. The objective function express the objective of the problem, that can be any

quantity or combination of quantities that may be represented by a single number as peo-

ple, time, materials, energy, etc; while the limitations (constraints), that directly affect

7

the decision and results, are represented by equations and inequalities [1], [6], [7]. The

main goal of optimization problems is to minimize, or to maximize, the objective function

considering the constraints. Mathematically, an optimization problem can be expressed

as:

min
x∈RNvar

f(x),

s.t. gi(x) = 0, i ∈ {1, 2, ..., ng}

hj(x) ≥ 0, j ∈ {1, 2, ..., nh}

xt
L ≤ xt ≤ xt

U , t ∈ {1, 2, ..., Nvar}

(2.1)

where x = (x1, x2, ..., xNvar) is the variable vector, f(x) is the objective function, that is,

a function of x that needs to be minimized. The constraints are described by gi(x) and

hj(x), and the lower and upper bounds are identified by xt
L and xt

U , respectively. The

Nvar is the number of variables, ng is the number of equality constraints and nh is the

number of inequality constraints [6]. If a given point satisfy all the constraints, then it is

named feasible solution.

It is important to highlight that a point x which corresponds to the minimum value of

function f(x) also corresponds to the maximum value of -f(x), as illustrated in Figure

2.1 [1].

Solve an optimization problem is hardly ever based on simple mathematical calculations,

so due to mathematical complexity, most optimization problems use computational re-

sources to find the best solution. Although there is no single method available for solving

all optimization problems efficiently [1], there are various techniques and algorithms may

be used to solve optimization problems.

8

Figure 2.1: Minimum of f(x) is Same as Maximum of −f(x)
[1]

2.2 Deterministic versus Stochastic Optimization Me-

thods

According to their characteristics, the mathematical methods used to solve optimization

problems can be classified into two large categories: deterministic and stochastic methods.

Deterministic methods are based on systematic expressions and theorems that determine

the problem solution, whenever it exists. A method is considered deterministic if it is

possible to predict all its steps and the same optimum solution is provided in every time

that the algorithm starts, under the same initial conditions. Some deterministic methods

use derivative calculation, for this reason, is required an objective function continuous

and differentiable in all its domain [1], [6], [7]. Deterministic methods search the entire

space of feasible solutions and guarantee the optimally [6], [8], but in some cases, it

demands high computational cost and search time, which makes these methods unable for

solving non-polynomial time problems (NP-hard). According to [9], deterministic methods

present excellent results when the search space is convex, continuous and frictionless, but

when these conditions are not guaranteed deterministic methods do not work so well.

9

Some examples of deterministic methods can be: simplex method, sequential quadratic

programming, gradient reducted, branch and bound, among others [5], [6], [8].

Stochastic methods consist of analyzing and transitioning probabilistic rules and use ran-

dom values in its procedures [5]. The stochastic methods are not always able to find the

optimum solution and when it is possible, the optimum solution is slightly different in

each algorithm execution. Thus, stochastic optimization methods use the quantification

of the uncertainty to produce solutions that optimize the problem [7]. Stochastic meth-

ods perform a simultaneous search in the space of possible solutions using a population

of individuals, candidates to the optimum solution. These methods do not guarantee the

exact or the best solution, as occur in deterministic methods, however, most of the time

they present a satisfactory solution, very close to the best solution, in a shorter time than

the deterministic techniques. Simulated Annealing, Artificial Immune Systems, Particle

Swarm Optimization and Genetic Algorithm are some examples of stochastic methods [5].

A particular class of stochastic methods is the evolutionary algorithms, that use evolu-

tionary strategies to find the solutions of the problems. These algorithms work with many

points in the space of solutions and use operators to generate new points and search the

optimal solution [10]. The Genetic Algorithm, which is the focus of this work, is one of

the most famous examples of evolutionary methods and it will be presented bellow.

2.3 Genetic Algorithm

The Genetic Algorithm (GA) is an optimization method based on the principles of genetics

and natural selection [10]. GA is used in large fields, such as image processing, pattern

recognition, financial analysis, industry optimization, etc. Ghaheri et. al [11] presents a

review of important studies involving Genetic Algorithms in medical specialties. Fera et.

al [12] uses Genetic Algorithm to solve the sequential optimization problem in machine

with additive manufacturing technology. Alves et. al [13] uses Genetic Algorithm to solve

10

a healthcare center problem in scheduling home care visits. Li et. al [14] proposes a

financial management information system based on improved Genetic Algorithm. Patil

and Bhalchandra [15] apply Genetic Algorithm to develop a pattern recognition system

to extract features and identify two classes of patterns in two dimensional data space. In

all examples cited, Genetic Algorithms showed satisfactory performance, highlighting the

good performance in NP-hard problems.

A Genetic Algorithm is composed by a set of individuals, usually named as chromosomes,

that are considered solutions for the problem. This set of individuals is known as popula-

tion, that has a fixed number of individuals in each generation (iteration). The population

is represented by Npop individuals arranged in the search space, which is the space where

each variable can have values, (some examples are ZNvar , RNvar , {0, 1}Nvar , ...). The search

space is delimited by the domain of the objective function, this way ensures that all in-

dividuals are admitted solution for the problem. Therefore, each possible solution has its

objective function value, depending on the problem definition [5].

Individuals can be represented by two forms: binary string or continuous variable in

which both represent the same solution. In the binary representation, the individuals

work with bits (0 or 1), where the bits can represent a decimal integer, quantitative or

qualitative values [10]. It is the most popular method because the binary alphabet offers

the maximum number of schemata per bit compared to other coding techniques [4]. On

the other hand, in continuous representation, the variables are expressed by floating-points

numbers over whatever range is deemed appropriated [10]. The continuous GA has the

advantage of requiring less storage than the binary GA because a single floating-point

number represents the variable instead of Nbits integer [10].

Consider an individual with Nvar variables (an Nvar - dimensional optimization problem),

then the individual can be represented by a vector x = (x1,x2,...,xNvar), that is presented

in Figure 2.2:

11

Figure 2.2: Example of Individuals Representations

where each xi represents an individual gene that is the basic unit of heredity and carries

the characteristics of previous individuals. In binary representation the individuals are

allocated in a Npop × Nbits matrix, while in continuous representation each row in the

matrix is a 1×Nvar array individual of continuous values [10].

The basic idea of GA is to create an initial population, P0, of feasible solutions and

dimension Npop, to evaluate each individual, thereafter to select some individuals to define

the optimum subset of individuals, with dimension Nkeep, and to modify them by using

genetic operators in each generation k, in order to create new individuals (offspring).

The individuals’ evaluation is done by the objective function. The value provided by

this function is named objective function value or simply fitness value, which defines

how well an individual is adapted to solve the optimization problem. The most adapted

individuals have a greater chance of surviving and to generate offspring, while the less

adapted are eliminated; similar to what is proposed by Darwin’s theory. In other words,

the individuals that present better fitness are kept to form the next population. For

minimization problem, better fitness is defined as the values which most minimize the

objective function, while for maximization problem, better fitness is those which most

maximize the objective function. In this work, only minimization problems are considered.

Each population has Npop individuals, where the most adapted or those whose fitness are

better will define the Nkeep individuals and the new population. The individuals of the

subset Nkeep will be selected to generate new individuals or offspring through the genetic

operator procedure. The genetic operators are responsible for new individuals creation,

12

diversification and maintenance of adaptation characteristics acquired in previous gener-

ations. The number of individuals used by each operator is defined by the operator rate,

that is a fixed value for all iterative process.

In this work, the traditional GA is considered. For this reason, only the three most

useful operators (selection, crossover and mutation) are used in the algorithm. Other

genetic operators can be consulted in [5]. After performing the operators procedures,

the population is evaluated by the objective function and ordered by the fitness value to

be selected again. This is an iterative process that ends when a satisfactory solution is

found or when a stopping criterion is reached [5], [10]. The codification of a basic Genetic

Algorithm is represented by the Algorithm 1 and the main components of GA, initial

population P0, objective function and genetic operators of selection P ′ , crossover P ′′ and

mutation P ′′′ are described as follows.

Algorithm 1 : Traditional Genetic Algorithm
Generates a randomly population of individuals, P0, with dimension Npop.
Set k = 0.
while stopping criterion is not met do
P ′ = Apply selection procedure in Npop individuals.
P ′′ = Apply crossover procedure in Nkeep individuals.
P ′′′ = Apply mutation procedure in Nkeep individuals.
Pk+1 = Npop best individuals of {Pk ∪ P ′′ ∪ P ′′′}.
Set k = k + 1.

2.3.1 Initial Population

The initial population, P0, can be generated by two ways. The first one consists of using

randomly produced solutions created by random numbers. This method is preferred when

prior knowledge is not available. However, there are cases in which are possible to use

some previous knowledge and requirements about the problem, therefore, is advantageous

to use prior information to improve convergence speed, due to the reduction of search

space [4]. The size is an important parameter in the initial population, since it affects

13

the global performance and the efficiency of the Genetic Algorithm. A small population

covers a small search space, whereas a big population provides a representative coverage

of the problem and prevents premature convergence in local points [4]. It is important to

highlight that a larger population requires larger computational resources and demands

higher time consuming.

2.3.2 Objective Function

The objective function or fitness function is the way that GA uses to communicate with

the optimization problem. The evaluation of the solution quality is provided according

to the information produced by this function and not by using direct information about

the GA structure [4]. The quality of a proposed solution is usually calculated depending

on how well the solution satisfies the given constraints [4]. This value is used to rank

individuals depending on their relative suitability for the optimization problem. The

complexity of the objective function value depends on the optimization problem. In some

cases the mathematical equation cannot be formulated, as result, a rule-based procedure

can be constructed for use as a fitness function, or both can be combined [4], [5].

2.3.3 Selection Procedure

The aim of the selection procedure, P ′, is to select individuals of the existent population

in order to reproduce more copies of individuals (offspring). This procedure is based on

the survival probability that depends on the objective function value of the individual.

In minimization problems, individuals with low fitness are more likely to survive and get

mating rights and individuals with high fitness are easily eliminated [4], [16]. The opposite

occurs for maximization problems, in which the higher fitness of individuals are preferable

to be kept.

The selection procedure has the mission to guide the algorithm for promising areas, where

14

the probability to find the best solution is higher. However, the diversity of the population

must be maintained to avoid premature convergence and to reach the global optimal

solution [4]. This procedure is identical to binary or continuous individuals.

Considering a minimization problem, first, the Npop individuals are ranked from lowest

to highest fitness. Then, only the best individuals, in this case, are those whose fitness

are smaller, are selected to continue in the population, following the Darwin principle, in

which only the most adapted individuals survive.

The number of individuals that are kept and form the subset with Nkeep individuals at

each generation is

Nkeep = rs ×Npop, (2.2)

where rs means the natural selection rate of Npop individuals that continuous for the next

steps in the algorithm [10]. If this rate is 1 all elements of the population Npop are likely

to be selected to become parents, on the other hand, if this value is less then 1, only

a percentage of individuals is selected to form the population to keep (with dimension

Nkeep) and posteriorly selected to produce new offspring.

There are different ways to selected individuals to become parents, such as proportional

selection, ranking-based selection, tournament selection and elitist selection [4], [5], [15].

The most useful selections procedures are described below.

Proportional Selection

Proportional selection is usually known as Roulette Wheel Selection, and it is one of the

traditional GA selection techniques [5]. The principle of roulette selection is a linear

search through a roulette wheel with the slots in the wheel weighted in proportion to

the individual’s objective function value. The expected value pi of an individual is its

15

objective function value fi divided by the actual objective function value of the population,

mathematically expressed as:

pi = fi∑Nkeep

j=1 fi

. (2.3)

Each individual is assigned to a slice of the roulette wheel, where the size of the slice is

proportional to the individual’s fitness. The wheel is spun Nkeep times. On each spin,

the individual under the wheel’s marker is selected to be one of the parents for the next

generation [5].

Rank Selection

Rank selection is used when the individuals’ fitness values in a population differ greatly

between them. This selection procedure ranks the population based on their fitness,

varying from 1 to Nkeep times, (number of individuals in the population Nkeep). Potential

parents are selected and a tournament is held to decide which individuals will be the

parents. There are many ways this can be achieved and one suggestion could be the

random selection, in which the individual with the highest evaluation becomes a parent

and the same process is repeated to find a second parent [5].

