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Abstract—Robotics competitions are a way to challenge re-
searchers, roboticists and enthusiastic to address robot appli-
cations. One of the well-known international competition is the
Micromouse where the fastest mobile robot to solve a maze is the
winner. There are several topics addressed in this competition
such as robot prototyping, control, electronics, path planning,
optimization, among others while keeping the size of the robot
as small as possible. A simulation can be used to speed-up the
development and testing algorithms but faces the gap between
a simulation and reality, specially in the dynamics behaviour.
There are some simulation environments that allow to simulate
the Micromouse competition, but in this paper, an Hardware-in-
the-loop simulator tool is presented where the simulated robot
is controlled by the same microcontroller used by the robot. By
this way, the developed algorithms are tested and validated with
the limitations and constraints presented in the real hardware,
such as memory and processing capabilities. The robot dynamics,
the slippage of the wheels, the friction and the 3D visualization
are present in the simulator. The presented results show that the
same code and hardware controlling the simulated and the real
robot identically.

Index Terms—Micromouse, Simulator, Robotics Competitions,
Hardware in the Loop.

I. INTRODUCTION

The technological advances that are taking place in this new
century accelerate the use of robots and embedded systems
in everyday life and even more widely in industry. However,
before these complex systems are definitively propagate in
society, the development team needs to perform various tests
to validate the proposed system. Knowing that at this stage
of development many test runs may fail and may even be
destructive, the use of a simulation at this stage of the process
is important and will speed up the process. In this context, the
use of hardware in the loop (HIL) becomes a powerful tool to
be used before the real tests and after the tests in an isolated
simulation environment, replacing the electro-mechanical sys-
tems with a dynamic 3D simulator. Consequently, earlier in
the process, software and hardware errors can be found.

According to [1] HIL is a real-time simulation for embedded
control systems, using real hardware and other control systems
with a dynamic simulator that can replace the real system.
To facilitate the understanding of HIL, and to verify where
it lies between the real world and the simulation, see Figure
1. According to this Figure, when advancing in the axis of
realization of tests in real conditions, the price, time and the
risk increases. For example, for the real test of an airplane
could result in an accident, being completely destructive,
expensive and dangerous. On the other hand, using simulation
alone will reduce costs, risks and time considerably, but the
accuracy of the system also decreases. Therefore, HIL is at an
intermediate stage, balancing costs with accuracy.
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Fig. 1. Correlation of price, time, risk and precision between simulation and
real systems. (adapted from [2]).

The Micromouse competition consists of a small au-
tonomous mobile robot that, when placed in an unknown
labyrinth, is able to map it, look for the best possible route
between the starting point and the goal and travel it in the
shortest possible time. To accomplish all these tasks the robot
must be able to self-locate, map the labyrinth as it traverses
and plan paths based on the map obtained. The method of
self-localization is based on the odometry and distance sensors
present in the robot, and on the previous knowledge of the start
point and the general configuration of the environment. Several978-1-7281-3558-8/19/$31.00 ©2019 IEEE



navigation methodologies, in order to cover the maximum
possible terrain of the labyrinth while mapping, and route
planning are analyzed for the best possible combination. The
robot that locates the center of the labyrinth in a shorter time
wins the competition.

The main contribution of this work is to present the de-
velopment of a HIL for the Micromouse competition with
a 3D simulator, in order to increase the accessibility of the
competition and decrease the development time. This tool is
available as open source, allowing each teams to make the
adaptations they deem necessary in the scenario, robot and
control algorithms.

An outline of this paper is as follows. In Section II a brief
state of the art about HIL and Micromouse is presented. In
Section III a description of the real and simulated robot is
presented. Section IV presents the architecture of the HIL tool.
Experimental results are presented in Section V and Section
VI concludes the paper.

II. STATE OF ART

In this chapter a brief state of the art reporting the HIL
application in the robotics area will be presented. The benefits,
developments and challenges in Micromouse competition will
also be addressed.

A. HIL in Robotics Area

HIL systems have been widely applied because of their ad-
vantages during the process of development already mentioned
in Section I. The main areas that have been developing and
adopting HIL are aeronautical industries [3], [4], automotive
industry [5]–[7] and power systems [8], [9].

Another field in evidence is robotics. HIL can be used in
mobile robots and manipulators, which are constantly optimiz-
ing their performance. The work developed in [10], uses the
HIL to test and validate the dynamic and cinematic control
of a non holonomic wheeled mobile manipulators. In [11],
it was proposed the development of HIL to simulate robotic
manipulators with n degrees of freedom, considering the
dynamism that occurs when a load is inserted in the system.
In [12], it was used a mobile robot developed in simulation
environment and controlled externally by an Arduino, to assist
in the learning of laboratory classes of automatic control and
robotics. The above examples show the usefulness of HIL
in robotic systems. In order to facilitate the development of
the prototypes and the validation of algorithms for mapping
and path planning, is proposed in this work the elaboration
of an HIL system directed to the Micromouse competition.
All the source code and tools for this HIL simulation can be
downloaded from [13].

