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ABSTRACT
The aim of this study was to analyse the detraining process that
occurs during a season break, and its influence on the performance,
anthropometrics, and biomechanics of young swimmers. The sample
included 54 young swimmers (22 boys: 12.79 ± 0.71 years; 32 girls:
11.78 ± 0.85 years). Performance for the 100 m freestyle and anthro-
pometric and biomechanical variables were evaluated as main deter-
minants. Performance impaired significantly for boys (2.17%) and girls
(1.91%). All anthropometric variables increased between moments of
assessment for boys and girls. Overall, the boys enhanced all biome-
chanical variables during the detraining period, and girls showed
mixed results. For both sexes, the stroke index was the variable with
the highest increase (boys: Δ = 16.16%; d = 0.89; p = 0.001; girls:
Δ = 19.51%; d = 1.06; p = 0.002). Hierarchical linear modelling showed
that the height retained the amount of impairment in the perfor-
mance. One unit of increase in the height (cm) led to less 0.41 s
impairment in the performance. Present data indicated that during an
11-weeks detraining period, young swimmers impaired their perfor-
mance, but the determinant factors showed an impaired relationship.
This increase in the determinant factors is mainly related to the
increase in the swimmers’ anthropometrics. Moreover, the increase
in height was responsible for retaining the performance impairment.
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Introduction

Young swimmers’ training programmes are usually designed to make swimmers achieve
two to three performance peaks (i.e., macro-cycles) over the year (Morais, Silva, Garrido,
Marinho, & Barbosa, 2018; Zacca et al., 2020). In this sense, coaches, swimmers, and
researchers are used to designing the training load according to such macro-cycles.

After a peak-performance, swimmers undergo what is known as short-term detraining
where they are submitted to insufficient training stimulus (less than four weeks) (Mujika
& Padilla, 2000). In this case, in-water training load might be decreased, replaced, or
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complemented by dry-land strength and conditioning programmes (Amaro, Marinho,
Marques, Batalha, & Morouço, 2017; Garrido et al., 2010). By contrast, training cessation
is characterised by a temporary break from the systematic training programmes (Mujika
& Padilla, 2000). This may occur in the time between the finish of one season and the
beginning of the following one. However, the effects of the duration of training cessation
and the hypothetical repercussions or impacts this can have on performance and its
determinant factors have not been deeply researched in youth swimmers.

In adult and elite counterparts, stroke biomechanics are already consolidated. Hence,
detraining is mainly and highly associated with a decrease of the physiological response
(Costill et al., 1985a; Ormsbee & Arciero, 2012). Conversely, few studies can be found about
this topic in young swimmers (Moreira et al., 2014; Sambanis, 2006; Zacca et al., 2019a). In two
studies, a significant increase in body dimensions was found after the break period (Moreira
et al., 2014; Zacca et al., 2019a). Indeed, young swimmers, just as any other children, grow even
during short periods of time (a few weeks). However, different findings have been reported
about kinematics and efficiency based on different detraining approaches. The literature
indicates that longer periods of detraining (or training break) are associated with an impair-
ment in the performance, and kinematic and efficiency determinants (Mujika & Padilla,
2000). Thus, it can be suggested that young swimmers are also under this phenomenon.

However, one study showed a decrease in the kinematic (swim velocity, stroke fre-
quency, and stroke length) and efficiency (stroke index) variables during four weeks of
detraining (Zacca et al., 2019a), and another reported an increase in swimming kinematics
(swim velocity and stroke length), and efficiency (stroke index and propelling efficiency)
after ten weeks of break (Moreira et al., 2014). Hence, one might claim that these contra-
dictory findings could be explained by growth and maturation in different age groups of
swimmers. Anthropometrics are strongly related to young swimmers’ performance
(Geladas, Nassis, & Pavlicevic, 2005; Morais, Silva, Marinho, Lopes, & Barbosa, 2017).