Tournament Selection

Tournament Selection strategy performs a tournament competition among Nkeep individ-

uals using the Roulette selection to produce a subset of individuals. The tournament

winner is the individual with the lowest fitness for minimization problems or the highest

fitness for maximization problems. So, the winner is copied to the new population. This

process is repeated until the size reaches to the population size [5], [17].

16

Elitism Selection

In the Elitism procedure, the first best individuals or the few best individuals are copied

to the new population. Elitism is the procedure by which the weakest individual of

the current population is replaced by the fittest individual of the immediately preceding

population [5].

2.3.4 Crossover Procedure

Crossover denoted by P ′′, is considered a primary operation, due to the survey of informa-

tion that is accessible through the search space, which inadvertently improves the behavior

of the GA [18]–[20]. This process is used to create new individuals (offspring) from two

existing individuals (parents) selected the subset Nkeep. The crossover is responsible for

recombining the parents’ characteristic during the reproduction process, so this process is

possible for the next generation to inherit the characteristics of their parents. The recom-

bination of the good characteristics of each ancestor can, but not ever, produce “best fit”

offspring whose fitness is greater than its parents [5]. For both binary or continuous indi-

viduals representations, crossover procedures are very similar, the main difference is the

type of variable. Some common crossover operations are one-point crossover, two-point

crossover and uniform crossover and they are described below. However, there are several

techniques to combine individuals, available in the literature, some of them can be seen

in [2], [4], [5], [10].

One-point Crossover

The traditional GA uses one-point crossover [5]. In this procedure, a crossover point,

which is a point between the first and the last genes is randomly selected. Then, the two

mating individuals are cut once at corresponding points and their sections are exchanged

17

forming two new offspring [5], [21], as represented in Figure 2.3 (a).

Two-point Crossover

In two-point crossover, two crossover points are randomly selected. Similarly one-point

crossover, the individuals are divided, but in this case in three segments, and the exchange

between the individuals segments is done [5], [21], as shown in Figure 2.3 (b).

Uniform Crossover

This procedure follows a binary mask, randomly generated for each pair of parents. This

mask has the same length as the individuals’ parents. Thereby, each gene in the offspring

is created by copying the corresponding gene from one or the other parent determined by

the mask. As illustrated in the Figure 2.3 (c), where there is a number 1 in the crossover

mask, the gene is copied from the first parent, and where there is a number 0 in the mask

the gene is copied from the second parent, for the offspring 1. And for the offspring 2,

the procedure is the same, but the parents positions are changed, to generated a second

offspring diffent from the first one [5].

Figure 2.3: Examples of Crossover Operators
Adapted from [5], [10]

18

2.3.5 Mutation Procedure

The Mutation procedure, P ′′, is responsible for diversifying the existing population allow-

ing the search by solution in promising areas and avoiding premature convergence in local

points [4], [5]. In the basic GA, a mutation probability rate is fixed, for all generations,

and it is calculated as a percentage of the Nkeep individuals that will be mutated in each

generation. If the mutation probability is equal to 0 there is no mutation, so, the offspring

are generated immediately after crossover (or directly copied) without any change. On

the other hand, if the mutation probability rate is different of 0, some elements of the pop-

ulation will have mutation procedure [5]. This process helps the algorithm to escape from

local minimum region because it slightly modifies the search direction and introduces new

genetic structures in the population. However, the mutation should not occur very often,

because then GA will in fact change to random search [5]. For mutation procedure, there

are different rules, described below, depending on the type of individual representation.

Flipping Mutation for Discrete Individuals

In this mutation procedure, one individual is considered and a changing of bit (0 to 1

or 1 to 0) is done according to the individual mutation randomly generated. Figure 2.4

(a) illustrates an example of flipping mutation. When the gene of mutation individual is

1 the corresponding bit in the parent individual is flipped and an offspring individual is

produced [5].

Interchanging Mutation for Discrete Individuals

In this procedure, two random positions of the string are chosen and the bits corresponding

to those positions are interchanged [5]. An example can be seen in Figure 2.4 (b).

19

Figure 2.4: Examples of Binary Mutation Operators
Adapted from [5]

Mutation for Continuous Individuals

As occurs in the binary procedure, in continuous GA, a mutation rate is chosen to de-

termine how many individuals of the subset Nkeep will be mutated. Thereafter a random

number is chosen to select variables to be mutated. So, the value of the mutated variable

is replaced by a new random value. Example: if the second position is chosen, the value

8.915 is replaced with a uniform number between the function domain, in this case, 3.701,

as illustrated in Figure 2.5.

Figure 2.5: Example of Continuous Mutation
Adapted from [10]

2.3.6 Termination Criteria

Iterative optimization algorithm, like GA, requires a stopping criterion to interrupt the

search. The criteria choice may affect the quality of the solution found by the algorithm.

For example, if the criterion is defined to stop when the first feasible solution is found, the

algorithm will not consider that it is possible to have another feasible solution, better than

20

the first one. Thus, a low quality solution can be chosen wrongly as the best solution. An

algorithm can use more than one stopping criterion. Some examples of stopping criteria

that can be adopted are described as follow.

Successive Optimum Solution Analysis

This criterion compares the objective function value between two successive populations,

using Equation (2.4)

|f ∗k − f ∗k−1| < ε1, (2.4)

where f ∗k−1 represents the best solution in the previous population and f ∗k is the best

solution of the current population. The algorithm stops when the difference between this

value is smaller than a pre-established value, ε1.

Changes in the Population

This criterion compares the population objective function value. As we can see in Equation

(2.5), when the difference between f ∗k and f#
k is smaller than a pre-defined value ε2, the

algorithm stops the search. In this case, f ∗k is the minimum objective function value of

the generation k and f#
k , is the maximum objective function value of the generation k.

|f ∗k − f
#
k | < ε2, (2.5)

Differences Between Successive Values

This criterion compares the differences between successive objective function values into

the same population. When this difference is smaller than ε3 the algorithm stops. This

21

criterion can be represented by Equation (2.6),

|f ∗k − f ∗
′

k | < ε3, (2.6)

where f ∗′
k = min({f 1

k , f
2
k , f

3
k , ..., f

Npop

k } \ {f ∗k}).

Optimum Solution Distance

This criterion evaluates the distance between successive optimum solution, as shown in

Equation (2.7). If the distance is smaller than ε4 the algorithm stops.

||x∗k − x∗k−1|| < ε4. (2.7)

Number of Generation

A maximum number of generations is defined. Then, if the solution was not found until

this number, the algorithm is interrupted.

Time Limit

Time is an important criterion in the Genetic Algorithm, since it can be used to compare

the efficiency of the algorithm. In addiction, a remarkable characteristic of Genetic Al-

gorithm is the ability to provide solutions in less time than deterministic methodologies.

For these reasons, limited time is defined.

22

Number of Function Evaluation

Some functions are computationally costly to be evaluated and, for this reason, the max-

imum number of fitness function evaluation, is defined. So, when the maximum number

of evaluations is attained, the algorithm stops.

23

24

Chapter 3

Related Works

In this chapter are presented several strategies published, in the last years, in the literature

to improve the performance of the Genetic Algorithm. These strategies are compared with

the procedures used in the traditional Genetic Algorithm.

3.1 Genetic Algorithm State-of-Art

The performance of GA depends substantially on the efficiency of genetic operators. Sev-

eral variations of genetic operators are available in the literature and diverse studies have

been done to improve these operators [5], [17]–[19], [22], either modifying them or combin-

ing them with others methodologies to get optimum solution as early as possible. In some

cases, the modifications are proposed to solve exclusive real world problems, in others to

compete with different optimization techniques or algorithms.

In the traditional GA, the selection operator is performed among individuals of the same

generation. However [17] presents a Back Controlled Selection Operator (BCSO), in

which the fitness value of the individual is compared with the fitness value in the previous

generation. So, if the fitness value of the individual is more than the one in the preceding

25

generation, this individual would keep own position, otherwise, would be discarded from

the population. The BCSO was compared with six existing operators (roulette wheel

selection, sequential selection, tournament selection, dominant selection, hybrid selection,

sin selection) in two optimization problems. In the first problem, a Travelling Salesman

Problem, the BCSO attained the shortest route compared to the other six methods.

And, in the second problem, which is an example of Space Truss Problem, the selection

operators were used to achieve the optimum design of the space truss in terms of the

weight. In this case, the BCSO gave the minimum weight of steel truss beam and the

minimum cost in the pre-stressed precast concrete beam problems. However, the cost of

the pre-stressed precast beam, specified for this span, was a little higher than the cost

stated by international rules.

Another interesting approach to select individuals can be seen in [21] which utilizes the

firefly mating concept to compose a new pair selection operator. The concept utilized

by the fireflies algorithms is based on three basic rules: the fireflies are unisex may be

attracted to any other fireflies; the level of attractiveness is proportional to the brightness

seen by other fireflies; and the brightness is proportional to the value of the objective

function. The combination of two individuals with a higher average attractiveness will

be chosen for mating. The parameters are evaluated by predetermined functions, de-

fined in [21] and the fireflies’ rules are incorporated into GA. A comparison between the

traditional GA, the classical fireflies algorithm and the proposed algorithm is presented

using four benchmark functions: Sphere function, Rastrigin function, Levy function and

Sum Squares function. The results indicated the proposed algorithm is able to find the

optimum solution in less time and achieve much higher success than the compared algo-

rithms. Besides, it was possible to note that the results vary widely based on the number

of population for the two compared algorithms while this variation was not noted in the

proposed algorithm.

Genetic Algorithm and integer programming are combined to solve an example of capaci-

tated p-median problem in [23]. For this, a new crossover operator, that uses the problem

26

knowledge to select high-quality alleles from the parent’s genomes, is proposed. This

new crossover preserves only the positive traits of the parents in the offspring. First, the

complete genetic information from both parents is collected, producing a vector through

the union of parent’s genomes. Then, the fitness value of this vector is evaluated, and

priorities are assigned to the alleles using some problem knowledge. After this, the alleles

are sorted in descending order, according to their priorities, and one offspring is created,

containing only p best alleles of the combined vector. Using computational experiments

the authors concluded the new crossover method improves the objective function 3.11%

on average compared to the original GA with the traditional one-point crossover.

A crossover operator guided by the prior knowledge about the most promising areas in

the search space is presented in [24]. Four parameters are defined to control the crossover

operator: crossover probability pc, variable-wise crossover probability pcv, multiplying

factor α and directional probability pd. Initially, Npop/2 pairs are formed to be possible

parents. A particular pair of solution is allowed to participate in crossover if a random

number created between (0,1] is found to be either less than or equal to the crossover

probability pc. The pc depends on the nature of the objective function. When this

condition is satisfied a variable-wise pcv is used to determine the occurrence of the crossover

for a certain variable position. The directional information is obtained comparing the

mean position of the two mating parents with the position of the current best solution

based on a set of equations presented in [24]. When pd is taken to be equal to 1, the

offspring solution follows the current best solution of the population and goes far when pd

is found to be equal to 0. When the pd is lying between (0,1), the offspring solutions may,

or may not, follow the current best solution. The distances among the offspring solutions

and the mating parents are controlled by α. It was noted the use of the directional

information helps the algorithm to search in more potential regions of the variable space.

A new strategy to solve the traveling salesman problem combining random crossover and

dynamic mutation is presented in [16]. To increase population diversity and optimize

27

mutation characters a random cross mapping method and a dynamic mutation proba-

bility are used. In the traditional GA, a crossover point is randomly determined and

the crossover section length is half of the original sequence length. In the proposed al-

gorithm the crossover operation varies according to the randomly determined crossover

point. If the cross starting point is the sixth element, the result is the same as the one-

point crossover. But, if the cross point starts at any location between the second and

fifth elements, the result is similar to the partial crossover method with four crossover

lengths. On the other hand, if a cross-point starts at any location between the seventh

and ninth element, the crossover selection length is less than half of the original sequence

length. For the mutation process, the probability that controls the operator is dynam-

ically changed according to population stability. In this case, the mutation probability

is inversely proportional to the population stability level. So, when the population is

unstable the mutation probability is small, but when the population is almost stable to

the local solutions, the mutation probability will increase and be more than the mutation

probability of the traditional GA. The performance of the proposed algorithm is com-

pared with the traditional GA and two modified Genetic Algorithm approach, through

simulations problem. The results considering convergence speed and the optimal solution,

obtained by the proposed algorithm, presented excellent performance.

