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Abstract: The 4th industrial revolution advent promotes the reorganization of the traditional hierarchical automation
systems towards decentralized Cyber-Physical Systems (CPS). In this context, Artificial Intelligence (AI) can
address the new requirements through the use of data-driven and distributed problem solving approaches, such
those based on Machine-Learning and Multi-agent Systems. Although their promising perspectives to en-
able and manage intelligent Internet of Things environments, the traditional Cloud-based AI approaches are
not suitable to handle many industrial scenarios, constrained by responsiveness and data sensitive. The solu-
tion lies in taking advantage of Edge and Fog computing to create a decentralized multi-level data analysis
computing infrastructure that supports the development of industrial CPS. However, this is not a straightfor-
ward task, posing several challenges and demanding new approaches and technologies. In this context, this
work discusses the distribution of intelligence along Cloud, Fog and Edge computing layers in industrial CPS,
leveraging some research challenges and future directions.

1 INTRODUCTION

The era of the 4th industrial revolution (4IR), usually
called I4.0, promotes the digitalization of traditional
factories towards intelligent ones that are more flex-
ible, robust, efficient, adaptive and competitive (Lu,
2017). This revolution is based on several disruptive
ICT technologies, namely Internet of Things (IoT),
Cloud Computing, Big Data and Machine-Learning
(ML), which are glued by Cyber-Physical Systems
(CPS) (Bauer et al., 2015). CPS comprise a set of net-
worked cooperating and autonomous entities, com-
bining cyber and physical counterparts. They are suit-
able to solve problems in complex and large-scale
systems that can be found in smart manufacturing,
smart cities, smart electrical grids and smart health
(Leitão et al., 2016; Khaitan and McCalley, 2015).

In this context, Artificial Intelligence (AI) is a key
enabler for the realization of the envisioned CPS and
their features, like autonomy, self-awareness and dy-
namic reconfigurability. In industrial environments,
the use of AI can contribute to develop intelligent de-
cision support and control systems, smart machines
and products, and consequently intelligent production
systems and factories (Wuest et al., 2016; Lee et al.,
2018). For instance, AI provides ML algorithms that

are capable to learn and extract patterns from data,
devising models for prediction and data-driven deci-
sions. The increased computational processing power
together with the availability of huge amounts of data,
mainly powered by the IoT, have contributed to their
increasing adoption in various applications.

However, AI goes beyond ML algorithms, also
providing distributed approaches, such those based
on Multi-Agent System (MAS) (Wooldridge, 2002),
which works as vessels for AI algorithms. MAS com-
pletely fits the CPS due to its inherent characteris-
tics of modularity, autonomy and cooperation (Leitão
et al., 2016). In such approach, the system behav-
ior emerges from the interaction among autonomous
agents, where the decisions are taken in a decentral-
ized way, in opposition to centralized structures that
are not able to address requirements related to flexi-
bility, robustness, and on-the-fly reconfigurability.

This raises pertinent questions regarding which,
how and where these key enabling technologies
should be deployed. Traditionally, Cloud infrastruc-
tures provide on demand storage and processing ca-
pabilities. However, CPS go beyond traditional IoT
applications, envisioning devices with embedded pro-
cessing capabilities, capable to make decisions and
interact with other entities. In this context, the de-
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velopment of Fog and Edge Computing (CISCO,
2015) have allowed to deploy data processing capabil-
ities close to the data sources, thus attending impor-
tant industrial requirements, such as, data-sensitive,
responsiveness and constrained network bandwidth
(Breivold and Sandström, 2015). While the physical
systems are deployed at the Edge, the cyber systems
are distributed along the Fog and Cloud layers.

This paper aims to provide a discussion and raise
concepts, technologies, challenges and benefits re-
garding how intelligence, particularly related to data
analysis, can be distributed and balanced along Cloud,
Fog and Edge layers for the development of industrial
CPS. While some straightforward benefits encompass
the design and development of more autonomous and
adaptive systems, the challenges arise with the in-
creasing complexity to manage such distribution.