Moreover, deterministic models showed that swimming performance depends on
several complex and dynamic interactions (Barbosa et al., 2010a). Anthropometrics
(namely body mass and height) presented a strong and positive correlation to young
swimmers’ 100 m freestyle performance (Geladas et al., 2005). However, such anthropo-
metric variables do not only have a direct effect on performance, they also have a direct
effect on other kinematic/efficiency variables (related to stroke mechanics) (Morais et al.,
2012). Thus, it is of major importance to understand how an increase (children can
significantly grow in short periods of time) in body dimensions will affect young
swimmers’ biomechanics and performance after a detraining period.

The aim of this study was to analyse the variations in performance, anthropometrics,
and biomechanics after a season break to gather insights on the detraining process at such
early ages. It was hypothesised that anthropometric variables would increase due to growth
and maturation, while performance and biomechanics would impair.

Methods

Participants

Fifty-four young swimmers (22 boys: 12.79 ± 0.71 years old, FINA points at short course
100 m freestyle: 297.58 ± 87.72; 32 girls: 11.78 ± 0.85 years old, FINA points at short
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course 100 m freestyle: 330.35 ± 79.80; maturation stage: Tanner 1–2) were recruited for
this study. The swimmers were enrolled in a talent identification and development
programme at local clubs and national teams. The sample included national champions,
national record holders, and swimmers racing regularly at national and regional compe-
titions. Parents or guardians, and the swimmers themselves, signed an informed consent
form. All procedures were in accordance with the Declaration of Helsinki regarding
human research, and the University of Beira Interior Ethics Board approved the research
design.

Research design

A longitudinal research model was designed where swimmers were evaluated in two
different moments (Mi). The first evaluation moment (M1) was during the last peak-
performance of a competitive season. The secondmoment (M2) was during the first week
of training of the following competitive season (an 11-week break took place—training
cessation). To ensure a proper reproduction of the experimental trials, all swimmers
underwent a familiarisation process for the in-water testing. During this process, swim-
mers were instructed not to engage in competitive swimming events and training.
Biomechanical factors explained about 60% to 85% of young swimmers’ performance
(Morais et al., 2012; Zacca et al., 2020). Thus, it seems of major importance to understand
how such determinants influence the performance after a breaking period. So, a set of
hydrodynamic, mechanical power, kinematic, efficiency, and anthropometric variables
were evaluated.

Performance

The 100 m freestyle event (M1: official race, M2: 100 m time-trial; in short course metre
pool, i.e., 25 m length) was selected for the performance outcome.

Anthropometrics

The height (H, cm) was measured with a digital stadiometer (SECA, 242, Hamburg,
Germany) and the body mass (BM, kg) with a digital scale (SECA, 884, Hamburg,
Germany). The arm span (AS, m), trunk transverse surface area (TTSA, cm2), hand
surface area (HSA, cm2), and foot surface area (FSA, cm2) were measured by digital
photogrammetry (Morais et al., 2012). The AS was measured as the distance between the
third fingertip of each hand. For the TTSA, the swimmers were instructed to put their
arms fully extended above the head, one hand over the other, fingers extended and close
together with the head in a neutral position. They were photographed with a digital
camera (Sony Alpha 6000, Tokyo, Japan) in the transverse plane (downwards view) on
land simulating such a streamlined position. For the HSA and FSA, swimmers were
instructed to put their dominant hand and foot in a scanning machine. Afterwards, the
files were converted into PDF files and the respective areas were computed. All these
variables (AS, TTSA, HSA and FSA) were measured using specific software (Udruler,
AVPSoft, USA) (Morais et al., 2012).

SPORTS BIOMECHANICS 3



Kinematics and efficiency

After a standard 1000 m warm-up (Neiva, Marques, Barbosa, Izquierdo, & Marinho,
2014), swimmers were instructed to perform three maximal trials of 25 m performing the
front-crawl with a push-off start. Between each trial, they had a 30 minutes rest to ensure
a full recovery. Data was collected by a mechanical apparatus (Swim speedo-meter,
Swimsportec, Hildesheim, Germany). The acquisition, transfer, and signal handling
were performed as reported elsewhere (Barbosa et al., 2015). The mean swim velocity
(v, m/s) was measured between the 11th and 24th metre. A camera (Sony x3000, Tokyo,
Japan) was used to record the swimmer’s stroke frequency (SF). Afterwards, two expert
evaluators calculated the SF by the number of cycles per unit of time, from the time it
takes to complete one full cycle (f = 1/P; where P is the period), and afterwards converted
to Hz (ICC = 0.990). The stroke length (SL, m) was calculated as SL = v/SF, where SL is
the stroke length (m), v the swim velocity (m/s), and SF the stroke frequency (Hz) (Craig
& Pendergast, 1979). The intra-cyclic variation of the swim velocity (dv, %), was
computed as:

dv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
vivð Þ�Fi
n

q
P

i
vi�Fi
n

� 100 (1)

where dv is the intra-cyclic variation of the swim velocity (%), v is the mean swimming
velocity (m/s), vi is the instant swimming velocity (m/s), Fi is the acquisition frequency,
and n is the number of observations (Barbosa et al., 2010a). The stroke index (SI, m2/s)
was computed as SI = v · SL, where SI is the stroke index (m2/s), v the swim velocity (m/s),
and SL the stroke length (m) (Costill et al., 1985b). The Froude efficiency (ηF, %) was
calculated as:

ηF ¼ v � 0:9
2π � SF � l

� �
� 2
π
� 100 (2)

where ηF is the Froude efficiency (%), v the swim velocity (m/s), SF the stroke frequency
(Hz), and l the shoulder to hand average distance (m) (Zamparo, 2006). The l distance
was measured by digital photogrammetry (between the acromion and tip of the third
finger).

Hydrodynamics

The active drag (Da, N) and the coefficient of active drag (CDa, dimensionless) were
computed by the Velocity Perturbation Method (Kolmogorov & Duplishcheva, 1992).
Swimmers were invited to perform two maximal trials in front-crawl. In one trial,
swimmers were towing a hydrodynamic body (perturbation device) (Kolmogorov &
Duplishcheva, 1992). The swim velocity was calculated between the 11th and 24th metre
as v = d/t. The Da was computed as:

Da ¼ Dbvbv2

v3 � v3b
(3)
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where Da is the swimmer’s active drag at maximal velocity (N), Db is the resistance of the
hydrodynamic body (N), vb and v are the swim velocities with and without the perturba-
tion device (m/s). The CDa was computed as:

CDa ¼ 2 � Da

ρ � TTSA � v2 (4)

where CDa is the active drag coefficient (dimensionless), Da is the active drag (N), ρ is the
density of the water (being 1000 kg/m3), TTSA is the trunk transverse surface area (m2),
and v is the swim velocity (m/s). The Froude number (Fr, dimensionless) was com-
puted as:

Fr ¼ vffiffiffiffiffiffiffiffiffiffi
g �Hp (5)

where Fr is the Froude number (dimensionless), v is the swim velocity (m/s), g is the
gravitational acceleration (9.81 m/s2), and H is the swimmer’s height (m) (Kjendlie &
Stallman, 2008). The hull velocity (vhull, m/s) was computed as:

vhull ¼
ffiffiffiffiffiffiffiffiffiffi
g � H
2 � π

r
(6)

where vhull is the hull velocity (m/s), g is the gravitational acceleration (m/s2), and H is the
height (m) (Vogel, 1994). The Reynolds number (Re, dimensionless) was computed as:

Re ¼ v �H
#

(7)

where Re is the Reynolds number (dimensionless), v is the swim velocity (m/s), H is the
height (m), and υ is the water kinematic viscosity (being 8.97 × 10−7 m2/s at 26°C)
(Kjendlie & Stallman, 2008).

Mechanical power

The power to overcome drag (Pd, W) was computed as:

Pd ¼ Da � v (8)

where Pd is the power to overcome drag (W), Da is the swimmers’ active drag at maximal
velocity, and v is the swim velocity (m/s) (Kolmogorov & Duplishcheva, 1992).

The external mechanical power (Pext, W) and the mechanical power to transfer kinetic
energy to water (Pk, W) were computed respectively as:

Pext ¼ Pd
ηF

(9)

where Pext is the external mechanical power (W), Pd is the power to overcome drag (W),
and ηF is the Froude efficiency (dimensionless, described in the kinematics/efficiency
section) (Barbosa, Bartolomeu, Morais, & Costa, 2019).