In order to adjust the mutation and crossover rates, [25] uses the fuzzy inference system

to accelerate the attainment of the optimal solution and avoid the stoppage in a local

optimum through a synergic effect of mutation and crossover. The referred paper modifies

the crossover’s and mutation’s rate at each generation according to the fuzzy system

composed of three inputs: the temporal phase of the search, the trend of the fitness of

the candidate solutions and stability of the search process. The inputs and the base

rules, provided by experts’ knowledge or learning mechanisms, result in two outputs

parameters corresponding to the rates of variation for crossover and for mutation, that

will be used to control the GA operators. The tests shown in [25] demonstrated the

procedure improves the performance of GA, by both speeding up the search and avoiding

28

premature convergence in a local minimum.

Another remarkable strategy to control the crossover operator is presented by [26] where

the properties of Gaussian distribution are used to create a more diversified offspring

population. For each parent’s gene pair, a Probability Distribution Function (PDF) is

defined, in which the value of the gene determines the mean and the variance refers to the

confidence of this value, thereby the offspring’s PDF is resulted of multiplication of its

parent’s distributions. A function called big-sigma is introduced which follows the uniform

distribution to further increase the diversity of children spawned by the same parent pair

and controls the algorithm parameters. The comparisons between the GA with and

without the devised operator indicated that the operator outperforms the traditional GA

for most simple problems. However, the operator also has problems with getting stuck in

a local minimum and in those cases, the traditional algorithm version tends to outperform

it.

Genetic Algorithm and Bayesian principles are combined in [27], to select the significant

features in cells microarray clinical data set. The first algorithm is used to select the

significant features in the data set, in this case, the initial population is uniformly initial-

ized, evaluated according to one of these classifiers: k-Nearest Neighbour, Support Vector

Machine or Naïve Bayes. The individuals are selected by a tournament with 10% elitism

rate and the crossover probability is defined using a specified mathematical expression

controlled by the fitness value of the individuals’ pair and the maximum average fitness

of the population. And, for mutation probability, another expression is used based on the

fitness value of the mutated individuals and the median fitness value in the population.

The crossover and the mutation operations are repeated until a specific percentage of

individuals, set by the user, have fitness value greater than the fitness threshold. If the

defined threshold is not reached, a percentage of elite solutions in the current population

are mutated and introduced into the new population for the next generation. Probabilities

dynamically adapted and operations controlled by threshold value prevent local optimum

stoppage and help in achieving better exploration and exploitation in the search space.

29

The second algorithm is introduced to estimate non-ignorable missing values. In this

case, the initial population is initialized according to a Bayesian expression, elaborated

for this propose, and the individuals’ values are defined by other equations, following

Bayesian principles that vary according to the type of data (continuous or discrete). The

selection is done using tournament selection and the crossover and mutation rate are also

dynamically established as occur in the first algorithm [27].

From the references presented is possible to verify the state-of-art of Genetic Algorithm

has a wide range, not only in the theory applicability but also in efforts to improve

existing techniques through the use of hybrid methodology, which aims to extract the

best of each technique and aggregated in a single model. The successful implementation

of GA depends directly on the efficiency of genetic operators. Each way to implement the

genetic operator has its own advantages and disadvantages under various circumstances.

Thus, the key issue in developing a GA is to provide a balance between the properties of

the genetic operators and coding algorithm to produce a good performance as a whole.

30

Chapter 4

Genetic Algorithm Variants

In this chapter are described the analysis done in the traditional GA and the strategies

proposed in this work to improve the GA performance. First, in Section 4.1, the traditional

Genetic Algorithm is described. This version is based on [28], which consider the fixed

rates for all genetic procedures. Analysis of the behavior of traditional GA is performed

to inspire new operators’ procedures developments. After that, the modification and

strategies proposed in this work are presented in Section 4.2.

4.1 Traditional Genetic Algorithm

In the traditional GA, the initial population is randomly determined through to Equation

(4.1), in which xU
t and xL

t refer to upper and lower limits, respectively, and τ refers to a

random number between (0,1]. This equation ensures that all individuals, x, satisfy the

limits of the problem, and can be admitted as a feasible solution

x = xL
t + (xU

t − xL
t)× τ. (4.1)

31

The individuals generated by Equation (4.1) constitute the P0 population with dimension

Npop individuals. All individuals of the population Npop are evaluated by the objective

function and they are ordered according to the objective function value. As already

said in Section 2.3, in this work, only minimization problems are considered. Thus, the

individuals are order from lowest to uppermost, in all algorithms. After the evaluation, a

percentage of individuals are selected according to the natural selection rate, forming the

subset with Nkeep individuals, i.e. (Nkeep ∈ {1, ..., Npop}).

Thereafter, the Nkeep individuals are randomly chosen to constitute pairs and to perform

the crossover. Each pair generates two new individuals by two-point crossover procedure,

as described in Section 2.3.4. The Nkeep individuals chosen is established according to the

crossover rate.

After this, some Nkeep individuals are chosen to be muted following the continuous mu-

tation procedure, as presented in Section 2.3.5. Similar to the crossover procedure, the

number of individuals chosen is defined by a mutation rate.

The new individuals generated in the crossover and mutation procedures are joined with

individuals of the set Npop and all individuals are evaluated by the objective function and

ordered. After this, the Npop most adapted individuals survive to constitute the next

generation, while the less adapted are eliminated. These procedures are done until a

stopping criterion be achieved.

In the traditional GA, used in this work, it is considered the continuous individuals’

representation, the population of Npop = 100 individuals, natural selection rate equal

to 0.5 and crossover and mutation rates equal to 0.25, as suggested by [28]. All rates

are constant values for all search process. Besides, the following stopping criteria are

used: Successive optimum solution, considering ε1 = 10−6; the optimum solution distance

considering ε4 = 10−6; the maximum number of function evaluation equal to 10000 and

the maximum number verification of the same solution, equal to 1000.

32

4.1.1 Analysis of Operators Behavior

In this section, the offspring quality generated is analyzed in order to identify the ability

of individuals to survive in the evolutionary process and generate offspring. For this, a

new parameter called Cutfitness (Cf) is inserted into the algorithm. The Cf is the fitness

value, or the objective function value, of the less adapted individual of the subset with

Nkeep individuals. The Cf is compared with the objective function value of each offspring

and this value is updated at each generation. The offspring whose objective function

values are smaller than the Cf are considered high quality offspring.

In order to store the quantity of high quality offspring generated by each individual parent,

an Offspring Quality Matrix (OQM) is considered. The OQM is composed of five rows

and Npop columns. Each column of the OQM represents an individual of the population

P k, where k represents the iteration. The first row, f(xi), stores the objective function

value of the individual xi. The second and the third rows store information about the

mutation and crossover offspring. In particular, CU(xi) indicates the number of crossover

procedures that the individual participated, and the HQCU(xi), indicates the number of

high quality offspring generated by that individual xi, in the crossover procedure. The last

two rows of OQM store the individual mutation information. So, MU(xi) is the number

of offspring generated by the individual xi and the HQMU(xi), stores the number of high

quality offspring, i.e. f(offspring) ≤ Cf . Table 4.1 illustrates a generic example of the

OQM . However, in Appendix A is described an example of this matrix.

Table 4.1: Offspring Quality Matrix (OQM)
x1 x2 . . . xNpop

f(x1) f(x2) . . . f(xNpop
)

CU(x1) CU(x2) . . . CU(xNpop)
HQCU(x1) HQCU(x2) . . . HQCU(xNpop)
MU(x1) MU(x2) . . . MU(xNpop

)
HQMU(x1) HQMU(x2) . . . HQMU(xNpop

)

The OQM conducted to the analysis of the crossover and mutation behavior throughout

33

the evolutionary process. Figures 4.1 and 4.2 illustrate the accumulated sum per gen-

eration, of crossover and mutation procedure, in three different function, Gramacy and

Lee - Grlee (dimension 1), Branin (dimension 2) and Rastrigin (dimension 3), for more

details about these function, please, consult the Appendix B. Both figures are generated

though the accumulated sum of the individuals information that survive until a specific

generation. In Figure 4.1 and 4.2 the blue points represent the sum of times that the

individuals, of a specific generation, were used in the crossover and mutation procedure,

respectively. These values correspond to the sum of the row CU for crossover and the

rowMU for mutation. These values are equal to the sum of individuals generated at each

generation.

Figure 4.1: Accumulated Value for Crossover Procedure

The red points, in Figures 4.1 and 4.2, represent the accumulated sum of offspring that had

the objective function value smaller than the Cf in the crossover and mutation procedure,

respectively. In other words, the red points represent the accumulated number of high

quality offspring per generation. These points are obtained by the sum of the individuals

of the row HQCU for the crossover, and the row HQMU for the mutation procedures.

It is known that new individuals are always being generated while others are eliminated.

The aim of the Figures 4.1 and 4.2 is to illustrate the survival of the ancestors and

offspring individuals. The more the blue points disperse from the average, it means

34

Figure 4.2: Accumulated Value for Mutation Procedure

that there are older living individuals that are used more times in the crossover and the

mutation process. The longer individuals survive and generate offspring, the higher are

the values stored in the OQM . When the red points have the values near zero, it means

that the new population is based on offspring than the ancestors.

From Figures 4.1 and 4.2, it is possible to note that the number of high quality offspring

is higher at the beginning than at the end of the search process. The population at

the beginning is dispersed and the good solutions have not been found yet, so, high

quality offspring are frequently generated. However, in the functions with more complex

geometries, such as the Rastrigin function, the number of high quality offspring occurs

more throughout the evolutionary process, due to the complexity of the function.

It is noteworthy the fact that there are not so many high quality individuals (red points) in

the figures does not mean that the population has not been improved, but the individuals

generated did not present an objective function value lower than Cf . As can be seen in

Figure 4.3, which ilustrates the average value of the objective function of the population,

even with few high quality offspring the objective functions tend to the optimum solution.

From the above mentioned observations, it is intended to develop a new selection operator

that gives preference to individuals who generated more high quality offspring and are

35

Figure 4.3: Objective Fuction Value Average

still part of the population. For example, consider two individuals which generated,

independently, 8 offspring each, one of this individual has 6 high quality offspring, while

the other has only 1. So, in this new approach, the individual with more high quality

offspring will have a higher possibility to be selected to crossover or mutation procedure.

For less complex functions, this procedure may not work so well, due to the low number of

high quality individuals after the initial phase. However, for more complex functions the

number of high quality offspring is representative throughout the evolutionary process.

Thus, the individuals who have more high quality offspring will have higher possibility

to be selected and originate more high quality offspring. Nevertheless, the fact that an

individual has not generated any offspring does not eliminate it from the selection process.

4.1.2 Analysis of Amplitude and Standard Deviation

In order to recognize how fast the population change, the population amplitude and stan-

dard deviation behavior of the traditional GA were analyzed. Figures 4.4 and 4.5 present,

respectively, the amplitude and the standard deviation of the objective function value for

three different functions: Grlee Function (dimension 1), Branin Function (dimension 2)

and Rastrigin Function (dimension 3). The values of X and Y indicated in Figure 4.4

36

represent, respectively, an specific iteration and the correspondent amplitude average of

this iteration. While in Figure 4.5 the X is also an specific iteration and the Y is the

value of the standard deviation average of the iteration that is being considered. More

information about these functions can be seen in Appendix B.

Figure 4.4: Examples of Objective Functions Amplitudes

Observing Figures 4.4 and 4.5, it is possible to conclude that the amplitude and the

standard deviation, after the initial iteration, decrease dramatically, since the population

tends to converge to an optimum solution point very fast.

In the end of the search, the standard deviation is close to 10−15 or 0. However, in simpler

functions as Grlee, Figure 4.5 (A), this value can be achieved in less iterations than more

complex functions, as Rastrigin, Figure 4.5 (C). For the Grlee function, the algorithm

needs several iterations until achieving a stopping criterion. As can be seen in Figure

4.5 (A), in the iteration 75 the standard deviation is near 10−15 and it continue near

this value until stops, around the iteration 1303. In functions of medium complexity,

as Branin function, Figure 4.5 (B), during the 1077 iterations the standard deviation is

stable in 10−16. Probably, in this stability period, little modifications were done in the

population. On the other hand, in the Rastrigin function, Figure 4.5 (C), more iterations

are necessary to find the standard deviation close to 0, due to the function complexity.