The remaining of this paper is organized as fol-
lows. Section 2 overviews the concepts of Cloud, Fog
and Edge Computing, and Section 3 discusses the dis-
tribution of intelligence by these layers. Section 4
discusses the related challenges in industrial CPS and
points out some research directions. Finally, Section 5
rounds up the paper with the conclusions.

2 CLOUD-FOG-EDGE FOR CPS

In the context of CPS, these computing paradigms de-
fine what, where and how computational resources are
deployed. Although the terms Fog and Edge Com-
puting have been used interchangeably (Chiang and
Zhang, 2016), this paper follows the definition where
Fog comprises the intermediary layer between Cloud
and IoT devices, while Edge considers IoT-based end
devices with embedded processing capabilities.

2.1 Cloud - Everything as a Service

Cloud envisions high performance computing and
data storage, promoting the shift from local corporate
computational resources to remote large scale data
centers, which are provided as services over the In-
ternet (Duan et al., 2015). Cloud offers a large pool
of virtualized resources, managed dynamically and
transparently, and following a multi-tenant and pay-
per-use model (Mell et al., 2011).

In spite of its benefits, the Cloud presents some
drawbacks that hinder its widely adoption as the busi-
ness model for many companies. For example, infor-
mation security and privacy are important concerns
(Xiao and Xiao, 2013), since companies fear having
third-parties controlling their sensitive data. The net-
work connection and bandwidth are other concerns,

mainly in data intensive scenarios where transfer large
amounts of data can be expensive and lead to latency
issues and network bottlenecks (Bonomi et al., 2014;
Xu et al., 2014; Breivold and Sandström, 2015).

Despite the Cloud technology has been widely
used by web-based companies, its adoption in other
domains, such as health-care, transportation, energy
and manufacturing, has increased considerably. In
this context, Cloud provides a highly suitable frame-
work to handle the massive amounts of data, attending
their growing demand for information management
and data analysis services. In the 4IR, it has been
seen as a new manufacturing paradigm (Ren et al.,
2017; Bauer et al., 2015; Lu, 2017).

2.2 Fog - Cloud Closer to Data Source

Although the Cloud offers efficient solutions to man-
age the huge volume of data, there are an increasing
demand for real-time, data-sensitive and constrained
network applications (e.g., in industrial domain) (Xu
et al., 2014; Breivold and Sandström, 2015). In this
context, Fog Computing (Bonomi et al., 2014) was
leveraged as a complementary paradigm to cover the
limitations of centralized Cloud approaches, address-
ing the challenges to perform data analysis locally,
close to the data sources (Chiang and Zhang, 2016).
It comprises a layer between Cloud applications and
IoT devices, providing a more direct, reliable, secure
and fast link between them, also reducing the amount
of data and transmitting more meaningful information
to Cloud. At this level, the data processing can be
performed by network equipment, computers, mobile
devices, as well as local servers (Bonomi et al., 2014).

Fog inherits most of the Cloud technologies, but
considering constrained hardware. Moreover, it en-
ables the decentralization of data analysis, decision-
making and control, increasing local components au-
tonomy, thus contributing to the shift of the tradi-
tional centralized automation pyramid to a decentral-
ized, flexible and self-organized approach. Besides
the aforementioned benefits, it faces some challenges,
e.g., the use of non-general purpose devices, lack of
frameworks for the development of algorithms opti-
mized for constrained devices, and for the manage-
ment of Fog nodes and their services (Shi et al., 2016).

2.3 Edge - The Edge of IoT

The extreme edge of the network is represented by
IoT-based devices that usually have constrained com-
putational resources, limited to collect and send data
or execute commands. However, there is a growing
number of IoT devices and platforms with consider-
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able embedded computational resources (Al-Fuqaha
et al., 2015). Like in Fog Computing, the focus is
mainly to support local data analysis, but now it is di-
rectly embedded in the device itself. In this domain,
there is an increasing number of AI applications (e.g.,
online speech, image and video processing), which
are pushing the development of dedicated AI chips for
such devices and related equipment (Ota et al., 2017).

The Edge also faces several limitations (Al-
Fuqaha et al., 2015), mainly regarding the hetero-
geneity of devices and platforms, which increases
the complexity of application development, leading to
proprietary and non-standardized solutions. Other is-
sue concerns how to enable Edge Computing in the
huge number of legacy equipment that cannot be sim-
ply replaced by modern ones. Regarding security, al-
though the local processing can help with the data
anonymization, connect such devices to the network
demand extra security procedures.