Pk ¼ Pext � Pd (10)
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where Pk is themechanical power to transfer kinetic energy to water (W), Pext is the external
mechanical power (W), and Pd is the power to overcome drag (W) (Barbosa et al., 2019).

The total power input (Ėtot, W) was estimated as:

_Etot ¼ Pd
ηm � ηF

(11)

where Ėtot is the total power input (W), Pd is the power to overcome drag (W), ηF is the
Froude efficiency (dimensionless), and ηm the mechanical efficiency (dimensionless)
(Barbosa et al., 2019). It was assumed an average value of 0.2 for the ηm as reported
elsewhere (Pendergast et al., 2003).

Statistical analysis

The Kolmogorov and Levene tests were applied to verify the normality and homoscedas-
ticity assumptions, respectively. Mean plus one standard deviation and the variation
between moments (Δ, in %) were computed as descriptive statistics. The t-test paired
samples (p ≤ 0.05) was run to assess the differences between moments. The mean difference
(SI units) and respective 95% confidence interval (95CI) were also computed. Cohen’s
d was selected as a standardised effect size and deemed as: (i) small effect size if 0 ≤ d ≤ 0.2;
(ii) medium effect size if 0.2 < d ≤ 0.5 and; (iii) large effect size if d > 0.5 (Cohen, 1988).

Since repeated measures were nested within participants, the longitudinal data set was
treated as hierarchical, and the change associated with the detraining between the two
moments was analysed by hierarchical linear modelling (HLM). Two models were com-
puted. The first model included the time effect, the sex effect, and the interaction between
the time and sex to see if there were any changes over time, differences between sexes, and
differences in the changes between sexes, respectively. In the second model, anthropo-
metrics, hydrodynamics, kinematics, mechanical power, and efficiency variables were tested
as potential predictors. The final model only included significant predictors. Maximum
likelihood estimation was calculated on HLM7 software (Raudenbush, Bryk, Cheong,
Congdon, & du Toit, 2011). As the first model indicated significant differences between
the sexes, descriptive and inferential data were presented separately for boys and girls.

Results

Overall, all anthropometric variables increased significantly (moderate to large
effects) between M1 and M2 (Table 1 and Figure 1). The HSA was the variable
showing the largest and most significant increase in boys (M1: 113.48 ± 13.49 cm2,
M2: 119.09 ± 13.21 cm2; Δ = 4.71%; d = 0.42; t = 6.47; p < 0.001), and the BM in girls
(M1: 45.94 ± 7.10 kg, M2: 47.89 ± 7.20 kg; Δ = 4.07%; d = 0.27; t = 7.94; p < 0.001).

Boys increased all hydrodynamic and mechanical power variables, except the Pk.
The Re was the hydrodynamic variable with the highest significant increase (M1:
2.37 × 106 ± 3.98x105; M2: 2.61 × 106 ± 3.37x105; Δ = 9.26%; d = 0.66; t = 4.80;
p < 0.001) (Table 1 and Figure 2). Conversely, there were mixed results across several
variables for girls between evaluation moments (Table 1 and Figure 2). Again, the Re

was the variable with the largest significant increase (M1: 1.99 × 106 ± 2.81x105; M2:
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Figure 1. Anthropometrics variation between M1 and M2. The mean plus standard error are pre-
sented. BM—body mass; H—height; AS—arm span; TTSA—trunk transverse surface area; HSA—hand
surface area; FSA—foot surface area. Black columns—boys’ variation; grey columns—girls’ variation.

Figure 2. Hydrodynamics and mechanical power variation between M1 and M2. The mean plus
standard error are presented. Da—active drag; CDa—coefficient of active drag; Fr—Froude number; Re
—Reynolds number; vhull—hull velocity; Pd—power to overcome drag; Pext—external mechanical
power; Pk—mechanical power to transfer kinetic energy to water; Etot—total power input. Black
columns—boys’ variation; grey columns—girls’ variation.
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2.24 × 106 ± 1.97x105; Δ = 11.18%; d = 1.03; t = 4.25; p < 0.001) (Table 1 and
Figure 2).