In order to facilitate the amplitude and the standard deviation analysis, Figure 4.6

37

Figure 4.5: Examples of Objective Functions Standard Deviations

presents an approximation of the amplitude and the standard deviation related with Fig-

ures 4.4 and 4.5, at the beginning of the search procedures. For all functions considered,

at the beginning of the evolutionary process the amplitude and the standard deviation is

high. The individuals are dispersed in the search region since the initial population was

generated without considering any particular information of the problem. As the process

evolves the individuals tend to concentrate in smaller regions (promising regions), where

the possibility of finding the best solution are higher. As individuals concentrate in a par-

ticular region, the amplitude and the standard deviation of the population decrease. So,

the smaller amplitude and standard deviation, more concentrated individuals are around

a given region, which has, probably, the optimum solution.

By this analysis, it is possible to conclude that the Genetic Algorithm has different phases

in the evolutionary process. At the beginning of the search, the population is dispersed,

poor solutions are found and the amplitude and the standard deviation have higher values.

In the medium of the process, the individuals tend to concentrate in promising regions,

as the solutions are improved, the amplitude and the standard deviation are becoming

smaller. At the end of the evolutionary process, the algorithm needs to refine the solutions

until converges to an optimum point or attained a stopping criterion. By this observation,

a Genetic Algorithm that consider different phases and different operator rates at each

38

Figure 4.6: Approximations in the Initial Iterations of the Figures 4.4 and 4.5

phase is proposed. Besides, a new stopping criterion based on the amplitude and the

standard deviation is proposed. The aim of this criterion is to accelerate the algorithm

convergence, without affecting the optimum solution quality.

4.2 Strategies Proposed for Improve the Genetic Al-

gorithm

4.2.1 Conditional Probabilistic Selection

This approach considers the quality of offspring generated in each iteration (generation).

In this case, the conditional probability of each individual to generate a high quality

offspring is evaluated according to the information stored in the OQM for each individual

xi. As said before, the high quality offspring are those offspring whose objective function

values are smaller than the Cf .

In this case, an individual is randomly selected, and the possibility to be accepted, τ(xi),

to crossover or mutation, is evaluated. This possibility varies between (0,1] and it is

evaluated according to three possibilities, described below:

39

• The individual selected was never used in crossover, or mutation, proce-

dures, in the previous generation

In this case, the individual selected does not have offspring and consequently, none

information is available about its ability to generate offspring. For this reason, the

possibility to be accepted is maximized, so it is 1. This favors individuals that have

never been used more likely to be selected.

• The individual selected has at least one high quality offspring

In this case, an expression based on the metropolis criterion [29] is determined to

model the possibility of an individual has to be accepted, according to Equation

(4.2) for crossover procedure and Equation (4.3) for mutation procedure

τ(xi) = exp

(
−1 +

∑
HQCU(xi)∑
CU(xi)

)
, (4.2)

τ(xi) = exp

(
−1 +

∑
HQMU(xi)∑
MU(xi)

)
, (4.3)

where xi represents an individual of the population. The HQCU(xi) is the sum

of high quality offspring generated by the individual xi in the crossover procedure.

And, theHQMU(xi) is the sum of high quality offspring generated by the individual

xi in the mutation procedure.

• The individual selected has offspring, but never had a high quality one

In this case, the individual selected was used, at least one time in the crossover, or

mutation, procedures. So, the accept possibility to be a parent is evaluated using

Equations (4.4) and (4.5) for crossover and mutation procedure, respectively.

40

τ(xi) = exp
(
−
∑

CU(xi)
)
, (4.4)

τ(xi) = exp
(
−
∑

MU(xi)
)
, (4.5)

where the CU(xi) and MU(xi) is the sum of all offspring generation by individual

xi in the crossover and mutation procedure, respectively, in the previous generation.

Thereafter, if τ(xi) > τ , where τ is a random number between (0,1], the individual xi is

accepted for crossover or for mutation procedures. The procedure described is repeated

until the number of individuals required by the crossover and mutation rates are satisfied.

The main difference between this selection method and the other methods of the literature

is the fact that the individual is chosen based on its ability to generate offspring. This

promotes individuals that tend to generate high quality offspring are more likely to be

selected and consequently accelerate the algorithm convergence to the optimum solution.

4.2.2 Genetic Inheritance Bio-inspired Procedure

The previous results of the new selection operator conducted to studies of how the human

genetic code transfer information for the next generation, in order to propose a selection

operator inspired by the human genetic information transference.

Some human genetic information are passed through generations, thereby, when a person

born his/her genetic characteristics are composed by family genetic information. For

example, the eyes or skin color is defined by genetic inheritance.

Thereby, in this approach, it is considered the possibility of the individuals inherit the

information of their ancestors. The information considered refers to the offspring quality

stored in the OQM . First, it is considered the hypotheses that each new offspring inherit

41

all information of its family tree (genealogy), i.e., it is considered a new individual that

arises in the 20th generation. This individual will inherit the information of the 19th

previous generations that compose its genealogy. In this way, the information stored in

the OQM for one individual will always be summed and passed to its offspring.

So, the inherited information will be used to calculate the probability of the individ-

ual to be accepted for crossover or mutation. Thus, the offspring generated will inherit

the ancestors information stored in OQM . And, the random factor that composes the

probabilistic approach is understood as the information that not depends on the family

information and it is randomly acquired.

The results of this approach proposed will not be presented in this work, due to computer

restrictions. This approach requires high computational effort due to the larger quantity

of information that should be stored and process in the OQM .

Although a successful result was not obtained by the genetic inheritance bio-inspired pro-

pose, the studies carried out so far lead to contributions for potential future work. A

possible suggestion to solve the problem found in this approach is to study deeply the

human genetic information transference and to determine, for example, how many gener-

ations a specify information exerts significant influence on individuals, and thus, consider

not all the information of the ancestors, but only the most significant ones. Moreover, it

could also assign weights to inherited information. In this way, the information inherited

by the previous generation had more influence than the information inherited by more

distant generations.

4.2.3 Dynamic Operators Rates

By the analysis of the amplitude and the standard deviation of the traditional GA, it is

noted different behaviors in the algorithm evolutionary process, and consequently, it is

possible to identify different algorithm search phases.

42

In the traditional version of GA, the operators have fixed rates for all evolutionary process.

The determination of these values is not well established in the literature. Normally, the

selection, the crossover and the mutation rates are defined by individual problem analysis

or it is determined by means of trial-and-error [30].

There is not a consensus of exact values for each rate, the optimal rate setting is likely to

vary for different problems [4], but it is a time consuming task. For these reasons, some

studies focused on determining good control rates values for genetic operators. De Jong

[31], Schaffer [32] and Grefenstette [33] proposed a range of optimum rates, as presented

in Table 4.2, for binary representation individuals [4]. But, as it is possible to see, these

ranges have large variations, being inconclusive and strongly dependent on the researcher

knowledge and the problem variations.

Table 4.2: Suggested Values for Control Rates of the Genetic Algorithm
Control
Rates De Jong Schaffer Grefentette

Population size 50 - 100 20 - 30 30
Crossover rate 0.60 0.75 - 0.95 0.95
Mutation rate 0.001 0.005 - 0.01 0.01

On the other hand, many works in literature are based on the intuitive idea that crossover

and mutation rates should not be constant throughout the evolutionary process, but

should rather vary in the different phases of the search [25]. Similar to the problem of

fixed rates this problem is not simple to solve either. Once again there is no consensus on

the values of the rates and how determined them.

There are studies that adapt the control rates during the optimization process. The

techniques involve adjusting the operators’ rates according to observable problems char-

acteristic as process of the search, trend of the fitness, stability [25], fitness value [4], [27],

or based on a number of experiments and expert opinions domain [34].

The work [35] proposes an adaptive mutation through monitoring the homogeneity of the

solution population by measuring the Hamming distance between the parents’ individuals

43

during the reproduction. Thereby, the more similar the parents, the higher the mutation

probability. The [36] adopted the same mutation probability for all parts of an individ-

ual and then decreased to a constant level after a given number of generations. Other

strategies are presented in [4], upper and lower limits are chosen for the mutation rate,

and within those limits, the mutation rate for each individual is calculated according to

its fitness. Some works, for instance, support high mutation rates in the initial phase of

the search process, in order to explore the individuals that are spread in the search space

[36], [37], while other ones support high mutation rates at the end of the process, in order

to come out from local optima, where the algorithm can be stuck [38].

The Dynamic Operators rates approach consists in to control the selection, crossover and

mutation rates through the amplitude and the standard deviation of each generation and

the objective function value variation. The procedure used to select the individuals are

the same used in the Traditional GA, random selection. And the crossover and mutation

procedures are also the same as in Traditional GA, to provide a fair comparison, which are

two-point crossover and the continue mutation, as described in Section 2.3.4 and Section

2.3.5, respectively.

Through analysis of the traditional GA behavior, it was observed that the objective

function standard deviation at the beginning of the process is higher, as expected because

the generation of the initial population is random. For this reason, the individuals are

very dispersed in the search region. And, for the same reason, the amplitude is also higher

at the beginning of the evolutionary process.

As the search process evolves, the population tends to concentrate in specific search region,

in which the possibility to find the optimum solution is higher, this causes the decrease of

the objective function amplitude and standard deviation. At the end of the evolutionary

process both tend to zero, whereas the population is concentrated in a point.

By this analysis is easy to note that the algorithm has different properties throughout the

search process. For this reason, this approach proposes to establish different phases and

44

adapt the operators’ rates according to the algorithm answers. Three algorithm search

phases were established, as follow described:

• Phase 1 - Initial: in this phase, the population amplitude and standard deviation

are higher and there are few good solutions in the population. For this reason,

higher rates are considered to accelerate the search. This phase initiates when the

algorithm starts and stops when the population amplitude and standard deviation

smaller than εi, and a condition of ki iterations is exceeded.

• Phase 2 - Development: this phase starts immediately after Phase 1 and ends

when the population amplitude and standard deviation are smaller than εd and

exceed at least kd iterations. The condition of kd iteration was defined to avoid the

algorithm remain too short time at this phase because depending on the problem

the εd value is quickly reached and consequently the possible solutions are not so

well explored. In this second phase, the operator rates should not be so higher as in

the initial phase because the search is concentrated in the promising areas obtained

in the first phase. At the end of this phase, the algorithm has already found the

optimum region but needs to refine the optimum solution.

• Phase 3 - Refinement: this phase has the aim of refining the solutions. The am-

plitude and the standard deviation are so small, that it is possible to conclude that

the optimum solution is very close of being achieved. The rates used in this phase

are smaller than in the other phases because few modifications are needed. This

phase starts immediately after Phase 2, and continues until a stopping criterion be

achieved.

In this approach is not established fixed rates, not even in the phases. Thus, an initial

value for each operator rate is determined at the beginning of each phase, as presented in

Table 4.3. These values were defined by test using the functions considered in this work.

45

Table 4.3: Initial Operator Rates for Each Phase
Genetic Operator Phase 1 Phase 2 Phase 3

Selection 0.7×Npop 0.6×Npop 0.5×Npop

Crossover 0.5×Npop 0.4×Npop 0.3×Npop

Mutation 0.4×Npop 0.3×Npop 0.2×Npop

In the second and the third phases, the initial values rates can vary 10% inside a maxi-

mum and minimum interval, according to the difference of amplitude between successive

population. Thereby, if the amplitude difference between k and k− 1 iterations is smaller

than εph2 in the second phase or smaller than εph3 in the third phase the rates increase

1%, otherwise decrease 1%. This strategy is inspired by the fuzzy logic principles and it

is designed to stimulate small modifications in the algorithm search and prevent it from

getting stuck at local points.

After tests and analysis to determine the best values of each phase, which are the good

values for all functions considered in this work, it was defined ki = 50, εi = 1, kd = 150,

εd = 10−3, εph2 = 10−3 and εph3 = 10−6.

The proposed algorithm is shown in Algorithm 2.