The Edge devices are represented by advanced
IoT devices, such as those based on System-on-Chip
and single-board computer (e.g., FPGA, Raspberry
Pi and smartphones). They also include device gate-
ways, i.e., devices that connect a set of highly con-
strained devices to the network. In industry such de-
vices include Programmable Logic/Automation Con-
trollers (PLC/PAC), which already present advanced
processing capabilities and network connection based
on standardized protocols like OPC-UA.

3 AI DISTRIBUTION IN CPS

3.1 Intelligence at Cloud, Fog and Edge

Currently there is a hype of using the Cloud to store
the huge volume of the real-time data collected by a
vast number of IoT devices, and to run powerful data
analysis algorithms to extract valuable knowledge re-
lated to prediction and optimization. In fact, several
reports, namely McKinsey (Bauer et al., 2015) and
PwC (Geissbauer et al., 2016), refer Cloud Comput-
ing as a disruptive technology for the implementation
of the Industry 4.0. However, the Cloud is not the
solution for everything, with some data requiring to
be processed as close as possible to its source and
in real-time. Additionally, sending, storing and pro-
cessing all the data in the Cloud could be expensive,
constrained by the network latency and connectivity.

In this sense, the challenge lies in distributing in-
telligence by the Cloud, Fog and Edge layers, as illus-
trated in Figure 1. In fact, this distribution is strongly
advised, where we “should not send all collected data
to be processed in the Cloud, but instead to make

Figure 1: Intelligence distribution among Cloud-Fog-Edge.

analysis in the Edge” as sustained by J. Truchard from
National Instruments at IFAC IMS’16, and “analyz-
ing data close to the device that collected the data can
make the difference between averting disaster and a
cascading system failure” (CISCO, 2015).

Regarding the intelligence distribution, Figure 1
(right side) illustrates how different kinds of industrial
related tasks that can be supported by AI approaches
may be distributed from Cloud to Edge. This distribu-
tion is not unique, where the same task can coexist in
different layers, handling different system functional-
ities. More details regarding the application of AI/ML
in industrial environments can be found in the related
surveys (Fei et al., 2019; Wang et al., 2018).

Table 1 summarizes several data-driven AI aspects
of Cloud, Fog and Edge in industrial CPS. In gen-
eral, at the Edge or Fog the intelligence is governed by
rule-based and simple data analysis tasks. Since they
comprise execution instead of development environ-
ments, i.e., they are not designed to build or train ML
data models, which should be performed at the Cloud.
For instance, classification and prediction data models
can be easily deployed at these devices, since after the
model creation, their execution comprises the simple
verification of a set of rules or equations (e.g., deci-
sion tree or even Neural Network algorithms). For in-
stance, regarding the Deep Learning, there are several
works that propose the distribution of the neural net-
work layers along Cloud to Edge, which besides of-
fload the computation in central servers can also pro-
vide a local fast and partial response (Li et al., 2018).

Additionally, when considering Edge devices with
their limited resource and very local and incomplete
view of the system, the outcomes of the data analy-
sis will be very simple and highly uncertain. On the
other hand, at the Fog it is possible to reduce the lev-
els of uncertainty, since the related equipment have
more computational power and a wide view of the en-
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Table 1: Data-driven AI aspects of Cloud, Fog and Edge in industrial CPS.

- Cloud Fog Edge
Scope Big Data and AI platforms and

tools for development, manage-
ment, planning and optimization

Computing platforms for low-latency
data processing and integration of cy-
ber and physical components

End devices enhanced with moni-
toring, data preprocessing and fil-
tering capabilities

Data volume, va-
riety and velocity
(persistence)

Huge volume of heterogeneous ex-
ternal, historical and stream data
(very long-term)

Mid-volume of multiple data streams
and no or short-term historical data
(mid/short-term)

Low volume of local raw stream
data (very short-term/transient)

Data processing
type (coverage)

Advanced batch and stream data
analysis (huge number of heteroge-
neous sources)