B. Micromouse Competition

The Micromouse competition began in the late 1970s, being
the first competition promoted by the IEEE. In this competi-
tion, 8 × 8 cells mazes were used and the robots achieve
speed-run times around 30 seconds. Since then, Micromouse
competitions have spread all over the world [14]. Nowadays,

16 x 16 cell mazes are used and the robots reach speed-run
times of less than 7 seconds.

Although it started more than 35 years ago, the importance
of the Micromouse problem in the field of robotics remains
unparalleled, since it requires thorough analysis and proper
planning to be solved [15]. In addition to the acquisition of
technical skills, group competitions, such as the Micromouse,
develop teamwork, time management and communication
skills.

In the Micromouse competition, each robot begins with
some basic knowledge of the maze, obtained from the rules
[16]. The labyrinth has a square shape, consisting of 16 x
16 square cells of 18 cm x 18 cm, and has walls around the
outer perimeter. These walls are 5 cm high, 1.2 cm wide and
are painted white to reflect infrared light. The labyrinth floor
is painted black to not reflect the infrared light. The initial
position is one of the four corners of the maze and the goal is
to reach the center. Other than that, it is necessary to explore
and map the environment to perform the other tasks. In the
presented paper, the focus is to present the developed HIL and
simulation tool and not to address the optimized solution for
the competition.

III. ROBOT ARCHITECTURE AND DRIVING ALGORITHM

In this section, the real robot developed for the competition
Micromouse and which inspired the development of the sim-
ulated robot used in this work will be presented. The chapter
concludes with an explanation of the standard motion wall
follower algorithm.

A. Real Robot

The mobile robot shown in the Figure 2 was designed
and developed for the purpose of completing a Micromouse
challenge. Its structure is designed with dimensions that meet
the rules of such competition [16], and with components that
allow the robot to locate, move and identify the environment
around it, necessary conditions to map the maze, plan the best
way between the starting point and the goal and to go through
this route.

Fig. 2. Assembled Micromouse plate and robot.

The robot was steered using differential geometry. There-
fore, the robot has three wheels, two of them connected to DC
motors, while the other is a caster wheel that has the support
function. This geometry was chosen due to the several ad-
vantages presented in comparison with the other architectures,
highlighting: the ability to rotate without changing the position



of its central axis, a requirement to maneuver in the narrow
maze environments, mechanical and control simplicity, low
maintenance rates and high odometric accuracy.

The Micromouse is designed to traverse a narrow maze at
high speed. In order to achieve such performance, two factors
have high importance: the robot weight must not be too high
and its center of mass must lie within the triangle formed by
its three wheels. To obtain such characteristics, a base plate
has been specially developed, as shown in Figure 2.

The Micromouse robot has an elaborate electronic structure
to move through the maze independently. To this end, the
Micromouse incorporated in its structure some electronic
components as batteries, a Wemos D1 mini (ESP8266 based
microcontroller), Wemos shields, encoders, two DC motors
and laser distance sensors (VL53L0XV2), positioned at the
bumper with angles of 45, 90 and 135 degrees. Information
about the robot’s dimensions are presented in the Table I.

TABLE I
DIMENSIONS OF THE MICROMOUSE ROBOT

Robot Description Dimension Unit
Width 0.096 m
Length 0.120 m
Wheel diameter 0.032 m
Wheel thickness 0.008 m
Robot mass 1.25 kg

B. Simulated Robot

To obtain the results of the implementation, the SimTwo
simulator was used. SimTwo is an open source realistic
simulation software suitable for the design and development
of solutions for several types of robots [17]. The dynamics
realism is obtained by simulating each body and electric motor
numerically using its physical characteristics: shape, mass and
moments of inertia, surface friction and elasticity for the
physical bodies and resistance, inductance, motor constant,
rotor moment of inertia and several friction parameters for
the DC motor [18].

The simulated Micromouse robot was assembled with the
same dimensions as of the real one, presented at the Table I.
The model is a combination of solids (cuboids and cylinders)
and shells, elements without mass that do not modified the
robot physical properties but are an essential part of the
collisions simulation, connected by hinge joints (joints allows
two objects to move between them through a single axis).
Three distance sensors were installed in the same positions
and angles as those present in the real robot. Connected to the
side wheels are two DC motors whose simulation model can
be checked in [18]. The resulting robot is presented in Figure
3.