Algorithm 2 : Genetic Algorithm with Dynamic Operators Rates
Generates a randomly population of individuals, P0, with dimension Npop.
Set k = 0.
while stopping criterion is not met do

Identify the Phase and update the operator rates if necessary
P ′ = Apply selection procedure in Npop individuals.
P ′′ = Apply crossover procedure in Nkeep individuals.
P ′′′ = Apply mutation procedure in Nkeep individuals.
Pk+1 = Npop best individuals of {Pk ∪ P ′′ ∪ P ′′′}.
Set k = k + 1.

4.2.4 Stopping Criterion

In the Phase 3, the individuals are near to the optimum solution and few modifications

are performed at each iteration in order to preserve the good results already found. In this

46

way, the following criterion is proposed to be used in conjunction with the other criterion

already used in literature, as described in Section 2.3.6.

This stopping criterion consists of an analysis of the population evolution in the Phase 3.

Therefore, if the algorithm is at Phase 3 and the standard deviation and the amplitude

are smaller than 10−10 in a Npop×Nvar successive iterations, the algorithm stops. In this

way, the stopping criterion adapts to different problems, since the number of individuals

in the population and the variables number are strong influencers in the convergence

methods.

The size of the population and the number of variables in an optimization problem have a

direct influence on the difficulty that the algorithm has in finding and refining the solution.

Functions with simpler geometry and smaller dimensions are easier to be explored by the

algorithm, so they need fewer iterations than more complex problems.

By standard deviation observations, it is known that after a certain number of iterations

in the Phase 3 the population standard deviation is close to 10−15. When a significant

population change occurs standard deviation decrease, around 10−10, for this reason, the

value of 10−10 was chosen to be used in the stopping criterion. Although this value is

uncommon in stopping criteria, it presents satisfactory results for all functions considered.

It is noteworthy that the value 10−10 does not mean that the algorithm will present

precision of 10−10 in the optimal solution. In addition, this value can be modified if

needed.

47

48

Chapter 5

Numerical Results and Discussion

In this chapter are presented the results obtained from the methodologies proposed in

this work and the comparison with other algorithms. The validation is done by a set of

twelve benchmark optimization functions, also presented in this chapter and detailed in

Appendix B.

5.1 Benchmark Functions

Benchmark functions are functions compatible with the majority optimization problems

[39], [40]. Ideally, these functions should have diverse properties that can be truly useful

to test new algorithms in an unbiased way [39]. The validation is only possible if the test

suite is large enough to include a wide variety of problems, such as unimodal, multimodal,

regular, irregular, separable, non-separable and multi-dimensional problems [39].

Modality refers to the quantity of local optimum the function has. A function with

only one local optimum (global optimum) is called unimodal, while the functions with

more than one local optimum are called multimodal. Multimodal functions are the most

difficult class of problems for many algorithms. This class of functions is used to test the

49

ability of an algorithm to escape from any local minimum. If the algorithm exploration

is poor it cannot search the function landscape effectively and consequently leads to an

algorithm getting stuck at a local minimum [39], [41].

Regularity refers to the function surface behavior. Flat, basin and valley, for example,

can severely hamper the algorithm search because such regions do not give the algorithm

any information to direct the search process towards the minimum [39].

Separability refers to the inter-relation among the function variables. A separable func-

tion can be written as a sum of p functions of just one variable while in nonseparable

function it is not possible. Separable functions are relatively easy to solve, when com-

pared with their inseparable counterpart, because each function variable is independent

of the other variables and can be optimized independently [39].

Dimensionality refers to the number of function dimensions. The difficulty of a problem

generally increases with its dimensionality because the search region also increases expo-

nentially [41]. For highly nonlinear problems, this dimensionality may be a significant

barrier for almost all optimization algorithms [39].

The benchmark functions could assess convergence speed, accuracy, robustness and their

total functionality of optimization and evolutionary algorithms [40]. In this work, twelve

benchmark functions, common in literature for optimization algorithms validation, are

used: Gramacy and Lee - Grlee (dimension 1) [42], Forrester (dimension 1) [43], Branin

(dimension 2) [39], McCormick (dimension 2) [39], Easom (dimension 2)[39], Ackley (di-

mension 3) [39], [40], Rastrigin (dimension 3) [40], [44], Rosenbrock (dimension 3) [39],

Sum Squares (dimension 4) [39], Zakharov (dimension 4) [39], [44], Levy (dimension 5)

[44] and Schwefel (dimension 5) [39]. All these functions and their characteristics are

described in Appendix B.

The benchmark functions optimum solution defined in the literature are presented in

Table 5.1. These optimum solutions will be used to compare the results provided by the

50

algorithms variations proposed in this work.

Table 5.1: Solution Proposed in Literature
Function Optimum

Solution (f ∗) Function Optimum
Solution (f ∗)

Grlee −0.869011 Rastrigin 0
Forrester −6.020707 Rosenbrock 0
Branin 0.397887 S. Squares 0

McCormick −1.913223 Zakhavov 0
Easom −1 Levy 0
Ackley 0 Schwefel 0

All numerical results of this work were obtained using an Intel(R) Core (TM) i3 CPUM920

@2.67GHz with 6 GB of RAM and the Software Matlab R2018a. All the functions are

evaluated 100 times and the average of the optimum solution f ∗, function evaluations k,

time in seconds, and the Euclidean distance between the optimum solution, are considered

for the analysis of the results. The Euclidean distance is defined by ||x∗i − x∗||, where x∗i
is the solution given by the proposed algorithym and x∗ is the solution presented in the

Literature.

5.2 Results and Comparision of the Genetic Algo-

rithm with Fixed Rates and the Genetic Algo-

rithm with Conditional Probabilistic Selection

The results obtained using conditional probabilistic selection (GA-CPS), described in the

Section 4.2.1, are shown in Table 5.2. The same table also presents the results of the

traditional Genetic Algorithm with fixed rates (GA-FR), described in Section 4.1. Both

algorithms considered a population of 100 individuals and fixed rates, as suggested by

[28], i.e, 0.5 for selection rate and 0.25 for crossover and mutation rates.

The GA-CPS method was able to select the individuals for the crossover and the mutation

51

Table 5.2: Results of Conditional Probabilistic Selection and Fixed Rates Genetic Algo-
rithms with Npop = 100

Function Algorithm f ∗ k
Function
Evaluation Time Euclidean

Distance

Grlee GA-FR −8.690× 10−1 1160 60307 2.19 4.009× 10−5

GA-CPS −8.690× 10−1 1215 63178 2.38 3.897× 10−5

Forrester GA-FR −6.021× 10 0 825 42887 1.55 3.405× 10−5

GA-CPS −6.021× 10 0 900 46841 1.76 3.392× 10−5

Brainin GA-FR 3.979× 10−1 1104 57390 2.36 2.791× 10−3

GA-CPS 3.979× 10−1 1092 56795 2.38 2.798× 10−3

McCormick GA-FR −1.913× 10 0 921 47903 1.97 5.176× 10−2

GA-CPS −1.913× 10 0 881 45844 1.96 5.094× 10−2

Easom GA-FR −9.900× 10−1 1203 62547 2.55 1.907× 10−3

GA-CPS −9.899× 10−1 1022 53186 2.18 1.602× 10−3

Ackley GA-FR 8.035× 10−3 2700 140423 5.82 3.350× 10−3

GA-CPS 8.156× 10−3 2893 150488 6.46 3.560× 10−3

Rastrigin GA-FR 1.006× 10−4 2472 128522 5.29 5.960× 10−4

GA-CPS 1.512× 10−4 2517 130892 5.56 5.328× 10−4

Rosenbrock GA-FR 4.798× 10−1 5444 283085 11.22 1.430× 10 0

GA-CPS 4.359× 10−1 5032 261675 10.75 1.172× 10 0

S. Squares GA-FR 4.929× 10−5 1574 81847 3.48 3.450× 10−3

GA-CPS 3.052× 10−4 1738 90396 3.89 3.438× 10−3

Zakhavov GA-FR 4.462× 10−3 1683 87492 3.71 2.019× 10−2

GA-CPS 5.577× 10−4 1972 102580 4.48 1.982× 10−2

Levy GA-FR 4.911× 10−4 784 40766 2.14 1.554× 10−2

GA-CPS 4.743× 10−4 748 38902 2.08 1.324× 10−2

Schwefel GA-FR 2.121× 10−3 3814 198310 8.38 2.121× 10−3

GA-CPS 1.142× 10−3 3687 191712 8.41 2.354× 10−3

procedures. However, no improvements were found in the proposed approach in relation

to the performance of the GA-FR algorithm, which uses traditional procedures. It is

noteworthy that the results presented in the Table 5.2 is the average of 100 executions,

thus, the small numerical difference between the algorithm results are not representative

to affirm that one algorithm is better than the other.

By analyzing the operation methods, it was noted that little information is stored in the

OQM , since a high number of new offspring are incorporated at each generation. These

new individuals do not have offspring yet, for this reason, it was verified that among the

52

three conditions proposed in Section 4.2.1, the most used condition was “the individual

selected was never used in crossover or mutation procedure, in the previous generation”.

In this case, the proposed approach is similar to the random selection methods, which is

the same used in the GA-FR. Even in more complex functions, which was hoped better

performance, due to the higher number of high quality offspring, none significant changes

were noted.

5.3 Results and Comparison of Fixed and Dynamic

Rates Genetic Algorithms

Table 5.3 presents the results of the Genetic Algorithm with fixed rates (GA− FR) and

the Genetic Algorithm with dynamic rates (GA −DR), considering a population of 100

individuals.

Analyzing the results presented in Table 5.3, both algorithms were able to find the opti-

mum solution with satisfactory precision, in relation to the literature results, presented

in Table 5.1.

Although both algorithms, GA-FR and GA-DR, could find the optimum solution with

similarity, it is possible to claim that the GA-DR had better performance. The GA-DR

used less iteration, time and objective function evaluation than the GA-FR. On average

the GA-DR presented 60% fewer iterations and 40% fewer function evaluations than GA-

FR. The less computational efforts are required not only by the use of dynamic rates but

also for the additional stopping criterion.

In tests done in the GA-DR without the addition of the proposed stopping criterion,

demonstrated that the number of iterations k is fewer in GA-DR than the number of

GA-FR iterations. But, the number of functions evaluations and the time in GA-DR

without the addition of the proposed stopping criterion are equal or little higher than in

53

Table 5.3: Fixed and Dynamic Rates Genetic Algorithms Results with Npop = 100

Function Algorithm f ∗ k
Function
Evaluation Time Euclidean

Distance

Grlee GA-FR −8.690× 10−1 1160 60307 2.19 4.009× 10−5

GA-DR −8.690× 10−1 252 23392 0.79 8.718× 10−5

Forrester GA-FR −6.021× 10 0 825 42887 1.55 3.405× 10−5

GA-DR −6.021× 10 0 241 22460 0.76 5.153× 10−5

Branin GA-FR 3.979× 10−1 1104 57390 2.36 2.791× 10−3

GA-DR 3.979× 10−1 421 37232 1.42 2.812× 10−3

McCormick GA-FR −1.913× 10 0 921 47903 1.97 5.176× 10−2

GA-DR −1.913× 10 0 334 30007 1.13 5.197× 10−2

Easom GA-FR −9.900× 10−1 1203 62547 2.55 1.907× 10−3

GA-DR −9.900× 10−1 402 35667 1.37 2.127× 10−3

Ackley GA-FR 8.035× 10−3 2700 140423 5.82 3.350× 10−3

GA-DR 1.457× 10−2 875 74447 2.85 5.900× 10−3

Rastrigin GA-FR 1.006× 10−4 2472 128522 5.29 5.960× 10−4

GA-DR 2.509× 10−3 794 67789 2.59 1.532× 10−3

Rosenbrock GA-FR 4.798× 10−1 5444 283085 11.22 1.432× 10 0

GA-DR 3.971× 10−1 2222 184997 6.66 1.160× 10 0

S. Squares GA-FR 4.929× 10−5 1574 81847 3.48 3.450× 10−3

GA-DR 1.526× 10−4 786 67087 2.58 4.686× 10−3

Zakhavov GA-FR 4.462× 10−3 1683 87492 3.71 2.019× 10−2

GA-DR 2.733× 10−4 1069 89919 3.51 1.042× 10−2

Levy GA-FR 4.911× 10−4 784 40766 2.14 1.554× 10−2

GA-DR 2.332× 10−4 460 40256 1.93 1.344× 10−2

Schwefel GA-FR 2.121× 10−3 3814 198310 8.38 2.121× 10−3

GA-DR 1.570× 10−3 2006 167115 6.43 9.703× 10−2

GA-FR. For these reasons, the use of the new stopping criterion is recommended in the

GA-DR to provide better performance.