Lightweight data integration, batch
and stream preprocessing and analysis
(many local sources)

Simple stream preprocessing, fil-
tering and data analysis (sin-
gle/very few sources)

Responsiveness Long and mid-term with optimal
solutions

Near real-time with reason-
able/reliable solutions

Very fast (hard real-time), but
simple/non-optimal solutions

Intelligent fea-
tures (algorithm
complexity)

Complex pattern detection, pre-
scriptive decision support (Big
Data and advanced ML)

Local context-awareness, predictive
decision support and dynamic adapta-
tion (mid/advanced ML)

Self-awareness, autonomy and
collaboration (lightweight, rule-
based and built-in data analysis)

Hardware devices
(organization / lo-
cation)

Remote powerful data centers (cen-
tralized / multiple hops)

Local network equipment, micro
servers and computing devices / plat-
forms (distributed / one hop)

IoT and non-IoT device gateways
(decentralized / embedded, direct
connection)

Examples of de-
vices in industrial
contexts

General or industrial, public or
private Cloud infrastructures and
servers

Industrial network routers, supervi-
sory and control room servers, work-
station computers

PLCs, PACs, machines with em-
bedded computing boards (FP-
GAs), AGVs, Robots

Examples of sup-
ported tasks and
applications

Business Intelligence, simulation,
scheduling and interactive tools to
support decision/operational tasks

Augmented reality, predictive super-
visory and control systems (asset con-
dition, product quality, process status)

Self-adaptive monitoring and
control, dynamic reconfiguration,
M2M collaboration

vironment. The diversity of Fog components enables
to host almost any kind of AI-based application. In
this sense, Fog nodes are responsible for a variety of
data intensive applications, including the integration
and processing of multiple real-time streams.

Considering all these aspects, at the Edge and Fog
levels some examples of application that use AI in in-
dustrial automation includes system real-time moni-
toring, early detection of abnormality and local diag-
noses (Aazam et al., 2018).

Besides its virtually unlimited computational re-
sources, Cloud provides the centralization of data
combined with powerful processing capabilities,
which can ease the complexity of data analysis. This
makes Cloud suitable for the development of Big
Data analysis solutions for both operational and busi-
ness levels, and specially considering their integra-
tion. Different from Edge and Fog, which are highly
suitable for the operational levels, Cloud fits better the
needs of enterprise and business levels, since it can
face latency, bandwidth and security issues. In this
sense, most of the operational tasks will require a pri-
vate corporate Cloud or Fog-based infrastructure.

In summary, Cloud provides optimization and
continuous improvement, but lacks responsiveness,
while Edge devices are resource constrained and can
easily saturate with processing, but offer real-time
monitoring and fast response. Fog can help to reduce
the overload of both Cloud and Edge, and at the same
time handle other issues. On the other hand, when
compared with Edge and Cloud, Fog may present

higher levels of complexity, mainly regarding its gate-
way role, since it needs to support the integration of a
wide number of heterogeneous devices, protocols and
technologies. In this sense, it is clear that there should
exist a balance of the computational resources among
each one of these layers, and just as important as, an
appropriate interconnection of them.

3.2 Connecting Computing Layers

There is no doubt that the decentralization of data
analysis from Cloud to Fog and Edge layers is es-
sential to attend the 4IR requirements. However, it
does not depend only on the decentralization of tasks,
but in the way the components are interconnected ver-
tically and horizontally, and how they can support
each other. In this context, AI goes beyond ML data-
driven approaches, where MAS can support the de-
sign and management of such components, allowing
to develop intelligent and self-organized distributed
systems. MASs are based on the concept of au-
tonomous and cooperative agents, that work as a ves-
sel for different kinds of processing and control AI
algorithms. In this sense, agents can be distributed
along the Cloud, Fog and Edge layers, encapsulat-
ing the system functionalities and collaborating with
each other (Pico-Valencia and Holgado-Terriza, 2018;
Wang et al., 2016; Leitão et al., 2016).