C. Driving Algorithm

The robot’s control is obtained by the configuration of
the speed to be applied in each motor. The set of such
velocities defines the robot’s final speed and the direction

Fig. 3. Simulated Micromouse robot.

in which it moves. Two variables were used to control these
characteristics. Such variables configure the angular velocity
ω in [rad/s] and linear velocity V [m/s] to be performed by
the robot. The constant b represents the distance between the
traction wheels of the robot at its point of contact with the
ground. The speed applied to each motor is defined according
to the Equations (1) and (2).

VRightWheel = V −
(
ω · b

2

)
[m/s] (1)

VLeftWheel = V +

(
ω · b

2

)
[m/s] (2)

To ease the robot’s control and avoid collisions during its
movements, a centralization algorithm has been implemented.
This algorithm uses the distance of the walls obtained by the
laser distance sensors and the previous knowledge of the size
of the cells to keep the robot centered around the currently
unused axis. This centralization is realized when there is a
wall near to the robot, as can be seen in Figure 4, and the
correction is performed by setting the angular speed of the
motors.

Fig. 4. Centralized robot measures.

To perform this correction a triangulation is applied. Using
the known angle of the sensor (45 degrees), the size of the cell
(16.8 × 16.8 cm) and the distance measured by the sensor, the
current distance between the wall and the robot is calculated.
This distance is then compared to the distance required for the
robot to be in the center of the cell and the angular velocity is
adjusted. The complete calculation of this variance is presented



in the Equation (3), where x is the distance between the robot’s
sensor and the wall (41.5 mm). K is a constant that represents
the proportional gain to cancel out the error of centralization
of the robot in relation to the walls. The angular velocity (ω) is
set according to the distance measured by the most significant
sensor, i.e., if the sensor on the left side sensor has the largest
distance component, the robot tends to turn left, else it turns
right.

ω = K ·
(
SensorDist−

(
x

cos(45)

))
[rad/s] (3)

D. Wall Follower Algorithm

The most common algorithm for a maze solver robot is the
wall follower algorithm, also called left hand/right hand rule.
In this method, the robot will decide its direction by following
the left or right wall. Whenever the robot arrives at a junction,
it will detect the opening walls and select its direction, giving
priority to the selected wall, in our case, the right wall. This
selection occurs according to the following steps:

1) Sense the right wall.
2) If the right wall is not present, turn 90 degrees right and

return to step 1.
3) Sense the front wall.
4) If the front wall is not present, move straight and return

to step 1.
5) Sense the left wall.
6) If the left wall is not present, turn 90 degrees left, else

rotate 180 degrees.
7) Return to step 1.
Taking the walls as a guide, this strategy is able to make

the robot reach the goal of the maze without actually solving
it. However, this algorithm is not an efficient method to solve
a maze since the wall follower algorithm is not capable to
solve mazes with a closed loop region [19]. Also remind that
the main focus of this paper is to propose a HIL simulation
tool,as described in the next section.

IV. HARDWARE IN THE LOOP TOOL

This chapter will present the architecture of hardware in
the loop for the Micromouse competition. This tool provides
a feature to test the hardware responsible for controlling all
actions of the real robot, but controlling the virtual robot in
SimTwo simulation environment.

A. System Architecture HIL

Figure 5 shows the implemented architecture system. Com-
munication between the controller (Wemos) and the SimTwo
runs in real time through USB port (Serial Communication)
between devices. In other words, the simulator will provide the
sensor data (right, left and front distance sensor and motors
encoders) to the embedded controller in the hardware, which
will process the data and control the actions of the virtual
robot (right and left motors). The use of a real microcontroller
stresses the typical hardware limitations such as memory and
processing time.

MicroMouse

Motors Speed
Data

Sensors  Data
Motor Encoder

Fig. 5. Architecture HIL for Micromouse SimTwo simulator.

Once the serial port is used both for programming (Arduino
IDE used for Wemos platform compilation) and for commu-
nicate with SimTwo, these steps below must be followed to
execute the HIL:

1) Compile the code in the controller (Arduino IDE) and
then close all dependencies of the Serial port (Monitor
Serial);

2) On the SimTwo, in the Config− > I/O tab, configure
the Serial port with a Baud Rate of 115200 [bps]
and select the COM port corresponding to the Arduino
IDE, and then open the communication. To finish this
step, open the communication by selecting the “open”
checkbox;

3) On the Editor tab, compile the code (Ctrl + F9) and
then execute pressing (F9). After this step the HIL tool
will be in operation.

B. Maze Generator

Based on the necessity of validate and test the developed
Micromouse algorithms in the most varied scenarios, a maze
generator was implemented. It is an existing executable (Maze-
Generator.exe) inside the SimTwo environment folder, which
converts more than 450 different classic labyrinths encoded
in a txt file (credits to [20]) to XML file “obstacle.xml” that
will represent the maze in SimTwo simulator. Those labyrinths
reproduce the competition environment with greater fidelity,
having the same characteristics of a real competitive maze.
The sequence to execute the MazeGenerator.exe application
is described in Figure 6. All the developed tools for the
Micromouse HIL can be downloaded from [13].