The Euclidean distance, which compares the distance between the optimum solution x∗,

found by the algorithms and the literature solutions, have the same order of precision. In

general, the algorithms solutions are 10−3 distance from the literature solution. However,

it is worth mentioning that the Euclidean distance of the functions Grlee and Forrester

are the smallest, near to 10−5, since they have the less complex geometries and the small-

est dimensions. On the other hand, the larger Euclidean distances were presented by

Rosenbrock function, which is near to 1, for both algorithms.

54

5.4 Results and Comparison of Fixed and Dynamic

Rates Genetic Algorithms with the Default Mat-

lab Genetic Algorithm

In order to compare the performance of the algorithms using a reduced population, a

set of 50 individuals was considered in the results presented in Table 5.4. Besides, the

comparison is extended to the default Matlab Genetic Algorithm (GA-Mat), defined in

[45]. The Matlab implementation defines the GA population as 50 individuals when the

objective function dimension is less than or equal to 5 or 200 individuals, otherwise.

In Table 5.4 the number of iterations were not considered in the comparison of the al-

gorithms, since the method implemented in Matlab, to count the number of iterations,

differs from the counting used in this work. Therefore, it is not possible to do a fair

comparison.

Table 5.4 shows that GA-FR and GA-DR could provide acceptable optimum solutions for

all functions, considering populations of 50 individuals. However, the optimum solutions

found by the algorithm with 100 individuals were, in general, a few better. The number

of function evaluations and time, were smaller than the results with 100 individuals, due

to the reduced size of the population, as presented in Table 5.3.

The results provided by the GA-Mat were not satisfactory for all functions. For the

functions Sum Squares, Zakharov and Levy, the GA-Mat presented higher performance

than the other algorithms considered, even in relation to the results presented by GA-FR

and GA-DR in the population of 100 individuals. However, the GA-Mat presented less

performance, in the functions: Grlee, Rastrigin and Schewefel. In the Grlee function,

the GA-Mat stopped at a local optimum point, as is clearly observed in the function

representation, describe in Appendix B. The worst performance was observed in Schwefel

function, in which the GA-Mat could not approximate to the optimum solution, and the

55

Table 5.4: Default Matlab, Fixed and Dynamic Rates Genetic Algorithms Results with
Npop = 50

Function Algorithm f* Function
Evaluation Time Euclidean

Distance
GA-Mat −6.662× 10−1 3250 0.45 9.332× 10 0

Grlee GA-FR −8.690× 10−1 40522 1.34 5.796× 10−5

GA-DR −8.690× 10−1 10115 0.29 2.169× 10−4

Forrester GA-Mat −6.021× 10 0 3300 0.42 3.101× 10−5

GA-FR −6.021× 10 0 34914 1.15 9.198× 10−5

GA-DR −6.021× 10 0 9656 0.27 9.600× 10−5

Branin GA-Mat 3.979× 10−1 3682 0.48 8.689× 10−4

GA-FR 3.979× 10−1 45574 1.67 2.523× 10−3

GA-DR 3.979× 10−1 14304 0.48 6.170× 10−3

McCormick GA-Mat −1.913× 10 0 3500 0.47 1.799× 10−5

GA-FR −1.913× 10 0 35915 1.32 5.228× 10−2

GA-DR −1.913× 10 0 14323 0.47 5.313× 10−2

Easom GA-Mat −9.400× 10−1 3602 0.49 1.559× 10−1

GA-FR −9.500× 10−1 44218 1.65 1.473× 10−1

GA-DR −9.421× 10−1 12626 0.41 1.804× 10−1

Ackley GA-Mat 2.112× 10−2 6065 0.59 9.358× 10−2

GA-FR 1.578× 10−2 78323 2.95 6.344× 10−3

GA-DR 6.327× 10−2 20827 0.70 2.197× 10−2

Rastrigin GA-Mat 5.771× 10−1 4786 0.53 4.836× 10−1

GA-FR 2.094× 10−4 76326 2.82 8.610× 10−4

GA-DR 4.142× 10−3 20362 0.67 3.625× 10−3

Rosenbrock GA-Mat 9.174× 10−1 14526 0.87 1.863× 10 0

GA-FR 7.307× 10−1 118358 4.29 1.775× 10 0

GA-DR 6.296× 10−1 23467 0.75 1.492× 10 0

S. Squares GA-Mat 6.695× 10−9 4885 0.53 4.745× 10−5

GA-FR 1.581× 10−4 64222 2.41 5.035× 10−3

GA-DR 9.120× 10−4 28142 0.92 1.023× 10−2

Zakhavov GA-Mat 1.937× 10−8 5327 0.53 9.186× 10−5

GA-FR 2.726× 10−4 80365 3.04 1.066× 10−2

GA-DR 6.394× 10−4 40185 1.34 2.025× 10−2

Levy GA-Mat 2.696× 10−8 5215 0.55 1.848× 10−4

GA-FR 7.425× 10−4 38926 1.80 1.836× 10−2

GA-DR 2.719× 10−4 28494 1.18 1.550× 10−2

Schwefel GA-Mat 1.412× 10+2 9375 0.69 5.553× 10+2

GA-FR 4.349× 10−3 102264 3.92 1.590× 10−1

GA-DR 2.603× 10−2 43663 1.45 3.986× 10−1

56

Euclidean distance is in order of 10+2. For the functions Forrester, Branin, McCormick,

Eason, Ackley and Rosenbrock the optimum solutions found, by the three algorithms,

were very similar.

In relation to the Euclidean distance, the function which presented the optimum solution

with high precision had the smallest Euclidean distance. Regarding the number of function

evaluations, GA-Mat has, in general, the lowest values in relation to the GA-FR and GA-

DR. And, in relation to the time, the GA-Mat was the fastest in 6 functions. However,

the time difference is not so expressive, meanly in relation to the GA-DR time.

Although the GA-Mat presented excellent results for some functions, in other function

this algorithm does not work so well. For this reason, the Genetic Algorithm with dy-

namic rates is more robust and indicated to use in general optimization problems. The

GA-DR was able to approximate the optimum solution in all functions considered, with

satisfactory precision.

In relation to the use of fewer individuals in the population, it is possible to conclude the

Genetic Algorithms performance, considering 50 individuals, were good. But, the use of

100 individuals is more recommended, due to the optimum solution with higher quality.

Although the use of 100 individuals demands more time and function evaluations, the

difference was not so significant, in the functions considered in this work.

5.5 Results and Comparison with the Hybrid Ge-

netic Algorithm

Some Genetic Algorithms are combined with a local search method to present the global

solution with high precision. These algorithms are considered Hybrid Genetic Algorithms.

So, in order to improve the results already presented, in this work the Nelder Mead method

[46], is used. Previous results showed, that the population of 100 individuals had better

57

performance. So, in this hybrid approach, 100 individuals were also considered.

It is noteworthy that in the work [28], on which the algorithm with fixed rates is based,

the Powell method [47] was used as a local search method. However, in this work, the

use of the Nelder Mead method [46] was preferred. The results for the Hybrid Genetic

Algorithm with fixed rates (HGA-FR) and dynamic rates (HGA-DR) are presented in

Table 5.5.

Table 5.5: Hybrid Genetic Algorithms Results with Npop = 100

Function Algorithm f ∗ k
Function
Evaluation Time Euclidean

Distance

Grlee HGA-FR −8.690× 10−1 1141 59339 2.23 1.303× 10−5

HGA-DR −8.690× 10−1 263 24306 0.84 1.380× 10−5

Forrester HGA-FR −6.021× 10 0 851 44264 1.64 2.590× 10−5

HGA-DR −6.021× 10 0 227 21297 0.73 2.688× 10−5

Branin HGA-FR 3.979× 10−1 1040 54132 2.18 1.365× 10−3

HGA-DR 3.979× 10−1 411 36439 1.36 1.163× 10−3

McCormick HGA-FR −1.913× 10 0 897 46682 1.99 3.394× 10−5

HGA-DR −1.913× 10 0 312 28219 1.10 3.656× 10−5

Easom HGA-FR −9.900× 10−1 1080 56191 2.29 2.601× 10−2

HGA-DR −9.900× 10−1 415 36789 1.39 2.601× 10−2

Ackley HGA-FR 6.816× 10−4 2765 143848 5.88 2.930× 10−4

HGA-DR 4.460× 10−4 881 75030 2.81 1.920× 10−4

Rastrigin HGA-FR 9.270× 10−5 2605 135465 5.68 5.900× 10−4

HGA-DR 1.788× 10−4 860 73268 2.80 7.990× 10−4

Rosenbrock HGA-FR 1.512× 10−9 5404 281145 11.28 3.254× 10−5

HGA-DR 1.594× 10−9 1936 161748 5.88 3.286× 10−5

S. Squares HGA-FR 3.157× 10−6 1526 79397 3.31 9.340× 10−4

HGA-DR 2.941× 10−6 803 68618 2.60 8.430× 10−4

Zakhavov HGA-FR 1.080× 10−6 1829 95224 4.10 5.800× 10−4

HGA-DR 8.578× 10−7 1032 87025 3.45 4.300× 10−4

Levy HGA-FR 8.322× 10−10 872 45499 2.35 5.139× 10−5

HGA-DR 7.581× 10−10 448 39389 1.87 4.878× 10−5

Schwefel HGA-FR 6.364× 10−5 4101 213492 9.36 1.209× 10−4

HGA-DR 6.364× 10−5 1872 156321 6.20 1.178× 10−4

The use of the hybrid method improved all function and algorithms results. The optimum

solutions of the hybrid algorithms, Table 5.5, were better for all functions considered, in

relation to the results of Table 5.3, where the hybrid approach was not used.

58

It is important to highlight the Rosenbrock, Zakahavov, Levy and Schwefel functions

improvements in relation to the results presented in Table 5.3. In the Genetic Algorithm

without local search method, GA-FR and GA-DR, the Rosenbrock function presented

the optimum solutions the order of 10−1, and in the hybrid strategy, HGA-FR and HGA-

DR, the optimum solutions had the order of 10−9. The improvement of Levy function

was in the order of 10−6, and the Zakhavov and Schwefel functions, were 10−3 and 10−2,

respectively.

A considered improvement was also noted in the Euclidean distance for all functions,

meanly in those whose geometry is more complex. All improvements noted in Table 5.5

were done without compromise the time, the number of iterations and function evalua-

tions, in relation to the results of Table 5.3.

Comparing only the HGA-FR and HGA-DR results, Table 5.5, on average the HGA-DR

presented a reduced of 70% of the number of iterations and 40% less function evaluation,

in relation to the HGA-FR.

Thereby, it is possible to conclude that the use of a local search method, after the GA per-

formance, provides a considerable improvement in the algorithm solutions, without hard

computational efforts. For this reason, the use of a local search method is recommended.

59

60

Chapter 6

Conclusion and Future Work

This work explored the Genetic Algorithm in order to propose new algorithms variations

based on statistical measures that depend on the problem to solve. A new selection

individual procedure was proposed based on the ability of each individual to generate

offspring using conditional probability strategies. Besides, a new approach of the Genetic

Algorithm with dynamic operators rates was presented, in which the rates are controlled

by the population amplitude and the standard deviation. Furthermore, a new stopping

criterion to be used in conjunction with the dynamic rates algorithm was presented. The

validations of the proposed GA variants are done using twelve benchmark optimization

functions.

Normally, the algorithms proposed in the literature are targeted to specific applications,

since is a challenge to produce a robust algorithm to general use. Thus, the main difficulty

found in this work was to propose a methodology that works for several functions, which

simulated several real problems.

The selection approach using conditional probability did not present satisfactory results.

Despite this strategy was able to select individuals, the results were not as expected since

no improvement was noted in relation to the traditional approach.