Although MAS can provide standardized commu-
nication interfaces that can cope with the complexity
posed by the devices heterogeneity, usually they do
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not attend hard real-time constraints or run in con-
strained devices, such those found at the Edge layer
(Calvaresi et al., 2017). In such scenarios, agents
may be deployed at Fog and Cloud layers, while the
Edge components should interact using standardized
service-oriented or lightweight IoT communication
solutions, e.g., MQTT, CoAP or OPC-UA.

In this context, while the Edge covers the physical
systems, the Fog and Cloud encompass an interme-
diate and a high-level layer of cyber systems. Fog
directly supports Edge, mainly regarding time con-
strained tasks, while offloading Cloud systems. On
the other hand, Cloud applications have a global view
of the system, which enable them to support the lower
layer components. Therefore, Cloud applications take
advantage of the operational data combined with busi-
ness information to provide actionable information
for business level personnel and engineers. Besides
supporting strategic decision-making, or operational
engineers (e.g., enhancing their skills during the plan-
ning and execution of interventions), it can generate
knowledge to be used in the different layers (e.g., up-
dated rules for monitoring systems at the Edge).

4 CHALLENGES

As previously discussed, AI is an enabler to develop
industrial CPS, playing two main roles: provide data-
driven approaches to endow cyber and physical com-
ponents with data analysis capabilities, and provide
distributed system and knowledge management ap-
proaches to endow such components with autonomy,
reasoning and collaborative capabilities. In this con-
text, several cross concerns can be leveraged along
the development of industrial CPS, such those illus-
trated in Figure 2. Based on that, some scientific and
technological challenges can be identified, such those
listed in Table 2. Their expected development diffi-
culty and business priority are also presented, based
on the 4IR visions, requirements and technologies.

4.1 Decentralization

The distribution of data processing capabilities con-
tributes with the decentralization of decision-making
and control, which is crucial for the fully fulfillment
of industrial CPS, mainly regarding the system adapt-
ability and autonomy. However, it is not a straightfor-
ward task, presenting several issues, for example the
performance of conventional centralized data-driven
AI approaches can be drastically affected when con-
sidering a small set of attributes or number of sam-
ples. Thus, this multi-level (glocal - global and lo-

cal) data analysis, demands special concerns regard-
ing what kind of data processing capabilities should
be performed in each computational layer, as well as
the mechanisms to manage the components (horizon-
tal and vertical) interaction and other communication
and interoperability issues.

Additionally, mechanisms and policies should be
designed to cope with the system complexity and
emergent behavior, enforcing the components to re-
spect a set of rules and constraints, thus also assuring
the QoS and Trust, regarding the reliability and secu-
rity of shared information and resources.

4.2 Intelligent Machines and Products

The development of intelligent machines and prod-
ucts is another key aspect in industrial CPS. The chal-
lenge is not limited to the use of the next generation
of intelligent equipment that natively support AI fea-
tures, but mainly to adapt traditional approaches and
embed them in the existing constrained device plat-
forms. This requires the need to consider smooth mi-
gration approaches.

The intelligence in such components will be
achieved through the development of decentralized
collaborative self-reconfigurable and coordination al-
gorithms and policies. These mechanisms can in-
crease the autonomy, flexibility and response time,
but also the complexity of the system and its com-
ponents, thus comprising a main trade-off when
compared with centralized approaches. The sys-
tem adaptation nervousness is another issue in such
self-reconfigurable and distributed environments that
should be managed.

On the other hand, enable these components to au-
tonomously take decisions and control raises several
security concerns, e.g., when considering their inter-
action with people. In this context, the lack of ex-
plicitly explanation for the outputs of ML approaches
is one of the main reasons that prevents the fully au-
tonomous AI-based control systems. Thus, requiring
further research to assure the deterministic behavior
of AI approaches and in what kind of industrial appli-
cations they could be safely applied. Also in this con-
text, the certification of AI software is an important
issue that should be addressed to assure the security
and proper operation of such systems.

Another essential requirement in industrial do-
main is related to the development of predictive an-
alytics. However, given the impact of prediction in
industrial decision making, it is only valuable when
presenting high accuracy and proper response time.