Execute the 
GenerateMaze.exe

Select the 
MazeFile
xxxx.txt

/MazeFiles

Compile the
SimTwo

Run the simulator

Fig. 6. Maze conversion process.



C. Methodology to Validate the Real Control Script

Before migrating the code to the robot and testing it in real
environment, a sequence of three procedures are suggested to
validate the control script. This proposal consists in performing
tests on several mazes available in the simulator, subjecting
the developed control code by the team to different conditions
that can occur in a competition. This procedures is described
in Figure 7. It consists in initially developing the code to
the robot to perform exploration of the maze to find the
best path between the initial position and the target position
(procedure 1). The next step is to test the script in the HIL tool
(procedure 2). If the test succeeds, replace the current maze
(procedure 3) with a new maze and re-test your script. When
encountering errors or new proposals to optimize the code,
return to procedure 1. After a considerable number of tests
occur between procedures 2 and 3, the script will be validated
for testing in real environments within the real robot.

SucessTest Script

Fail Test Maze

1 2
3

Fig. 7. Procedure to validate the control script.

V. RESULTS

For the validation of HIL developed in this paper, this
section will be separated into two steps. The first step will
discuss the trajectory to explore the maze using the wall
follower algorithm. The second step will present information
obtained from the sensors provided by the simulator and speed
information to be applied in the simulated robot provided by
the real hardware control.

A. Map Exploration with Wall Follower Algorithm

The wall follower algorithm provided in this paper comes as
standard to be compiled on the actual controller (e.g. Wemos
D1 mini). The choice of this simple algorithm has the objective
to foment the interest of new teams in the competition,
being able to be a starting point for the development of
more complex exploration algorithms particular of each team.
Figure 8 presents the simulation environment with the maze
hokurico-030-2012 (available in this tool), explored by the
above mentioned algorithm. As predicted, the algorithm does
not perform the complete exploration of the maze, initiating a
cycle of movements every 140 seconds.

Fig. 8. Maze explored with wall follower algorithm.

B. Sensors and Speeds Motors Data

In the HIL tool the simulator sends the data acquired from
the linked distance sensors in the simulated robot to the
real controller (Wemos D1 mini). These sensors provide the
distance in meters from the right, left and front walls. Figure 9
presents these data during the first 20 seconds of the scanning
trajectory (red trail) presented in the Figure 8. These data are
processed by the real controller and have the same magnitude
of the sensors assembled in the real robot, due to the accurate
model.

Fig. 9. Sensor distance data from SimTwo to Wemos platform.

The controller will process the simulator data in real time
and returns the speeds of left and right wells to simulated
robot. Figure 10 shows the speed values of the wheels during
the first 20 seconds of the scanning trajectory presented in
the Figure 8. The data of Figures 9 and 10 correspond to
the same path and were acquired at the same time. Taking
into consideration the high torque of the DC motor and the
relatively small mass of the robot, the reference speed of the
controller and the speed of the simulated robot are practically
the same.

By correlating the data of the graphs, the following events
can be observed:



Fig. 10. Motor speed data from Wemos platform to SimTwo.

• Between the interval from 0 to 3.8 seconds, the right and
left sensors are the same and constant values. The front
sensor is decreasing linearly, i.e. the robot is centralized,
with a constant speed of 20 [rad/s] applied to both
wheels. This will occur until the front sensor detects a
measurement less than 0.1 [m].

• At the moment 2.3 seconds a disturbance in the right
sensor occurs due to the existence of a corner;

• During the interval from 3.8 to 5 seconds, the speed of the
motors has the same intensity but in the opposite direction
±5[rad/s], resulting in a rotation about its robot axis.
When executing the rotation, the right sensor detects the
halfway in the interval between 4 to 5 seconds.

• At intervals of 5 to 8 seconds a speed transition occurs, as
the robot finishes the rotation around its axis and returns
to straight way. Moments after the transition is observed
a ripple at the speeds applied to the motor, because the
robot is centralizing;

• The other events have behavior similar to those described
above.

VI. CONCLUSION AND FUTURE WORK

While the Micromouse competition started more than 35
years ago, it still is an important challenge to the researchers.
It address robotics topics such as prototyping, control, local-
ization, path planning, among the others. This paper described
a Hardware-in-the-loop tool to this competition, where the
microcontroller present in the robot can be used to control the
simulation environment based on SimTwo. Using the same
microcontroller and the same programming language, it is
possible to test and fix the developed solutions faster and
easier, even before the real robot is developed. The presented
results showed the proposed tool (provided by the authors) can
help the development of the Micromouse solution. As future
work, the accuracy of the assumed models should be improved
and other sensors can be modelled and included both in the
Simulation and in the Hardware-in-the-loop communication
protocol.
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