61

The Genetic Algorithm with dynamic operators rates and the new stopping criterion pre-

sented excellent results. The algorithm proposed was able to determine the optimum

solution with higher precision, in relation to the optimum solution presented in the lit-

erature. This approach used fewer iterations, functions evaluations and time than the

Genetic Algorithm with fixed rates. When it was tested in a reduced population of 50

individuals, the dynamic rates algorithm also presented satisfactory results, however, the

use of a 100 individuals is more indicated to avoid premature convergence when none

specific information about the optimization problems is available.

When the algorithm with dynamic rates was compared with the default Matlab Genetic

Algorithm implementation, it demonstrated superiority. The dynamic rates algorithm

was able to find the optimum solutions for all functions considered. The default Matlab

Genetic Algorithm implementation showed premature convergence and sometimes it got

lost in the search space, without approaching the optimum solution.

The algorithm proposed was also tested with a local search method, in a hybrid approach,

to improve the precision of the solution found by the Genetic Algorithm. This approach

stands out in relation to the other approaches, since it improved the solution significantly,

without so computational efforts.

Due to validation by functions of different properties, it can be concluded that the method

of the dynamic algorithm is a competitive approach and it can be applied to several

optimization problems.

As suggestion for future work can be considered, to explore the methodology proposed

in this work to developing a new selection operator based on human genetic information

transference.

Furthermore, it is possible to study machine learning strategies, as Fuzzy Systems and

Artificial Neural Networks to identify patterns in a traditional version of the Genetic

Algorithm and use the patterns to determine and control the possible alterations in each

62

operator rates.

Moreover, the Genetic Algorithm with dynamic rates can be applied to solve a real op-

timization problem and compare the results with a deterministic approach or other algo-

rithms.

Besides, it is possible to apply the methodology of dynamic rates in Particular Swarm

Optimization Algorithms.

63

Bibliography

[1] S. S. Rao, Engineering optimization : theory and practice, 4th ed. John Wiley &

Sons, 2009, isbn: 978-0-470-18352-6.

[2] M. Mitchell, An Introduction to Genetic Algorithms, 1st ed. Cambridge, MA, USA:

MIT Press, 1998, isbn: 0262631857.

[3] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis

with applications to biology, control, and artificial intelligence. Cambridge, MA,

USA: University of Michigan Press, 1992, isbn: 0262082136.

[4] D. Pham and D. Karaboga, Intelligent optimisation techniques: genetic algorithms,

tabu search, simulated annealing and neural networks, 1st ed. Springer, 2000, isbn:

978-1-447-11186-3. doi: 10.1007/978-1-4471-0721-7.

[5] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms, 1st ed.

Springer, 2008, isbn: 978-3-540-73189-4. doi: 10.1007/978-3-540-73190-0.

[6] A. H. Gandomi, X. Yang, S. Talatahari, and A. H. Alavi, Metaheuristic Applications

in Structures and Infrastructures, 1st ed. Elsevier, 2013, isbn: 978-0-12-398364-0.

[7] J. Nocedal and S. J. Wright, Numerical optimization, 1st ed. Springer, 1999, isbn:

0-387-98793-2.

[8] R. Čorić, M. Dumić, and D. Jakobović, “Complexity comparison of integer program-

ming and genetic algorithms for resource constrained scheduling problems”, IEEE,

2017 40th International Convention on Information, Communication Technology,

64

Electronics, and Microelectronics (MIPRO), 2017, pp. 1182–1188, isbn: 978-953-

233-090-8. doi: 10.23919/MIPRO.2017.7973603.

[9] M. Giuzio, “Genetic algorithm versus classical methods in sparse index tracking”,

Decisions in Economics and Finance, vol. 40, pp. 243–256, 2017. doi: 10.1007/

s10203-017-0191-y.

[10] R. Haupt and S. E. Haupt, Practical Genetic Algorithms, 2nd ed. John Wiley &

Sons, 2004, isbn: 0-471-45565-2.

[11] A. Ghaheri, S. Shoar, M. Naderan, and S. S. Hoseini, “The applications of genetic

algorithms in medicine”, Oman Medical Journal, vol. 30, no. 6, pp. 406–416, 2015.

doi: DOI10.5001/omj.2015.82.

[12] M. Fera, F. Fruggiero, A. Lambiase, R. Macchiaroli, and V. Todisco, “A modified

genetic algorithm for time and cost optimization of an additive manufacturing single-

machine scheduling”, International Journal of Industrial Engineering Computations,

vol. 9, no. 4, pp. 423–438, 2018. doi: 10.5267/j.ijiec.2018.1.001.

[13] F. Alves, A. I. Pereira, A. Fernandes, and P. Leitão, “Optimization of home care vis-

its schedule by genetic algorithm”, in Bioinspired Optimization Methods and Their

Applications, Proceeding of 8th International Conference on, Springer, 2018, pp. 1–

12. doi: 10.1007/978-3-319-91641-5_1.

[14] W. Li, Q. Zhou, J. Ren, and S. Samantha, “Data mining optimization model for

financial management information system based on improved genetic algorithm”,

Information Systems and e-Business Management, pp. 1–19, 2019. doi: 10.1007/

s10257-018-00394-4.

[15] S. S. Patil and A. S. Bhalchandra, “Pattern recognition using genetic algorithm”,

IEEE, 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics

and Cloud) (I-SMAC), 2017, pp. 310–314, isbn: 978-1-5090-3243-3. doi: 10.1109/

I-SMAC.2017.8058361.

65

[16] J. Xu, L. Pei, and R. Zhu, “Application of a genetic algorithm with random crossover

and dynamic mutation on the travelling salesman problem”, Procedia Comput. Sci.,

vol. 131, pp. 937–945, 2018, issn: 1877-0509. doi: 10.1016/j.procs.2018.04.230.

[17] K. M., “The effects of a new selection operator on the performance of a genetic

algorithm”, Applied Mathematics and Computation, vol. 217, pp. 7669–7678, 2011.

doi: 10.1016/j.amc.2011.02.070.

[18] M. Akbari, H. Rashidi, and S. H. Alizadeh, “An enhanced genetic algorithm with

new operators for task scheduling in heterogeneous computing systems”, Engineer-

ing Applications of Artificial Intelligence, vol. 61, pp. 35–46, 2017. doi: 10.1016/

j.engappai.2017.02.013.

[19] S. M. Lim, A. B. Sultan, N. S. Sulaiman, A. Mustapha, and K. Y. Leong, “Crossover

and mutation operators of genetic algorithms”, International Journal of Machine

Learning and Computing, vol. 7, no. 1, pp. 9–12, 2017. doi: 10.18178/ijmlc.2017.

7.1.611.

[20] X. Yang, Engineering Optimization: An Introduction with Metaheuristic Applica-

tions, 1st ed. New Jersey, USA: John Wiley & Sons, Inc, 2010, isbn: 9780470582466.

doi: 10.1002/9780470640425.

[21] A. Ritthipakdee, N. Thammano A. Premasathian, and B. Yyyanonvara, “A new

selection operator to improve the performance of genetic algorithm for optimization

problems”, in Proceedings of 2013 IEEE International Conference on Mechatronics

and Automation, IEEE, 2013, pp. 371–375. doi: 10.1109/ICMA.2013.6617947.

[22] G. Pavai and T. V. Geetha, “A survey on crossover operators”, ACM Comput. Surv.,

vol. 49, no. 4, 72:1–72:43, 2016. doi: 10.1145/3009966.

[23] L. Jánošíková, M. Herda, and M. Haviar, “Hybrid genetic algorithms with selective

crossover for the capacitated p-median problem”, Central European Journal of Op-

erations Research, vol. 25, no. 1, pp. 651–664, 2017. doi: 10.1007/s10100-017-

0471-1.

66

[24] A. K. Das and D. K. Pratihar, “A directional crossover (dx) operator for real param-

eter optimization using genetic algorithm”, Applied Intelligence, vol. 49, pp. 1841–

1865, 2019. doi: 10.1007/s10489-018-1364-2.

[25] M. Vannucci and V. Colla, “Fuzzy adaptation of crossover and mutation rates in

genetic algorithms based on population performance”, Journal of Intelligent & Fuzzy

Systems, vol. 28, no. 4, pp. 1805–1818, 2015. doi: 10.3233/IFS-141467.

[26] M. Kubichi and D. Figurowski, “An introduction to a novel crossover operator for

real-value encoded genetic algorithm: Gaussian crossover operator”, in 2018 Inter-

national Interdisciplinary PhD Workshop (IIPhDW), IEEE, 2018, pp. 85–90. doi:

10.1109/IIPHDW.2018.8388331.

[27] R. D. Priya and R. Sivaraj, “Dynamic genetic algorithm-based feature selection

and incomplete value imputation for microarray classification”, Current Science,

vol. 112, no. 1, pp. 126–131, 2017. doi: 10.18520/cs/v112/i01/126-131.

[28] D. Bento, D. Pinho, A. I. Pereira, and R. Lima, “Genetic algorithm and particle

swarm optimization combined with powell method”, in 11th International Confer-

ence of Numerical Analysis and Applied Mathematics, vol. 1558, ICNAAM 2013,

2013, pp. 578–581. doi: 10.1063/1.4825557.

[29] C. P. Robert and G. Casella, Monte Carlo Statistical Methods (Springer Texts in

Statistics). Berlin, Heidelberg: Springer, 2005, isbn: 0387212396.

[30] W. Lin, W. Lee, and T. Hong, “Adapting crossover and mutation rates in genetic al-

gorithms.”, Journal of Information Science and Engineering, vol. 19, no. 5, pp. 889–

903, 2003.

[31] K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive systems”,

PhD thesis, Universtity of Michigan, Ann Arbor, Michigan, 1975.

67

[32] J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and R. Das, “A study of control

parameters affecting online performance of genetic algorithms for function optimiza-

tion”, in Proceedings of the Third International Conference on Genetic Algorithms,

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1989, pp. 51–60.

[33] J. Grefenstette, “Optimization of control parameters for genetic algorithms”, IEEE

Trans. Syst. Man Cybern., vol. 16, no. 1, pp. 122–128, 1986, issn: 0018-9472. doi:

10.1109/TSMC.1986.289288.

[34] Q. Li, X. Tong, S. Xie, and G. Liu, “An improved adaptive algorithm for controlling

the probabilities of crossover and mutation based on a fuzzy control strategy”,

in Sixth International Conference on Hybrid Intelligent Systems (HIS’06), Rio de

Janeiro, Brazil: IEEE, 2006. doi: 10.1109/HIS.2006.264933.

[35] D. Whitley and T. Hanson, “Optimizing neural networks using faster, more accurate

genetic search”, in Proceedings of the Third International Conference on Genetic

Algorithms, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1989,

pp. 391–396, isbn: 1-55860-006-3.

[36] T. C. Fogarty, “Varying the probability of mutation in the genetic algorithm”,

in Proceedings of the Third International Conference on Genetic Algorithms, San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1989, pp. 104–109, isbn:

1-55860-006-3.

[37] T. Bäck and M. Schütz, “Intelligent mutation rate control in canonical genetic algo-

rithms”, in Proceedings of the 9th International Symposium on Foundations of In-

telligent Systems, ser. ISMIS ’96, London, UK, UK: Springer-Verlag, 1996, pp. 158–

167, isbn: 3-540-61286-6.

[38] H. Shimodaira, “A new genetic algorithm using large mutation rates and population-

elitist selection (galme)”, in Proceedings of the 8th International Conference on Tools

with Artificial Intelligence, ser. ICTAI ’96, Washington, DC, USA: IEEE Computer

Society, 1996, pp. 25–32, isbn: 0-8186-7686-8.

68

[39] M. Jamil and X. Yang, “A literature survey of benchmark functions for global

optimization problems”, International Journal of Mathematical Modelling and Nu-

merical Optimisation, vol. 4, no. 2, pp. 150–194, 2013. doi: 10.1504/IJMMNO.2013.

055204.

[40] S. M. H. Mousavi, “Testing optimization algorithms easier with a new test func-

tion for single-optimization problems and validating evolutionary algorithms”, In-

ternational Journal of Mechatronics, Electrical and Computer Technology (IJMEC),

vol. 8, no. 30, pp. 4009–4017, 2018.

[41] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster”, Transactions

on Evolutionary computation, vol. 3, no. 2, pp. 82–102, 1999. doi: 10.1109/4235.

771163.