Distributing Intelligence among Cloud, Fog and Edge in Industrial Cyber-physical Systems

451



legend

are

have

are used to

is supported by
is based on

supports

Embedded
computing

- Infrastructure (wired
wireless)
- Bandwidth & costs
- Connectivity/Availability
- Reliability

- Topology (P2P, Pub/Sub)
- Scalability / service-oriented
- Protocols / Middleware
- Proprietary & ind. standards
- Data model

- Constrained resources
processing, memory, storage)
- Power supply

processed by

enables

- M2M comm., negotiation, 
collaboration, information share
& trust (mechanisms & protocols)
- Self-organization
- Distributed approaches (MAS)

- IoT-based platforms
- Mobility
- Interoperability
- Real-time operating system
- Plug&Play

- Cloud platforms, 
providers & infrastructures
(public/private)
- Business model 
compliance
- Data management 
services (Storage/Analysis)
- Virtualization / XaaS

- Embed AI/ML
- Responsiveness
- Dynamic env. & limited
view/context
- Data analysis uncertainty
- Stream analysis

smart machines/ products
- Autonomy / event-driven
- Emergent behavior
- Self-awareness
- Adaptability (Monitor-
Analyze-Plan-Act)

produces >
< consumes

enables

- Virtual/Augmented Reality
- Human-in-the-loop
- Personal assistants &
Intelligent interfaces (support
& enhance task execution)

- Heterogeneous / distributed
resource integration/coordination
- Predictive/prescriptive analytics

- Availability/frequency
(stream/batch)
- Volume, variety/type 
(discrete/continuous)
(time-series, 
measurements, text, img)
- Storage (SQL/NoSQL), 
aggreg./integrate

- Legacy equip.
(adapt / replace)
 Smooth migration
- Gateway devices

- Sensor techs.,
tasks, environment
- Sensitivity, signal 
conditioning, sampling
- Reliability

- Reconfigurability
- Reactivity 
(resp. time)
- Control: stochastic
- deterministic / 
discrete - continuous

- Portability, ergonomics, 
usability, interactivity 
- Platforms, user interfaces
- Machine interaction
& collaboration

Industrial
Digitization

Networked

connects

Edge
Devices

interact with >
< receive support 

Intelligent
physical
systems

Data &
information

Business

Operational

- Latency & bottlenecks
- Data security & privacy
- Net. equip. (brokers/gateways)
- Vertical/horizontal integration
- Edge & Cloud load balancing
(data aggreg., preproc., analysis)

provide

Cloud-based
solutions

complement

Fog
Nodes

supports

- Business: Enterprise Resource 
Planning; Business Intelligence;
Customer Relationship, Supply Chain
& Product Lifecycle Management
- Operation: planning,
optimization, maintenance,
simulation, modeling
- Operational & Business integration

produces >
< consumes

- Cyber systems & Digital Twin
- Actionable information
- Output accuracy, resp. time,
interpretability & Quality of Service

Embedded
systems

Monitoring

- Big Data frameworks & automated tools
- Data scientists & domain knowledge
- Model build/train/tune & interpretability
- (un)supervised & reinforcement learning
- Extract Transform Load, explore & extract 
features/knowledge/patterns
- Knowledge representation & sharing
- Unlabeled & imbalanced datasets

supports

supports

Edge data
analysis

Data
Analysis
services

IoT-based
communication

Component
interaction

ML/Data
Mining

Systems

Agent
Human

Interaction

Supervision

Management

Control
Human-
machine
interface

CPS elements

relationship

- Cross 
concerns

host applications for

Figure 2: Cross concerns of AI decentralization towards industrial CPS.

4.3 Industrial Big Data

Industrial Big Data mostly comprises raw time-series
data from hundreds to thousands of heterogeneous de-
vices, complemented with business data (e.g., logis-
tics, sales and customers). In this context, besides re-
moving the barriers between business and operational
layers, the challenge is to develop approaches capable
to proactively use business information to redefine the
course of operations and in the same way, adapt the
business strategies based on operational data.

As aforementioned, data has been considered a
key asset in any industry, however collecting and stor-
ing everything only increases the costs and complex-
ity to extract value from it. In spite of the bene-
fits of preprocess the data close to the data sources,
this should be handled carefully, since some algo-
rithms can mistakenly remove or cover important val-

ues. Additionally, some applications may require to
transfer raw data, e.g., Digital Twin. This reinforces
the need to harmonize the data processing at the Edge.