Swim velocity, SL, and efficiency in boys increased between moments. The SI pre-
sented the highest significant increase (large effect) (M1: 2.02 ± 0.50 m2/s, M2:
2.41 ± 0.37 m2/s; Δ = 16.16%; d = 0.89; t = 3.97; p = 0.001) (Table 1 and Figure 3).
Girls kept or increased the kinematics and efficiency. The SI also presented the highest
and significant increase (large effect) (M1: 1.61 ± 0.42 m2/s, M2: 2.01 ± 0.33 m2/s;
Δ = 19.51%; d = 1.06; t = 3.56; p = 0.002) (Table 1 and Figure 3).

However, boys’ (M1: 68.53 ± 6.81 s, M2: 70.05 ± 5.84 s; Δ = 2.17%; d = 0.24; t = 3.03;
p = 0.007;) and girls’ (M1: 75.07 ± 7.84 s, M2: 76.53 ± 6.44 s; Δ = 1.91%; d = 0.20; t = 2.77;
p = 0.010) performance impaired significantly (minimum to moderate effect) between
moments (Table 1 and Figure 1).

The first HLM model yielded significant differences between the sexes at baseline
(M1) (Table 2). Similar changes between the two moments were verified in all
swimmers, despite sex (i.e., it was similar in both sexes). The final model output is
portrayed in Table 2. At baseline, the model showed that boys were, on average, 4.14 s
faster than girls. There was a significant impairment in the performance between the
two moments (2.49 s, i.e., time effect). The only predictor retained was the height (H).
Each unit of increase in the height (in cm) led to a 0.41 s impairment in the

Figure 3. Kinematics, efficiency and performance variation between M1 and M2. The mean plus
standard error are presented. v—swim velocity; dv—intra-cyclic variation of the horizontal velocity of
the hip; SF—stroke frequency; SL—stroke length; nF—Froude efficiency; SI—stroke index; 100 m
Performance—100 m freestyle performance at short course metre. Black columns—boys’ variation;
grey columns—girls’ variation.
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performance (i.e., an increase of height minimised the performance impairment during
the break period).

Discussion and implications

The aim of this study was to analyse the variation in young swimmers’ performance and
its determinants over a season break (11-weeks). Boys and girls significantly impaired
(minimum effect) their performance (i.e., more time to cover the distance). However,
both sexes grew significantly over the break (i.e., anthropometrics increased). Moreover,
the biomechanical variables increased in boys. Girls presented the same trend, except for
the Da, Pext, Pk, and Etot where decreases were observed.

Swimming performance impaired significantly in both boys (2.17%) and girls (1.91%)
after an 11-week training break (M1vsM2). A study found similar results for boys’ 100 m
performance (1.86%) during a 50-day break (Sambanis, 2006). Moreover, for boys and
girls aged 14.50 ± 0.80 and 14.20 ± 0.60 years old, respectively, a study also showed an
impairment (3.80%) in performance in the 400 m freestyle event (Zacca et al., 2019a).
Increasing the race distance makes the performance more dependent on physiological
response than on biomechanics performance (Vescovi, Falenchuk, & Wells, 2011).
Moreover, the sample was composed of young athletes but in Tanner stages IV (late-
pubertal) and V (post-pubertal) (Zacca et al., 2019a). So, one might claim that such
swimmers presented a profile more similar to adults than to young swimmers (pre-
pubertal) where growing peaks do not occur quite as often.

In our research, swimmers grew, on average, 3.67 cm for boys and 1.72 cm for girls
(Table 1). Moreover, the study conducted by Zacca et al. (2019a) also verified a decrease in
the kinematics and efficiency variables (i.e., decrease in v, SF, SL, and SI). Indeed, it is
suggested that detraining or training cessation induces a negative effect on young athletes’
physical patterns for sports in general (Giada et al., 1998; Melchiorri et al., 2014). By
contrast, data from our research revealed that boys were prone to increase their hydro-
dynamic, mechanical power, kinematics, and efficiency variables after an 11-week training
break. Girls showed a similar trend, except for a few hydrodynamic and mechanical power
variables (Table 1 and Figure 2). A study conducted byMoreira et al. (2014) also verified an
increase in the kinematics and efficiency in pre-pubertal swimmers (12 boys:
12.80 ± 0.90 years old; 13 girls: 12.0 ± 0.90 years old) during a summer break. The authors
suggested that an increase in body traits (e.g., anthropometrics, such as the height, arm
span, and foot and hand surface areas) was the main responsible factor for the kinematics
enhancement.