[42] R. B. Gramacy and H. K. Lee, “Cases for the nugget in modeling computer experi-

ments”, Statistics and Computing, vol. 22, no. 3, pp. 713–722, 2012. doi: 10.1007/

s11222-010-9224-x.

[43] A. I. J. Forrester, A. Sóbester, and A. J. Keane, Engineering Design via Surrogate

Modelling A Practical Guide, 1st ed. John Wiley & Sons, 2008, isbn: N 978-0-470-

06068-1.

[44] M. Laguna and R. Martí, “Experimental testing of advanced scatter search designs

for global optimization of multimodal functions”, Journal of Global Optimization,

vol. 33, no. 2, pp. 235–255, 2005. doi: 10.1007/s10898-004-1936-z.

[45] I. MathWorks, Genetic algorithm - ga, www.mathworks.com/help/gads/ga.html,

Accessed: 2019-10-01.

[46] J. A. Nelder and R. Mead, “A simplex method for function minimization”, The

Computer Journal, vol. 7, no. 4, pp. 308–313, 1965. doi: doi . org / 10 . 1093 /

comjnl/7.4.308.

69

[47] M. J. D. Powell, “An efficient method for finding the minimum of a function of

several variables without calculating derivatives”, The Computer Journal, vol. 7,

no. 2, pp. 155–162, 1964. doi: 10.1093/comjnl/7.2.155.

[48] S. Surjanovic and D. Bingham, Virtual library of simulation experiments: Test func-

tion and datasets, https://www.sfu.ca/ ssurjano/optimization.html, Accessed: 2019-03-01,

Simon Fraser University.

70

Appendix A

Offspring Quality Matrix - OQM

To exemplify the (OQM) working, an initial population of 10 individuals and the Branin

function are considered. Figure A.1 presents the initial OQM , which is composed by 10

individual ordered by their fitness in ascending order. Each matrix columns represents one

individual and each row follow the description: R1 is the value of objective function; R2

is the number of times that the individual was used in the crossover procedure; R3 is the

number of high quality offspring generated in crossover, that is, the number of times that

the offspring generated had objective function value smaller than the Cf , in the crossover

procedure; R4 is the number of the times that the individual was used in the mutation

procedure; R5 is the number of high quality offspring in the mutation procedure. The

same description of rows and columns is valid for Figures A.2 and A.3.

Considering natural selection rate equal 0.5×Npop, it results in Nkeep = 5, so the 5 best

individuals of the population are selected to be possible parents of this generation. In this

example the top 5 individuals are in gray in Figure A.1 and the Cf is equal to 54.5350,

presented by individual of C5 column.

The crossover rate utilized is equal to 0.25 × Npop, so the crossover procedure will be

responsible for generating 3 new offspring. If the number of individuals selected to be

A1

Figure A.1: Initial Population

parents is odd, another individual is chosen inside the subset Nkeep to be a parent and

complete the pair. Note, in this case, one individual can be selected more than one time in

the same generation. After an offspring be created in the crossover procedure, the OQM

row R2 of the parents, sums 1, for each offspring generated. Then, the value of its fitness

is compared with the current Cf . When an offspring has the fitness smaller than Cf the

parents OQM row R3 sums 1. In this example, as shown in Figure A.2 the individuals of

the columns C1, C2 and C5 were used as parents and the individual of columns C6, C7,

C8 are the crossover offspring. When compared the offspring fitness with the current Cf ,

it is possible to note that the individual of C8 column, has fitness smaller than the Cf

value, for this reason, its parents, which is represented in the columns C2 and C5 sums 1

in their OQM row R3. The three new individual offspring generated in the crossover are

shown in blue in Figure A.2.

The mutation rate is also 0.25 × Npop, consequently the other three new offspring are

generated by mutation. Similar to the crossover process, for mutation, when an individual

is chosen to be muted, 1 is summed in its the mutation OQM row R4. And, when the

offspring have fitness better than the Cf , 1 is summed in the parents OQM row R5, which

represents the number of high quality offspring generated by the mutation. As we can

seen in Figure A.2, the individual represented in the columns C2, C3 and C5 are chosen

to be muted and they originated the offspring represented in the columns C9, C10 and

C11, which are in yellow in Figure A.2. Among these three offspring individuals only the

A2

individual in the column C10 has fitness smaller than the Cf , thus its parent C2 sums 1

in R5, as presented in Figure A.2.

Figure A.2: Intermediate Population

Thereafter, the offspring generated in the crossover and mutation procedures are added in

the current population Npop. Considering the used rates and consequently the number of

individual in the initial population, at the end of the first iteration will have 16 individuals:

10 from the initial population 3 from crossover and 3 from the mutation procedure. These

individuals order according to their fitness, as Figure A.3. The top 10 are considered the

new generation Npop, of the next algorithm interaction, while the last 6 are removed.

These processes are repeated until a stopping criterion is achieved.

Figure A.3: Final Population of the First Iteration

As said before, the Figures A.1, A.2 and A.3 are just to exemplify the idea used in this

work. The real population considered is constituted by 100 individuals, and it was not

A3

presented here due to the OQM dimensions.

A4

Appendix B

Benchmark Optimization Functions

Gramacy and Lee Function - Grlee

Multimodal, continuous, differentiable.

f(x) = sin(10πx)
2x + (x− 1)4. (B.1)

Number of variables Nvar = 1.

Input domain: x ∈ [0.5, 2.5].

Global minimum: f(x∗) = −0.869011, at x∗ = (0.548563).

Figure B.1: Gramacy and Lee Function with Nvar = 1
[48]

B1

Forrester Function

Multimodal, continuous, differentiable.

f(x) = (6x− 2)2sin(12x− 4). (B.2)

Number of variables Nvar = 1.

Input domain: x ∈ [0, 1].

Global minimum: f(x∗) = −6.020707, at x∗ = 0.757000

Figure B.2: Forrester Function with Nvar = 1
[48]

B2

Branin Function

Multimodal, continuous, differentiable, non-separable, non-scalable and non-convex

f(x) = 1(x2 + 5.1
4π2x

2
1 −

5
π
x1 − 6)2 + 10(1− 1

8π)cos(x1) + 10. (B.3)

Number of variables Nvar = 2.

Input domain: x1 ∈ [-5, 10], x2 ∈ [0, 15].

Global minimum: f(x∗) = 0.397887, at x∗ = (−π, 12.275), (π, 2.2775) and

(9.42478, 2.475).

Figure B.3: Branin Function with Nvar = 2
[48]

B3

McCormick Function

Multimodal, continuous, differentiable, non-separable, non-scalable and non-convex

f(x) = sin(x1 + x2) + (x1 − x2)2 − 1.5x1 + 2.5x2 + 1. (B.4)

Number of variables Nvar = 2.

Input domain: x1 ∈ [-1.5, 4], x2 ∈ [-3, 4].

Global minimum: f(x∗) = −1.9133, at x∗ = (−0.54719,−1.54719).

Figure B.4: McCormick Function with Nvar = 2
[48]

B4

Easom Function

Multimodal, continuous, differentiable, non-separable, non-scalable and non-convex

f(x) = −cos(x1)cos(x2)exp(−(x1 − π)2 − (x2 − π)2) (B.5)

Number of variables Nvar = 2.

Input domain: xi ∈ [-10, 10], for all i=1, 2.

Global minimum: f(x∗) = −1, at x∗ = (π, π).

Figure B.5: Easom Function with Nvar = 2
[48]

B5

Ackley Function

Multimodal, continuous, differentiable, non-separable, scalable and non-convex

f(x) = −20exp
−0.2

√√√√ 1
Nvar

Nvar∑
i=1

x2
i

− exp(1
Nvar

Nvar∑
i=1

cos(2πxi)
)

+ 20 + exp(1). (B.6)

Number of variables Nvar = 3.

Input domain: xi ∈ [-32.768, 32.768], for all i=1, ..., Nvar.

Global minimum: f(x∗) = 0, at x∗ = (0, ..., 0).

Figure B.6: Ackley Function with Nvar = 2
[48]

B6

Rastrigin Function

Multimodal, continuous, differentiable, separable, scalable and convex

f(x) = 10Nvar +
Nvar∑
i=1

[x2
i − 10cos(2πxi)]. (B.7)

Number of variables Nvar = 3.

Input domain: xi ∈ [-5.12, 5.12], for all i=1, ..., Nvar.

Global minimum: f(x∗) = 0, at x∗ = (0, ..., 0).

Figure B.7: Rastrigin Function with Nvar = 2
[48]

B7

Rosenbrock Function

Unimodal, continuous, differentiable, non-separable, scalable and non-convex.

f(x) =
Nvar−1∑

i=1
[100(xi+1)− x2

i)2 + (xi − 1)2] (B.8)

Number of variables Nvar = 3.

Input domain: xi ∈ [-5, 10], for all i=1, ..., Nvar.

Global minimum: f(x∗) = 0, at x∗ = (1, ..., 1).

Figure B.8: Rosenbrock Function with Nvar = 2
[48]

B8

Sum Squares Function

Unimodal, continuous, differentiable, separable, scalable and convex

f(x) =
Nvar∑
i=1

ix2
i . (B.9)

Number of variables Nvar = 4.

Input domain: xi ∈ [-10, 10], for all i=1, ..., Nvar.

Global minimum: f(x∗) = 0, at x∗ = (0, ..., 0).

Figure B.9: Sum Squares Function with Nvar = 2
[48]

B9

Zakharov Function

Multimodal, continuous, differentiable, separable, scalable and convex

f(x) =
Nvar∑
i=1

x2
i +

(
Nvar∑
i=1

0.5ixi

)2

+
(

Nvar∑
i=1

0.5ixi

)4

. (B.10)

Number of variables Nvar = 4.

Input domain: xi ∈ [-5, 10], for all i=1, ..., Nvar.

Global minimum: f(x∗) = 0, at x∗ = (0, ..., 0).

Figure B.10: Zakharov Function with Nvar = 2
[48]

B10

Levy Function

Multimodal, continuous, differentiable, separable and non-convex

f(x) = sin2(πw1) +
Nvar−1∑

i=1
(wi− 1)2[1 + 10sin2(πwi + 1)] + (wNvar − 1)2[1 + sin2(2πwNvar)],

(B.11)

where wi = 1 + xi−1
4 , for all i = 1, ..., Nvar.

Number of variables Nvar = 5.

Input domain: xi ∈ [-10, 10], for all i=1, ..., Nvar.

Global minimum: f(x∗) = 0, at x∗ = (1, ..., 1).

Figure B.11: Levy Function with Nvar = 2
[48]

B11

Schwefel Function

Multimodal, continuous, differentiable, separable, scalable and convex

f(x) = 418.9829Nvar −
Nvar∑
i=1

xisin(
√
|xi|). (B.12)

Number of variables Nvar = 5.

Input domain: xi ∈ [-500, 500], for all i=1, ..., Nvar.

Global minimum: f(x∗) = 0, at x∗ = (420.9687, ..., 420.9687).

Figure B.12: Schwefel Function with Nvar = 2
[48]

B12

	Introduction
	Background
	Objectives
	Report Organization

	Optimization Problems and Genetic Algorithm
	Mathematical Modeling
	Deterministic versus Stochastic Optimization Methods
	Genetic Algorithm
	Initial Population
	Objective Function
	Selection Procedure
	Crossover Procedure
	Mutation Procedure
	Termination Criteria

	Related Works
	Genetic Algorithm State-of-Art

	Genetic Algorithm Variants
	Traditional Genetic Algorithm
	Analysis of Operators Behavior
	Analysis of Amplitude and Standard Deviation

	Strategies Proposed for Improve the Genetic Algorithm
	Conditional Probabilistic Selection
	Genetic Inheritance Bio-inspired Procedure
	Dynamic Operators Rates
	Stopping Criterion

	Numerical Results and Discussion
	Benchmark Functions
	Results and Comparision of the Genetic Algorithm with Fixed Rates and the Genetic Algorithm with Conditional Probabilistic Selection
	Results and Comparison of Fixed and Dynamic Rates Genetic Algorithms
	Results and Comparison of Fixed and Dynamic Rates Genetic Algorithms with the Default Matlab Genetic Algorithm
	Results and Comparison with the Hybrid Genetic Algorithm

	Conclusion and Future Work
	Offspring Quality Matrix - OQM
	Benchmark Optimization Functions