In industrial domain, mainly regarding the opera-
tional level, besides overcoming data uncertainty, reli-
ability and incompleteness, the ML algorithms should
be able to handle imbalanced or unlabeled datasets.
Both are very common aspects in such environments,
given that abnormalities are not so common, and usu-
ally are not proper labeled. This restricts the use of
supervised learning algorithms, raising the need to
adopt techniques to enforce the user feedback in the
annotation of data samples. However, the user inter-
action at the Edge and Fog layers may not be feasible,
thus leveraging the importance of unsupervised learn-
ing approaches in the operational levels.
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Table 2: Challenges for implementing intelligence in industrial CPS.

Key Aspect Major Challenges Difficulty Priority

Decentralization
Decentralized and collaborative data analysis high medium
Synchronization and management of glocal data analysis medium high
Control the system emergent behavior high low

Intelligent machines
and products

Embed AI in constrained device platforms medium medium
Self-reconfigurable and collaborative mechanisms high high
Completely autonomous decision-making high low
Predictive and proactive analytics medium high

Industrial Big Data

Synergy between operational and business information medium low
Efficient and reliable data acquisition and management low high
ML algorithms dedicated to industrial Big Data medium medium
Support data uncertainty, reliability and incompleteness high medium

Infrastructures and
tools

Enhanced automated data analysis tools medium low
CPS frameworks and testbeds medium high
Knowledge representation and sharing low medium
Multi-disciplinary knowledge and expertise in AI and CPS high high
Human Agent Interaction high high

4.4 Infrastructures and Tools

There are several challenges, not only related to
frameworks, tools and standards for the development
and testing, but also in terms of professionals with
multi-disciplinary skills capable to develop and use
such systems. In spite of the existence of several
frameworks to assist and automate several data anal-
ysis tasks, usually being able to find ML models that
outperform the ones developed by hand, most prob-
lems still require domain knowledge which refrains
the complete process automation. This illustrates
that even considering the higher level of automation,
the human presence will be still required to develop,
maintain and also operate such complex systems.

In the same sense, Human Agent Interaction ap-
proaches aim to provide dynamic, interactive and in-
telligent interfaces for personnel interacting software
and physical systems. These approaches take advan-
tage of computer vision, speech recognition and aug-
mented/virtual reality, to create a partnership between
human and system that can enhance their productivity
and efficiency, as well as the quality of the outcomes.

Another important aspect is the need to test and
evaluate the CPS solutions before the deployment in
real environments, allowing to demonstrate their fea-
sibility to industrial stakeholders. In this context, a
major challenge lies in the development of dedicated
CPS frameworks and testbeds, considering bench-
marks and real case studies, not only capable to sup-
port the integration of the related technologies but
also to test, monitor and evaluate the distributed and
emergent behaviors.

5 CONCLUSIONS

In the 4IR, AI-based approaches cannot be seen any-
more as just promising solutions, but instead as a must
for any industrial system. On the other hand, in spite
of the large potentialities offered by Cloud-based AI
approaches, it is clear that they are not suitable to at-
tend some important requirements of industrial CPS,
namely the fast response, limited bandwidth and data
sensitive. Moreover, sending all the raw data to the
Cloud is costly and makes no sense, since most of it
is meaningless and carries no significant value. How-
ever, the processing capabilities at or near the physi-
cal levels are very limited, not only regarding the con-
strained computational resources, but also the lack of
context-awareness. In this context, this paper high-
lights the need and importance to achieve a balanced
distribution of intelligence and computational capa-
bilities among Cloud, Fog and Edge computing lay-
ers, aiming to achieve the desired levels of customiza-
tion and dynamic adaptability envisioned by the 4IR.

The envisioned solution considers to take advan-
tage of the technologies provided by each one of these
layers to create a decentralized multi-level and col-
laborative data analysis infrastructure for the design
and development of intelligent machines, products
and systems. In this context, it is raised and discussed
the emerging requirements, trade-off, issues and some
major challenges that need to be properly addressed.
It is also pointed out some research directions related
to key concepts, approaches and technologies for the
successfully exploitation of such industrial CPS.
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