Indeed, deterministic models indicate that anthropometrics have a positive and direct
effect on the swimmers’ kinematics and efficiency (i.e., an increase in body traits will lead

Table 2. Fixed parameters of the final model computed with standard errors
(SE) and 95% confidence intervals (95CI).
Parameter Fixed Effect Estimate (SE) 95CI p value

Intercept 74.27(1.31) 71.70;76.84 <0.001
Sex −4.14(1.57) −7.22;-1.06 0.011
Time 2.49(0.37) 1.76;3.24 <0.001
Height −0.41(0.07) −0.57;-0.26 <0.001
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to an increase in kinematic and efficiency variables) (Barbosa et al., 2010b; Morais et al.,
2017). Nonetheless, in the present data, performance did impair significantly for both
boys and girls despite the determinant factors increasing. The performance outcome
selected was the 100 m freestyle event (in a 25 m length swimming pool) instead of
a short 25 m time-trial used in the study by Moreira et al. (2014). The former (100 m
event) includes all the major aspects of the swimming race: start, turns, clean swim, and
finish (Morais, Marinho, Arellano, & Barbosa, 2019). For adult/elite swimmers, it was
suggested that in the 100 m events, the start and turns might account for nearly 33% of
the total race time (Morais et al., 2019). So, one might claim that the variables related to
stroke mechanics are not the only factors responsible for the 100 m performance. For
instance, lower limb strength and power, and passive drag (glide) also play an important
role in the start and turns (Jones, Pyne, Haff, & Newton, 2018).

The 100 m event comprises four times the kinematic data retrieved from a 25 m trial
(4 × 25 m). So, it might be suggested that young swimmers were not able to keep their
kinematics and efficiency during a 100 m event. This indicates that physiological
response also plays a determinant role in young swimmers’ performances. A study
showed that young swimmers subjected to a 50-day detraining period decreased the
pulmonary function variables (Sambanis, 2006). Although the physiological variables
were not assessed, the CDa increase between M1 and M2 may reflect the swimmers’ need
for a higher physiological power to overcome drag at a given swim velocity at M2 in
comparison to M1 (Table 1 and Figure 2). Energetics also plays an important role in
young swimmers’ performance (Zacca et al., 2019b). Hence, it can be suggested that after
a detraining period: (i) the anthropometrics increase is determinant on young swimmers’
biomechanics maintenance or enhancement, and; (ii) the performance impairment
occurs due to an energetic decline (since a physiological response is necessary to main-
tain the amount of energy necessary during a 100 m event) (Barbosa et al., 2019).

Hydrodynamic and mechanical power variables increased in boys, while girls showed
increases and decreases (Table 1 and Figure 2). The Da is computed based on the v and
TTSA (Equation (3)); therefore, whenever an increase in the latter variables is verified,
the former will increase too (Barbosa et al., 2015; Marinho et al., 2010). Despite the
v increase, girls did decrease slightly for the Da. The CDa increased between the moments
(boys and girls), but this is less dependent on the v and TTSA. The CDa changes based on
shape, orientation, and the Reynolds number, representing the swimmers’ hydrodynamic
profile (Marinho et al., 2009). So, one might argue that swimmers lose some of their
hydrodynamic skills as denoted by the CDa increase.

Overall, the remaining hydrodynamic and mechanical power variables (Fr, Re, vhull,
Pd, Pext, and Etot) also increased in boys, except for the Pk. This occurred due to the
growing process, where an increase in body traits led to an increase in the swimmers’
kinematics, and hence in these specific variables (Barbosa et al., 2019). As a consequence
of what was discussed earlier, different findings were observed between boys and girls for
the mechanical power variables. Girls conversely decreased Pext, Pk, and Etot. Such
decrease might be related to the magnitude of anthropometrics increase. Our data
showed that girls did not increase their body traits as much as boys (Table 1 and
Figure 1). So, it might be suggested that such differences (boys’ versus girls’ magnitude
of body traits increase) could be responsible for the mechanical power variables output.
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Usually, pre-pubertal swimmers of both sexes are pooled together (Barbosa et al., 2015;
Moreira et al., 2014). The literature reports that for pre-pubertal children or athletes, partici-
pants from both sexes could be analysed in the same cohort group since non-significant
differences might be found in anthropometrics, kinematics, and energetics or efficiency
(Geladas et al., 2005; Greco & Denadai, 2005). However, HLM procedure pointed out that
boys and girls differ in performance at M1 (peak-performance) (i.e., significant sex effect)
(Table 2). Asmentioned earlier, 100mperformance at an official/trial event relies on the start,
clean swim, turn(s), and finish. So, other variables like lower limb strength and passive drag
may represent an important factor for a hypothetical sex differentiation. Thus, we chose to
present the data separately. Nevertheless, several variables from each set did not show
differences between sexes (e.g., anthropometrics: TTSA; kinematics: dv; hydrodynamics:
CDa; efficiency: ηF). Moreover, HLM did not yield an interaction between sex and time.
This suggests that both boys and girls have been under the same amount of detraining.
Considering the 11-week break, it can be pointed out that boys and girls impaired (eachweek)
their performance by 0.14 s (95CI: −0.25;0.53) and 0.13 s (95CI: −0.35;0.61), respectively.

Height was themain predictor for the performance variation (Table 2). One unit (in cm)
of height increase led to a 0.41 s improvement in the performance. Indeed, height has
a positive and significant correlation for young swimmers’ performance (Geladas et al.,
2005). Additionally, in this particular case, it seems that growing over the break period can
be deemed as a way to trade-off the performance impairment. So, this study confirmed that
anthropometric variables were the key-determinant in such early ages (11–13 years old).
Indeed, it was shown that anthropometric traits like the ones in this study are highly
associated to young swimmers’ performance (Barbosa et al., 2010b; Morais et al., 2017).
Altogether, if young swimmers undergo a growth spurt over a break period, the perfor-
mance impairment will be attenuated. They may undergo growth and maturation spurts
that will lead to an increase in body traits and decelerate the rate of performance impair-
ment over 11-weeks (in this particular case). Our data showed that boys and girls grew, on
average, 3.67 cm and 1.72 cm, respectively. This increase had a positive effect on their
biomechanics performance. Coaches and practitioners must be aware of the importance of
monitoring a hypothetical increase in body traits during long detraining periods.

This research highlights the importance of monitoring young swimmers, even during
training cessation (11-weeks). During a long detraining period, like the one in this study
(11-weeks), swimming performance impaired significantly in both sexes and with a similar
magnitude. Nevertheless, this impairment was traded off by an increase in anthropometrics
and improvements in biomechanics. Coaches should be concerned if swimmers decrease
their biomechanics during a training cessation when a significant increase in their anthro-
pometrics is verified. It can be suggested that an increase in height may function as
a performance retainer. Thus, coaches of age group athletes are advised to monitor their
swimmers’ heights during a training cessation period in order to understand the swimmers’
biomechanics variation. Additionally, they should put the focus on technical training so
that swimmers ‘re-learn’ their stroke mechanics after a body dimensions increase. Our data
showed that an increase in height had a positive effect on young swimmers’ biomechanics
(especially in boys). As the main limitations, it might be pointed out: (i) despite coaches did
not provide the training workload, they were instructed to follow the same training guide-
lines during the season but this was not possible due to the varying training loads in
different programmes, and; (ii) the somewhat ‘uncontrolled’ breaking period regarding
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other sport and leisure activities. Nonetheless, swimmers were instructed not to practice
competition swimming (i.e., events and/or training).

Conclusion

As a conclusion, during training cessation (11-weeks), young swimmers’ performance
impaired significantly. Conversely, swimming biomechanics improved over the same
period of time. Such improvement is related to growth spurts. Indeed, it was noted that
the height increase was responsible for attenuating the rate of the performance impair-
ment. That is, if swimmers did not grow, the likelihood of what should be expected as
a larger performance impairment would be verified.
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